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Regularization Designs for Uniform Spatial
Resolution and Noise Properties in

Statistical Image Reconstruction for 3D X-ray CT
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Abstract—Statistical image reconstruction methods for X-ray
computed tomography (CT) provide improved spatial resolution
and noise properties over conventional filtered back-projection
(FBP) reconstruction, along with other potential advantages such
as reduced patient dose and artifacts. Conventional regularized
image reconstruction leads to spatially variant spatial resolution
and noise characteristics because of interactions between the
system models and the regularization. Previous regularization
design methods aiming to solve such issues mostly rely on
circulant approximations of the Fisher information matrix that
are very inaccurate for undersampled geometries like short-
scan cone-beam CT. This paper extends the regularization
method proposed in [1] to 3D cone-beam CT by introducing a
hypothetical scanning geometry that helps address the sampling
properties. The proposed regularization designs were compared
with the original method in [1] with both phantom simulation
and clinical reconstruction in 3D axial X-ray CT. The proposed
regularization methods yield improved spatial resolution or noise
uniformity in statistical image reconstruction for short-scan axial
cone-beam CT.

Index Terms—regularization, model-based image reconstruc-
tion, cone-beam tomography, iterative reconstruction

I. INTRODUCTION

STATISTICAL image reconstruction methods for X-ray
computed tomography (CT) use realistic models that in-

corporate the statistical properties of the noise and the physics
of the data acquisition system [2]. Compared to conventional
filtered back-projection (FBP) reconstruction, statistical meth-
ods are more accurate and are more flexible for modeling
different kinds of physical constraints. Potential advantages of
statistical image reconstruction methods over FBP reconstruc-
tion have been demonstrated in terms of noise, resolution, and
artifacts [3]–[5]. Such improvements in image quality become
more apparent in low-dose scans where FBP reconstruction
suffers from increased streak artifacts [6]. However, many
factors need to be addressed to ensure the success of statistical
methods in clinical applications. Diagnostic readability of
the reconstructed images depends on various characteristics
such as texture, resolution, noise, and artifacts. In particular,
uniformity of the resolution or noise characteristics throughout
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the reconstructed image is desirable. This paper proposes new
space-variant regularization designs that yield reconstructed
images with improved uniformity of resolution or noise.

Regularization is necessary to control noise since unregular-
ized image reconstruction leads to excessively noisy images.
By integrating a penalty term into the objective function,
regularized image reconstruction methods, such as penalized-
likelihood (PL) methods or penalized weighted least squares
(PWLS) methods, provide controlled noise and resolution
properties in the reconstructed image. However, interactions
between the regularization, system models, and statistical
weighting cause the reconstructed images to have object-
dependent nonuniform and anisotropic spatial resolution and
noise properties, even for idealized shift-invariant imaging
systems [1]. Nonuniformity becomes severe for short-scans
in cone-beam CT (CBCT), having angular spans of π + 2γ
where γ is the fan angle of the detector, compared to full
scans, and also for undersampled voxels1 in 3D axial or
helical scanning geometries. In [1], a regularizer based on
the aggregated certainty was developed for 2D PET to yield
images with approximately uniform spatial resolution, and that
regularizer has been used for other geometries and modalities
[9]–[13]. However, the aggregated certainty regularizer does
not provide uniform resolution when applied to modalities
such as 2D short-scan fan-beam CT or 3D cone beam CT
because of asymmetric scan geometries caused by short-scan
orbits or cone-angle effects or both. In [10] and [12], the
original aggregated certainty regularizer was modified with
a diagonal scaling factor for 3D PET. Recently, it was also
extended to both static and multi-frame reconstruction in 3D
PET by considering spatially variant and frame-dependent
sensitivity [14]. Since the term “aggregated certainty” is less
apt for some imaging modalities such as CT, instead, we
use the more general term “pre-tuned spatial strength”, which
represents that the purpose of the function is to control the
regularization strength at each voxel, before the reconstruction
process, so that the reconstructed image is guided to have
desired characteristics, i.e., uniform resolution.

Many previous regularization design methods focussed on
choosing directional coefficients in the regularizer by matching
local characteristics, such as impulse response or correlation
function, of the estimator to target characteristics to achieve

1In this study, “full” sampling does not refer to the complete sampling
conditions derived in [7], [8], but rather that the voxel is seen in every
projection view. Thus, “undersampling” indicates the voxel is seen in only
some of the projection views.
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uniform and isotropic resolution [15]–[17] or noise character-
istics [18], [19]. Since both the global regularization parame-
ter(s) and the pre-tuned spatial strengths can be incorporated
into directional regularizer coefficients, those regularization
design methods are more general and flexible than simply
adjusting the regularization strength at each voxel. However,
such design methods require additional computations to design
the coefficients for every voxel, and it is challenging to
obtain both uniformity and isotropy at the same time for
either spatial resolution or noise characteristics. Especially for
the undersampled voxels in cone-beam CT, locally circulant
approximations of the Fisher information matrix are very
inaccurate, leading to imperfect coefficient designs at such
locations. Furthermore, the memory requirement to store all
directional coefficients for every voxel can be burdensome.

This paper extends [1] by proposing a modified pre-tuned
spatial strength function for 3D CT that yields improved
resolution uniformity throughout the reconstructed image in-
cluding undersampled voxel locations. We also propose a shift-
variant regularizer that provides approximately uniform noise
characteristics in the reconstructed image. Section II reviews
the system models for statistical image reconstruction and
some fundamental concepts such as estimator local impulse
response (LIR) and covariance. Section III proposes new regu-
larizers by generalizing the system matrix using a hypothetical
geometry concept. Two different regularizers are presented
that yield improved uniform resolution or noise characteristics
in the reconstructed image, respectively. Section IV presents
results using both simulated and real clinical X-ray CT data.
Section V concludes by summarizing the contributions of this
study and suggesting potential future work.

II. SPATIAL RESOLUTION AND NOISE PROPERTIES OF
STATISTICAL IMAGE RECONSTRUCTION

This section first reviews statistical image reconstruction in
terms of the system models for a penalized weighted least
squares (PWLS) formulation. The concept of local impulse
response and estimator covariance is also reviewed, and met-
rics for analyzing spatial resolution and noise properties in the
reconstructed image are discussed.

A. Statistical Image Reconstruction

Noisy CT sinogram measurements can be expressed as a
discrete vector, y = (y1, · · · , ynd

), where yi represents the ith
line integral through the object for a given scanning geometry.
These sinogram measurements are related to recorded detector
measurements, I = (I1, · · · , Ind

), by the Beer-Lambert law
[20]. For simplicity, we use the following statistical model for
the detector measurements under the mono-energetic assump-
tion

E[Ii] = Īi = bi exp(−[Ax]i)+ri,

where A is the system matrix, x = (x1, · · · , xnp
) is the

discrete vector of the imaged object, [Ax]i =
∑np

j=1 aijxj ,
bi is the X-ray source intensity for ith ray, and ri denotes
the background contributions from factors such as scatter and
crosstalk.

The measurement noise statistics can be modeled using a
probability density function by relating the measurements yi
to their mean values E[yi], and are mainly affected by phys-
ical processes in the data acquisition system. For integrating
detectors, the statistics of X-ray measurements is a compli-
cated mixture of compound Poisson photon distribution and
Gaussian electronic noise [21], [22]. In practice, the following
simple models have been used successfully. A Poisson model
for pre-log data Ii can be written as [23]

Ii ∼ Poisson{bi exp(−[Ax]i)+ri}. (1)

A quadratic approximation of the negative log-likelihood of (1)
implies that the post-log data yi is a approximately Gaussian
random variable [24], [25]

yi ∼ N

(
[Ax]i,

Īi
(Īi − ri)2

)
. (2)

CT image reconstruction often is formulated as a minimiza-
tion problem with a PWLS cost function of the form

Ψ(x) = L(x) + R(x), L(x) =
1

2
‖y −Ax‖2W (3)

x̂ = argmin
x

Ψ(x), (4)

where R(x) is a regularizer that controls the spatial reso-
lution and noise characteristics in the reconstructed image
typically by penalizing local differences between voxels, and
W = D[wi] � diag{wi} is a statistical weighting matrix.
(We assume the measurements are independent so the data
covariance is diagonal.) The coefficients {wi} of the statistical
weighting matrix should be the reciprocal of the variances of
the measurements by the Gauss-Markov theorem [26]:

wi �
1

σ2(E[yi])
=

(Īi − ri)
2

Īi
.

In practice, the means of the measurements are unknown so
typically the weights are estimated by a plug-in approach,
i.e., wi ≈ 1/σ2(yi) for transmission tomography. The ideas
in this paper generalize readily to other penalized-likelihood
formulations [27].

We consider regularizers having the following form:

R(x) =

np∑

j=1

κj

Nl∑

l=1

κj−jlβlψl ((cl ∗ ∗ ∗ x) [n,m, z]) , (5)

where Nl is the size of the neighborhood, jl denotes the
offset of the lth neighbor in lexicographical order, βl is a
regularization parameter that balances between the data-fitting
term and the regularizer [28], κj is a user-defined value that
controls local spatial resolution and noise in the reconstructed
image [1, eqn. (35)], ψl is a potential function, ∗ ∗ ∗ denotes
3-D convolution. We define a first-order differencing function
that penalizes lth neighbor as

cl[n,m, z] =
δ[n,m, z]− δ[n− nl,m−ml, z − zl]√

n2l +m2
l + z2l

,

where δ[n,m, z] is the Kronecker impulse at location [0, 0, 0],
and nl,ml, zl denote the offset of the lth neighbor. The
regularization parameter βl is usually determined based on
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data-independent factors like voxel sizes, and a typical choice
is βl = 1, ∀l. The parameter also can be selected more
systematically as in [28].

The goal of this paper is to refine the regularizer R(x)
by designing {κj} so that the reconstructed image has more
uniform resolution or noise properties. We want to improve
upon the design proposed in [1] which was

κj =

√∑nd

i=1 a
2
ijwi∑nd

i=1 a
2
ij

. (6)

B. CRC and Ensemble Variance

The local impulse response describes the local spatial res-
olution properties. We used the following definition of local
impulse response at the jth voxel [16]:

lj � lim
ε→0

x̂ (ȳ (xtrue + εδj))− x̂ (ȳ (xtrue))

ε
(7)

= ∇yx̂ (y) |y=ȳ(xtrue)∇xȳ (x) |x=xtrueδj , (8)

where δj is a Kronecker impulse at the jth voxel, and the
gradient operations are matrices with the following elements:

[∇yx̂ (y)]ji =
∂

∂yi
x̂j(y), [∇xȳ (x)]ij =

∂

∂xj
ȳi(x).

For simplicity we focus on quadratic regularization, for which,
from (8), the local impulse response of the PWLS estimator
(4) is expressed as

lj = [A′WA+R]−1A′WAδj , (9)

where R is the Hessian of the regularizer R(x) [1].
One common metric for measuring the local resolution is

the width of the local impulse response at the jth voxel, such
as the full width half maximum (FWHM) [1]. Alternatively,
the peak amplitude of the local impulse response, called
the contrast recovery coefficient (CRC) [9], can be used to
quantify resolution

CRC(lj) � δTj lj = δTj [A
′WA+R]−1A′WAδj . (10)

To measure isotropy of an impulse response, the width mea-
sure is more effective. On the other hand, uniformity of the
impulse responses is easier to assess with the CRC. In this
paper, we use the CRC of the local impulse response to
quantify spatial resolution.

With a quadratic regularizer, the closed-form solution of (4)
is given by

x̂ = (A′WA+R)
−1

A′Wy. (11)

The covariance of the reconstructed image x̂ [26] is

cov(x̂) = (A′WA+R)
−1

A′W cov(y)WA (A′WA+R)
−1
. (12)

If the weighting is chosen such that cov(y) = W−1, then the
reconstructed image covariance simplifies to

cov(x̂) = (A′WA+R)
−1

A′WA (A′WA+R)
−1
.
(13)

However, in some cases, additional factors are applied to W .
For instance, Parker weighting [29] is applied to sinogram
measurements for short-scan FBP reconstruction. It may also
be used in iterative reconstructions so that the temporal reso-
lution of such reconstructions matches that of FBP reconstruc-
tion. Such modifications change the statistical characteristics
of W and it no longer satisfies cov(y) = W−1. We can
express the statistical weighting more generally as

W = ŴV = D[ŵivi], (14)

where the weighting Ŵ is the conventional choice that satis-
fies ŵi = 1/Var{yi}, and {vi} denotes additional weighting
elements. The reconstructed image covariance (12) with such
statistical weighting can be expressed as follows

cov(x̂) = (A′WA+R)
−1

A′W̌A (A′WA+R)
−1
,
(15)

where W̌ = V ŴV = D[ŵiv
2
i ].

The noise property of the estimator can be quantified with
the ensemble variance at each voxel:

var (x̂j) = δTj (A′WA+R)−1A′W̌A′ (A′WA+R)−1δj .

(16)

The entire jth column of the covariance matrix (15) represents
the noise correlation of the jth voxel in the reconstructed
image with all other voxels

corr(x̂j) � (A′WA+R)
−1

A′W̌A (A′WA+R)
−1

δj .
(17)

Our goal is to design regularizers for which lj or corr(x̂j)
are approximately uniform over the 3D object.

III. NEW REGULARIZATION DESIGNS

This section reviews the aggregated certainty regularizer
developed in [1], and then develops new regularization de-
signs that provide approximately uniform resolution or noise
properties by using an “ideal” system matrix factorization.

A. System matrix augmentation using a hypothetical geometry

The aggregated certainty regularizer in [1] was developed
for shift-invariant systems like 2D PET. For shift-variant
systems like CBCT, the formulation in [1] must be modified.

The Fisher information matrix A′WA is shift-variant for
both emission and transmission tomography, causing nonuni-
form properties of the reconstructed image. Statistical weight-
ing is only partially responsible for the nonuniformity; even
in the unweighted case, the Fisher information matrix A′A
is also shift-variant for 3D PET and CT. In [1], the system
matrix A was factored into three elements as follows

aij = cigijsj , (18)

where {ci} denote ray-dependent factors, {sj} denote voxel-
dependent factors, and G = [gij ] represents the object-
independent geometric portion of the tomographic system
response. Ideally we would like to choose {ci} and {sj} and
G such that G′G is shift-invariant. So it can be accurately
approximated with a circulant matrix (implemented via a
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fast Fourier transform (FFT)), leading to improved regularizer
designs. The matrix representation of (18) is

A = D[ci]GD[sj ]. (19)

Since this representation is not unique, we can try to design
each of the factors to make G′G “very shift-invariant”.
The original design presented in [1] for PET assumed uni-
form voxel-dependent factors, i.e., sj = 1, ∀j, and the ray-
dependent part included only non-geometric aspects such as
detector efficiency and dead time. In 2D PET, this leads
to geometric factors {gij} for which G′G is nearly shift-
invariant. However, this conventional choice of G leads to
G′G that is highly shift-variant for 3D cone beam CT and
even for 2D fan-beam CT for short-scan geometries.

Here, we present a new generalization of (18) that works
in various geometries including 3D cone beam CT. First, we
consider the geometric sampling properties of A and consider
what rays are “missing” that cause A′A to be shift-variant. For
example, in a short-scan fan-beam geometry we are missing
some of the views that would have been acquired with a full
360◦ scan. As another example, for a CBCT axial scan, we
are missing the data that would have been acquired with a
“step and shoot” set of axial scans. For axial CBCT with a full
360◦ scan, A′A is approximately shift-invariant over the fully-
sampled, so-called “football region”, so it is natural to define
G to be a hypothetical system matrix having extra detector
rows such that the entire reconstruction volume is contained
in its corresponding football region2. In general, we define G
to be some Ng×np system matrix corresponding to an “ideal”,
fully sampled geometry, for which G′G is approximately
shift-invariant. The matrix G has the same number of columns
as A but has more rows (Ng > nd); the rows of A are a subset
of the rows of G.

Second, we replace the usual diagonal matrix D[ci] in (19)
with D[ci]P where P is a nd × Ng matrix that selects the
rows of the hypothetical geometry G corresponding to those
of the actual geometry A. Each row of P is entirely zero
except for a single element that is unity. By ordering the
rows of G appropriately, we can use P = [Ind

0nd×(Ng−nd)].
An important property of the row selection matrix P is that
P ′WP is a Ng × Ng diagonal matrix where each diagonal
element corresponds to a wi value for actual rays and is zero
for the hypothetical rays.

With this generalization, we can rewrite the Fisher informa-
tion matrix of the data fitting term as follows:

A′WA = D[sj ]G
′P ′D[ci]WD[ci]PGD[sj ]

= D[sj ]G
′P ′D[wic

2
i ]PGD[sj ]. (20)

Since the Fisher information matrix is fairly concentrated near
its diagonal elements [1, Fig. 2], we approximate (20) as

A′WA ≈ D[sj ]D[ηj ]G
′GD[ηj ]D[sj ]

= D[λj ]G
′GD[λj ] = ΛG′GΛ, (21)

2A hypothetical parallel-beam geometry is another option for G that may
lead to G′G that is even more shift-invariant; that choice would require an
additional cone-to-parallel rebinning process [30].

where the following factors match the diagonals of (21):

ηj =

√√√√
∑nd

i=1 g
2
ijc

2
iwi

∑Ng

i=1 g
2
ij

, (22)

λj = sjηj =

√√√√
∑nd

i=1 a
2
ijwi

∑Ng

i=1 g
2
ij

, (23)

Λ � D[λj ]. (24)

Different choices of ci and sj will lead to various designs
for G = {gij}. As an example, for axial cone-beam CT,
assuming ci = 1, ∀i, and sj = 1, ∀j, will lead to G that
corresponds to another axial cone-beam CT geometry with
extended detector rows and full 360 degree orbit. For some
other choices, we may not have a physical interpretation for
the system represented by G.

Both the ray- and voxel-dependent factors need to be
designed based on the modality, i.e., for SPECT, sj should be
designed to properly model the nonuniform spatial sensitivity
and, for PET, ci should represent detector characteristics.

B. Regularization with Uniform Resolution Property

Substituting (21) into (9) yields the following approximation
for the local impulse response at the jth voxel:

lj ≈ (ΛG′GΛ+R)
−1

ΛG′GΛδj

= Λ−1
(
G′G+Λ−1RΛ−1

)−1
G′GΛδj . (25)

Typically, the local impulse response lj is concentrated about
voxel j and clearly Λδj = λjδj . Following [1, eqn. (34)],
we approximate (25) as the following final expression for the
local impulse response:

lj ≈
(
G′G+ λ−2

j R
)−1

G′Gδj . (26)

Having analyzed the local impulse response, we focus on
designing the coefficients {κj} in the regularizer (5); these
coefficients affect the Hessian R in (26) and thus control
the spatial resolution. Our goal here is to choose {κj} to
provide approximately uniform spatial resolution by matching
the local impulse response at the jth voxel, lj , to a target local
impulse response, lref , i.e., lj ≈ lref . Using (26), we write the
target local impulse response at a reference point, such as the
isocenter, as follows:

lref � (G′G+R0)
−1

G′Gδref , (27)

where R0 is the Hessian of a regularizer R0(x) that provides
desirable spatial resolution properties at the reference point.
R0(x) has the same form as (5) but possibly with a different
set of {κj} values, e.g., κj = 1, ∀j.

Our design for G leads to G′Gδj being approximately
locally shift invariant, and we assume Rδj is also approx-
imately locally shift-invariant [10, eqn. (15)]. Taking the
Fourier transform of (26) yields the following expression for
the local frequency response

Lj ≈ F (G′Gδj)

F (G′Gδj) + λ−2
j F (Rδj)

, (28)
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where F (·) denotes 3-D DFT centered at voxel j. We want to
match the local frequency response of jth voxel to the target
frequency response, i.e.,

Lj ≈ F (G′Gδj)

F (G′Gδj) + λ−2
j F (Rδj)

(29)

≈ F (G′Gδref)

F (G′Gδref) + F (R0δref)
≈ Lref .

Cross multiplying and simplifying yields

F (Rδj)F (G′Gδref) ≈ λ2jF (R0δref)F (G′Gδj) . (30)

We design {κj} by minimizing the least squares difference
between both sides of (30)

κ̂j = argmin
κj∈R+

‖F (Rδj)F (G′Gδref)

− λ2jF (R0δref)F (G′Gδj) ‖2, (31)

where R+ denotes nonnegative reals. For the quadratic poten-
tial function, the local frequency response of the regularizer
Hessian is [16, eqn. (16)]

F (Rδj) = κ2jRω, (32)

Rω �
Nl∑

l=1

βl |Cl(ω1, ω2, ω3)|2 , (33)

using the usual approximation κj ≈ κl for l within the neigh-
borhood of j, where Cl denotes the discrete-space Fourier
transform of cl[n,m, z] and ω denotes the digital frequency.
Without loss of generality, we choose R0(x) such that

F (R0δref) =

Nl∑

l=1

βl |Cl(ω1, ω2, ω3)|2 = Rω. (34)

Substituting (32) and (34) into (31) yields the following
simplified expression:

κ̂j = argmin
κj∈R+

‖κ2jRωF (G′Gδref)− λ2jRωF (G′Gδj) ‖2.
(35)

Solving (35), we obtain

κ̂j = λj

√
�+(〈RωF (G′Gδref) , RωF (G′Gδj)〉)

‖RωF (G′Gδref)‖
, (36)

where 〈·, ·〉 denotes the inner product for 3D DFT space, and
�+(·) denotes the nonnegative real part.

When G′G is approximately shift-invariant, we have

F (G′Gδj) ≈ F (G′Gδref) , (37)

and the ratio in (36) becomes unity and (36) simplifies to
κ̂j = λj .

The presented design process can address more general
purposes besides obtaining resolution uniformity. For instance,
one may want to match a spatially varying target response that
depends on certain characteristics, such as the sampling at
each voxel, so that each voxel would have different resolution
properties for specific purposes.

Our new regularizer for uniform resolution properties in the
reconstructed image (hereafter R-REG) is given by (5) with

κ̂j = λj =

√√√√
∑nd

i=1 a
2
ijwi

∑Ng

i=1 g
2
ij

. (38)

This new pre-tuned spatial strength function (38) has a very
similar form to that of the original certainty (6) proposed in
[1], but with a different denominator. This new denominator
takes effect when voxel j is at an undersampled location.
When it is fully-sampled, the new pre-tuned spatial strength
is exactly the same as the original certainty since

∑Ng

i=1 g
2
ij =∑nd

i=1 a
2
ij for such locations. For undersampled region, this

new denominator decreases the regularization strength, leading
to sharper and possibly noisier reconstructed images compared
to using the original aggregated certainty (6).

To simplify implementation, we approximate (38) as follows

κ̂j ≈
√∑nd

i=1 aijwi∑Ng

i=1 gij
. (39)

Unlike the back-projection of the statistical weighting,∑nd

i=1 aijwi, calculating the sum of rows of the Hessian
A′WA,

∑nd

i=1 a
2
ijwi, is sometimes not available or easily

implementable. Empirical results in the supplement verify that
(39) closely approximates (38) .

Even though the new regularizer design was derived for
quadratic regularization, it can be also applied to regularizers
with non-quadratic potential functions, following the spirit of
[31]. Of course edge-preserving regularization always leads
to non-uniform spatial resolution near image edges, and this
important characteristic will be retained.

The proposed regularizer (38) attempts to address non-
uniformities caused by both shift-variant scanning geometries
and by interactions between the regularization and the sta-
tistical weights. The derivation assumed that κj changes very
slowly within its neighborhood. However, this assumption may
fail for certain regions such as near the edges of a structure.
Furthermore, since we are only adjusting the “overall strength”
of the regularization at each voxel and not its “directional
strength” for each neighboring voxel, the proposed regulariza-
tion cannot correct for asymmetry in local impulse responses.
The proposed regularization is designed to generate uniform
spatial resolution in terms of CRC. To obtain isotropic local
impulse response, one would need to design the directional
coefficients, βl, at each location [17].

C. Regularization with Uniform Noise Property

Using the Fisher information matrix approximation (21), we
approximate the local noise correlation corr(x̂) as follows

corr(x̂j) ≈
(
Λ̄G′GΛ̄+R

)−1

Λ̂G′GΛ̂
(
Λ̄G′GΛ̄+R

)−1
δj , (40)
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where, using vi and ŵi from (14):

λ̄j �

√√√√
∑nd

i=1 a
2
ijŵivi

∑Ng

i=1 g
2
ij

, Λ̄ � D[λ̄j ], (41)

λ̂j �

√√√√
∑nd

i=1 a
2
ijŵiv2i∑Ng

i=1 g
2
ij

, Λ̂ � D[λ̂j ]. (42)

We further approximate (40) as

corr(x̂j)

≈ Λ̄−1
(
G′G + Λ̄−1RΛ̄−1

)−1
Λ̄−1Λ̂G′GΛ̂Λ̄−1

(
G′G+ Λ̄−1RΛ̄−1

)−1
Λ̄−1δj

≈
λ̂2j
λ̄4j

(
G′G+ λ̄−2

j R
)−1

G′G
(
G′G+ λ̄−2

j R
)−1

δj ,

(43)

using the usual assumption that the local noise correlation
corr(x̂) is concentrated about voxel j. From (43), the local
noise power spectrum (NPS) of voxel j is approximately

Sj ≈
λ̂2j
λ̄4j

F (G′Gδj)(
F (G′Gδj) + λ̄−2

j F (Rδj)
)2 . (44)

To obtain uniform noise properties, we want to match the
local NPS at the jth voxel to a target NPS, i.e., Sj ≈ Sref .
For the target, we use the local NPS at a reference point and
assume that the regularizer R0(x) was chosen to provide a
suitable NPS at that location. Our design goal becomes:

λ̂2j
λ̄4j

F (G′Gδj)(
F (G′Gδj) + λ̄−2

j F (Rδj)
)2

≈ λ̂2ref
λ̄4ref

F (G′Gδref)

(F (G′Gδref) + F (R0δref))
2 . (45)

Cross multiplying leads to

λ̂2j λ̄
4
refF (G′Gδj) (F (G′Gδref) + F (R0δref))

2

≈ λ̂2ref λ̄
4
jF (G′Gδref)

(
F (G′Gδj) + λ̄−2

j F (Rδj)
)2
. (46)

Using (32) and (34), we simplify (46) to

κ2j
√
F (G′Gδref)Rω

≈
(
λ̂j λ̄

2
ref

λ̂ref

)√
F (G′Gδj) (F (G′Gδref) +Rω)

− λ̄2j
√
F (G′Gδref)F (G′Gδj) .

(47)

By defining Bref
ω � F (G′Gδref) and Bj

ω � F (G′Gδj), (47)
can be rewritten as follows:

κ2j

√
Bref

ω Rω

≈
(
λ̂j λ̄

2
ref

λ̂ref

)√
Bj

ω

(
Bref

ω +Rω

)
− λ̄2j

√
Bref

ω Bj
ω. (48)

TABLE I
ACRONYMS FOR REGULARIZERS

Acronym Description
A-REG aggregated certainty (AC) regularizer (6)
R-REG regularizer for spatial resolution uniformity (38)
N-REG regularizer for noise uniformity (51)

We design {κj} by solving the following least squares problem

κ̂j = argmin
κj∈R+

∥∥∥∥∥κ
2
j

√
Bref

ω Rω

−
[(

λ̂j λ̄
2
ref

λ̂ref

)√
Bj

ω

(
Bref

ω +Rω

)
− λ̄2j

√
Bref

ω Bj
ω

]∥∥∥∥∥

2

.

(49)

The solution to (49) is given by

κ̂j =
1∥∥∥

√
Bref

ω Rω

∥∥∥

[
�+

((
λ̂j λ̄

2
ref

λ̂ref

)
〈
√
Bref

ω Rω,

√
Bj

ωRω〉

+

(
λ̂j λ̄

2
ref

λ̂ref

)
〈
√
Bref

ω Rω,

√
Bj

ωB
ref
ω 〉

− λ̄2j 〈
√
Bref

ω Rω,
√
Bref

ω Bj
ω〉
)] 1

2

.

(50)

Using (37), we simplify (50) as follows

κ̂j =

√(
λ̄2ref
λ̂ref

)
λ̂j + Eω

[(
λ̄2ref
λ̂ref

)
λ̂j − λ̄2j

]
, (51)

where Eω = �+

(
〈
√
Bref

ω Rω,
√
Bref

ω Bref
ω 〉
)
/
∥∥∥
√
Bref

ω Rω

∥∥∥
2

.
Regularizer (5) with (51) (hereafter N-REG) provides ap-

proximately uniform noise properties in the reconstructed
image. The new {κj} factors (51) consist of two terms
within a square root. If we ignore the second term, then (51)
is approximately the square root of the modified pre-tuned
spatial strength (38) of R-REG. This suggests that N-REG
has decreased regularization strength at undersampled region
compared to A-REG, but with less spatial variation than R-
REG. The second term of (51) is an “adjustment” that is
usually smaller than the first term.

IV. RESULTS

This section investigates the effect of the proposed regulariz-
ers (see Table I for acronyms) for PWLS image reconstruction
of 3D short-scan axial CT using both phantom and clinical
data. For the hypothetical geometry G, we assumed ci = 1, ∀i,
and sj = 1, ∀j, in (20) and used a full 360◦ scan with
increased number of detector rows, N ext

t (see the supplement
for a different choice of G).
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Fig. 1. XCAT phantom used in the simulation. Middle 3 planes (xy, xz,
and yz planes through the isocenter) are shown. Red and blue dots indicate
locations of the added impulses and the isocenter, respectively. Red lines
indicate our axial ROI, which is from 5th to 60th slices (out of 64). Blue line
displays the location of the center slice. Finally, green lines show the detector
coverage.

A. Resolution Uniformity

1) Phantom Simulation: An anthropomorphic phantom
simulation was used to demonstrate the improved spatial
resolution uniformity induced by the regularizer with the
modified pre-tuned spatial strength (38). We used 512 × 512 ×
122 XCAT phantom [32] with voxel size Δx = Δy = 0.9766
mm and Δz = 0.625 mm as our true image, xtrue (Fig. 1).

We used the separable footprint projector [33] to simulate
a monoenergetic, noiseless sinogram for a 3rd-generation
axial cone-beam CT system having Ns = 888 channels and
Nt = 64 detector rows with spacings Δs = 1.0239 mm
and Δt = 1.09878 mm. We assumed a short-scan protocol
that covers an angular range of 227.6◦ with Na = 622
evenly spaced views. We selected the hypothetical geometry
G to have both extended views, N ext

a = 984 over 360◦,
and detector rows, N ext

t = 168. The statistical weights
were wi = b0 exp(−[Ax]i) where the X-ray intensity was
b0 = 106.

To obtain local impulse responses at various locations,
we added impulses with amplitude ε = 2.5 × 10−4 mm−1,
corresponding to approximately 14 HU, to 6 different locations
in each of the selected 9 slices (see Fig. 1 for impulse locations
in xy plane). Selected slices were evenly spaced through z-
dimension including isoplane, end slices of region-of-interest
(ROI), and slices outside ROI. Axial ROI was selected as 5th
to 60th slices (out of 64) to focus on slices with less short-
scan artifacts due to insufficient sampling [34] . We used (8)
to evaluate the local impulse response at each location for
regularizer designs with both the original aggregated certainty
(6) (hereafter A-REG) and the modified pre-tuned spatial
strength function (38) (R-REG). Both quadratic and edge-
preserving regularizations were investigated to show that the

proposed regularizer design R-REG is applicable to both cases.
Image reconstruction was done on the same grid as the true
image. For this experiment, we set the regularization parameter
βl as βl = β, ∀l, where β was selected based on the full-width
at half-maximum (FWHM) of the local impulse response at the
isocenter. To visualize the shape of the local impulse response
more clearly, we selected a somewhat large β value for which
the FWHM was approximately 3 times the voxel size. Image
reconstruction used the ordered-subsets with double surrogates
(OSDS) method [35]. The number of iterations was 20 with
41 subsets.

First, we present the results for regularization with a
quadratic potential function. Fig. 2 illustrates that the proposed
regularizer (38) leads to local impulse response functions
having more uniform CRC values than the “conventional”
aggregated certainty design (6), particularly for off-center
slices. CRC values of local impulse responses at different
locations become nonuniform when using A-REG (6). This
nonuniformity becomes severe as we move away from center
slices. Using the proposed regularizer R-REG (38), the CRC
values become much more uniform regardless of the location
or the amount of sampling. R-REG (38) corrects only the
nonuniformity of peak values of local impulse responses.
Anisotropy in the shape of the impulse response could be
improved by designing directional coefficients [17].

Fig. 3 shows x profiles through the center of all local
impulse responses to compare CRC values more closely. Using
A-REG (6) leads to resolution nonuniformity even in the center
slice, primarily due to short-scan geometry. Nonuniformity in
resolution becomes most severe for locations 2 to 4 that have
much worse sampling compared to the isocenter due to the
axial cone-beam geometry and the short-scan orbit.

Table II compares the average “mismatch” of the CRC
values for the given 6 locations across slices and within each
slice. We used the following definition of CRC mismatch

ρj � |CRC(lj)− CRC(lref)| /|CRC(lref)| . (52)

The proposed regularizer R-REG improved the uniformity
of CRC values throughout the reconstruction volume. The
average CRC mismatch was significantly improved for all
locations and slices, and undersampled voxels were most
improved by the proposed regularizer, as designed. The overall
improvement of CRC mismatch was from 34.5% to 9.9%.

We obtained similar results for edge-preserving regulariza-
tion with a hyperbola potential function [36] given by

φ(t) = δ2
[√

1 + |t/δ|2 − 1

]
. (53)

Shape of the local impulse responses does not change much
compared to the quadratic regularization, but CRC values
become slightly higher. As in the quadratic case, the original
certainty function (6) yields non-uniform CRC values across
multiple voxel locations, and proposed regularization (38)
leads to more uniform CRC values. Due to their similarity to
the quadratic case, results for edge-preserving regularization
are presented in the supplementary material.

Even though proposed designs were based on approxima-
tions, such as (26), the local impulse response calculated by
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(a) A-REG (b) R-REG

Fig. 2. Comparison of xy plane through the center of each local impulse response at selected location (see Fig. 1 for the index of locations). Quadratic
potential function was used. Top row is from a center slice (blue line in Fig. 1), middle row is from 1st slice of ROI (red line in Fig. 1), and bottom row is
from outside ROI (green line in Fig. 1). (a) Regularization with original aggregated certainty (6) (A-REG) (b) Regularization with proposed pre-tuned spatial
strength (38) (R-REG).

(a) (b) (c)

(d) (e) (f)

Fig. 3. Comparison of x profiles through the center of each impulse response in Fig. 2. Left column is from a center slice, middle column is from 1st slice
of ROI, and right column is from outside of ROI. Top and bottom rows represent the regularizers A-REG (6) and the proposed R-REG (38), respectively. (a)
A-REG, center slice (b) A-REG, 1st slice of ROI (c) A-REG, outside ROI (d) R-REG, center slice (e) R-REG, 1st slice of ROI (f) R-REG, outside ROI.

(8) yields CRC values that closely match the target CRC. For
both quadratic and edge-preserving regularizers, the proposed
designs provide improved CRC uniformity (see also Table II).

2) Real Clinical Data: We reconstructed a clinical cardiac
CT scan as a 1024 × 1024 × 122 image with 70 cm field-
of-view (FOV). Measurements were obtained from a 64 row
axial CT scanner with a short-scan protocol and 480 mAs
tube current. The sinogram dimension was [Ns, Nt, Na] =
[888, 64, 642]. We selected the hypothetical geometry G to
have both extended views, N ext

a = 984, and detector rows,
N ext

t = 148. For this experiment, we set βl in (5) using [28].
We used ICD with spatially non-homogeneous updates [37] for
reconstruction. We show results from both quadratic and edge-
preserving regularization using the q-generalized Gaussian

potential function with p = 2, q = 1.2, and c = 10, [3]

φ(t) =
|t|p

1 + |t/c|p−q . (54)

Fig. 4 compares the reconstructed images with a quadratic
potential function and the following different regularizers:
Uniform, A-REG, and R-REG. When uniform regularization
is used, i.e., κj = 1, ∀j, the reconstructed image becomes
over-smoothed even for some locations in the center slice,
illustrating the importance of the pre-tuned spatial strength
function in the regularization. Reconstructed image using A-
REG (6) shows less blurring and sharper spatial resolution
compared to that of the uniform regularizer. However, even
in the center slice, both left and right sides of the recon-
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Fig. 4. Reconstructed images using uniform regularizer (1st column), A-REG (2nd column), R-REG (3rd column), and N-REG (last column). Quadratic
potential function was used. Top row: center slice; bottom row: the last slice of ROI. Display range is [800 1200] (HU).

Fig. 5. Comparison of reconstructed images in Fig. 4 at the last slice of ROI.
From left to right, the images are from full scan measurements with A-REG,
uniform regularizer, A-REG, R-REG, and N-REG, respectively. Top row is
from a region on the left side where sampling is lower than a region on the
right side (bottom row). Display range is [800 1200] (HU).

structed image have different resolution. This is consistent
with the result in Fig. 3 (a) where the CRC values were
nonuniform even in the center slice due to short-scan orbit.
The proposed regularizer R-REG (38) improved resolution
uniformity in the center slice. In the end slices of the ROI,
the resolution nonuniformity becomes more apparent. A-REG
(6) fails to provide resolution uniformity at under-sampled
locations, leading to visible differences in smoothness between
left and right side of the reconstructed images. On the other
hand, the reconstucted image using R-REG (38) has more
uniform resolution properties even in these undersampled
region, causing the structures in the region to have sharper
boundaries.

Fig. 6 and Fig. 7 show reconstructed images for edge-
preserving regularization. Clearly, the edge-preserving regu-
larization preserves fine structures, leading to better image
quality in terms of spatial resolution compared to the quadratic
regularization. However, the choice of {κj} still affects the

resolution uniformity in the reconstructed image. The results
show similar tendencies as in the quadratic case: non-uniform
resolution and over-regularization in the undersampled region
for uniform regularizer and A-REG. On the other hand, the
proposed R-REG achieves sharper and more uniform spatial
resolution. This suggests that even though the proposed reg-
ularizer was derived for a quadratic regularization, it is also
suitable for non-quadratic regularization.

B. Noise Uniformity

Reconstructed images using R-REG (38) have better reso-
lution uniformity throughout the entire volume, however, this
improvement comes at the expense of the noise properties. As
shown in Fig. 7, the proposed R-REG slightly increases the
noise level in the reconstructed image when edge-preserving
regularization is used. This trade-off is inevitable; thus we also
investigated a regularizer that focuses on noise uniformity (N-
REG, (51)).

1) Phantom Experiment: To compare the regularizers quan-
titativly, we used the GE performance phantom (GEPP) [20].
The phantom consists of a PlexiglasTM insert with resolution
bars, and tungsten wires in water. The phantom was scanned
with a 64 row axial CT scanner in short-scan mode and
70 mAs tube current, corresponding to a very low dose
scan, and reconstructed to a grid of 1024 × 1024 × 90
with the following voxel size: Δx = Δy = 0.2246 mm
and Δz = 0.625. We selected the hypothetical geometry
G to have both extended views, N ext

a = 984, and detector
rows, N ext

t = 200. Edge-preserving regularization with q-
generalized Gaussian potential function (54) was used.

Fig. 8 shows the reconstructed image of the GEPP with A-
REG. Due to small FOV (= 23 cm), the end slices of the ROI
did not suffer much from under-sampling. However, the choice
of regularization still leads to different image qualities in the
reconstructed images even in the center slice. To compare
different regularizations fairly, we chose the regularization



10

Fig. 6. Reconstructed images using uniform regularizer (1st column), A-REG (2nd column), R-REG (3rd column), and N-REG (last column). Edge-preserving
potential function (54) was used. Top row: center slice; bottom row: the last slice of ROI. Display range is [800 1200] (HU).

Fig. 7. Comparison of reconstructed images in Fig. 6 at the last slice of ROI.
From left to right, the images are from full scan measurements with A-REG,
uniform regularizer, A-REG, R-REG, and N-REG, respectively. Top row is
from a region on the left side where sampling is lower than a region on the
right side (bottom row). Display range is [800 1200] (HU).

parameter β such that the noise standard deviation near the
isocenter is similar for all reconstructed images (≈ 13.7 HU).
We selected 7 different homogeneous regions in the center
slice to compare the noise standard deviation (see Fig. 8
for their locations). Table III illustrates that the proposed
N-REG shows the best noise uniformity, i.e., the average
standard deviation of the noise is reasonably close to that
of the region near the isocenter. Since the FOV is small,
the noise standard deviation does not vary much within the
PlexiglasTM insert. However, the standard deviation in the wall
depends significantly on the regularization method. Due to the
symmetrical shape of the GEPP and thickness of its wall,
the statistical weighting varies mostly only in the channel
dimension (except for the views affected by an additional
weighting such as Parker weighting) and is ”U” shaped. As
a result, the uniform regularizer generally increased noise
in the reconstructed image, and both A-REG and R-REG
over-regularized the region far away from the isocenter, i.e.,

Fig. 8. The GEPP used for quantitative comparison of regularizations. Red
boxes indicate the regions selected for noise variance comparison.

the walls in this case. Both A-REG and R-REG showed
similar performance as expected, and N-REG improved noise
uniformity in the reconstructed image.

2) Real Clinical Data: Fig. 4 to Fig. 7 compare the recon-
structed images obtained using various regularizers. For both
quadratic and edge-preserving regularizers, the proposed N-
REG provides improved noise uniformity in the reconstructed
image. The uniform regularizer tends to over-smooth the
reconstructed image, and A-REG shows nonuniform noise
properties even in the center slice. Both proposed R-REG and
N-REG show improved image qualities in terms of resolu-
tion and noise, respectively. R-REG shows somewhat sharper
reconstructed image compared to N-REG on end slices for
both regularizers, but has slightly higher and nonuniform noise
variance.
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TABLE II
AVERAGE CRC MISMATCH (52) FOR SELECTED 6 LOCATIONS ACROSS SLICES AND WITHIN EACH SLICE, RESPECTIVELY (UNITS: %).

SEE FIG. 1 FOR THE INDEX OF IMPULSE LOCATIONS.

Locations Averages
1 2 3 4 5 6 Overall Center Slice 1st slice of ROI Outside ROI

A-REG (Fig. 3) 32.6 45.3 24.8 47.2 31.9 25.0 34.5 (a) 12.3 (b) 33.7 (c) 46.8
R-REG (Fig. 3) 7.5 14.9 3.9 20.0 5.9 7.2 9.9 (d) 8.7 (e) 11.6 (f) 7.4

Fig. 5 and Fig. 7 zoom into the reconstructed images at
the last slice of ROI, which has nonuniform sampling over
the slice. A reconstructed image from full scan measurements
with A-REG was used as a reference with desirable image
quality. Since the image quality of the reference image is
also affected by the choice of regularization, it may not be
the optimal image for clinical diagnosis. However, the under-
sampling from short-scan measurements is a more dominant
factor for the image quality in the displayed region, so the
chosen reference image shows better image characteristics
compared to the other reconstructed images from short-scan
measurements. For each case, the region on the right side of
the reconstructed image (bottom row) was compared to the left
side of the image that has less sampling (top row). Uniform
regularization clearly leads to over-regularization in the un-
dersampled region, causing severe noise nonuniformity within
the slice. Even though less severe, A-REG also suffers from
the same issue. Proposed regularization N-REG generated a
reconstructed image with better noise uniformity, improving
visibility of structures in the undersampled region.

For both examples, the proposed N-REG (51) provides
more uniform noise characteristics in the reconstructed image
compared to other regularization methods.

V. DISCUSSION

We proposed new regularization methods by modifying the
aggregated certainty presented in [1] using the hypothetical
geometry concept. Proposed regularizer R-REG in (38) im-
proved the spatial resolution uniformity in the reconstructed
images, and N-REG in (51) provided more uniform noise char-
acteristics compared to the uniform and aggregated certainty
regularizers.

The proposed methods, R-REG and N-REG, showed im-
proved spatial resolution or noise uniformity compared to the
conventional uniform regularizer and A-REG in both quadratic
and edge-preserving regularizations and for both simulated
and clinical scans. Even though the proposed regularizers
were targeted to improve the uniformity of either the spatial
resolution or noise, they yielded reconstructed images with
qualitatively improved image quality in terms of resolution or
noise compared to that from the uniform and the aggregated
certainty regularizers. For quadratic regularization, the noise
characteristics have less effect on the visual image quality than
the spatial resolution, suggesting the use of R-REG to improve
spatial resolution uniformity. On the other hand, since edge-
preserving regularization provides improved resolution near
edges, the noise uniformity primarily affects the readability
of the reconstructed image. Thus, N-REG may be preferable
for edge-preserving regularization. However, there are trade-
offs between spatial resolution and noise characteristics. Using

either regularizer may not provide an optimal reconstructed
image in terms of both resolution and noise. Furthermore,
it is unknown which feature is more desirable for diagnosis.
Diagnostic readability for the reconstructed images obtained
from both methods needs to be investigated to determine the
best regularizer, and possibly some combination of methods
may be desirable. A compromise approach that balances
spatial resolution and noise characteristics is explored in the
supplement as a starting point for further research.

For experiments in this paper, we used the hypothetical
scanning geometry obtained intuitively by extending both
rows and views from given axial cone-beam CT geometry.
Another option would be to use a step-and-shoot set of axial
scans. For some other geometries, determining the appropriate
hypothetical geometry may be harder. For example, in helical
CT, simply extending views would not suffice, and since the
actual scanning geometry must be a subset of the hypothetical
geometry, we cannot use a very small pitch for G. Multiple
intertwined helical geometries is a possible choice. Careful
consideration is required to properly extend the proposed
regularization designs to other scanning geometries.

One minor drawback of using the generalized geometry is
the increased computation for (23). For a geometry having
extended views or rows, since (23) is calculated only once
prior to iterating, the increased computation is insignificant
compared to the computation required for the actual recon-
struction. However, using a step-and-shoot set of axial scans
or intertwined multiple helical scans may require considerable
computations. Fortunately, since calculating (23) only requires
the hypothetical geometry, one could tabulate the denominator
of (23).

The proposed regularizers improve the uniformity of spatial
resolution or noise by controlling a scaling factor at each
voxel. Even though the design process attempts to match the
entire local impulse responses or NPS functions, they are
primarily matching CRC values and variances at each location
due to approximations (26) and (43). Thus, the proposed
regularizers do not correct anisotropy of these characteristics.
Designing directional coefficients in the regularizer may cor-
rect for such anisotropy, and has shown promising results for
the well-sampled regions [16], [18]. However, the anisotropy
of the image characteristics in the under-sampled region is hard
to correct, especially since these methods use locally circulant
approximations of the Fisher information matrix. One possible
future work is to extend the methods in this paper to directional
coefficient design.
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TABLE III
COMPARISON OF THE NOISE STANDARD DEVIATION FOR DIFFERENT REGULARIZERS METHOD. ALL VALUES ARE IN HOUNSFIELD UNITS (HU).
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Phantom Wall (right) 16.9 8.8 6.8 10.1
Phantom Wall (top) 17.4 8.7 8.8 10.7

Phantom Wall (bottom) 16.1 7.7 8.8 10.9
Average 16.2 ± 1.6 11.2 ± 3.4 11.2 ± 3.6 12.6 ± 2.4
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Regularization Designs for Uniform Spatial
Resolution and Noise Properties in

Statistical Image Reconstruction for 3D X-ray CT:
Supplementary Material

Jang Hwan Cho, Student Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

This material extends the regularization designs investigated
in [1], and presents the simulation and clinical experiments
that supports the results in [1] or were excluded in [1] due to
their repetitive nature.

Numberings for figures, tables, and equations are continuous
from [1], and reference to bibiography is within this material.

I. IMAGES FOR THE PRE-TUNED SPATIAL STRENGTH

In this section, we compare the pre-tuned spatial strengths
introduced in [1], for the clinical data.

Fig. 9 shows the pre-tuned spatial strength {κj} of A-REG,
defined as (6), at xy, xz, and yz planes through the image
center. The image shows the entire trans-axial field-of-view
(FOV), which is 70 cm. Notice that a cylindrical mask was
used.

Fig. 10 compares the pre-tuned spatial strengths for A-REG,
R-REG, and N-REG at both a center slice and an end slice.
The pre-tuned spatial strengths contain object information and
is smooth. We can verify that the approximation κj ≈ κl

for l within the neighborhood of j is reasonable. Since the
measurements are obtained from the short-scan protocol, end
slices suffer from insufficient sampling at certain locations.
The regularization strengths at such locations become overly
smoothed and lose object information reflecting their sampling
conditions.

Fig. 12 compares x profiles through the center of the pre-
tuned spatial strengths for A-REG, R-REG, and N-REG. We
can see that R-REG assigns smaller regularization strength to
undersampled region compared to A-REG. N-REG has smaller
dynamic range for the regularization strength compared to
others due to the square root (51).

The approximation in (39) was evaluated empirically in
Fig. 11 and Fig. 13. We can observe that the approximation
holds reasonably well. Notice that ripple-like structures in
Fig. 11 (a) are disappeared in Fig. 11 (b) .

The approximation in (37) was also evaluated empirically
in Fig. 14. We compared (36) and (38) by calculating the ratio
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Fig. 9. Middle 3 planes of the pre-tuned spatial strength (6) (xy, xz, and yz
planes through the image center).

in (36),

ratio =

√
�+(〈RωF (G′Gδref) , RωF (G′Gδj)〉)

‖RωF (G′Gδref)‖
. (55)

We simulated a 64-slice CT scanner, which has 40 mm detec-
tor coverage. To simplify the experiment, we down sampled
the system by a factor of 4 from a conventional setup, and
only presented the ratio (55) along the positive x axis at
y = 0(mm) and z = 1.25, 11.25, and 21.25 (mm). Notice
that the slice at z = 21.25 (mm) is slightly outside the
detector coverage. The approximation holds well near center
slices, but becomes less accurate for slices away from the
center. The result suggests that the approximation (37) is
somewhat inaccurate for voxels away from the reference point,
and the hypothetical geometry G need to be designed more
sophisticatedly. However, if we calculate the ratio (55) using
the system matrix A (by simply replacing G with A), we can
observe that the hypothetical geometry G gives more “shift-
invariant” G′G as intended (see Fig. 14) .

II. SELECTION OF THE HYPOTHETICAL GEOMETRY

In [1], new regularizers for uniform resolution or noise were
derived using a hypothetical geometry G, which was assumed
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Fig. 10. Comparison of the pre-tuned spatial strengths for A-REG, R-REG, and N-REG at a center slice (left column) and an end slice (right column).
Display range is [0 250].
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Fig. 11. Comparison of the pre-tuned spatial strengths for R-REG and its approximation given in (38) at a center slice (left column) and an end slice (right
column). Display range is [0 250].
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Fig. 12. Comparison of x profiles through the center of the pre-tuned spatial strengths for A-REG, R-REG, and N-REG. From center slice (left) and end
slice (right).
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Fig. 13. Comparison of x profiles through the center of the pre-tuned spatial strength (38) and its approximation (39). From center slice (left) and end slice
(right).
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Fig. 14. Plot of (55) along the positive x axis at y = 0 (mm) and z = 1.25, 11.25, 21.25 (mm), with the hypothetical geometry G used in [1] (left) and
with the system matrix A replacing G in (55) (right).

to be an ideal and fully sampled geometry. In practice, the
choice of G affects how closely the regularizer can achieve the
uniformity of resolution or noise. For the experiments in [1],
G was chosen to be a hypothetical cone-beam CT geometry
with large enough number of detector rows and 360◦ orbit, and
both the ray dependent factor ci and the voxel dependent factor
sj were assumed to be 1 for every location. Because of the
cone-angle, such hypothetical geometry G does not provide
perfectly shift-invariant G′G, even though it is “more shift-
invariant” compared to A′A. This geometry with extended
views and rows was one of the most intuitive choices for
G, and now we investigate an alternate decomposition in this
supplement.

We let the hypothetical geometry described above as Aext =
{âij}, then it can be further factorized as follows

âij = gij ŝj , (56)

so that we obtain

gij =
âij
ŝj

, (57)

where ŝj is a voxel-dependent factor that provides another
choice for G = {gij}. Intuitively, we want to design {ŝj}
such that G′G has constant diagonal elements. Defining

ŝj =

√√√√
Ng∑

i=1

â2ij (58)

yields [G′G]jj = 1, ∀j. Using above designs, we obtain the
following matrix representation for the system matrix A

A = PGD[ŝj ], (59)

where P is defined in [1], and ci was assumed to be 1 for
every detector element. The Fisher information matrix can be
approximated as (20) with the following new expressions for
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TABLE IV
ACRONYM SUFFIXES FOR REGULARIZERS

Suffix Description

-1 regularizers designed by selecting the hypothetical geometry
with extended views and rows as G and sj = 1, ∀j

-2 regularizers designed by using the system matrix factoriza-
tion in (59)

(22) and (23):

ηj =

√√√√
∑nd

i=1 g
2
ijwi

∑Ng

i=1 g
2
ij

=

√√√√
nd∑

i=1

g2ijwi, (60)

λj = sjηj =

√√√√
nd∑

i=1

â2ijwi =

√√√√
nd∑

i=1

a2ijwi. (61)

Notice that (61) no longer depends on the hypothetical ge-
ometry G explicitly and requires less computation compared
to both the original certainty (6) and the modified pre-tuned
spatial strength (23).

New approximation (59) for the Fisher information matrix
leads to different regularizers from those we used for the
experiments in [1] (see Table I and Table IV for acronyms).
The main purpose of this supplementary material is to compare
these regularizers obtained from different system matrix fac-
torization. Since the derivation for both proposed regularizers
in [1] is general, new regularizers are readily obtained from
(36) and (49).

A. Regularizer for uniform spatial resolution
New regularizer for uniform spatial resolution is obtained by

substituting G from (59) and (61) into (36). Using the shift-
invariant approximation (37), the new regularizer for spatial
resolution uniformity (hereafter R-REG-2) can be written as
(5) with

κ̂j =

√√√√
nd∑

i=1

a2ijwi. (62)

For practical implementation as described in [1], we approxi-
mate (62) as follows

κ̂j ≈ γ

√√√√
nd∑

i=1

aijwi, (63)

where the approximation requires a proper scaling factor γ.
The approximation scaling factor γ can be obtained manually
or by matching both sides of (62) at a reference point, i.e.,

γ =

√√√√
[

nd∑

i=1

a2ijwi

]

j=jref

/

[
nd∑

i=1

aijwi

]

j=jref

, (64)

where jref indicates the lexicographical index of the reference
location.

The new regularizer R-REG-2 (62) does not have a nor-
malization or a denominator, which also leads to decreased
regularization strength for under-sampled region compared to
the original certainty (6). Both designs (38) and (62) are
expected to have similar effects to the reconstructed image,
but possibly with different amount.
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Fig. 15. The GEPP phantom used for quantitative comparison of regularizers.
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Fig. 16. Comparison of the peak value of the tungsten wire in GEPP for the
following regularizers: Uniform, A-REG, R-REG-1, R-REG-2, and N-REG-2.

B. Regularizer for uniform noise property

Substituting (59) into (17) leads to the following new
expressions for (41) and (42)

λ̄j �

√√√√
nd∑

i=1

a2ijŵivi, Λ̄ � D[λ̄j ], (65)

λ̂j �

√√√√
nd∑

i=1

a2ijŵiv2i , Λ̂ � D[λ̂j ]. (66)

Substituting G from (59), (65) and (66) into (51) yields a new
regularizer for noise uniformity (hereafter N-REG-2).
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TABLE V
AVERAGE CRC MISMATCH (52) FOR SELECTED 6 LOCATIONS ACROSS SLICES AND WITHIN EACH SLICE, RESPECTIVELY (UNITS: %).

SEE FIG. 1 IN [1] FOR THE INDEX OF IMPULSE LOCATIONS.

Locations Averages
1 2 3 4 5 6 Overall Center Slice 1st slice of ROI Outside ROI

A-REG (Fig. 24) 32.6 45.3 24.8 47.2 31.9 25.0 34.5 (a) 12.3 (b) 33.7 (c) 46.8
R-REG-1 (Fig. 3) 7.5 14.9 3.9 20.0 5.9 7.2 9.9 (d) 8.7 (e) 11.6 (f) 7.4
R-REG-2 (Fig. 24) 11.0 18.7 3.9 23.3 9.7 9.4 12.7 (d) 12.1 (e) 14.4 (f) 10.4
A-REG (Fig. 26) 31.3 44.1 21.9 47.9 33.4 20.6 33.2 (a) 11.9 (b) 34.5 (c) 44.9

R-REG-1 (Fig. 22) 9.5 14.3 2.9 21.5 9.8 7.1 10.9 (d) 10.5 (e) 14.6 (f) 9.1
R-REG-2 (Fig. 26) 11.5 18.1 2.5 24.8 11.9 7.4 12.7 (d) 12.9 (e) 17.0 (f) 9.2
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Fig. 17. Comparison of the noise standard deviation in a homogeneous
region of the GEPP, which corresponds to the left phantom wall in Table. III,
for the following regularizers: A-REG, R-REG-1, N-REG-1, and N-REG-2.

III. COMPARISON BETWEEN REGULARIZERS FROM
DIFFERENT SYSTEM MATRIX FACTORIZATIONS

A. Physical Phantom Experiment

We used the GE performance phantom (GEPP) to compare
the resolution properties of the reconstructed image from
different regularizations. The phantom was scanned and recon-
structed as described in [1]. The GEPP has a tungsten wire in
water as indicated in Fig. 15, and its peak values in each slice
of the reconstructed image will be used to assess resolution
uniformity.

In Fig. 16, we compare the peak value of the tungsten
wire profile at every ROI slice for the following regularizers:
Uniform, A-REG, R-REG-1,R-REG-2, and N-REG-2. Notice
that on center slices all the regularizers generate similar peak
values for the tungsten wire due to matched regularization
strength at the isocenter. Uniform regularizer and proposed
regularizer N-REG-2 for noise uniformity induce non-uniform
spatial resolution characteristics to the reconstructed image,
which result in widely varying peak values of the tungsten
wire. The standard deviation in the peak value is approxi-
mately 64 HU for these regularizations. On the other hand,
the other 3 regularizers aimed for spatial resolution uniformity
show much better performances as shown in Fig. 16, and have
approximately 40 HU standard deviation in the peak value.
Due to small FOV (23 cm) and its location, the sampling

Fig. 18. Comparison of reconstructed images obtained from A-REG (top),
R-REG-1 (middle) and R-REG-2 (bottom) at 3 selected locations (separated
by blue dash lines) on the last slice of ROI. Display window is [800 1200]
(HU).

condition of the tungsten wire is approximately the same for
every slices, thus both proposed regularizers R-REG-1 and R-
REG-2 perform almost the same as A-REG.

Fig. 17 compares the noise standard deviation in a homo-
geneous region of the GEPP, which corresponds to the left
phantom wall in Table. III, for the following regulairzers:
A-REG, R-REG-1, N-REG-1 and N-REG-2. A-REG and R-
REG-1 show over-regularizing behavior for given location. On
the other hand, both proposed regularizers for uniform noise,
N-REG-1 and N-REG-2, show improved noise uniformity.
Overall performances of N-REG-1 and N-REG-2 are very
similar, but show differences for some slices.

B. XCAT Phantom Simulation

We used the XCAT phantom to illustrate the performance of
the proposed regularizer R-REG-2 (62). The same simulation
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Fig. 19. Comparison of reconstructed images obtained from both uniform
noise regularizers, N-REG-1 (top) and N-REG-2 (bottom), at 3 selected
locations (separated by blue dash lines) on the 1st slice of ROI. Display
window is [800 1200] (HU).

settings as in [1] have been used. The improvements in the
spatial resolution uniformity were demonstrated by comparing
the impulse responses at different voxel locations obtained by
using A-REG (6) to that of the proposed regularizer R-REG-2.

Results for both quadratic and edge-preserving regulariza-
tions are presented from Fig. 23 to Fig. 26. We also present
the result for R-REG-1 with edge-preserving regularization in
Fig. 21 and Fig. 22. Similar to the results with R-REG-1 (38),
the proposed regularizer R-REG-2 (62) effectively generate
spatially uniform resolution in terms of the constant recovery
constant (CRC). Table V compares CRC mismatch (52) of
A-REG, R-REG-1, and R-REG-2. R-REG-2 improves the
average CRC mismatch by approximately 20% throughout the
image volume. Both R-REG-1 and R-REG-2 show comparable
performances of improving the resolution uniformity, but R-
REG-1 is slightly better.

C. Real Clinical Data

Same clinical cardiac CT scan used in [1] was reconstructed
with various regularizers. Fig. 18 compares reconstructed
images obtained from both proposed regularizers for resolution
uniformity, R-REG-1 and R-REG-2. The reconstructed image
using A-REG was presented as a reference. Reconstructed
image from R-REG-2 is slightly more shaper and noisier
compared to that of R-REG-1 on end slices, but they show
very similar image characteristics overall. Fig. 19 compares
reconstructed images from proposed uniform noise regulariz-
ers, N-REG-1 and N-REG-2, and they have very comparable
visual image quality.

IV. COMPROMISE REGULARIZER

As illustrated on previous sections, each proposed regular-
izer, either aiming for uniform resolution or noise charac-
teristics, reasonably achieves its goal. However, due to the
trade-off between these image quality properties, using one

Fig. 20. Comparison of reconstructed images obtained using R-REG-1
(top), N-REG-1 (middle) and compromise regularizer (bottom) at 3 selected
locations (separated by blue dash lines) on the last slice of ROI. Display
window is [800 1200] (HU).

of these regularizations may not provide the “most desirable
image”, especially near the end slices with sampling issues.
Since the readability of the reconstructed image depend on
many factors, including both spatial resolution and noise, it
is hard to design the optimal regularizer using one criterion.
Furthermore, clinicians may have different preferences for
the appearance of the reconstructed image, complicating the
regularization design process.

We investigated a “compromise” regularizer whose pre-
tuned spatial strength function κj is the arithmetic average
of (38) and (51). This simple extension of proposed methods
gives a sub-optimal solution for the trade-off between spatial
resolution and noise property.

Table VI shows that the compromise regularizer provides
the noise uniformity in between those of R-REG-1 and N-
REG-1, as expected. Fig. 20 compares the reconstructed
images from following regularizers: R-REG-1, N-REG-1, and
compromise regularizer. When undersampled region (left col-
umn in Fig. 20) is compared, the reconstructed image from
compromise reconstruction shows somewhat balanced image
quality in spatial resolution and noise properties. However,
such improvements are rather subtle.

V. SUMMARY

We presented and compared images of the pre-tuned spatial
strengths introduced in [1]. The effect of using the hypothetical
geometry and the difference between the proposed designs
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TABLE VI
COMPARISON OF THE NOISE STANDARD DEVIATION FOR DIFFERENT REGULARIZERS METHOD. ALL VALUES ARE IN HOUNSFIELD UNITS (HU).

Uniform A-REG R-REG-1 R-REG-2 N-REG-1 N-REG-2 Compromise
PlexiglasTM Insert (center) 14.0 13.7 13.7 13.7 13.6 13.3 13.2
PlexiglasTM Insert (right) 18.8 16.0 16.2 15.8 16.4 16.4 15.8
PlexiglasTM Insert (left) 15.1 14.4 14.5 14.7 14.9 14.7 14.2

Phantom Wall (left) 15.4 9.3 9.5 10.0 11.8 12.7 9.2
Phantom Wall (right) 16.9 8.8 6.8 7.4 10.1 10.1 8.3
Phantom Wall (top) 17.4 8.7 8.8 7.6 10.7 10.6 8.6

Phantom Wall (bottom) 16.1 7.7 8.8 9.0 10.9 10.9 9.6
Average 16.2 ± 1.6 11.2 ± 3.4 11.2 ± 3.6 11.2 ± 3.5 12.6 ± 2.4 12.7 ± 2.3 11.3 ± 3.1

isocenter 1 2 3 4 5 6 isocenter 1 2 3 4 5 6

(a) A-REG (b) R-REG

Fig. 21. Comparison of xy plane through the center of each local impulse response at selected location (see Fig.1 for the index of locations). Edge-preserving
potential function was used. Top row is from a center slice, middle row is from 1st slice of ROI, and bottom row is from outside ROI. (a) Regularization
with original aggregated certainty (6) (A-REG) (b) Regularization with proposed pre-tuned spatial strength (38) (R-REG-1).
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Fig. 22. Comparison of x profiles through the center of each impulse response in Fig. 21. Left column is from a center slice, middle column is from 1st slice
of ROI, and right column is from outside of ROI. Top and bottom rows represent the regularizers A-REG (6) and the proposed R-REG-1 (38), respectively.
(a) A-REG, center slice (b) A-REG, 1st slice of ROI (c) A-REG, outside ROI (d) R-REG-1, center slice (e) R-REG-1, 1st slice of ROI (f) R-REG-1, outside
ROI.

were visualized. Presented images also empirically verified
approximations (39) in [1].

The choice of the hypothetical geometry G affects the

performance of the regularizers that we proposed in [1].
In addition to an intuitive selection we made in [1], we
presented another factorization for the system model in this
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isocenter 1 2 3 4 5 6 isocenter 1 2 3 4 5 6

(a) A-REG (b) R-REG-2

Fig. 23. Comparison of xy plane through the center of each local impulses responses at selected location (see Fig. 1 in [1] for the index of locations).
Quadratic penalty function was used. Top row is from a center slice (blue line in Fig. 1 in [1]), middle row is from 1st slice of ROI (red line), and bottom
row is from outside ROI (green line). (a) Regularization with original aggregated certainty (6) (A-REG) (b) Regularization with proposed pre-tuned spatial
strength (62) (R-REG-2).
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Fig. 24. Comparison of x profiles through the center of each local impulse response in Fig. 23. Left column is from a center slice, middle column is from
1st slice of ROI, and right column is from outside of ROI. Top and bottom rows represent the regularizers A-REG (6) and the proposed R-REG-2 (62),
respectively. (a) A-REG, center slice (b) A-REG, 1st slice of ROI (c) A-REG, outside ROI (d) R-REG-2, center slice (e) R-REG-2, 1st slice of ROI (f)
R-REG-2, outside ROI.

supplement, which led to new expressions for the proposed
regularizers. These new regularizers, R-REG-2 and N-REG-
2, showed comparable performances in terms of achieving
uniform spatial resolution or noise properties in the recon-
structed image compared to those presented in [1], R-REG-1
and N-REG-1. It is hard to conclude which factorization is a
better choice because R-REG-1 and N-REG-2 obtained better
resolution and noise uniformities compared to R-REG-2 and
N-REG-1, respectively.

We also investigated a compromise regularizer as a starting
point for investigating the trade-off between spatial resolution
and noise. The proposed regularizer obtained somewhat bal-
anced spatial resolution and noise properties. However, such

compromise regularizers require more detailed investigation.
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(a) A-REG (b) R-REG-2

Fig. 25. Comparison of xy plane through the center of each local impulses responses at selected location (see Fig. 1 in [1] for the index of locations).
Edge-preserving penalty function was used. Top row is from a center slice (blue line in Fig. 1 in [1]), middle row is from 1st slice of ROI (red line), and
bottom row is from outside ROI (green line). (a) Regularization with original aggregated certainty (6)] (A-REG) (b) Regularization with proposed pre-tuned
spatial strength (62) (R-REG-2).
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Fig. 26. Comparison of x profiles through the center of each local impulse response in Fig. 25. Left column is from a center slice, middle column is from
1st slice of ROI, and right column is from outside of ROI. Top and bottom rows represent the regularizers A-REG (6) and the proposed R-REG-2 (62),
respectively. (a) A-REG, center slice (b) A-REG, 1st slice of ROI (c) A-REG, outside ROI (d) R-REG-2, center slice (e) R-REG-2, 1st slice of ROI (f)
R-REG-2, outside ROI.


