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Abstract—Sparsity-promoting regularization is useful for com-
bining compressed sensing assumptions with parallel MRI for
reducing scan time while preserving image quality. Variable
splitting algorithms are the current state-of-the-art algorithms for
SENSE-type MR image reconstruction with sparsity-promoting
regularization. These methods are very general and have been
observed to work with almost any regularizer; however, the
tuning of associated convergence parameters is a commonly-cited
hindrance in their adoption. Conversely, majorize-minimize algo-
rithms based on a single Lipschitz constant have been observed
to be slow in shift-variant applications such as SENSE-type MR
image reconstruction since the associated Lipschitz constants are
loose bounds for the shift-variant behavior. This paper bridges
the gap between the Lipschitz constant and the shift-variant
aspects of SENSE-type MR imaging by introducing majorizing
matrices in the range of the regularizer matrix. The proposed
majorize-minimize methods (called BARISTA) converge faster
than state-of-the-art variable splitting algorithms when combined
with momentum acceleration and adaptive momentum restarting.
Furthermore, the tuning parameters associated with the proposed
methods are unitless convergence tolerances that are easier
to choose than the constraint penalty parameters required by
variable splitting algorithms.

Index Terms—MR Image Reconstruction, Compressed Sens-
ing, FISTA, Majorize-Minimize, Parallel MRI

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is an imaging

modality where improving the resolution requires in-

creased acquisition time. As a result, the cost of MRI also

increases with higher resolution since the cost is directly

proportional to the scan time. In addition to reducing the cost

of high-resolution MRI, scanning time reductions can also help

accommodate pediatric and elderly patients that have difficulty

remaining motionless during long scans. Such scan time

reductions are facilitated by combining undersampling and
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advanced signal processing methods to remove the associated

aliasing artifacts. SENSitivity Encoding (SENSE) is an MRI

technique that undoes aliasing effects caused by undersam-

pling by exploiting variations in the sensitivity profiles (i.e.,

B1 maps) of multiple coils placed around the patient [1].

When the image can reasonably be assumed to be sparse in

some transform domain, compressed sensing techniques can

be applied to facilitate further accelerations [2].

Image estimation that leverages SENSE MRI and com-

pressed sensing assumptions can be mathematically formu-

lated as an ℓ1-regularized optimization problem [3]. Since

the ℓ1 term is nondifferentiable, these problems are difficult

to minimize using standard gradient-based methods. Some

methods convert such problems into a different form where

fast minimization techniques can be applied. One such class

includes variable splitting algorithms, where one forms a

constrained optimization problem and then proceeds within

the augmented Lagrangian formalism to find the solution to

the original ℓ1-regularized problem [4]–[7]. A difficulty with

applying these methods is the tuning of a constraint penalty

parameter that heavily affects convergence speed. Sufficient

conditions for optimally choosing these parameters are un-

known, so current practice is to resort to heuristics for setting

these parameters [7]. Since the optimal parameter can change

from problem to problem (i.e., patient to patient), robust

performance of these methods can be difficult to ascertain.

Alternatives to variable splitting methods are majorize-

minimize methods such as fast iterative soft thresholding

(FISTA) [8]. FISTA methods converge at a rate that depends

on the Lipschitz constant, a constant that upper bounds the

eigenvalues of the Hessian of the data fit term. This constant

is on the order of the maximum of the sum of squared absolute

values of the sensitivity coils. As such, the Lipschitz constant

can be very loose for low signal regions that occur at the center

of the object in SENSE MRI. As a result, majorize-minimize

methods such as FISTA have performed poorly relative to their

variable splitting counterparts in MRI applications [7].

We address the looseness of the Lipschitz bound by formu-

lating tighter bounds that vary spatially based on the sensi-

tivity coil profiles. The approach requires finding a diagonal

majorizer in the range of the regularizing matrix. In this paper

we show that for several regularizers of interest (including

orthogonal wavelets, anisotropic total variation, and undeci-

mated Haar wavelets), such diagonal upper bounds are simple

to compute and give large accelerations relative to FISTA
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with the Lipschitz constant. When combined with adaptive

momentum restarting [9], these methods outperform variable

splitting methods in all of these cases. The proposed methods

also use parameters in the form of convergence tolerances,

but in numerical experiments we found that once a reasonable

choice was made for these parameters, further optimization

was not necessary.

II. PROBLEM FORMULATION AND GENERAL APPROACH

From compressed sensing theory, one can recover a sparse

signal by minimizing a convex cost function with ℓ1 regular-

ization [3]. Let C denote the number of sensitivity coils, D
denote the number of data points, and N denote the number

of pixels to be estimated. The ℓ1-minimization procedure

for parallel MR image reconstruction can be mathematically

formulated as

x̂ = argmin
x∈M

{f(x) + βR(x)} ,

f(x) =
1

2
‖y −Ax‖22 , R(x) = ‖Rx‖1 ,A = FS,

(1)

where F ∈ CD×CN is a block-diagonal matrix with each

block having the same down-sampled DFT operator and

S ∈ CCN×N is a block-column matrix with diagonal blocks.

We include a masking set, M, that constrains elements outside

the mask to be zero. We call f(x) the data fit term and R(x)
the regularizer. Weighted quadratic data fit terms used for noise

correlations between coils can be converted to this unweighted

form [7]. The parameter, β, must be selected by the user to

balance trade-offs between the data fit term and the regularizer

(Monte Carlo techniques have been developed for estimating

these parameters that perform well under mean-squared error

metrics [10].) Defining A = FS, we note that S gives A a

highly shift-variant nature, a property that we will consider in

our algorithm design. R is a sparsifying transform. If R is

left-invertible (i.e., NR = I for some matrix, N), we say that

(1) is a synthesis reconstruction problem since we can define

u = Rx and rewrite (1) as an optimization problem over u.

We assume that R ∈ CM×N . If R is not left-invertible, then

we call (1) an analysis reconstruction problem and assume

that R ∈ RM×N . This restriction of R to be real-valued

includes important classes of analysis regularizers such as

total variation [2] and undecimated Haar wavelets [7]. Each

of these regularization forms necessitates different algorithm

considerations.

Although solving (1) allows one to obtain high-quality esti-

mates of x with less data, (1) is typically difficult to minimize.

Most methods instead minimize a different problem related to

(1). The related problem should be easy to minimize relative

to (1), but still offer information relevant to the solution of (1).

Two procedures for defining and minimizing related problems

are majorize-minimize procedures and variable splitting pro-

cedures. For completeness we note that “corner rounding” has

also been proposed for dealing with the nondifferentiability

of the ℓ1 regularizer [2], but this has been found to yield

algorithms slower than those of the variable splitting class [7].

Our method is of the majorize-minimize class, but is different

from previous majorize-minimize methods in that it carefully

considers any coupling of the structures of A and R. We

outline the general approach in the following section.

A. Separable Quadratic Surrogates

Majorize-minimize methods work by forming a surrogate

cost function (i.e., a majorizer, φk(x)) and then minimizing the

surrogate each iteration to find the minimizer of the original

cost function. Any quadratic of the form 1
2 ‖y −Ax‖22 can

be majorized with a separable quadratic surrogate (SQS), a

procedure that we briefly review [11], [12]. If a surrogate,

φk(x), satisfies the following two conditions, then decreasing

the surrogate will decrease the original cost function [13]:

f(x(k)) = φk(x
(k)), (2)

f(x) ≤ φk(x). (3)

We allow the surrogate to be indexed by k since it can vary

with iteration. We form such a surrogate for SENSE MRI by

first rewriting f(x) around a current estimate, x(k), as

f(x) = f(x(k)) + ℜ
{
(AH(Ax(k) − y))H(x− x(k))

}

+
1

2
(x− x(k))HAHA(x − x(k)),

(4)

where ℜ{·} returns the real part of its argument and AH is the

Hermitian transpose of A. If we have AHA � Df ∈ RN×N

for some diagonal matrix, Df (where M � 0 implies that M
is positive semidefinite), we can write

f(x) ≤ φk(x) = f(x(k))

+ ℜ
{
(AH(Ax(k) − y))H (x− x(k))

}

+
1

2

∥∥∥x− x(k)
∥∥∥
2

Df

= ψ(x,x(k)) + ζ,

ψ(x,x(k)) ··=
1

2

∥∥∥x− (x(k) −D−1
f AH(Ax(k) − y))

∥∥∥
2

Df

,

(5)

where ζ is a constant that arises from completing the square

and is independent of x. Decreasing ψ(x,x(k)) causes φk(x)
to decrease by the same amount. Standard majorize-minimize

procedures use Df = LI, where L is the maximum eigenvalue

of AHA. We instead use a more general Df that is a tighter

bound for AHA. In the case where A = FS, we have

AHA = SHFHFS. In general FHF � F I, where F is the

maximum eigenvalue of FHF. In the case of Cartesian MRI

with unitary DFT matrices, F = 1. One can estimate F offline

in the non-Cartesian case via power iteration since it does not

depend on the object. Noting this, we have

Df ··= FSHS � AHA, (6)

where SHS is a diagonal matrix with the sum of the squared

absolute values of the sensitivity coils along its diagonal. We

could use Df to upper bound any SENSE-type quadratic data

fit term with a separable quadratic surrogate. We will use this

property in the following sections. Furthermore, Df is easy

to compute once one has determined the coil sensitivities, and

with the recent development of fast algorithms for SENSE

map estimation it is quickly available in online settings [14].
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B. Proposed Minimization Algorithm

We note through the majorization conditions that solving

the following problem will decrease the cost function in (1):

x(k+1) = argmin
x∈M

{
η(x,x(k)) ··= ψ(x,x(k)) + βR(x)

}
.

(7)

The minimization problem in (7) is where synthesis and

analysis regularizers differ. In the synthesis case, η(x,x(k))
is either fully separable or it can be converted into a fully

separable form. When η(x,x(k)) is fully separable, closed-

form solutions exist via shrinkage functions. In the analysis

case, closed form solutions do not exist and we have to run

a few steps of an iterative algorithm to decrease η(x,x(k)).
We discuss the synthesis case in detail in Section III and the

analysis case in Section IV.

Iteratively applying (7) qualifies as a majorize-minimize

procedure, and as such it can be accelerated with momentum

techniques [8]. Momentum accelerations can be enhanced

with adaptive momentum restarting [9]. This gives a general

algorithm, which we call B1-based, Adaptive Restart, Iterative

Soft Thresholding Algorithm, or BARISTA, since it has step

sizes that depend on the sensitivity or B1 maps. Fig. 1 shows

the overall algorithm. Variants of this general form are shown

Fig. 1. BARISTA: B1-based, Adaptive Restart, Iterative Soft Thresholding
Algorithm

1: initialize k = 0, z(0) = x(0),Df , α
2: while k < K do

3: τ (k+1) = (1 +
√
1 + 4(τ (k))2)/2

4: x(k+1) = argmin
x∈M

η(x, z(k))

5: κ =
∥∥z(k) − x(k+1)

∥∥
2

∥∥x(k+1) − x(k)
∥∥
2

6: if ℜ
{〈

z(k) − x(k+1),x(k+1) − x(k)
〉}

> ακ then

7: z(k+1) = x(k+1)

8: τ (k+1) = 1
9: else

10: z(k+1) = x(k+1) + τ (k)−1
τ (k+1) (x

(k+1) − x(k))
11: end if

12: k = k + 1
13: end while

14: x̂ = x(K)

in Fig. 2 for the synthesis case and Fig. 3 for the analysis

case. The tracking of the momentum is provided by the τ (k)

parameter and an auxiliary variable, z(k). If the algorithm

takes a step in a certain direction, then z(k+1) takes a larger

step in the same direction where the size is determined by

τ (k). The restart is shown with the “if” statement at the

end of an algorithm step. If the cosine of the angle between

x(k+1) − z(k) and x(k+1) − x(k) is greater than α, then the

momentum is wiped away. This helps prevent the generalized

gradient and the momentum term from taking the algorithm

in opposite directions. In our numerical experiments we found

that good values for α are negative and lie near 0; we used

α = − cos(4π/9). As stated previously, one challenge is in

the minimization of η(x, z(k)). Another associated challenge

is the design of matrices similar to Df , but in the range of

the regularizer for both synthesis and analysis regularization.

The following sections discuss these topics.

III. SYNTHESIS REGULARIZATION

A. Synthesis Algorithm Formulation

We use the term synthesis regularization when R is left-

invertible, which allows rewriting the minimization problem

in the basis of the regularizer. For notational simplicity in

this section, we discuss R that forms a tight frame, i.e.,

RHR = I. Orthogonal wavelet transforms for SENSE MRI

and DFT/DCT regularizers for dynamic MRI are examples of

unitary matrices that might be used in synthesis problems in

MRI. Defining u = Rx, we can rewrite (1) as

û = argmin
u∈Msynth

{
1

2

∥∥∥y −ARHu
∥∥∥
2

2
+ β ‖u‖1

}
,

x̂ = RH û

(8)

where Msynth is a synthesis mask that restricts a subset of the

synthesis coefficients to be zero. It is less natural to use a mask

for the synthesis approach than for analysis, so if masking is

desired we recommend using the algorithm outlined in Section

IV. Now, if we find a diagonal matrix, DR, such that

DR � RDfR
H (9)

and defining B = ARH , the surrogate in (7) is

η(u,u(k))

=
1

2

∥∥∥u− (u(k) −D−1
R BH(Bu(k) − y))

∥∥∥
2

DR

+ β ‖u‖1 ,
(10)

the constrained minimum of which is a shrinkage solution:

u(k+1) = argmin
u∈Msynth

η(u,u(k))

= PMsynth
(shrink(b(k), βd−1

R )),
(11)

where b(k) = u(k) − D−1
R BH(Bu(k) − y). d−1

R is a vector

composed of the diagonal elements of D−1
R , and the shrinkage

function is defined as shrink(b, β) = diag{sign(bi)}(|b| −
β1)+. In this case, | · | denotes the absolute value function,

(·)+ sets values less than zero to zero, diag{·} takes the input

elements and arranges them as a diagonal matrix, and sign(·)
returns the complex sign of its argument. The PMsynth

operator

projects its argument on to the set, Msynth, which in this case

corresponds to setting all elements outside the mask to zero.

Fig. 2 shows the synthesis version of BARISTA. Our goal now

is to design DR, which will allow us to take larger step sizes

in step 5 of Fig. 2 and apply more aggressive shrinkage in

step 6.

B. Diagonal Upper Bounds in Unitary Bases

The challenge in designing DR is that it must be constructed

in the basis of the regularizer, while Df is in the basis of the

image. For this purpose we will use Theorem 1, which gives a

means of constructing DR. Theorem 1 can be applied for any

R, although it is most useful for unitary regularizing matrices

that have rows with compact support. We will use it here since

orthogonal wavelets fall into this class.
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Fig. 2. BARISTA for synthesis

1: initialize k = 0,u(0) = Rx(0), z(0) = u(0),Df , α
2: calculate DR � RDfR

H according to Theorem 1

3: while k < K do

4: τ (k+1) = (1 +
√
1 + 4(τ (k))2)/2

5: b(k) = z(k) −D−1
R BH(Bz(k) − y)

6: u(k+1) = PMsynth
(shrink(b(k), βd−1

R ))
7: κ =

∥∥z(k) − u(k+1)
∥∥
2

∥∥u(k+1) − u(k)
∥∥
2

8: if ℜ
{〈

z(k) − u(k+1),u(k+1) − u(k)
〉}

> ακ then

9: z(k+1) = u(k+1)

10: τ (k+1) = 1
11: else

12: z(k+1) = u(k+1) + τ (k)−1
τ (k+1) (u

(k+1) − u(k))
13: end if

14: k = k + 1
15: end while

16: x̂ = RHu(K)

Theorem 1. Let R ∈ CM×N be any matrix and let

Df ∈ RN×N be diagonal with diagonal elements dn,f . Let
rm be the mth row of R and let Sm ⊂ {1, ..., N} be

the support set for rm. Define tm = maxn∈Sm(dn,f ) and

dm,R =
∑M

l=1 min(tm, tl)| 〈rm, rl〉 |. Let DR be a diagonal

matrix with diagonal elements dm,R, then DR � RDfR
H .

The Appendix shows a proof of Theorem 1. Theorem 1

states that any matrix of the form RDfR
H can be upper

bounded with a diagonal matrix by taking maximums over

patches of Df and scaling those maximums by sums of inner

products. These inner product sums increase as R becomes

less unitary, but in our synthesis case we assume unitary R so

dm,R = tm. We have found that this is an effective majorizing

matrix for unitary regularizing matrices, and we used Theorem

1 to design DR for orthogonal Haar and Daubechies D4

wavelets in our numerical experiments where we ran the

algorithm in Fig. 2.

IV. ANALYSIS REGULARIZATION

A. Analysis Algorithm Formulation

In the analysis setting R is not left-invertible and we can

no longer define u = Rx and rewrite (1) as an optimization

problem over u. As such, we must leave (1) in its original

form. The forms of R of this type that are of interest for

SENSE MRI include anisotropic total variation regularizers

[2] and undecimated wavelets where the approximation co-

efficients are unregularized [7], [15]. However, we can still

form a quadratic surrogate for the data fit term. This gives

the analysis denoising problem. Since we do not have a

closed-form solution of this problem, we run a few iterations

of a denoising procedure. Fig. 3 shows the overall analysis

algorithm, while the denoising procedure is shown in Fig. 4.

We must decide on a stopping criterion for the iterative

algorithm used for the denoising step. Previous methods have

used a fixed iteration count for this step [7], [16], but we

instead use an ǫ(k) criterion. When large steps are being taken

in the outer iterations, the denoising step only needs to provide

Fig. 3. BARISTA for analysis

1: initialize k = 0, z(0) = x(0),Df , α, ǫ
(0)

2: calculate DR � RD−1
f RT as outlined in Section IV-C

3: while k < K do

4: τ (k+1) = (1 +
√
1 + 4(τ (k))2)/2

5: Run Fig. 4 algorithm to ǫ(k) convergence to get x(k+1)

6: κ =
∥∥z(k) − x(k+1)

∥∥
2

∥∥x(k+1) − x(k)
∥∥
2

7: if ℜ
{〈

z(k) − x(k+1),x(k+1) − x(k)
〉}

> ακ then

8: z(k+1) = x(k+1)

9: τ (k+1) = 1
10: else

11: z(k+1) = x(k+1) + τ (k)−1
τ (k+1) (x

(k+1) − x(k))
12: end if

13: ǫ(k+1) = max(min(ǫdiff
‖x(k+1)−x(k)‖

2

‖x(k)‖
2

, ǫ(k)), ǫmin)

14: k = k + 1
15: end while

16: x̂ = x(K)

an approximate solution to progress the algorithm, whereas

very accurate solutions are beneficial for later iterations where

the outer steps are small.

Fig. 3 shows a strategy for choosing ǫ(k) that was effec-

tive in our numerical experiments. ǫ(k) is chosen to be ǫdiff

times the norm-difference of the previous iteration, restricted

between the upper and lower bounds of ǫ(k−1) and ǫmin. We

choose ǫdiff to balance the cost of solving the denoising prob-

lem and progressing the outer iterations. In all experiments

we used ǫdiff = 10−1. We choose ǫmin based on the precision

level of the machine that runs the algorithm; its primary

purpose is to prevent the algorithm from stalling as a result of

numerical precision. For double precision, we observed that

ǫmin = 10−12 gave agreeable convergence in later iterations.

We set ǫ(0) = 10−1. We decrease ǫ(k) monotonically so that

the denoising subproblem is solved more accurately as the

algorithm progresses toward the solution.

B. Analysis Denoising Subroutine

We now discuss the so-called analysis denoising problem

that needs to be solved in step 6 of the algorithm in Fig. 3,

which is formulated as follows:

x(k+1) = argmin
x∈M

η(x,x(k)),

η(x,x(k)) =
1

2

∥∥∥b(k) − x
∥∥∥
2

Df

+ β ‖Rx‖1 ,

b(k) = x(k) −D−1
f AH(Ax(k) − y).

(12)

This is equivalent to solving step 4 of the algorithm in Fig. 1.

There are many potential approaches to solving this step,

including nonlinear CG [2] and split Bregman schemes [4]. As

mentioned in the previous section, our goal is to minimize the

cost function in (12) to some pre-specified numerical precision.

As a result, whatever procedure is chosen should perform well

under all numerical precision environments, a property not

satisfied by nonlinear CG due to its corner-rounding parameter

or split Bregman due to its constraint penalty parameter.

Instead, we choose to extend the results in [16] to general ℓ1
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regularizers, adapt it to complex numbers, and reintroduce our

diagonal majorizing matrix in the range of the regularizer. This

approach meets the numerical precision requirements and gave

agreeable convergence speed in numerical experiments. Our

derivation requires real-valued R, which includes interesting

classes of anisotropic total variation and undecimated Haar

wavelet regularizers. Fig. 4 shows the algorithm that arises

from extending the results in [16]. The Appendix derives this

algorithm.

Fig. 4. Analysis denoising algorithm

1: initialize j = 0,q(0),v(0) = v(0),Df ,DR, ǫ, α
2: repeat

3: τ (j+1) = (1 +
√
1 + 4(τ (j))2)/2

4: x(k,j+1) = PM(b(k) − βD−1
f RTv(j))

5: q(j+1) = PPM (v(j) − β−1D−1
R Rx(k,j+1))

6: κ =
∥∥v(k) − q(k+1)

∥∥
2

∥∥q(k+1) − q(k)
∥∥
2

7: if ℜ
{〈

v(k) − q(k+1),q(k+1) − q(k)
〉}

> ακ then

8: v(k+1) = q(k+1)

9: τ (k+1) = 1
10: else

11: v(k+1) = q(k+1) + τ (k)−1
τ (k+1) (q

(k+1) − q(k))
12: end if

13: j = j + 1

14: until
‖x(k,j)−x(k,j−1)‖

2

‖x(k,j−1)‖
2

≤ ǫ

15: x(k+1) = PM(b(k) − βD−1
f RTq(j))

The PPM (·) operator in Fig. 4 projects its argument on to

the set, PM , the ℓ∞-unit ball. This set arises from our dual

formulation discussed in the Appendix. In this case this means

that PPM (·) examines each element in its input vector and

normalizes any elements with an absolute value greater than

1 to an absolute value of 1, preserving the complex sign. For

this inner denoising step we include an ǫ stopping criterion,

the choice of which as discussed in Section IV depends on

the step sizes of the outer iterations of the algorithm in Fig. 3.

Although not noted in Fig. 4, we also included a maximum

iteration number to prevent the algorithm from stalling. We

did not observe that this was necessary in our numerical

experiments, but we wanted to ensure stable convergence in a

variety of circumstances. We measure the convergence based

on x(k,j+1), which is calculated from the momentum variable

v(j), although the actual convergence would depend on the

dual variable, q(j). This simplification avoids making extra

computations each iteration that would be required to estimate

x from q(j), and with the adaptive restart we expect v(j) to

be a good approximation for q(j) near the solution. Lastly, we

note that we initialized the analysis denoising algorithm with

the last value for q from the previous run of the algorithm.

This warm start greatly helps the convergence speed of the

analysis denoising subroutine.

The algorithm in Fig. 4 requires computing a DR that

satisfies the analysis majorizer condition:

DR � RD−1
f RT , (13)

where RT is the transpose of R. We discuss DR for the cases

of anisotropic total variation and undecimated Haar wavelets.

C. Diagonal Majorizers for Analysis Regularizers

One could use Theorem 1 to upper bound any matrix,

including RD−1
f RT . However, in practice we have found that

bound somewhat loose for the analysis regularizing matrices

of anisotropic total variation and undecimated Haar wavelets.

We discuss tighter bounds for these two cases. For the case

of anisotropic total variation, we choose

DR = diag{abs(R)D−1
f abs(RT )1}, (14)

where abs(·) returns a matrix that has entries that are the

absolute value of the input matrix. This is guaranteed to be a

majorizer as it is a modification of the techniques of De Pierro

[17], and we have found it to be very tight for anisotropic total

variation. Its calculation is also simple.

For the case of undecimated Haar wavelets, we present a

different approach that builds on Theorem 1 via the polar-

ization identity. The idea is to split up a non-orthogonal R
into orthogonal pieces for which Theorem 1 will provide tight

diagonal majorizers. Consider R of the form,

R =



R1

...

RQ


 , (15)

where Q is the number of submatrices of R. Defining ci =

D
−1/2
f RT

i wi for any arbitrary vector wH = [wH
1 , ...,w

H
Q ]

(possibly different sized wi), we then have

wHRD−1
f RTw =

Q∑

i=1

‖ci‖22 +
Q∑

i=1

Q∑

j=i+1

2ℜ{〈ci, cj〉}

≤
Q∑

i=1

‖ci‖22 + (Q − 1)

Q∑

i=1

‖ci‖22

=

Q∑

i=1

QwiRiD
−1
f RT

i wi,

(16)

where one proceeds from the first to the second step by

applying the polarization identity,

2 |ℜ {〈ci, cj〉}| ≤ ‖ci‖22 + ‖cj‖22 , (17)

and collecting all inner product pairs. Thus, finding a majorizer

for each RiD
−1
f RT

i submatrix will provide a majorizer for

RD−1
f RT . Such a structure applies to the 2-level undecimated

Haar wavelet case since a 2-level undecimated Haar wavelet

can be written as a cascade:

R = RBRA. (18)

In this case the first step of the cascade, RA, can be broken

up into pieces:

RA =




RA,1

RA,2

RA,3

RA,4


 , (19)

where each of the RA,i is an orthogonal 1-level Haar

wavelet transform. We apply the inequality in (16) to ma-

jorize RAD
−1
f RT

A while using Theorem 1 to majorize each
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RA,iD
−1
f RT

A,i term. We applied the procedure recursively to

RB since it has a similar structure. In the undecimated Haar

wavelet case each of the RA,1, ...RA,4 is a similar operation,

so we expect that each of the ci will be approximately linearly

dependent and this inequality approach will be fairly tight.

V. EXPERIMENTS

A. Experimental Setup

In the interest of reproducible research, MATLAB

code for implementing these methods will be

uploaded to the Image Reconstruction Toolbox at

web.eecs.umich.edu/˜fessler/. All experiments

were run on a machine with an Intel Xeon E31230 Processor

that had four cores with each core running at 3.2 GHz.

The machine had 16 GB of memory. All experiments used

α = − cos(4π/9).
We compared the convergence speed of BARISTA to state-

of-the-art variable splitting methods in several experiments on

four data sets. We present in vivo brain results in the main

paper body and include results for a numerical brain phantom,

a breast phantom, and an American College of Radiology

phantom in the supplementary material. The variable splitting

methods were each of the AL-P1 or split Bregman type [7].

The AL-P2 method in [7] uses condition number heuristics to

tune AL penalty parameters, but we found that these condition

number heuristics could change between different regularizers.

Tuning AL-P2 for each regularizer would have required setting

multiple condition number parameters. AL-P1 has only one

constraint penalty parameter, µ, and it had comparable speed

to AL-P2, so we used AL-P1 with careful manual tuning of µ
as a representative of AL-based methods. We also investigated

dynamically updating the µ parameter using update rules and

parameters proposed by Boyd (Section 3.4.1 of [18]), which

helps mitigate tuning difficulties. We initialized such AL meth-

ods with dynamic µ updates with one of the manually-tuned

µ values. In the plots this method with dynamic µ updates is

denoted as “AL, dynamic µ.” We also introduced a diagonal

preconditioner for the conjugate gradient (CG) subroutine in

step 4 of AL-P1. We used P = (SHS + µI)−1 for all

wavelet regularizers and P = (SHS)−1 for the total variation

regularizer. These preconditioners were not mentioned in [7],

but we observed that they accelerated AL-P1 on the order of

50% time to reach the same point of convergence. The AL-P1

methods all used 5 preconditioned CG (PCG) iterations for

step 4 of AL-P1.

To track convergence, we computed the following normal-

ized residual as a function of iteration:

ξ(k) = 20 log10

(
‖x(k)−x(∞)‖

2

‖x(∞)‖
2

)
, (20)

where x(∞) is a “converged” solution obtained by running

many thousands of iterations of AL-P1. Note that even though

R is not full column rank in the total variation case, the AL-

P1 method is still convergent [19]. In our convergence plot

comparisons to AL-based methods we set the lower bound

for ξ(k) at −140 dB. We chose to do this for two reasons:

1) our raw MRI data were less precise than single precision

and 2) BARISTA vastly outperformed all other methods in

reaching double precision, so these parts of the plots were less

interesting. We also stored the time at which the kth estimate

was computed and in our figures and we plot ξ(·) as a function

of elapsed CPU time instead of iteration. We choose to do this

since iterations of the proposed majorize-minimize methods

and the variable splitting methods have drastically different

compute times due to the PCG subroutine and the analysis

denoising step in the proposed methods. All methods used

identical subroutines for matrix multiplications.

We selected regularization parameter, β, to give visually

appealing solutions for each regularizer. In practice the regular-

ization parameter could be estimated via Monte Carlo SURE

methods [10].

In our plots we only show BARISTA from the classes of

majorize-minimize algorithms as opposed to other methods

such as FISTA with Df = LI since BARISTA was always the

fastest majorize-minimize method. Fig. 5 shows an example of

the relative convergence speed of majorize-minimize methods

in the case of orthogonal Haar wavelet regularization. In this

0 20 40 60 80 100 120
−250

−200

−150

−100

−50

0

tk (seconds)

ξ(
k
)
(d
B
)

 

 
FISTA
NRBARISTA
RFISTA
BARISTA

Fig. 5. Comparison of different majorize-minimize methods with orthogonal
Haar wavelet regularization. Markers are placed at 50 iteration intervals.
FISTA used Df = DR = LI while BARISTA and NRBARISTA (non-
restart BARISTA) used the proposed Df and DR . BARISTA is the fastest
method; this was also observed for the other experiments with varying degrees
of acceleration. Both restart methods exhibit a stair step pattern, where new
“steps” arise when the momentum is restarted.

case, BARISTA was twice as fast as RFISTA (restart FISTA),

three times as fast as NRBARISTA, (non-restart BARISTA)

and over five times as fast as FISTA in reaching -120 dB.

Although RFISTA converges rapidly to double precision, in

early iterations it is not competitive with BARISTA or variable

splitting methods. In a practical setting, the algorithms may

not even be run to convergence, so early-iteration conver-

gence speed is critical for general adoption of the proposed

methods. Furthermore, negligible time is required to use the

majorizing matrices discussed in this paper, so the factor of

two speed-up over RFISTA more or less comes for free. We

also observed the factor of two speed-up or greater with the

orthogonal Daubechies D4 regularizer and the undecimated

Haar wavelet regularizer. Speed-up of BARISTA vs. RFISTA
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in the anisotropic total variation case was negligible. We are

unsure why this occurred, but it may be that a shift-variant

majorizer makes the analysis denoising problem more difficult

to solve in the total variation case.

For the in vivo experiment, a 3D data set was acquired on

a GE 3T scanner with an 8-channel head coil with acquisition

parameters TR = 25 ms, TE = 5.172 ms, and voxel size

1 mm × 1.35 mm × 1 mm. The data matrix size was

256× 144× 128 uniformly spaced samples. Sensitivity maps

were estimated using a quadratic regularized least squares

routine [14]. The data were retrospectively undersampled in

the Fourier domain using a Poisson disk sampling scheme

[20] with a fully sampled center (32-by-32 block), which has

been demonstrated to be useful in compressed sensing MRI

applications [21]. This sampling pattern simulates one slice of

a 3D MRI experiment where the sampling pattern in Fig. 6b

is in the phase encode plane [7], [21] (this sampling pattern

would be impractical for 2D MRI). Only 20% of the full

DFT sampling was used for reconstruction. Fig. 6a shows x

(a) (b)

Fig. 6. Images corresponding to the in vivo experiments. (a) x estimated from
fully sampled data. Some residual noise is present at the center. (b) Sampling
pattern for the in vivo experiments with a densely sampled 32 × 32 center.

estimated from fully sampled data, while Fig. 6b shows the

Poisson-disc sampling pattern with a densely-sampled center

used in all the in vivo experiments.

B. Synthesis Regularizer Results

As stated earlier, we performed numerical experiments with

orthogonal Haar and Daubechies D4 wavelet regularizers to

examine the convergence speed of the proposed method in the

synthesis setting. We set the regularization parameter to zero

for the approximation coefficients since a sparse model does

not fit these coefficients as well as the detail coefficients [15].

Fig. 7a shows an example of the diagonal majorizing elements

in the Haar wavelet basis. Fig. 7b shows the majorizer for the

Daubechies D4 wavelets. The majorizer for the Daubechies D4

wavelet case is smoother than the Haar case since it requires

taking maximums over larger patches.

Fig. 8a and Fig. 8b show the convergence results for

Haar and Daubechies D4 wavelets, respectively. BARISTA

converges faster than the other methods. The time positions

(a) (b)

Fig. 7. Examples of diagonal elements of DR for synthesis regularizers,
rearranged into an image. (a) Elements of the diagonal of DR in the Haar
wavelet basis. Areas outside the brain have been masked for presentation. (b)
Elements of DR for the Daubechies D4 basis. Since the rows of a Daubechies
D4 matrix have larger support than those of the Haar, the majorizer is
smoother. For both cases color bars are shown to give a sense of the variation
across the image caused by the sensitivity coils. The Lipschitz constant
was 2.98, while the maximum value of the squared absolute values of the
sensitivity coils was 3.36. Many of the entries in DR are smaller than the
Lipschitz constant.

when BARISTA undergoes restart are visible in the stair

step pattern in the convergence plots. Several AL parameters

are shown to demonstrate the range of speeds of AL-based

methods, although we can make no theoretical guarantees on

the optimal speed of AL-based methods since we do not know

any theoretically optimal way to tune the penalty parameter.

C. Analysis Regularizer Results

We performed numerical experiments with total variation

and 2-level undecimated Haar wavelet regularization to ex-

amine the convergence speed of the proposed methods in the

analysis setting. Our anisotropic total variation implementation

took differences in vertical, horizontal, and diagonal direc-

tions. We did not regularize the approximation coefficients of

the 2-level undecimated Haar wavelet transform [15]. Fig. 9

shows examples of elements from DR for the analysis cases.

Since for the analysis case we design DR � RD−1
f RT , the

sensitivity elements are now inverted relative to the synthesis

case. Our analysis algorithm formulation required setting the

ǫdiff, ǫmin, and ǫ(0) parameters. We chose ǫmin = 10−12,

ǫdiff = 10−1, and ǫ(0) = 10−1. We note that although these

convergence criteria parameters require some tuning, we were

able to use the same convergence criteria for all regularizers

in all experiments. Conversely, we had to tune the constraint

penalty parameters for the AL-P1 method each time when

changing regularizers or data sets.

Fig. 10 shows results for the analysis regularizers.

BARISTA matches the other methods in early iterations and

outperforms all other methods in later iterations. As previously,

the time steps at which the algorithm restarts are shown in the

stair step pattern in the convergence plots. We also observed

that all algorithms converged slower with the total variation

regularizer than the other regularizers. Results with analysis

regularizers with an image domain mask were similar and

are shown in the supplementary material. Notably, BARISTA
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(a) Orthogonal Haar Wavelet Regularization
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(b) Orthogonal Daubechies D4 Wavelet Regularization

Fig. 8. Summary of convergence results for two different synthesis reg-
ularizers. Markers are placed at 30 iteration intervals for all algorithms.
(a) Convergence plot comparing the proposed method to variable splitting
methods for orthogonal Haar wavelets. The proposed method with momentum
restarting is faster than the other methods. (b) Another convergence plot with
orthogonal Daubechies D4 wavelets.

converged about twice as fast when using a mask than without

a mask.

VI. DISCUSSION

A. Convergence Speed of BARISTA vs. AL Methods

BARISTA was observed to converge faster than the AL-

based methods in both early and late iterations. The early

iteration speed of BARISTA is due to its tight approximation

of the Hessian of the cost function via the diagonal majorizers

developed in this paper and the use of Nesterov momentum

acceleration. Nesterov momentum has been added to AL

algorithms in some cases [22], although those algorithms

require an estimate of the Lipschitz constant, so the diagonal

majorizers presented here may be useful for those methods.

The late-iteration speed of BARISTA is due to the use of

adaptive restart. We are unaware of a means to apply adaptive

(a) (b)

Fig. 9. Examples of diagonal elements of DR for analysis regularizers
rearranged into an image. (a) A subset of the elements of DR for the total
variation case with areas outside the brain masked for presentation. Since

this matrix must upper bound RD−1
f RT , the sensitivity elements have been

inverted. (b) A subset of the elements of DR for the undecimated Haar wavelet
case.

restart to AL-based methods. We attempted to recover some

of the benefits of adaptive restart through the use of dynamic

AL parameter updates, but this did not give the same large

convergence speed boost as adaptive restart.

B. Selection of AL Penalty Parameters

We manually optimized the AL penalty parameters for

speed. For some cases, such as total variation and 2-level

undecimated Haar wavelet regularizers, we observed a trade-

off between early and late iteration convergence speed, with

smaller parameters favoring early iteration speed and larger

parameters favoring late iteration speed. In our tests we chose

the small parameters that gave reasonable convergence to

−120 dB; however, this behavior suggests that changing the

penalty parameter in a dynamic fashion may improve the

convergence speed of AL-based methods. The dynamic tuning

method from [18] helped in some cases, but not consistently,

and we still observed faster convergence with BARISTA in

both early and late iterations.

From a theoretical point of view, analysis of AL-based

methods considers static penalty parameters [23]. The fact that

AL theory considers static penalty parameters is considered

one of the primary motivations for using AL methods instead

of penalty methods in the first place [7], [23]; adaptively

changing the parameter removes this advantage. Conversely,

our use of the ǫ(k) parameter falls within the MFISTA theory

provided monotonicity checks are used, and although [16]

does not cover the case of adaptive restart we observed stable

convergence of BARISTA in all numerical experiments.

C. Surrogate Tightness and Sensitivity Coil Smoothness

In our data set, the sum of squares of absolute values

of the sensitivity coils exhibited high variability across the

object. As the sensitivity coils become more uniform, our

proposed Df and DR matrices will more closely approximate

their Lipschitz counterparts (i.e., Df = LI). In these cases,

the advantages of BARISTA will diminish relative to that

of RFISTA. However, we typically expect RFISTA to be a
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Fig. 10. Summary of convergence results for two different analysis regulariz-
ers. (a) Convergence plot comparing the proposed method to variable splitting
methods for total variation regularization. Markers are placed at 100 iteration
intervals. The proposed method with momentum restarting is faster than the
other methods. (b) Convergence plot comparing BARISTA to variable splitting
methods with undecimated Haar wavelet regularization. Markers are placed
at 30 iteration intervals. The proposed method with momentum restarting is
faster than the other methods, especially in later iterations.

lower bound for the speed of BARISTA. Furthermore, as

the sensitivity coils become smoother, the proposed surrogate

functions actually become better approximations to the origi-

nal cost function in (1), so we expect the speed of the proposed

methods to be superior with smooth sensitivity coil profiles

than our case with large sensitivity coil variability.

D. Tuning the Restart Criterion

The restart criterion in [9] used α = 0 in all of their

experiments. We found that this choice led to too infrequent

restarts because using α = 0 allows the momentum and

generalized gradient to begin to point in different directions

before restarting. Instead, in our experiments we used α =
− cos(4π/9). We found that this choice gave very good early-

iteration convergence in 24 numerical experiments with four

different regularizers (see supplementary material).

E. Near-monotonicity of BARISTA

In [16] it is stated that when an iterative procedure is applied

to minimize the surrogate cost function, one should apply

a monotonicity check to ensure stable convergence of the

algorithm in the analysis total variation setting. The primary

cause of non-monotonicity with FISTA algorithms is when the

momentum takes the algorithm in a bad direction near the so-

lution [9]. In our numerical experiments we observed that the

combination of the ǫ(k) parameter and adaptive restart made

the monotonicity checks in [16] unnecessary and the proposed

method performed as a monotone algorithm. Nonetheless, the

monotonicity checks of [16] could be included in a practical

setting if monotonicity is still deemed to be an issue.

F. Relations to Proximal Newton Methods

The methods outlined in this paper have some relations to

proximal Newton methods (e.g., [24]), which use alternative

methods to approximate the Hessian. One issue with such

methods is that the memory storage requirements can be

undesirably large for medical imaging problems. Low-memory

versions of these methods also exist (e.g., L-BFGS, see [24],

[25]). BARISTA can also be thought of as having a low-

memory approximation to the Hessian due to its diagonal

structure, which may be more accurate if the SENSE maps

dominate the behavior of the Hessian. Comparisons between

our proposed method and these more general proximal Newton

methods are an avenue for future investigation. One could

even potentially modify BARISTA to use an L-BFGS Hessian

approximation update, although proximal Newton methods are

often developed for real numbers and may require adaptations

for the complex numbers in MRI reconstruction.

VII. CONCLUSION

We have introduced generalizations of the FISTA algorithm,

which we call BARISTA, for SENSE-type MR imaging with

compressed sensing regularizers that compensate for the shift-

variant aspects of the sensitivity coils. The methods gave

superior convergence speed relative to state-of-the-art variable

splitting methods in numerical experiments. Furthermore, the

proposed methods avoid the penalty parameter tuning associ-

ated with variable splitting methods, instead relying on unitless

convergence tolerance parameters. We have provided heuristics

for selecting these parameters and found that the same values

worked well across 24 numerical experiments conducted with

four different regularizers on four different data sets. We

expect that the proposed methods will give fast, high-quality

reconstructions across a wide variety of data sets and will aid

in the adoption of compressed sensing methods in a clinical

setting.

APPENDIX

A. Proof of Theorem 1

To prove Theorem 1 we first define RH = [r1, ..., rM ],
where rm denotes the mth column of RH . We then recognize
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that the inner product of two compactly-supported vectors can

be computed over either vector’s support, i.e.,

〈rm, rl〉 =
∑

n∈Sm

rm,nr
∗
l,n =

∑

n∈Sl

rm,nr
∗
l,n. (21)

The entries in V ··= RDfR
H are weighted inner products of

the form,

vm,l = 〈rm, rl〉Df
, (22)

where vm,l is the mth, lth entry of V. We recall that if D1 �
Df , then RD1R

H � RDfR
H . One such D1 is a diagonal

matrix where the diagonal entries are defined as

d1,n =

{
t1, if n ∈ S1

dn,f , otherwise
(23)

We also note that finding a DR � RDfR
H is equivalent

to finding a DR such that wHDRw ≥ wHRDfR
Hw for

any vector w. To accomplish this, we make the partition,

RH = [r1,R
H
1 ], where RH

1 = [r2, ..., rM ]. We also make

the partition, w = [w1,w2]. We now have

wHRD1R
Hw = t1|w1|2 ‖r1‖22

+ t1

M∑

m=2

2ℜ{w1w
∗
m 〈r1, rm〉}+wH

2 R1D1R
H
1 w2

≤ t1|w1|2 ‖r1‖22

+ t1

M∑

m=2

(|w1|2 + |wm|2)| 〈r1, rm〉 |+wH
2 R1D1R

H
1 w2,

(24)

which comes from applying (21) and (22). This implies that

RDfR
H �

[
t1
∑M

m=1 | 〈r1, rm〉 | 0
0 R1D1R

H
1

]

+




0
t1| 〈r1, r2〉 |

. . .

t1| 〈r1, rM 〉 |


 .

(25)

Without loss of generality, we can assume that t1 ≤ t2 ≤ ... ≤
tM . If this is not satisfied, then the appropriate permutation

can be applied to V to make it so. The procedure can again

be applied to R1D1R
H
1 , and then again recursively. Applying

this procedure recursively through M gives Theorem 1.

B. Analysis Denoising Derivation

For the extension of the results in [16], we assume R ∈
RM×N , which includes the classes of total variation and

undecimated wavelet regularizers that are of interest to us.

The difficulty in minimizing (12) is the fact that R mixes

different elements of x. To decouple the mixing effects, we

will introduce dual variables. Let γ ∈ R and ν ∈ R be two

variables and define P = {(γ, ν) ∈ R2 : γ2 + ν2 ≤ 1}. Then

for any c ∈ C we have

|c| = max
(γ,ν)∈P

{
γℜ{c}+ νℑ{c}

}
, (26)

where ℑ{·} returns the imaginary part of its argument. Noting

this, we now have

‖Rx‖1 = max
(γ,ν)∈PM

{
γTRℜ{x}+ νTRℑ{x}

}
, (27)

where PM is a Cartesian product of M sets of the form of

P . Note that PM is the ℓ∞-unit ball in CM . We also have

x(k+1) = argmin
x∈M

max
(γ,ν)∈PM

θk((γ,ν),x),

θk((γ,ν),x)

=
1

2

∥∥∥b(k) − x
∥∥∥
2

Df

+ β(γTRℜ{x} + νTRℑ{x}).
(28)

To simplify notation, we will now drop the “arg” and implicitly

take x from wherever the critical point of the cost function

is. Since M is a convex set, PM is a compact, convex set,

and (28) is convex in x and concave in (γ, ν), we apply

Sion’s Theorem [26] to exchange the order of maximization

and minimization, which gives

max
(γ,ν)∈PM

min
x∈M

θk((γ,ν),x). (29)

Now we use the fact that since Df ∈ RN×N and is diagonal,

the weighted 2-norm squared is separable into its real and

imaginary parts, i.e.,
∥∥∥b(k) − x

∥∥∥
2

Df

=
∥∥∥ℜ{b(k)} − ℜ{x}

∥∥∥
2

Df

+
∥∥∥ℑ{b(k)} − ℑ{x}

∥∥∥
2

Df

.

(30)

Defining q = γ + iν, the inner minimization in (29) has

a solution where x = PM(b(k) − βD−1
f RTq). As stated

previously, the PM(·) operator simply sets elements outside

the mask to zero. Plugging this back into (29) reveals a new

maximization problem:

max
q∈PM

{
−1

2

∥∥∥b(k) − βD−1
f RTq

∥∥∥
2

Df

+
1

2

∥∥∥PM(b(k) − βD−1
f RTq)− (b(k) − βD−1

f RTq)
∥∥∥
2

Df

}

= min
q∈PM

{
1

2

∥∥∥b(k) − βD−1
f RTq

∥∥∥
2

Df

− 1

2

∥∥∥PM(b(k) − βD−1
f RTq)− (b(k) − βD−1

f RTq)
∥∥∥
2

Df

}

= min
q∈PM

{
1

2

∥∥∥PM(b(k) − βD−1
f RTq)

∥∥∥
2

Df

}
.

(31)

Since the target cost function is now a constrained min-

imization over a quadratic, we can once again apply the

separable quadratic surrogates techniques outlined in Section

II. We choose to do this instead of developing other quadratic

minimization routines due to the presence of the constraint.

Applying this procedure gives the minimization problem over

a surrogate:

q(j+1) =argmin
q∈PM

{
1

2

∥∥∥q− (q(j) − β−1D−1
R Rx(k,j+1))

∥∥∥
2

DR

}

x(k,j+1) ··= PM(b(k) − βD−1
f RTq(j))

(32)
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for DR � RD−1
f RT . This is obtained by recognizing that the

PM(·) operator where M is a masking set can be formulated

as a projection matrix, M, where PM(·) = M(·). The Hessian

in (31) arising from the inclusion of this linear projection ma-

trix is β2RD−1
f MTDfMD−1

f RT , which is upper bounded

by β2RD−1
f RT . The majorize-minimize algorithm arising

from using this surrogate with momentum acceleration and

adaptive momentum restart is shown in Fig. 4.
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This report shows convergence results from a numerical brain phantom, a real breast phantom, and
an American College of Radiology (ACR) phantom to supplement those shown in “Fast Parallel MR Image
Reconstruction via B1-Based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA),” IEEE
Transactions on Medical Imaging.

1 Experiment with synthetic data

The synthetic data set was generated by downloading an image from the BrainWeb data base [1] and
simulating eight receive sensitivity coils using the methods from [2]. The data were sampled using a Poisson-
disc sampling pattern with a densely sampled 32-by-32 center similar to Fig. 6b in the main paper body.
Sensitivity coil profiles were estimated from noisy, simulated data using a central 32-by-32 block of kspace via
the methods in [3]. About 20% of the fully-sampled data were used for reconstruction. Reconstructions were
then run using orthogonal Haar wavelets, orthogonal Daubechies D4 wavelets, anisotropic total variation,
and 2-level undecimated Haar wavelets as regularizers. Regularization parameters were chosen to give
visually appealing images. Fig. 1 shows the true simulation image and reconstructions using orthogonal
Haar (Fig. 1c), orthogonal Daubechies D4 (Fig. 1d), total variation (Fig. 1e), and 2-level undecimated Haar
wavelet (Fig. 1f) regularizers. Fig. 1a shows the sum of squared absolute values of the sensitivity coils. We
show the sum of squares instead of the square root sum of squares since the sum of squares is more relevant
to the behavior of AHA. Fig. 2 shows convergence results for the four regularizers on this synthetic data
set. We plot the normalized residual, ξ(k), defined as

ξ(k) = 20 log10

(
‖x(k)−x(∞)‖

2

‖x(∞)‖
2

)
, (1)

where x(∞) is a “converged solution” obtained by running many thousands of iterations of the AL-based
methods.

Figures 2a and 2b are similar to those in Figures 2c and 2d in [4]. Figures 2c and 2d show some
acceleration of AL methods with optimal tuning in early iterations with anisotropic total variation and
2-level undecimated Haar wavelet regularizers, but BARISTA reaches single precision faster than the AL-
based methods. BARISTA used the exact same parameters as in the in vivo experiments in [5], whereas
extensive time was spent re-tuning the AL-based methods to achieve the results shown. Of particular interest
is the AL method with the dynamic µ updates with parameters from [6], which stalls in early iterations.
The AL method with dynamic µ updates was initialized with one of the good, manually-tuned parameters,
but the µ update heuristics quickly increased the magnitude of µ. This data set required rather small µ
parameters compared to the other data sets, which may be due to the fact that the true image and SENSE
maps were orders of magnitude different in intensity. Such issues could be mitigated by always ensuring
appropriate normalizations of the SENSE maps and data, but the convergence speed results here also show
that BARISTA is robust when such normalizations are not performed.
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2 Experiment with breast phantom data

We also obtained a SENSE breast phantom imaging data set for numerical experiments that had been used
for a previous paper [3]. The breast phantom consisted of two containers plastered with vegetable shortening
and filled with “Super Stuff” bolus material (Radiation Products Design Inc. Albertville, MN). Four surface
coils were used in the experiment. The data were sampled using a Poisson-disc sampling pattern similar to
that in Fig. 6b in [5] with a densely-sampled 32-by-32 center in the orthogonal wavelets case and a 32-by-16
center in the anisotropic total variation and undecimated Haar wavelets case. The sensitivity coil profiles
were estimated using the data from the densely-sampled center using the methods described in [3]. About
20% of the fully-sampled data were used for reconstruction. Fig. 3 shows reconstructed images of real breast
phantom data for each of the four regularizers of interest (orthogonal Haar, orthogonal Daubechies D4,
anisotropic total variation, and 2-level undecimated Haar wavelets). Figure 4 shows the convergence speed
results for the breast phantom imaging data set. Figures 4a and 4b are similar to those in Figures 2c and
2d in [4]. BARISTA was the fastest method for all four of the regularizers of interest for this data set.

3 Experiment with ACR phantom data

We also obtained a new SENSE ACR phantom data set for numerical experiments. The phantom was
scanned with a GE MR 750 scanner with a 32-channel receive array (Nova Medical Group). The phantom
was scanned with a 256-by-256 grid and then retrospectively downsampled with a Poisson-disc sampling
pattern similar to that in Fig. 6b in [5] with a densely-sampled 32-by-32 center. The sensitivity coil profiles
were estimated using the data from the densely-sampled center using the methods described in [3]. About
20% of the fully-sampled data were used for reconstruction. Since our previous experiments indicated that
BARISTA and AL methods were converging to the same solution, in this case we calculated x(∞) with
BARISTA to minimize the time to run the numerical experiments. The SENSE maps from this experiment
and the reconstructed x(∞) for each regularizer are shown in Fig. 5.

Fig. 6 shows convergence speed results for the ACR phantom data set. Figures 6a and 6b are similar to
those in Figures 2c and 2d in [4]. BARISTA was the fastest method for all four of the regularizers of interest
for this data set.

4 Experiments with masking

We also compared convergence speed between BARISTA and the AL-based methods with image-domain
masks for total variation and 2-level undecimated Haar wavelet regularizers for each data set. “Converged”
images were calculated using BARISTA. All other experimental parameters were the same as run previously.
Masks were calculated by first thresholding the x(∞) image magnitude at 10% of the maximum magnitude,
then performing a 10-by-10 dilation of the mask (20-by-20 dilation for the ACR phantom). Our goal is not
to propose a method for doing masked SENSE, but to simply examine algorithm performance with a mask.
Examples of image-domain masks for each data set are shown in Fig. 7. Fig. 8 shows convergence results
using an image domain mask for each of the four data sets. Figs. 8a and 8b are similar to Fig. 10 in the
main paper body. Figs. 8c and 8d are similar to 2c and 2d, respectively. Figs. 8e and 8f are similar to 4c
and 4d, respectively. Figs. 8g and 8h are similar to 6c and 6d, respectively. Also of note is that BARISTA
converged at least twice as fast when using an image domain mask, so masking appears to be desirable both
from an image quality and a convergence speed perspective.
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Figure 1: Examples of true and reconstructed images from the simulated data set. (a) Sum of squared
absolute values of the estimated sensitivity coil profiles for the numerical phantom experiment with areas
outside the brain masked for presentation. (b) The ground truth x used for the numerical simulations. (c) The
reconstructed x(∞) using orthogonal Haar wavelet regularization, NRMSE of 2.6%. (d) The reconstructed
x(∞) using orthogonal Daubechies D4 wavelet regularization, NRMSE of 2.6%. (e) The reconstructed x(∞)

using total variation regularization, NRMSE of 2.9%. (f) The reconstructed x(∞) using 2-level undecimated
Haar wavelet regularization, NRMSE of 2.7%.
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Figure 2: Convergence speed results from fully synthetic data. Markers are placed at 30-iteration intervals for
all algorithms. (a) Orthogonal Haar wavelet regularizer. (b) Orthogonal Daubechies D4 wavelet regularizer.
(c) Anisotropic total variation regularizer. (d) Undecimated Haar wavelet regularizer.
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(a) SENSE Map Sum of Squares

(b) Orthogonal Haar Regularizer

(c) Orthogonal D4 Regularizer

(d) Total Variation Regularizer

(e) Undecimated Haar Regularizer

Figure 3: Examples of reconstructed images from the breast phantom imaging data set. (a) Sum of squared
absolute values of the estimated sensitivity coil profiles for the real breast phantom. (b) The reconstructed
x(∞) using orthogonal Haar wavelet regularization. (c) The reconstructed x(∞) using orthogonal Daubechies
D4 wavelet regularization. (d) The reconstructed x(∞) using total variation regularization. (e) The recon-
structed x(∞) using 2-level undecimated Haar wavelet regularization.
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Figure 4: Convergence speed results from breast phantom imaging data. Markers are placed at 50-iteration
intervals. (a) Orthogonal Haar wavelet regularizer. (b) Orthogonal Daubechies D4 wavelet regularizer. (c)
Anisotropic total variation regularizer. (d) Undecimated Haar wavelet regularizer.
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Figure 5: Examples of sum of SENSE maps and reconstructed images from the ACR phantom data set.
(a) Sum of squared absolute values of the estimated sensitivity coil profiles for the ACR phantom data
set. (c) The reconstructed x(∞) using orthogonal Haar wavelet regularization. (d) The reconstructed x(∞)

using orthogonal Daubechies D4 wavelet regularization. (e) The reconstructed x(∞) using total variation
regularization. (f) The reconstructed x(∞) using 2-level undecimated Haar wavelet regularization.
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Figure 6: Convergence speed results from ACR phantom imaging data. Markers are placed at 30-iteration
intervals. (a) Orthogonal Haar wavelet regularizer. (b) Orthogonal Daubechies D4 wavelet regularizer. (c)
Anisotropic total variation regularizer. (d) Undecimated Haar wavelet regularizer.
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(a) In vivo brain mask (b) BrainWeb numerical phantom mask

(c) Breast phantom mask (d) ACR phantom mask

Figure 7: Examples of image-domain masks for each of the four data sets. (a) Mask for the in vivo brain
data set. (b) Mask for the BrainWeb numerical phantom. (c) Mask for the breast phantom. (d) Mask for
the ACR phantom.
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(c) BrainWeb phantom, total variation
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(e) Breast phantom, total variation
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(f) Breast phantom, undecimated
wavelets
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(g) ACR phantom, total variation
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Figure 8: Convergence speed results from ACR phantom imaging data. Markers are placed at 30-iteration
intervals, except for the in vivo brain data set where they are placed at 100-iteration intervals. (a) In vivo
brain data, total variation regularizer. (b) In vivo brain data, undecimated Haar wavelet regularizer. (c)
BrainWeb numerical phantom, total variation regularizer. (d) BrainWeb numerical phantom, undecimated
Haar wavelet regularizer. (e) Breast phantom, total variation regularizer. (f) Breast phantom, undecimated
Haar wavelet regularizer. (g) ACR phantom, total variation regularizer. (h) ACR phantom, undecimated
Haar wavelet regularizer.
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