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Alternating dual updates algorithm for X-ray CT
reconstruction on the GPU
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Abstract—Model-based image reconstruction (MBIR) for X-
ray computed tomography (CT) offers improved image quality
and potential low-dose operation, but has yet to reach ubiquity
in the clinic. MBIR methods form an image by solving a large
statistically motivated optimization problem, and the long time
it takes to numerically solve this problem has hampered MBIR’s
adoption. We present a new optimization algorithm for X-ray CT
MBIR based on duality and group coordinate ascent that may
converge even with approximate updates and can handle a wide
range of regularizers, including total variation (TV). The algo-
rithm iteratively updates groups of dual variables corresponding
to terms in the cost function; these updates are highly parallel
and map well onto the GPU. Although the algorithm stores a
large number of variables, the “working size” for each of the
algorithm’s steps is small and can be efficiently streamed to the
GPU while other calculations are being performed. The proposed
algorithm converges rapidly on both real and simulated data and
shows promising parallelization over multiple devices.

I. INTRODUCTION

X-ray computed tomography (CT) model-based image re-
construction (MBIR) combines information about system
physics, measurement statistics, and prior knowledge about
images into a high-dimensional cost function [1]. The variate
of this function is an image; the image that minimizes this cost
function can contain less noise and fewer artifacts than those
produced with conventional analytical techniques, especially
at reduced doses [1]–[3].

The primary drawback of MBIR methods is how long it
takes to find this minimizer. In addition to general optimization
algorithms like conjugate gradients with specialized precondi-
tioners [4], [5], a wide range of CT-specialized algorithms have
been proposed to accelerate the optimization. One popular
approach uses iterated coordinate descent (ICD) to sequen-
tially update pixels (or groups of pixels) of the image [6],
[7]. Since it is a sequential algorithm, ICD faces challenges
from stagnating processor clock speeds and cannot exploit the
increasing parallelization in modern computing hardware.

Another family of algorithms uses variable splitting and
alternating minimization techniques to separate challenging
parts of the cost function into more easily solved subprob-
lems [8]–[11]. When used with the ordered subsets (OS)
approximation [10], [12], these algorithms can converge very
rapidly. Unfortunately, without relaxation, OS-based algo-
rithms have uncertain convergence properties. Nonetheless,
combining OS with accelerated first-order methods [13], [14]
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has produced simple algorithms with state of the art conver-
gence speeds.

This paper proposes an algorithm that shares some proper-
ties with prior works. Like some variable splitting methods,
our proposed algorithm consists of steps that consider parts of
the cost function in isolation. Separating jointly challenging
parts of the cost function from one another allows us to use
specialized and fast solvers for each part. Our algorithm also
uses a group coordinate optimization scheme, somewhat like
ICD, but the variables it updates are in a dual domain; updating
a small group of dual variables can simultaneously update
many image pixels. Like OS algorithms, our algorithm need
not visit all the measured data to update the image, but unlike
OS algorithms without relaxation, the proposed algorithm has
some convergence guarantees.

The next section sets up our MBIR CT reconstruction
problem. Section II introduces the mathematics of the pro-
posed algorithm, and Section III describes our single- and
multiple-device implementations. Section IV provides some
experimental results and Section V gives some conclusions
and directions for future work.

A. Model-based image reconstruction
Consider the following X-ray CT reconstruction prob-

lem [1]:

x̂ ∈ argmin
x≥0

L(Ax) + R(Cx). (1)

There are M measurements and N pixels, and we constrain
all the pixels of the image x ∈ RN to be nonnegative. The
CT projection matrix A ∈ RM×N models system physics
and geometry, and the finite differencing matrix C ∈ RK×N
computes the differences between each pixel and its neighbors.
The number of differences penalized in the image, K, is a
multiple of N . For example, penalizing differences along the
three cardinal 3D axes would set K = 3N . The matrices A
and C are too large to store in memory, so multiplication with
these matrices and their adjoints is implemented “on the fly”.

Both L and R are separable sums of convex functions:

L(p) =
M∑

i=1

li(pi), R(d) =
K∑

k=1

rk(dk). (2)

We call L the data-fit term because it penalizes discrepancies
between the measured data y ∈ RM and the CT projection
of x. A common choice for L is a weighted sum of quadratic
functions; i.e.,

li(pi) =
wi
2
(pi − yi)2, (3)
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with the weight wi > 0. Traditionally, the weight is the inverse
of the variance of the ith measurement, wi = 1/σ2

i .
Similarly, R encourages regularity of the reconstructed

image x̂ by penalizing the differences between neighboring
pixels. R is a weighted sum of penalized differences,

rk(dk) = βkψ(dk). (4)

The potential function ψ is convex, even, usually nonquadratic,
and coercive. The quadratic penalty function, ψ(t) = 1

2 t
2,

while analytically tractable, tends to favor reconstructed im-
ages x̂ with blurry edges because it penalizes large differences
between neighboring pixels (i.e., edges) aggressively. Potential
functions ψ(t) that have a smaller rate of growth as |t| → ∞
are called edge-preserving because they penalize these large
differences less aggressively. Examples include the absolute
value function ψ(t) = |t| from total variation (TV) regular-
ization, the Fair potential, and the q-generalized Gaussian.
The positive weights {βk} are fixed and encourage certain
resolution or noise properties in the image [15], [16].

The functions L and R have opposing effects on the recon-
structed image x̂: L encourages data fidelity and can lift the
noise from the data y into the reconstructed image, whereas
R encourages smoothness at the cost of producing an image x
that does not fit the measurements as well. Combining L and
R complicates the task of finding a minimizer x̂. Without the
regularizer R, the reconstruction problem (1) could possibly be
solved using a fast quadratic solver. Conversely, without the
data-fit term L (without CT system matrix A), (1) becomes
a denoising problem for which many fast algorithms exist,
including methods suitable for the GPU [17].

Variable splitting and alternating minimization provide
a framework for separating L and R into different sub-
problems [18]. The ADMM algorithm in [8] used a circulant
approximation to the Gram matrix AᵀA to provide rapid
convergence rates for 2D CT problems. Unfortunately, the
circulant approximation is less useful in 3D CT. We partially
overcame these difficulties in [19] by using a duality-based
approach to solving problems involving the CT system ma-
trix, but the resulting algorithm still used ADMM, which
has difficult-to-tune penalty parameters and relatively high
memory use. Gradient-based algorithms like OS [12] with
acceleration [13] and the linearized augmented Lagrangian
method with ordered subsets [10] (OS-LALM), can produce
rapid convergence rates but use an approximation to the
gradient of the data-fit term and have uncertain convergence
properties. Some of these algorithms require generalizations
to handle non-smooth regularizers.

This paper describes an extension of the algorithms in [19],
[20]. The proposed algorithm uses duality, group coordi-
nate ascent with carefully chosen groups, and the majorize-
minimize framework to rapidly solve the reconstruction prob-
lem (1). We extend [20] by also considering the nonnegativity
constraint x ≥ 0 in (1). Our algorithm is designed for
the GPU: while it uses many variables, the “working set”
for each of the algorithm’s steps is small and easily fits in
GPU memory. We stream these groups of variables to the
GPU and hide the latency of these transfers by performing
other, less memory-intensive computations. We show that the

proposed algorithm can be implemented with multiple GPUs
for additional acceleration.

II. RECONSTRUCTION ALGORITHM

At a high level, the proposed algorithm approximately
performs the following iteration:

x(n+1) = argmin
x

J(n)(x), where (5)

J(n)(x) = L(Ax) + R(Cx) + N(x) +
µ

2

∣∣∣
∣∣∣x− x(n)

∣∣∣
∣∣∣
2

, (6)

with µ > 0. We have expressed the nonnegativity constraint
x ≥ 0 as the characteristic function N:

N(x) =
N∑

j=1

ιj(xj), where (7)

ιk(x) =

{
0, x ≥ 0;

∞, else.
(8)

Although ιk is discontinuous, it is convex. Iteratively solv-
ing (5) exactly would produce a sequence

{
x(n)

}
that con-

verges to a minimizer x̂ regardless of the choice of µ.
The function J(n)(x) appears to be as difficult to minimize

as the original cost function (1). Even if J(n)(x) could be
minimized exactly, x(n+1) is likely not a solution to the
original reconstruction problem (1). However, the additional
proximal term provides structure that allows us to approxi-
mately solve J(n) efficiently using the following duality-based
technique. The parameter µ controls the tradeoff between how
efficiently we can approximately minimize J(n) and how close
the minimizer of J(n) is to a minimizer of the original cost
function (1).

Let l∗i , r∗k and ι∗j denote the convex conjugates of li, rk and
ιj , respectively, e.g., :

l∗i (ui) = sup
pi

piui − li(pi). (9)

Because li, rk and ιj are convex, they are equal to the
convex conjugates of l∗i , r∗k and ι∗j , respectively. We use this
biconjugacy property to write

li(pi) = sup
ui

piui − l∗i (ui). (10)

By summing over the indices i, j and k, we write L, R and
N implicitly as the suprema of sums of one-dimensional dual
functions:

L(p) = sup
u

M∑

i=1

piui − l∗i (ui) = sup
u

uᵀp− L∗(u), (11)

R(d) = sup
v

K∑

k=1

vkdk − r∗k(dk) = sup
v

vᵀd− R∗(v), (12)

N(x) = sup
z

N∑

j=1

zjxj − ι∗j (zj) = sup
z

zᵀx− N∗(z). (13)

With (11)-(13), we rewrite the update problem (5) as

x(n+1) = argmin
x

sup
u, v, z

S(n)(x,u,v, z), (14)
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S(n)(x,u,v, z)
4
=
µ

2

∣∣∣
∣∣∣x− x(n)

∣∣∣
∣∣∣
2

+ (Aᵀu+Cᵀv + z)
ᵀ
x

− L∗(u)− R∗(v)− N∗(z). (15)

Reversing the order of minimization and maximization1 yields:

min
x

sup
u,v,z

S(n)(x,u,v, z) = sup
u,v,z

min
x

S(n)(x,u,v, z). (16)

The now inner minimization over x is trivial to perform. We
solve for the minimizer x and write it in terms of the dual
variables u, v and z:

x̃(n+1)(u,v, z) = x(n) − 1

µ
(Aᵀu+Cᵀv + z). (17)

The image induced by the dual variables, x̃(n+1)(u,v, z),
minimizes the update cost function (5) when u, v, and z
maximize the following dual function2:

D(n)(u,v, z)
4
= S(n)

(
x̃(n+1)(u,v, z),u,v, z

)
(18)

= − 1

2µ
||Aᵀu+Cᵀv + z||2

+ (Aᵀu+Cᵀv + z)
ᵀ
x(n)

− L∗(u)− R∗(v)− N∗(z). (19)

Maximizing (19), i.e., solving the dual problem (16), induces
an image (17) that minimizes the update problem (5). We
maximize (19) approximately using a stochastic group coor-
dinate ascent algorithm described in the next section. Under
conditions similar to other alternating minimization algorithms
like ADMM [21], the proposed algorithm may converge even
with these approximate updates; see Appendix C.

At a high level, our proposed algorithm iteratively performs
the following steps:

1) form the dual function D(n) in (19) using x(n),
2) find u(n+1), v(n+1) and z(n+1) by running iterations of

the SGCA algorithm detailed in the following sections:

u(n+1),v(n+1), z(n+1) ≈ argmax
u,v,z

D(n)(u,v, z), (20)

3) and update x(n+1):

x(n+1) = x̃(n+1)
(
u(n+1),v(n+1), z(n+1)

)
. (21)

A. Stochastic group coordinate ascent

We propose an SGCA algorithm to perform the dual maxi-
mization (20). The algorithm iteratively selects a group of vari-
ables (in our case, a set of the elements of the dual variables
u, v and z) via a random process and updates them to increase
the value of the dual function D(n). Because SGCA is con-
vergent [22], enough iterations of the algorithm in this section
will produce dual solutions u(n+1), v(n+1) and z(n+1) that are
arbitrarily close to true maximizers û(n+1), v̂(n+1) and ẑ(n+1).
However, the solution accuracy of more interest is how well
the induced image x(n+1) = x̃(n+1)

(
u(n+1),v(n+1), z(n+1)

)

approximates the exact minimizer of (5). The data-fit and
regularizer dual variables u and v affect the induced image

1See Appendix A.
2See Appendix B.

x̃(n+1), per (17), through the linear operators Aᵀ and Cᵀ

respectively. These linear operators propagate the influence of
a possibly small group of dual variables to many pixels: e.g.,
the elements of u corresponding to a single projection view are
backprojected over a large portion of the image. Consequently,
performing a just a few dual group updates can significantly
improve the image x̃(n+1)(u,v, z).

An SGCA algorithm updates one group of variables at a
time. We can form these groups arbitrarily, and as long as
each group is visited “often enough” the algorithm converges
to a solution [22]. To exploit the structure of D(n), we choose
each group so that it contains elements from only u, v or
z; i.e., no group contains elements from different variables.
Sections II-B, II-C, and II-D describe the updates for each of
these groups.

Because the SGCA algorithm updates elements of the
dual variables in random order, conventional iteration nota-
tion becomes cumbersome. Instead, mirroring the algorithm’s
implementation, we describe the updates as occurring “in-
place.” The “new” value of a variable is written with a
superscripted plus, e.g., u+. To refer to the “current” value of
a dual variable in an update problem, we use a superscripted
minus; e.g., u−. For example to update u to maximize
D(n) while holding the other variables constant, we write
u+ = argmaxu D(n)(u,v−, z−). That is, we replace the
contents of u in memory with the maximizing value u+.

We rewrite the quadratic and linear terms in D(n) using this
notation and (17) by rewriting the quadratic and linear terms
in (19):

D(n)(u,v, z) = c− 1

2µ

∣∣∣∣Aᵀ(u− u−
)

+ Cᵀ(v − v−
)
+ z− z−

∣∣∣∣2

+ (Aᵀu+Cᵀv + z)
ᵀ
x̃

− L∗(u)− R∗(v)− N∗(z), (22)

where the buffer x̃ = x̃(n+1)(u−,v−, z−) and the constant
c = D(n)(u−,v−, z−) − (Aᵀu− +Cᵀv− + z−)

ᵀ
x̃ is inde-

pendent of u, v and z. After any group of elements of the
dual variables is updated, we update x̃ to reflect the changed
dual variables (17). The following sections detail these dual
variable updates.

B. Tomography (u) updates

Consider maximizing (22) with respect to some subset of
the elements of u,

u+
g = argmax

ug

D(n)
(
u,v−, z−

)
(23)

= argmax
ug

− 1

2µ

∣∣∣∣ug − u−g
∣∣∣∣2
AgA

ᵀ
g
− L∗g(ug) + uᵀ

gAgx̃,

(24)

where ug is a subset of the elements of u. The elements of ug
are coupled in (24) by the matrix AgA

ᵀ
g , where Ag contains

the rows of A corresponding to the group ug .
If AgA

ᵀ
g were diagonal, i.e., if the rays corresponding to

elements of ug were nonoverlapping, then solving (24) would
be trivial. (Of course this is also the case when ug is a single
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element of u). However, updating ug using only nonoverlap-
ping rays would limit the algorithm’s parallelizability. Existing
CT projector software may also not be able to efficiently
compute the projection and backprojection of individual rays
instead of e.g., a projection view at a time. If we allow
ug to contain overlapping rays, then the coupling induced
by AgA

ᵀ
g makes (24) expensive to solve exactly. Instead of

pursuing the exact solution to (24) or using a line search with
GPU-unfriendly inner products, we use a minorize-maximize
technique [23], [24] to find an approximate solution that still
increases the dual function D(n).

Let the diagonal matrix Mg majorize AgA
ᵀ
g , i.e., the

matrix Mg − AgA
ᵀ
g has no negative eigenvalues. Solving

the following separable problem produces an updated u+
g that

increases the dual function D(n):

u+
g = argmax

ug

− 1

2µ

∣∣∣∣ug − u−g
∣∣∣∣2
Mg
− L∗g(ug) + uᵀ

gAgx̃.

(25)

In the common case that L(Ax) = 1
2 ||Ax− y||2W, i.e.,

li(pi) =
wi

2 (pi − yi)2, the conjugate L∗g is

L∗g(ug) =
1

2
||ug||2W−1

g
+ uᵀ

gyg, (26)

and the solution to (25) is

u+
g = (WgMg + µI)

−1
Wg

(
µ(Agx̃− yg) +Mgu

−
g

)
. (27)

It is computationally challenging to find an “optimal” diagonal
majorizing matrix Mg � AgA

ᵀ
g , but the following matrix

majorizes AgA
ᵀ
g and is easy to compute [12]:

Mg = diag
i

{[
AgA

ᵀ
g1
]
i

}
. (28)

This choice of Mg depends only on the system geometry
through Ag and not on any patient-specific data. Provided
the groups and geometry are determined beforehand, these
majorizers can be precomputed. This was the case for our
experiments, and we used one group per view. Storing the
diagonals of all the majorizers {Mg} took the same amount
of memory as the noisy projections y.

After updating the group ug (27), we “backproject” the
update into the buffer x̃ (17):

x̃← x̃− − 1

µ
Aᵀ
g

(
u+
g − u−g

)
. (29)

Altogether, updating ug and x̃ requires a forward projection
and backprojection for the rays in group g and a few vector
operations (27).

Running one iteration of the minorize-maximize (MM)
operation (27) will not exactly maximize D(n) with respect
to ug . One could run more MM iterations to further increase
D(n), but we have not found this necessary in our experiments.
In contrast, the updates for the denoising and nonnegativity
variables below are exact.

Fig. 1: Illustration of groups of elements of the dual variable
v for a two-dimensional denoising case. Elements of v are up-
dated in groups such that none of the groups affect overlapping
pixels. For examples, the horizontal differences {v1, v3, v5, v7}
are one group and {v2, v4, v6, v8} are another.

C. Denoising (v) updates

The regularizer R penalizes the differences between each
pixel and its neighbors along a predetermined set of Nr
directions, e.g., the three cardinal 3D directions or all thirteen
3D directions around a pixel. The finite differencing matrix
C ∈ RK×N computes these differences, and each of the
K = N · Nr elements of the dual variable v is associated
with one of these differences. We update a subset vg of the
elements of v:

v+
g = argmax

vg

− 1

2µ

∣∣∣∣vg − v−g
∣∣∣∣2
CgC

ᵀ
g
− R∗g(vg) + vᵀ

gCgx̃.

(30)

The dual vector v is enormous: in our experiments, v is as
large as thirteen images. Storing a significant fraction of v
on the GPU is impractical, so we update only a fraction of
v at a time. To make that update efficient, we would like the
group update problem (30) to decouple into set of independent
one-dimensional update problems.

1) Group design: The elements of vg are coupled in (30)
only by the matrix CgC

ᵀ
g . This matrix is banded and sparse:

it couples differences together that involve shared pixels. This
coupling is very local; Figure 1 illustrates groups that contain
only uncoupled elements of v. Updating each of these groups
of differences has a “denoising” effect on almost all the pixels
(up to edge conditions) in the image and involves solving a
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set of independent one-dimensional subproblems.
There are many ways to form these “covering but not

overlapping” groups of differences: our implementation uses
the following simple “half-direction” groups. Every element
of v corresponds to a pixel location i = (ix, iy, iz) and an
offset o = (ox, oy, oz) ∈ {±1}3. The difference that vk
represents is between the pixels located at (ix, iy, iz) and
(ix + ox, iy + oy, iz + oz). The elements of v corresponding
to a single direction all share the same offset and differ only
in their pixel locations.

For each difference direction r = 1, . . . , Nr, we form two
groups, vr,e and vr,o. We assign every other difference “along
the direction r” to each group. For example, if r indicates
vertical differences along the y axis then we assign to vr,e
differences with even iy and those with odd iy to vr,o. In
Figure 1, the cyan group {v9, v10, v11, v15, v16, v17} and the
green group {v12, v13, v14} partition the vertical differences in
this way.

More generally, let or = (ox, oy, oz) be the offset corre-
sponding to direction r. Let cr ∈ {0, 1}3 contain a single “1”
in the coordinate corresponding to the first nonzero element
of or. For example,

or = (0, 1,−1)→ cr = (0, 1, 0), (31)
or = (0, 0, 1)→ cr = (0, 0, 1). (32)

Recall that ik is the location associated with the difference vk.
We assign to vr,e those differences vk along the direction r
such that iᵀkcd is even.

2) One-dimensional subproblems: Having chosen vg so
that its elements are uncoupled by CgC

ᵀ
g , the group update

problem (30) decomposes into a set of one-dimensional dif-
ference update problems for each k in the group:

v+k = argmax
vk

− 1

µ
(vk − γ)2 − βkψ∗

(
vk
βk

)
(33)

γ
4
= v−k +

µ

2
[Cx̃]k, (34)

where ψ∗ is the convex conjugate of the potential function ψ.
Some potential functions ψ have convenient convex conjugates
that make (33) easy to directly solve:
• Absolute value: If ψ(d) = |d|, then ψ∗ is the character-

istic function of [−1, 1]. The solution to (33) is

v+k = [γ][−βk,βk]
. (35)

i.e., the projection of γ onto the closed interval [−βk, βk].
• Huber function: If ψ(d) is the Huber function,

ψ(d) =

{
1
2d

2, |d| ≤ δ
δ
(
|d| − 1

2δ
)
, else,

(36)

then its conjugate is

ψ∗(v) =
1

2
v2 + ι[−δ,δ](v). (37)

The solution to (33) is

v+k =

[
2βkγ

2βk + µ

]

[−βkδ,βkδ]

. (38)

In other cases, the convex conjugate ψ∗ (33) more difficult to
work with analytically. For example, the Fair potential,

ψ(d) = δ2
(∣∣∣∣
d

δ

∣∣∣∣− log

(
1 +

∣∣∣∣
d

δ

∣∣∣∣
))

, (39)

is easier to work with in the primal domain, where it has
a closed-form “shrinkage” operator, than the dual domain. To
exploit potential functions with convenient shrinkage operators
but inconvenient convex conjugates, we exploit the convexity
of ψ∗ and invoke biconjugacy:

βkψ
∗
(
vk
βk

)
= sup

qk

qkvk − βkψ(qk). (40)

Combining (40) and (33),

v+k = argmax
vk

inf
qk
− 1

µ
(vk − γ)2 − vkqk + βkψ(qk). (41)

By a similar Fenchel duality argument to (16), we reverse the
“max” and “inf” in (41). The resulting expression involves ψ
only through its “shrinkage” operator:

v+k = γ − µ

2
q+k , where (42)

q+k = argmin
qk

µ

4

(
qk −

2

µ
γ

)2

+ βkψ(qk). (43)

After updating a group of differences vg , we update the
buffer x̃ (17):

x̃← x̃− − 1

µ
Cᵀ
g

(
v+
g − v−g

)
. (44)

Because vg contains variables corresponding to nonoverlap-
ping differences, each element of vg updates two pixels in x̃,
and each pixel in x̃ is updated by at most one difference in
vg .

D. Nonnegativity (z) updates

Updating each element of the image-sized dual variable z
helps enforce the nonnegativity constraint on the correspond-
ing pixel of x̃. The dual function D(n) is separable in the
elements of z, and the z update is

z+ = argmax
z

− 1

2µ

∣∣∣∣z− z−
∣∣∣∣2 + zᵀx̃− N∗(z) (45)

=
∑

k

− 1

2µ
(zk − ηk)2 − ι∗k(zk), where (46)

ηk
4
= z−k + µ[x̃]k. (47)

The dual characteristic function ι∗k is also a characteristic
function, but on the nonpositive numbers:

ι∗k(zk) =

{
∞, zk > 0

0, else.
(48)

We solve (46) by clamping ηk to the nonpositive numbers:

z+k = [ηk](−∞,0]. (49)

After updating z (46) we update the buffer x̃:

x̃← x̃− − 1

µ

(
z+ − z−

)
. (50)
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E. Warm starting

The dual variable updates in Sections II-B, II-C and II-D
find values for the dual variables, u(n+1), v(n+1) and
z(n+1) that approximately maximize the dual update prob-
lem (19). We use these dual variables and the induced solution
x̃(n+1)

(
u(n+1),v(n+1), z(n+1)

)
, stored in the buffer x̃, to

determine x(n+1):

x(n+1) = x̃(n+1)
(
u(n+1),v(n+1), z(n+1)

)
= x̃, (51)

then re-form the outer update problem (5) and repeat.
We initialize our algorithm with all the dual variables set to

zero. We could also reset the dual variables to zero every outer
iteration, but this empirically led to slow convergence. Instead,
mirroring a practice in other alternating directions algorithms,
we warm-start each outer iteration with the previous iteration’s
dual variable values. This has an extrapolation-like effect on
the buffer x̃:

x̃← x̃(n+2)
(
u(n+1),v(n+1), z(n+1)

)
(52)

= x(n+1) − 1

µ

(
Aᵀu(n+1) +Cᵀv(n+1) + z(n+1)

)
(53)

= x(n) − 2

µ

(
Aᵀu(n+1) +Cᵀv(n+1) + z(n+1)

)
(54)

= x̃− +
(
x(n+1) − x(n)

)
. (55)

After initializing x̃ with this “extrapolated” value, subsequent
iterated dual updates refine the update. This extrapolation is
just an initial condition for the iterative algorithm solving
the dual problem (19). If the dual function D(n+1) were
maximized exactly then this extrapolation would have no effect
on x(n+2).

This section outlined the mathematical framework of our
proposed CT reconstruction algorithm. Using duality and
group coordinate ascent, we decomposed the process of solv-
ing the original reconstruction problem (1) into an iterated
series of optimization steps, each considering only a portion
of the original cost function. The next section describes how
we implemented these operations on the GPU.

III. IMPLEMENTATION

For implementing the algorithm described in Section II,
GPUs have two important properties:
• GPUs can provide impressive speedups for highly parallel

workloads, and;
• GPUs often have much less memory than their host

computers.
The first property means that algorithm designers should favor
independent operations with regular memory accesses. Our
proposed algorithm consists of five operations, each of which
has an efficient GPU implementation:
• Tomography update (27): Updating the tomography dual

variables corresponding to a group of projection views,
ug , consists of projecting those views, a few vector opera-
tions, and then backprojecting those views. Our algorithm
relies on projections and backprojections of subsets of the
data, and it should be usable with any system model that

is suitable for OS methods. Implementing an efficient CT
system model on the GPU is nontrivial, and we rely on
previous work [25]–[27]. In our experiments, we use the
separable footprints CT system model [28]. Our imple-
mentation uses thousands of threads for both projection
and backprojection to exploit the GPU’s parallelism: we
use one thread per detector cell in projection and one
thread per voxel in backprojection.

• Denoising update (30): Updating a “half-difference” of
elements of v is also highly parallel. We assign one thread
to each element dual variable being updated; each thread
updates two neighboring pixels of the image x̃. The
workload for each thread is independent, and memory
accesses are both local and regular.

• The nonnegativity update (49) and warm starting opera-
tion (55) both consist entirely of separable, parallelizable
vector operations.

The GPU’s memory constraints are very relevant for large
imaging problems. We performed the experiments in Sec-
tion IV on a machine with four NVIDIA Tesla C2050s having
3 GB of memory apiece. The wide-cone axial experiment in
Section IV-D requires about 894 MB each for the noisy data y
and the statistical weights W when stored in single-precision
32-bit floating point. Storing the regularizer parameters {βk}
and a single image x would take an additional 907 MB
apiece. Altogether, storing one image and the parameters of
the reconstruction problem would take about 2.7 GB, leaving
no room for the algorithm to store any additional state on a
single GPU!

Because the X-ray CT reconstruction problem (1) is so
memory-intensive, many algorithms will need to periodically
transfer some data between the GPU and the host computer. If
performed naı̈vely, these transfers can have a significant effect
on algorithm speed. Fortunately, modern GPUs can perform
calculations and memory transfers simultaneously, so we can
“hide” the latency of these transfers to some degree.

A. Streaming

Our algorithm has many variables: the dual variable v alone
is often as large as 13 image volumes. This is far too much
to fit simultaneously on the GPU for many realistic problem
sizes. Fortunately, each of proposed algorithm’s operations
requires a comparatively small subset of the data. For example,
performing a tomography update requires only x̃, and the data,
weights and dual variables corresponding to the view being
updated.

The algorithm in Figure 2 allocates on the GPU only
• a buffer containing x̃,
• an image-sized buffer for storing z or a subset of v,
• the regularizer parameters {βk},

and several negligibly small view-sized buffers on the GPU.
The dual variables are stored primarily on the host computer
and transferred to and from the GPU as needed.

The tomography update requires a relatively small amount
of data: several view-sized buffers. Even for the wide-cone re-
construction in Section IV-D, each tomography update requires
less than 4 MB of projection-domain data. The projection
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Initialize CPU memory: x(0) = xFBP, u = 0, v = 0, z = 0,
Initialize GPU memory: x̃GPU = x(0), bGPU = 0,︸ ︷︷ ︸

Image sized

ug, GPU = 0, yg, GPU = 0, mg, GPU = 0, wg, GPU = 0.︸ ︷︷ ︸
Projection view sized

Repeat iterations n, until convergence: Transfer Computation on GPU
Send nonnegativity variables to GPU z− → bGPU Update Ntomo views of u (27)
Nonnegativity update Update z (49)
Send nonnegativity variables to host z+ ← bGPU Update Ntomo views of u (27)
Repeat Ndenoise times:

Choose half-difference vg randomly
Send vg to GPU v−g → bGPU Update Ntomo views of u (27)
Denoising update Denoising update (30)
Send updated vg to host v+

g ← bGPU Update Ntomo views of u (27)
Send x(n) to GPU x(n) → bGPU

Warm-start x̃(n+1) bGPU = x̃GPU; warm-start x̃GPU (55)
Send x(n+1) to host x(n+1) ← bGPU

Fig. 2: Pseudocode for the proposed algorithm. The buffer x̃GPU is updated on the GPU using (17) in every step as the dual
variables are updated, and the buffer bGPU stores other variables as they are needed for computation on the GPU. Updating
each view of u involves a one-view projection and backprojection and transferring a small amount of memory. The view
weights wg , data yg , dual variables ug , and majorizer weights mg are transferred to the GPU prior to updating ug . Only the
updated ug needs to be transferred back to the host afterwards.

and backprojection involved in the tomography update take
much longer to perform than it takes to transfer the dual
variables and weights to and from the GPU. Therefore, the
tomography update is computation-bound. On the other hand,
the nonnegativity, denoising, and warm-start operations require
whole images to be transferred to and from the GPU with
relatively small amounts of computation. The speed of these
operations is bounded by the latency of data transfers between
the host computer and the GPU.

Modern GPUs can perform computations and transfer mem-
ory concurrently. This allows us to “hide” some of the cost of
latency-bound operations by performing computation-bound
operations and vice versa. The pseudocode in Figure 2 in-
terleaves computation-bound and transfer-bound operations.
After each large memory transfer is begun, the algorithm per-
forms Ntomo tomography updates. These tomography updates
serve to “hide” the latency of the large memory transfer by
performing useful work instead of waiting for the relatively
slow memory transfer to finish. Section III-C discusses select-
ing Ntomo and other algorithm parameters.

B. Multiple-device implementation

Besides providing more computational resources, imple-
menting a CT reconstruction algorithm on multiple GPUs can
reduce the memory burden on each device. Many “distributed”
algorithms either store additional variables on each node
and/or perform redundant calculations to avoid very expensive
inter-node communications [29]–[32]. These designs assume
that communication between devices is extremely expensive.
It may be tempting to view multiple-GPU programming as a
“distributed” setting, but at least in CT reconstruction, frequent
communication between the host computer and the GPU(s)
seems necessary due to GPU memory constraints. Adding
additional GPUs that regularly communicate to the host need

not significantly increase the total amount of communication
the algorithm performs. Instead of using a more sophisticated
“distributed” algorithm framework [30], we distribute the
memory and computation of the single-GPU algorithm over
multiple devices in a straightforward way.

Let x and y be the transaxial axes of the image volume and
z be the axial direction; i.e., z is parallel to the CT scanner’s
axis of rotation. Similar to [33, Appendix E], we divide all
image-sized buffers into Ndevice chunks transaxially, e.g., along
the y direction. This approach differs from [30], [31], where
the image is divided axially along z. Each device also stores
two NxNz-pixel padding buffers. Because the image-sized
buffers are the largest buffers our proposed algorithm stores on
the GPU, this decomposition effectively reduces the memory
burden on each device by a factor of almost Ndevice.

1) Tomography update: The buffer x̃ is distributed across
multiple GPUs. Fortunately, the tomography update (27) is
linear in x̃. When updating the group of dual variables ug ,
each device projects its chunk of x̃ and sends the projection
to the host computer. The host accumulates these projections,
performs the update (27), and transmits the dual update u+

g −
u−g back to each device. Each device backprojects the update
into its chunk of the volume, updating the distributed x̃.

2) Denoising update: Every element of the dual variable
v couples two pixels together. Most of these pairs of pixels
lie on only one device; in these cases, the denoising update is
separable and requires no additional communication between
the GPUs. However, some of the elements of v couple pixels
that are stored on different GPUs. Prior to performing the
update for these elements, the algorithm must communicate
the pixels on the GPU boundaries between devices.

Fortunately, such communication is needed for only
roughly a quarter of the denoising updates. Most of the
“half-difference” groups in which v is updated require no
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communication. For example, in Figure 1 suppose that
{x1, . . . , x6} were stored on one device and {x7, . . . , x12}
are stored on another. Updating the green group of differences
{v12, v13, v14} would require communication between the de-
vices, but updating the cyan group {v9, v10, v11, v15, v16, v17}
would not.

3) Nonnegativity update and warm-starting: The nonneg-
ativity update and warm-stating operation are both separable
in the elements of the dual variables and x̃, so implementing
these operations on multiple devices is straightforward.

C. Parameter selection

There are three parameters in the algorithm listed in Fig-
ure 2: Ndenoise, Ntomo and µ. This section gives the heuristics
we used to set the values of these parameters.

Similar to how OS algorithms compute an approximate
gradient using only a subset of the projection views, the
proposed algorithm performs an outer update (i.e., increments
the iteration n) after updating about Nview/Nsubset views of
u, chosen randomly with replacement. In an outer iteration,
the algorithm also performs Ndenoise half-difference denoising
updates. We heuristically set Ndenoise to be large enough that
the expected number of outer iterations between updating an
element of v is about one. Because each denoising update
modifies half of the elements of v corresponding to a sin-
gle direction, this means Ndenoise ≈ 2Nr, where Nr is the
number of directions along which the regularizer penalizes
differences. For the common case of penalizing differences in
13 directions around each pixel (as in our experiments), we
set Ndenoise ≈ 26.

This yields the following relationship:

Ntomo =
Nview

2NdenoiseNsubset
. (56)

In the shoulder case below, Nview = 6852. We set Nsubset = 18
and Ndenoise = 23, yielding Ntomo = 8. The wide cone case
had Nview = 984; we used Ndenoise = 27 and Nsubset = 6,
thus, Ntomo = 3. A more principled method to select these
parameters is future work.

We chose µ using the mean of the entries of the diagonal
matrix MW, where W contains the weights in the data-fit
term and M contains the entries of all the diagonal majorizers
for the tomography update (28):

µ =

∑M
i=1 [MW]ii

4M
. (57)

This heuristic is intended to yield a well-conditioned to-
mography update (27). Smaller µ would make the outer
proximal majorization tighter (5) at the cost of making the
dual problem (19) possibly more ill-conditioned.

IV. EXPERIMENTS

This section compares the proposed algorithm to several
state of the art accelerated versions of the popular OS algo-
rithm [12]–[14]. All algorithms were implemented with the
OpenCL GPU programming interface and the Rust program-
ming language. Experiments were run on a machine with 48

GB of RAM and four aging NVIDIA Tesla C2050s with 3
GB of memory apiece. To measure how well the algorithms
performed on multiple devices we ran each algorithm using 1,
2 and 4 GPUs. Preliminary experiments on an NVIDIA Kepler
K5200 (see the supplementary material) indicate that all the
algorithms run faster on newer hardware, but their relative
speeds are unchanged.

A. Ordered subsets

OS algorithms are first-order methods that approximate
the computationally expensive gradient of the data-fit term
∇L(Ax) using a subset of the data [12]–[14]. Without re-
laxation, this approximation can lead to divergence, but in our
experiments we chose parameters that empirically led to limit
cycles near the solution.

Our implementation of the OS algorithms stored the follow-
ing variables on each GPU:
• the current image x,
• the coefficients of the diagonal majorizer D � AᵀWA:

D = diag
j

{
[AᵀWA1]j

}
, (58)

• an accumulator for the current search direction,
• the regularizer parameters {βk}, and
• an additional image-sized variable to store the momentum

state, if applicable [13].
The OS methods require more image-sized buffers than our
proposed algorithm. We divided these image-sized volumes
across multiple GPUs transaxially, so the memory burden for
each device decreases almost linearly with the number of
devices. The devices must communicate pixels that lie on an
edge between devices before computing a regularizer gradient;
this happens Nsubset times per iteration.

The OS methods also must compute the majorizer D
in (58) from the patient-dependent statistical weights W
before beginning to iterate. This requires a CT projection
and a backprojection that takes about as much time as an
iteration. We do not count this time in our experiments. On
the other hand, the majorizers used by the proposed algorithm
are nominally independent of patient data and depend only on
the scanner geometry through AgA

ᵀ
g . Because the majorizers

{Mg} in (28) can be precomputed before the scan, but
the OS algorithms must compute D (58) after the scan but
before beginning to iterate, the proposed algorithm could be
considered be an additional iteration faster than the OS-based
methods.

B. Figures of merit

We ran experiments using two datasets: a helical shoulder
scan using real patient data (Section IV-C) and a wide-cone ax-
ial scan using simulated data in (Section IV-D). For both cases
we measured the progress of all algorithms tested towards a
converged reference x̂ using the root mean squared difference
(RMSD) over an NROI-pixel region of interest (ROI):

RMSD
(
x(n)

)
=

√∣∣∣∣x(n) − x̂
∣∣∣∣2
MROI

NROI
. (59)
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The diagonal binary masking matrix MROI discards “end
slices” that are needed due to the “long object problem” in
cone-beam CT reconstruction but not used clinically [34].

We compared the proposed algorithm and the OS algo-
rithms using wall-clock time and “equivalent iterations,” or
equits [7]. Because the most computationally intensive part of
these algorithms is projection and backprojection, one equit
corresponds to computing roughly the same number of forward
and backprojections:
• For OS, one equit corresponds to a loop through all the

data.
• For the proposed algorithm, one equit corresponds to
Nsubset iterations; e.g., x(Nsubset) and x(2Nsubset) are the
outputs of successive equits. Over this time, our algorithm
computes about Nview forward and backprojections.

The proposed algorithm performs more denoising updates than
OS and transfers more memory between the host and GPU in
an equit, so each equit of the proposed algorithm takes longer
to perform. Nonetheless, as the following experiments show,
the proposed algorithm converges considerably more quickly
than the OS algorithms in terms of runtime.

C. Helical shoulder scan
Our first reconstruction experiment uses data from a he-

lical scan provided by GE Healthcare. The data were 6852
views with 888 channels and 32 rows. We reconstructed the
image on a 512× 512× 109-pixel grid. We used a weighted
squared `2-norm data-fit term with weights proportional to
estimates of the inverses of the measurements’ variances [1].
The regularizer penalized differences along all 13 directions
(i.e., 26 3D neighbors) with the Fair potential function (39)
with δ = 10 Hounsfield units (HU), and the {βk} were
provided by GE Healthcare. All iterative algorithms were
initialized using the filtered backprojection image in Figure 3a.
Figure 3b shows an essentially converged reference, generated
by running thousands of iterations of momentum-accelerated
separable quadratic surrogates [13] (i.e., OS with one subset).

We ran the proposed algorithm with Ndenoise = 23 and
Ntomo = 8. We also ran ordered subsets with 12 subsets
(OS) [12], OS with Nesterov’s momentum [13] (FGM), and
OS with a faster acceleration [14] (OGM) on one, two and four
GPUs. Figure 4 shows RMSD in Hounsfield units against time
and equivalent iteration.

Figure 4a shows the proposed algorithm converging consid-
erably faster than the OS-type algorithms in terms of equits,
and unlike the OS-type algorithms will converge to a solution
x̂ if the conditions in Appendix C are satisfied. Figure 4c
shows that the proposed algorithm on one GPUs achieves
early-iteration speed comparable to the fastest OS algorithm
with four GPUs.

Table I lists several timings for the algorithms in this ex-
periment. Although the OS algorithms achieved more dramatic
speedups using multiple devices than the proposed algorithm,
additional devices did help accelerate convergence. Figures 3c
and 3d show images from both algorithms on four devices after
about five minutes of computation. The proposed algorithm
produced an image that much more closely matches the
converged reference.

Time to converge within
Algorithm Per equit 5 HU RMSD 2 HU RMSD

OGM-1 114 sec. 21.5 min. 58.6 min.
OGM-2 62 sec. 11.7 min. 29.8 min.
OGM-4 38 sec. 7.2 min. 18.2 min.

Proposed-1 130 sec. 9.4 min. 16.2 min.
Proposed-2 82 sec. 5.5 min. 9.8 min.
Proposed-4 57 sec. 3.8 min. 6.8 min.

TABLE I: Timings for the helical case in Section IV-C.

Time to converge within
Algorithm Per equit 5 HU RMSD 2 HU RMSD

OGM-2 85 sec. 16.3 min. –
OGM-4 50 sec. 9.5 min. 19.9 min.

Proposed-2 126 sec. 8.6 min. 15.6 min.
Proposed-4 98 sec. 6.3 min. 11.0 min.

TABLE II: Timings for the axial case in Section IV-D.

D. Wide-cone axial simulation

Our second experiment is a wide-cone axial reconstruction
with a simulated phantom. We simulated a noisy scan of the
XCAT phantom [35] taken by a scanner with 888 channels
and 256 rows over a single rotation of 984 views. Images
were reconstructed onto a 718 × 718 × 440-pixel grid. As in
Section IV-C, we used a quadratic data-fit term, the regularizer
used the Fair potential and penalized differences along all 13
neighboring directions, and the regularizer weights {βk} were
computed using [16]. All iterative algorithms were initialized
with the filtered backprojection image in Figure 5a. An essen-
tially converged reference image is shown in Figure 5b.

This problem was too large to fit on one 3 GB GPU, so we
present results for two and four GPUs. We ran the same set
of OS algorithms as the previous experiment with 12 subsets.
The proposed algorithm used Ndenoise = 27 and Ntomo = 3.

Figures 6a and 6c show the progress of the tested algorithms
towards the converged reference. The proposed algorithm
running on two devices is about as fast as OS-OGM running
on four devices, and additional devices accelerate convergence
even more. Figures 5c and 5d show outputs from OS-OGM
and the proposed algorithm after about five minutes. After five
minutes, the OS algorithm still contains noticeable streaks that
the dual algorithm has already removed. At this point, both
algorithms have significant distance to the reference at the
end slices of the image.

Table II lists timings for OS-OGM and the proposed algo-
rithm. The trends are similar to the smaller helical case in
Table I. The OS algorithms scale better (1.7× faster) than the
proposed algorithm (1.2× faster) from two to four GPUs, but
the acceleration provided by the proposed algorithm is enough
to compensate for lower multi-device parallelizability.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel CT reconstruction algorithm that
uses alternating updates in the dual domain. The proposed
algorithm is fast in terms of per-iteration speed and “wall
clock” runtime, and it converges more quickly than state of
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(a) Filtered backprojection (b) Reference

(c) OS-OGM with 4 GPUs after 8 equits (5.2 minutes) (d) Proposed with 4 GPUs after 5 equits (4.8 minutes)

Fig. 3: Top row: initial FBP and reference images for the helical shoulder case in Section IV-C. Bottom row: images from
the proposed algorithm and the state of the art OS-OGM algorithm on 4 GPUs after about 5 minutes; yellow ovals indicate
regions with significant differences. Images were trimmed and displayed in a [800, 1200] modified Hounsfield unit window.
Each panel shows transaxial, coronal, and sagittal slices through the 3D volume.

0 5 10 15 20 25 30

Equivalent iteration

0

5

10

15

20

25

30

R
M

S
D

 [
H

U
]

OS

FGM

OGM

Proposed

(a) RMSD vs. equit

0 5 10 15 20 25 30

Equivalent iteration

0

1

2

3

4

5

R
M

S
D

 [
H

U
]

(b) RMSD vs. equit (zoomed)

0 2 4 6 8 10 12 14 16 18

Time [minutes]

0

5

10

15

20

R
M

S
D

 [
H

U
]

OS-1

OS-2

OS-4

FGM-1

FGM-2

FGM-4

OGM-1

OGM-2

OGM-4

Proposed-1

Proposed-2

Proposed-4

(c) RMSD vs. time

Fig. 4: Convergence plots for the helical shoulder case in Section IV-C. Markers are placed every five equits. The stars in
Figure 4c correspond to the images shown in Figures 3c and 3d. The proposed algorithm on one device converges about as
quickly as the state of the art OS-OGM algorithm does on four devices. Additional devices provide further acceleration.
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(a) Filtered backprojection (b) Reference

(c) OS-OGM with 4 GPUs after 6 equits (5.2 minutes) (d) Proposed with 4 GPUs after 3 equits (4.7 minutes)

Fig. 5: Top row: initial FBP and reference images for the wide-cone axial case in Section IV-D. Bottom row: images from the
proposed algorithm and the state of the art OS-OGM algorithm on 4 GPUs after about 5 minutes; yellow ovals indicate regions
with significant differences. Images were trimmed and are displayed in a [800, 1200] modified Hounsfield unit window. Each
panel shows transaxial, coronal, and sagittal slices through the 3D volume.
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Fig. 6: Convergence plots for the wide-cone axial case in Section IV-D. Markers are placed every five equits. The stars in
Figure 6c correspond to the images shown in Figures 5c and 5d. The proposed algorithm converges about as quickly on two
devices as OS-OGM does on four. Additional devices accelerate convergence.
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the art OS algorithms. If the inner updates are performed with
sufficient accuracy the algorithm converges to the true solution
of the statistical reconstruction problem, and it can handle a
wide range of regularizers including the nondifferentiable total
variation regularizer.

The algorithm also maps well onto the GPU. Many of its
steps are highly parallelizable and perform regular memory
accesses. Although the algorithm stores many variables in the
host computer’s memory, the amount of memory required for
each update is relatively small, and we hide the latency of
transferring variables to and from the GPU by performing
computation-bounded operations. Finally, the proposed algo-
rithm is easily adapted for multiple GPUs, providing further
acceleration and decreasing the memory burden on each GPU.

Due to communication overhead, the acceleration provided
by adding additional GPUs showed diminishing returns. To
achieve further acceleration, multiple computers (or groups
of GPUs on a single node) may need to be combined using
a “distributed” algorithm framework [29], [30]. How to best
adapt the proposed algorithm to these frameworks is future
work.

The proposed algorithm introduces a dual variable for each
difference penalized by the edge-preserving regularizer R.
While this memory cost is not too great for a modern com-
puter when regularizing the 13 neighbors around each pixel,
increasing the number of differences computed may make
the proposed approach infeasible. Consequently, adapting the
proposed algorithm for patch-based or nonlocal regularizers
may be challenging.

The random process we use for choosing which groups of
the tomography dual variable u and denoising dual variable v
to update is basic and almost certainly suboptimal. A more
sophisticated strategy may provide additional acceleration.
Different majorizers Mg for the tomography update (27) and
more sophisticated methods to select the algorithm parameters
Ntomo and Ndenoise are other interesting areas for future work.
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APPENDIX A
FENCHEL DUALITY FOR GPU-BASED RECONSTRUCTION

ALGORITHM

Proving (16) involves a straightforward application of
Fenchel’s duality theorem, see e.g., [36, Theorem 4.4.3].
Define

f(x) =
µ

2

∣∣∣
∣∣∣x− x(n)

∣∣∣
∣∣∣
2

2
, (60)

K =



A
C
I


. (61)

We write the blocks of elements of Kx as [Kx]u, [Kx]v and
[Kx]z. Define

g(Kx) = L([Kx]u) + R([Kx]v) + N([Kx]z). (62)

The value attained by the primal update problem (5), can be
written in this terminology as

p = min
x
f(x) + g(Kx) = min

x
J(n)(x). (63)

The convex conjugates of f and g are [37, pg. 95]

f∗(x∗) =
1

2µ
||x∗||22 + (x∗)ᵀx(n), (64)

g∗(q∗) = L∗(q∗u) + R∗(q∗v) + N∗(q∗z). (65)

The value attained by maximizing the dual function (19) is

d = sup
q∗
−f∗(−Kᵀq∗)− g∗(q∗) = sup

q∗
D(n)(q∗u,q

∗
v,q
∗
z).

(66)

Note that although (66) apparently differs from the statement
in [36, Theorem 4.4.2] by a sign, the expressions are equiva-
lent.

The domain of f is dom f = RN , and the image of dom f
under K is K dom f = range K. The set over which g is
continuous is cont g = {θ : θz > 0}.

Finally, by the Fenchel duality theorem, because

K dom f
⋂

cont g 6= ∅, (67)

and f and g are both convex functions, p = d.

APPENDIX B
EQUIVALENCE OF PRIMAL- AND DUAL-BASED SOLUTIONS

Let the value of x(n+1) produced by solving the primal
update problem (5) be

xp = argmin
x

sup
u,v,z

S(n)(x,u,v, z). (68)

The value of x(n+1) induced by solving the dual problem (19)
is

xd = x̃(n+1)
(
û(n+1), v̂(n+1), ẑ(n+1)

)
, (69)

x̃(n+1)(u,v, z) = argmin
x

S(n)(x,u,v, z), (70)

where

û(n+1), v̂(n+1), ẑ(n+1) = argmax
u,v,z

D(n)(u,v, z) (71)

= S(n)
(
x̃(n+1)(u,v, z),u,v, z

)
.

Our goal is to show xp = xd.
We proceed by contradiction. Suppose xp 6= xd. Because

S(n) is strongly convex and xd minimizes S(n) when the dual
variables are fixed at

(
û(n+1), v̂(n+1), ẑ(n+1)

)
(70),

d = S(n)
(
xd, û

(n+1), v̂(n+1), ẑ(n+1)
)

< S(n)
(
xp, û

(n+1), v̂(n+1), ẑ(n+1)
)

≤ sup
u,v,z

S(n)(xp,u,v, z) = p, (72)

contradicting p = d (see Appendix A). Thus, xp = xd.

APPENDIX C
CONVERGENCE FOR GPU-BASED RECONSTRUCTION

ALGORITHM WITH APPROXIMATE UPDATES

If the maximizing dual variables are found exactly (i.e.,
if (20) holds with equality), then the proposed algorithm is a
simple majorize-minimize procedure (5) and

{
x(n)

}
converges

to a minimizer of the cost function [24]. Finding the exact
maximizers of D(n) is too computationally expensive, so we
settle for approximate optimization. Fortunately, under condi-
tions similar to those for other approximate-update algorithms
like ADMM [21], the proposed algorithm can converge even
with inexact maximization of D(n).

Let ε(n+1)
u , ε(n+1)

v and ε(n+1)
z be the weighted error between

the approximate maximizers u(n+1), v(n+1) and z(n+1) of
D(n) and the true maximizers û(n+1), v̂(n+1), ẑ(n+1):

ε(n)u =
∣∣∣
∣∣∣û(n) − u(n)

∣∣∣
∣∣∣
AAᵀ

, ε(n)v =
∣∣∣
∣∣∣v̂(n) − v(n)

∣∣∣
∣∣∣
CCᵀ

,

ε(n)z =
∣∣∣
∣∣∣ẑ(n) − z(n)

∣∣∣
∣∣∣. (73)
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Assume that we solve the dual maximization subproblem (20)
well enough that these errors are summable:
∞∑

n=1

ε(n)v <∞,
∞∑

n=1

ε(n)u <∞,
∞∑

n=1

ε(n)z <∞. (74)

Let x̂(n+1) be the exact solution to the primal update prob-
lem (5). The error between the approximate update x(n+1) and
the exact update, x̂(n+1), is

ε(n)x =
∣∣∣
∣∣∣x(n+1) − x̂(n+1)

∣∣∣
∣∣∣

=
∣∣∣
∣∣∣x̃(n+1)

(
u(n+1),v(n+1), z(n+1)

)

− x̃(n+1)
(
û(n+1), v̂(n+1), ẑ(n+1)

)∣∣∣
∣∣∣

≤ 1

µ

(
ε(n)v + ε(n)u + ε(n)z

)
, (75)

using the form of the dual-induced primal solution (17) and
the triangle inequality. Because the dual update errors are
summable (74), the primal update errors

{
ε
(n)
x

}
are also

summable. Then, by [21, Theorem 3], the proposed algorithm
is a convergent “generalized proximal point algorithm” and
produces a sequence of iterates

{
x(n)

}
that converge to a

minimizer x̂.
In practice, it may be difficult to verify numerically that

the conditions (74) hold, but at least this analysis provides
some sufficient conditions for convergence. In contrast, OS
algorithms [12] have no convergence theory (and can diverge
even for well-conditioned problems).
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Fig. 7: Root mean squared difference (RMSD) to a converged
reference vs. iteration for the helical shoulder scan for several
values of the parameter µ around µ0, the heuristic in (57).

This document provides supplementary experiments for the
publication [1]. Section I contains an experiment modifying
the proximal parameter µ around the heuristic in the paper
(57). Section II contains results from an image reconstruction
using a total-variation (TV)-like regularizer.

I. VARYING THE PROXIMAL PENALTY µ

The proximal parameter µ (6) is selected in [1] using
a heuristic derived from the statistical weights W and the
tomography majorizers {Mg} in (57). This heuristic was used
for the reconstructions in Sections IV-C and IV-D.

We performed the helical patient data reconstruction in
Section IV-C with several values of µ around µ0, the heuristic
in (57). Figure 7 shows the root mean squared difference
(RMSD) of each algorithm as a function of iteration; changing
µ does not change the value that each algorithm converges to,
assuming the algorithm converges. Changing µ also does not
change how long each iteration takes to perform.

It appears that the heuristic (57) is suboptimal, but it appears
to be a good “default” setting.

II. RECONSTRUCTION WITH A TV-LIKE PENALTY

We altered the regularizer in Section IV-C to approximate
absolute value potential function used in TV. We decreased
the parameter δ of the Fair potential (39) from δ = 10 to δ =
0.1 and scaled up the regularizer weights {βk} by 100 times.
Figure 8b shows a reference image using the new regularizer;

Supported in part by NIH grant U01 EB 018753, and by equipment
donations from Intel Corporation.

compared to Figure 3b, the reconstruction has more uniform
regions and some “cartoony” artifacts.

We ran OS-OGM and the proposed algorithm on an
NVIDIA Kepler K5200; Figures 8c, 8d and 8e plot the RMSD
of each algorithm to the reference as a function of equit
and time. The lower value of δ results in a higher curvature
regularizer majorizer for the OS-OGM algorithm that signifi-
cantly slows its convergence. Because the proposed algorithm
does not majorize the regularizer, it does not suffer from this
slowdown. In fact, the proposed algorithm approaches the
reference image more quickly in this experiment than in the
results shown in Figure 4 of [1].
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Fig. 8: Image reconstruction of the helical shoulder case in Section IV-C using a TV-like Fair potential with parameter δ = 0.1.


