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Augmented Lagrangian with Variable Splitting
for Faster Non-Cartesian -SPIRiT MR

Image Reconstruction
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Abstract—SPIRiT (iterative self-consistent parallel imaging
reconstruction), and its sparsity-regularized variant -SPIRiT,
are compatible with both Cartesian and non-Cartesian magnetic
resonance imaging sampling trajectories. However, the non-Carte-
sian framework is more expensive computationally, involving a
nonuniform Fourier transformwith a nontrivial Grammatrix. We
propose a novel implementation of the regularized reconstruction
problem using variable splitting, alternating minimization of the
augmented Lagrangian, and careful preconditioning. Our new
method based on the alternating direction method of multipliers
converges much faster than existing methods because of the
preconditioners’ heightened effectiveness. We demonstrate such
rapid convergence substantially improves image quality for a
fixed computation time. Our framework is a step forward towards
rapid non-Cartesian -SPIRiT reconstructions.

Index Terms—Augmented Lagrangian, compressed sensing,
magnetic resonance imaging (MRI), non-Cartesian reconstruc-
tion, parallel imaging reconstruction, preconditioning.

I. INTRODUCTION

M ORE sophisticated magnetic resonance image acqui-
sition techniques have spurred development of novel

image reconstruction algorithms. Applications sensitive to
motion or off-resonance effects, like cardiac and abdominal
imaging, can benefit from non-Cartesian sampling [1]–[4].
However, many such developments are more computationally
intensive than the simple Fourier transform-based methods
used for basic Cartesian acquisitions.
Accelerated parallel imaging reconstruction with spar-

sity-promoting regularization is particularly expensive com-
putationally, a consequence of both the iterative nature of
most sparsity-promoting algorithms and the large amount of
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data acquired by multiple receivers. This limitation is true
of -SPIRiT [5], an iterative algorithm involving applying
sparsifying transforms, convolving k-space with Iterative
Self-consistent Parallel Imaging Reconstruction (SPIRiT)
kernels [6], and enforcing consistency with acquired data. In
addition, model-based reconstructions avoid approximation
errors from gridding data by evaluating the nonuniform Fourier
transform, such as the nonuniform fast Fourier transform
(NUFFT) [7], during each iteration. This transform requires
more computation than its uniform counterpart due to over-
sampling and its nontrivial Gram matrix. These computational
challenges are evident in 2-D reconstructions, like the ones per-
formed in this work, and become even more significant in 3-D
situations. While optimized software and parallel processing
can improve overall speed, such approaches skirt the under-
lying difficulty that such algorithms require many iterations to
resolve the problem’s complicated matrix structure.
We propose a new implementation of non-Cartesian
-SPIRiT that accelerates reconstruction using variable

splitting, alternating minimization, and preconditioning [8],
[9], reducing the number of iterations required to achieve a
desired reconstruction quality. Like existing SPIRiT-based
methods, our implementation of -SPIRiT uses autocalibra-
tion signal (ACS) data in place of explicitly measured coil
sensitivity profiles. We propose a novel implementation of
-SPIRiT that simplifies the linear subproblem structures,

enabling preconditioned conjugate gradients (PCG) [10] to
more efficiently solve the linear subproblems and achieve
faster convergence than existing methods. Unlike conventional
gradient-based methods, such as nonlinear conjugate gradients
(NLCG) [11], our approach also accommodates nonsmooth
regularizers, such as the sparsity-promoting norm or total
variation, without corner-rounding approximations.
Non-Cartesian -SPIRiT recently has been applied to

myocardial perfusion imaging using a spiral trajectory [12]. To
reduce the reconstruction time, previous efforts have focused on
image domain implementations of the SPIRiT kernels [6] and
parallel processing using graphical processing units (GPUs)
[13]. Augmented Lagrangian-based techniques already have
been exploited in non-Cartesian single-coil regularized MRI
reconstruction [14]; our variable splitting is more involved
due to the SPIRiT consistency equations [6]. Variable splitting
also has been used to accelerate other non-Cartesian parallel
imaging reconstructions [15], [16].
In this paper, we begin by explaining our measurement

model for non-Cartesian data. Then, we provide background
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on the SPIRiT framework for reconstructing images from
non-Cartesian multi-channel data and the regularized version
called -SPIRiT. To motivate our approach, we explain
how to implement -SPIRiT using Split–Bregman (SB) [17]
iterations; then we propose our method based on the alter-
nating direction method of multipliers (ADMM) [18], [19]. We
describe how to precondition the ADMM subproblems, and
we discuss how to choose the ADMM tuning parameters to
encourage fast convergence. After choosing tuning parameters
based on simulated data, we demonstrate the generality of those
tuning parameters on real data sets by comparing our algorithm
against competitors based on NLCG and SB iterations. We
conclude with a discussion of the merits of our method and
possible uses and extensions beyond this paper.

II. MEASUREMENT MODEL

The parallel imaging framework called sensitivity encoding
(SENSE) [20] assumes knowledge of the explicit sensitivity
weighting relationship between the scanned object and the
received data. From these weights, SENSE forms an inverse
problem to reconstruct the underlying object image. Another
parallel imaging method called generalized autocalibrating
partially parallel acquisitions (GRAPPA) [21] uses an auto-
calibration signal (ACS) region of k-space in lieu of these
sensitivity profiles, forming linear convolution equations that
directly reconstruct missing k-space from uniformly-spaced
Cartesian undersampled data. A similar approach called SPIRiT
[6] also uses ACS data, establishing linear self-consistency
equations between a k-space point and its immediate neighbors
in all the coil channels. As described in the next section,
SPIRiT uses these consistency equations to reconstruct the
images or k-space recorded by all the coils. The -SPIRiT
variant regularizes the SPIRiT reconstruction problem using
transform-domain joint sparsity. Whereas SENSE produces a
single object image, both GRAPPA and SPIRiT reconstruct
sensitivity-weighted images for each coil. One combines the
reconstructed coil images into a single object image as a final
postprocessing step [22].
Consider a set of complex-valued -dimensional

continuous coil images represented by the mapping
, where is usually two or three.

Non-Cartesian k-space samples represent measurements of
the spatial Fourier transform of at arbitrary sample fre-
quencies , for . The data matrix
contains in each column the observations for a coil channel.
These measurements are typically noisy; in parallel MRI, this
noise usually results from thermal fluctuations independent
of the signal and modeled by zero-mean complex Gaussian

noise , independent across frequencies but
correlated among coils. The measurements at the th k-space
location are

(1)

where is the th row of that matrix, and
is the zero-mean noise vector, with covariance

matrix , for the coil array measurements at the th k-space

frequency. In (1), field inhomogeneity and relaxation effects
are considered part of the image and ignored.
Consider -voxel discretizations of the
-channel coil images represented by . Assuming the

continuous-domain images are appropriately bandlimited (an
assumption widespread across MRI), the samples are related
to via the discrete-space Fourier transform (DSFT). If the
image has finite extent, the measurement model can be written
in matrix form as

(2)

where the elements of the system matrix are

(3)

, is the voxel size of the discretization,
and is the -dimensional index of the th voxel. In many
such implementations of inverse problems involving this mea-
surement model, the matrix-vector products for the DSFT ma-
trix are approximated using a gridding/interpolating fast Fourier
transform (FFT)-based algorithm. We use the NUFFT [7] with
a -oversampled FFT grid.

III. NON-CARTESIAN SPIRIT

As described in [6], non-Cartesian SPIRiT can be imple-
mented in either the k-space or image domain. The unknown
Cartesian k-space maps to the acquired non-Cartesian data
via a gridding-like interpolation kernel, while the unknown
multi-channel coil images map to the data via nonuniformly
sampling the spatial Fourier transforms of the images. While
the frequency-domain implementation avoids iteratively com-
puting Fourier transforms, the image-domain formulation
can become more efficient for larger images, as the SPIRiT
convolutions become multiplications. Hence, we focus on the
image-domain construction.
In the image-domain formulation, the data constraint objec-

tive is framed in terms of the discretized images in (2). The
SPIRiT kernel consistency objective is formed by equating the
underlying block convolutions in k-space with matrix multipli-
cation in the image domain. We write the SPIRiT consistency
equation in the image domain using the stacked vector
of coil images stacks the columns of a ma-
trix into a single vector) and the matrix , which represents
the k-space self-consistency convolutions in the image domain.
This matrix is an block matrix of diagonal submatrices
of size , each of which represents a SPIRiT convolution
from one coil channel to another.
When noisy data are acquired, denoising the data may yield

favorable looking images. We allow the coil images to vary by
a small amount from exact consistency with the data. The un-
constrained optimization problem is developed using a tuning
parameter in [6]

(4)

where is the Frobenius norm.
As demonstrated by the popular -SPIRiT algorithm [13],

regularizing the SPIRiT parallel imaging reconstruction can im-
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prove image quality significantly, such as when the image is
known to have a sparse representation. In this work, we con-
sider multi-channel regularizers of the form

(5)

where are linear transform operators
with circulant Gram matrices, is a convex
potential function, and are weights useful for imple-
menting shift-variant transformations. A global tuning param-
eter controls the contribution of the regularizer to the overall
optimization problem.
This framework accommodates a large class of popular

sparsifying regularizers used for compressed sensing in MRI
[23]. The discretized total variation (TV) penalty belongs to
this class, with implementing finite differences
with neighboring directions, equaling one except on the
edge of the image, where it equals zero, and being the

or mixed norm (the first norm being across , and
the second norm being across coil channels) for anisotropic
or isotropic TV, respectively. Orthonormal and shift-invariant
wavelets and frames also can be used for . A nonorthonormal
shift-variant wavelet can be accommodated using its shift-in-
variant extension for , and downsampling by setting the
weights to zero for the coefficients to be discarded. The
extension to multiple regularizers, such as combining TV and
wavelets, is straightforward. The regularized form of (4) is

(6)

For many common regularizers, various algorithms exist to ap-
proximately solve (6). One such method, popular for its ease of
implementation, is NLCG. This algorithm is applied to SPIRiT
with a “smoothed” or “corner-rounded” regularizer so that the
gradient of exists. We propose approaching this problem
using variable splitting, enabling closed-form solutions of the
nonlinear subproblems for many common nondifferentiable
regularizers.

IV. REGULARIZED NON-CARTESIAN SPIRIT USING
SPLIT–BREGMAN ITERATION

Split–Bregman (SB) iteration [17] minimizes(6) by intro-
ducing the auxiliary matrix . The
constrained problem equivalent to (6) is

(7)

The SB iteration introduces a dual variable , and
an additional tuning parameter , and iterates over solving
the subproblems below for

(8)

(9)

(10)

When using multiple regularizers, different penalty parameters
can be used for each regularizer. This flexibility may speed

convergence if one auxiliary variable converges at a different
rate than another. However, varying the tuning parameters af-
fects only the convergence rate, not the final solution, for strictly
convex problems.
For the mixed norm and the TV penalty, vector soft-

thresholding [24] is a low-complexity closed-form solution for
the subproblem in (9). For more general regularizers, proximal
gradient [25] or nonlinear conjugate gradient algorithms can ap-
proximately solve this subproblem efficiently. Either way, iter-
ations are likely inexpensive because (9) decomposes into
smaller subproblems of size and does not include ma-
trix-vector multiplications with or .
However, the least squares problem in (8) remains compu-

tationally expensive, as it still involves matrix-vector products
with , , and the ’s. Iterative methods like conjugate gra-
dients may take many steps to converge, because and
have very different structures, the combination of which is not
well-suited for preconditioning. To help alleviate this difficulty,
we propose an additional variable split that separates the SPIRiT
objective from the rest of the problem.

V. ADMM FOR NON-CARTESIAN SPIRIT

Now, we propose a new algorithm for (6) based on the al-
ternating direction method of multipliers (ADMM) [18], [19],
[26], [27] that offers simpler inner subproblems and leads to
faster convergence than the Split–Bregman approach described
in the previous section. In addition to defined previously, we
introduce and solve the following constrained op-
timization problem that is equivalent to (6):

(11)

We use ADMM to solve the augmented Lagrangian form of
(11). Relabeling the dual variable and penalty parameter (for
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) and , we add a second dual variable and penalty
parameter (for ) and . The th iteration
consists of the following subproblems:

(12)

(13)

(14)

(15)

(16)

Given an initial set of coil images , such as the density-cor-
rected conjugate phase reconstruction [28], we initialize

, , and set the scaled
dual variables and to zero.
The subproblems in (12) and (13) are least-squares problems

that we solve using preconditioned conjugate gradient methods
described in Section VI. The subproblem for remains the
same as before. Besides decoupling the structures for and ,
we expect to gain efficiency due to parallelism in the subprob-
lems. The diagonal-block structure of the SPIRiT consistency
operation couples variables only across coils, meaning
that we are really solving subproblems of size . When
utilizing a relatively small array coil, or coil compression tech-
niques on larger array coils [29], we may even solve each it-
eration of (13) directly. Similarly, since the measurement ma-
trix and the transforms only couple variables
within the same coil, we are solving subproblems of size
. From a distributed computing point of view, where memory

and bandwidth requirements scale with the size of the optimiza-
tion problem, natural decoupling of variables can be extremely
beneficial.

VI. PRECONDITIONED CONJUGATE GRADIENTS

Without preconditioning, iterative solutions for the
least-squares subproblems in (12) and (13) may take many
iterations to converge, slowing the overall algorithm. Effective
preconditioners take advantage of the structure of the system
matrix of a problem to nearly invert that matrix efficiently,
significantly reducing the number of steps needed to solve
the problem. Let us examine the structures present in our
subproblems.
The solution of (12) requires inverting the matrix

, where is the
conjugate transpose. This matrix shown in Fig. 1 is a weighted
sum of Gram matrices damped by , which ensures the
sum is strictly positive definite. When formulating the original

Fig. 1. The matrix to be inverted in (12) consists of a multi-level block-Toeplitz
Gram matrix , multi-level block-circulant Gram matrices

, and a scaled identity matrix . Here, we portray the
first two levels of the multi-level structures, focusing on the blocks and
for clarity. The other blocks and are similar.

problem, we assume that the Gram matrices for the ’s are cir-
culant, as is the case for total variation shift-invariant wavelets.
As we shall see next, the Gram matrix is nearly circulant.
Since the sum of circulant matrices is circulant, we can find an
optimal circulant preconditioner for the entire matrix.
The Gram matrix of the DSFT matrix has entries

, where and
are the -dimensional coordinates for sample indexes
and , respectively. In one dimension, this Gram matrix has
Toeplitz structure. In higher dimensions, the Gram matrix
inherits multi-level block-Toeplitz structure, where each block
is itself a block-Toeplitz matrix [30]. A vast literature exists
on preconditioning linear systems involving such matrices
[31]–[33]. The majority of such approaches involve con-
structing a multi-level block-circulant matrix (composed of
block-circulant blocks) that approximates or embeds the de-
sired multi-level block-Toeplitz matrix [34], [35]. In this work,
we construct the multi-level block-circulant preconditioner
optimal in the Frobenius-norm sense to the Toeplitz DSFT
Gram matrix, by solving

(17)

As derived in [35], the coefficients , , of the
optimal circulant matrix are related to the coefficients
, , of the Toeplitz matrix by

(18)

The optimal coefficients for the multi-level block-circulant
approximation can be computed recursively, starting from the
lowest-level Toeplitz matrices, and averaging the higher-level
coefficient blocks according to an analogous formula

(19)

This circulant preconditioner is positive definite if the original
Toeplitz matrix is positive definite [36]; adding a scalar ma-
trix [as is done in the problem in (12)] to the Gram ma-
trix satisfies this requirement. The optimal circulant precondi-
tioner for the linear system that solves(12) is

. Our proposed method uses this pre-
conditioner with the conjugate gradient method to solve (12).
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Fig. 2. Matrix to be inverted in (13) consists of a diagonal-block Gram matrix
and a scaled identity matrix . Diagonal-block matrix is

equivalent (via a permutation) to a block-diagonal matrix, as shown, enabling
fast inversion for small .

The matrix for the linear
subproblem in (13) has diagonal-block structure, so a simple
reordering of the matrix yields a block-diagonal structure,
composed of blocks, as shown in Fig. 2. The
inverse of this matrix, , appears in the update of :

. When is sufficiently small,
we find by directly inverting each block in .
Otherwise, preconditioned conjugate gradients can be used for
this subproblem as well. Beyond being Hermitian positive def-
inite, these blocks do not necessarily possess additional special
structure. In particular, we would not expect a circulant precon-
ditioner to be effective here. Instead, we consider the “optimal”
diagonal preconditioner (in the Frobenius sense). Analogous
to the circulant preconditioner definition, the optimal diagonal
preconditioner for a matrix minimizes the norm
over the class of diagonal matrices . This preconditioner
simply equals the diagonal of . The computational cost of
generating this preconditioner from is , comparable
to a matrix-vector product involving .
One may also precondition the main Split–Bregman sub-

problem in (8). Unlike the matrices for the subproblems in the
ADMM-based algorithm, the matrix to be inverted contains
both nearly circulant and block-diagonal Gram matrices, the
sum of which is neither (nearly) circulant nor diagonal. Thus,
any circulant or diagonal preconditioner designed using the
methods described previously will be less effective because it
can model only part of the structure.
To summarize, we employ diagonal preconditioning for the

Split–Bregman subproblem solving for in (8), and for the
ADMM-based subproblem solving for in (13). We employ
circulant preconditioning for the ADMM-based subproblem
solving for in (12). The Split–Bregman and ADMM-based
subproblems solving for in (9) and (15) are shrinkage
steps that do not involve matrix inversion, and hence, no
preconditioning. Also, (10), (14), and (16) do not involve
preconditioning.

VII. ADMM PARAMETER SELECTION

As with any augmented Lagrangian-based method, the
choices of tuning parameters and greatly influences
the convergence behavior of the algorithm. Choosing a pa-
rameter to be too large may cause the objective function to
decrease too slowly, while too small a parameter would slow
the convergence of the corresponding dual variable. Addition-
ally, since our subproblems for updating (and potentially
) are solved iteratively, the convergence properties of these
subproblems depend on the conditioning of their respective
system matrices. The condition number of the system matrix of
the least-squares update for generally increases as or
decrease, while decreasing increases the condition number
of the system matrix of the least-squares update for . Keeping
these condition numbers reasonably small should ensure the
inner subproblems converge quickly, promoting convergence
of the overall algorithm. To choose appropriate values of
and , we consider their effects on the various subproblems
in our ADMM framework. The subproblem for updating
is affected by . When the potential function(s) admit
closed-form solutions in the form of vector shrinkage-thresh-
olding operations, we can choose a minimum value of
such that the fraction of thresholded transform coefficients
in the solution of (15) for is at most some value, ,
thus, achieving some degree of uniformity across similarly
transform-sparse data sets. The condition number of the
system matrix for updating in (13) depends only on . By
setting an upper threshold on this condition number, we can
find a minimum value for . The subproblem for updating
involves both and . Setting a maximum threshold on the
condition number of this problem’s system matrix, , we can
find a boundary function of values of and that ensure
sufficient conditioning of this problem. Given threshold values
, , and , we can compute for a given data set minimal

choices of and that satisfy these constraints.
We approximate the condition number of the -update by

finding the condition number of the circulant preconditioner of
the systemmatrix. Computing the condition number of the -up-
date systemmatrix for a particular choice of is relatively easy
due to the diagonal-block structure of , as long
as is not too large (we can compute in O time).
Alternatively, either condition number can be estimated using it-
erative methods like the Krylov subspace method used in LSQR
[37] for computing a stopping criterion.
To summarize this procedure, we begin with maximum con-

dition numbers and and thresholding fraction that op-
timize the convergence rate of the proposed algorithm according
to a preliminary study like the experiment with simulated data
described in Section IX. Then,
1) We compute maximum and minimum singular values for
the blocks of the Gram matrix
. Keep only the very largest and smallest

singular values for the entire matrix.
2) Using these singular values, find the smallest that
satisfies

(20)
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Larger values of would reduce the condition number of
the -update system matrix further.

3) Construct a matrix of sparse transforms of the initial
value: . Using a scalar solver
or lookup table, determine the penalty parameter that
thresholds no more than fraction of the total number of
sparse transform coefficients. A larger value of gener-
ally will reduce the number of thresholded values further.

4) Compute the largest and smallest singular values of the cir-
culant preconditioner for , and for the circulant Gram
matrix . The singular values of these matrices
are simply the multi-dimensional DFT of the matrices’ first
columns. Let , , , and represent the
largest and smallest singular values for these two Gram
matrices, respectively.

5) Using a generic solver like MATLAB’s fmincon, minimize
subject to the constraints in the earlier steps and

the constraint

(21)

VIII. DATA ACQUISITION

To test the validity and performance of our proposed im-
plementation, we used both simulated and real data shown
in Fig. 3. Our simulated data consisted of a 2-D slice of 3-D
-weighted Brainweb [38] data initially generated with no

noise and isotropic 1 mm resolution. We simulated both an
eight-channel and a 16-channel circular array coil at 0.5 mm
resolution and applied the sensitivities to an interpolated slice to
provide the illusion of continuous-space. We then reduced the
multi-channel images back to 1 mm resolution; these images
were retained as ground truth for our experiments. The k-space
data were sampled along a multi-shot spiral trajectory (120
interleaves, 510 samples/leaf) designed for a 256 256 matrix
with 1 mm isotropic resolution. For the eight-channel data,
40 leaves were retained at random ( -undersampling); 30
leaves of 16-channel data were retained at random ( -under-
sampling). Complex Gaussian noise correlated across channels
according to the electric coupling model for linear arrays
[22] was added to the multi-channel k-space, resulting in a
signal-to-noise ratio (SNR) of 40 dB, where SNR is calculated
using

(22)

and the matrix trace accounts for the correlations across
coil channels. A Cartesian 30 30 ACS region (36 36 for
the 16-channel coil) was generated (with the same ) from the
center of k-space in order to calibrate the SPIRiT kernels.
We acquired a single 2-D slice of a 3-D -weighted

custom spoiled gradient echo stack-of-spirals acquisition
(120 interleaves, 832 samples/leaf) designed for a 256 256
image matrix with a 30 30 cm FOV using code [39] from
http://mrsrl.stanford.edu/~brian/vdspiral/. The data was ac-
quired on a GE 3 T Discovery scanner using a vendor-supplied

Fig. 3. Fully-sampled multi-channel (a) -weighted simulated (Brainweb)
data, (b) -weighted real data, and (c) -weighted real data magnitude im-
ages formed using sum-of-squares. The inset rectangular regions are enlarged
to show fine details.

head coil with eight receive channels. Because of the large
FOV, we cropped the FOV in our reconstructions to yield
a 208 176 matrix with the same resolution as before. The
reference image was generated by averaging five time frames
from the fully-sampled data set with 50 unregularized itera-
tions of NUFFT-based reconstruction [40]. The data was then
undersampled by randomly keeping 40 interleaves ( -under-
sampling).
On a GE 3T Signa scanner, using a similar 8-channel

vendor-supplied head coil we acquired a single 2-D slice of a
3-D -weighted custom steady-state free precession (SSFP)
stack-of-radials acquisition (420 spokes, 257 samples/spoke)
designed for a 256 256 image matrix with a 26 cm square
FOV. We used a pilot scan of a gel phantom to correct ana-
lytical k-space locations for linear eddy current effects [41].
We also cropped the FOV of this data set around the head to
form a 192 224 isotropic image. We reconstructed the ground
truth from five averaged fully-sampled time frames using 50
unregularized iterations of NUFFT-based reconstruction [40].
The radial data was undersampled by keeping only one fourth
of the spokes (randomly selected).
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In all of this paper’s experiments, we used MATLAB to
reconstruct all undersampled data sets with non-Cartesian
-SPIRiT with both orthonormal wavelets (4-level “db4”)

and isotropic TV regularization. We implemented these reg-
ularizations by introducing the splits
and for the orthonormal wavelet and
isotropic TV, respectively. The same Split–Bregman and
ADMM penalty parameters were used for both reg-
ularizers. These penalty parameters, along with the other
ADMM penalty parameter , were tuned using the con-
dition-number/thresholding rules described in the previous
section. The regularization parameter was used for
both regularizers in all three data sets, and was used for
all reconstructions, as these values appeared to produce con-
sistently reasonable image quality in preliminary studies. The
MATLAB-based SPIRiT implementation used is publicly avail-
able at http://www.eecs.berkeley.edu/~mlustig/Software.html,
and the NLCG implementation of -SPIRiT used for compar-
ison is a combination of the conjugate gradient implementation
of non-Cartesian SPIRiT included with that software and the
single-channel NLCG implementation of compressed sensing
for MRI [23] available from the same website. Visual com-
parisons are used to assess image quality. Magnitude images
are created using a sum-of-squares combination [22], and
difference images are formed from the multi-channel image
data and then combined using sum-of-squares. For quantitative
experiments, we used the original objective found in (6)
and subtracted the baseline objective , where

is the baseline reconstruction resulting from precondi-
tioned Split–Bregman run for 20 000 iterations. We ran so
many iterations to establish a baseline because our experiments
on simulated data suggest this conventional method converges
relatively slowly. We also compared convergence in for our
ADMM method with different ’s using the normalized root
mean square difference (NRMSD)

(23)

Our optimization problem may not be strictly convex, so the
optimal may not be unique. When comparing across
methods, we use the Split–Bregman baseline for fairness.
Conjugate phase reconstructions (with density weighting) are
used to initialize all the methods.

IX. SELECTING PARAMETERS FOR ADMM

Our initial experiment concerns the importance of choosing
the ’s to achieve fast convergence of ADMM, and the gen-
erality of the criteria ( , , and ) used to identify for
a given data set. We began by manually tuning and and
running the proposed method for 500 iterations on the simulated
-weighted eight-channel data to establish a quality baseline

for the reconstructed multi-channel images that achieve
the minimum of the non-Cartesian -SPIRiT objective
function in (6). Then, we ran 125 iterations of ADMM (using
preconditioned conjugate gradients for updating both and
) on the same undersampled data repeatedly for a range of

and , logarithmically spaced.

Fig. 4. Contour plots show both (a) the NRMSD and (b) the objective function
value (plotted on a -scale relative to baseline ) after 125 ADMM it-
erations are minimized around , .

We chose and that minimize the NRMSD of the recon-
structed images (relative to the baseline ) and objective
function values after 125 iterations. As shown in Fig. 4, the op-
timal and roughly agree for these twometrics (image dis-
tance and objective value), so we found roughly corresponding
, , and for those values and

that yield the fastest convergence. For these values of and
, , , and . A relatively

large region of and provide fast convergence in this ex-
ample, so we use rough values for these parameters ( ,

, and ) for all data sets in the experiments
that follow.

X. CONVERGENCE RATE COMPARISONS

Using the data and reconstruction methods described
in Section VIII, we compare the convergence rate of
our ADMM-based implementation of -SPIRiT against
both NLCG (with adaptive backtracking line search) and
Split–Bregman iteration as competing methods. For complete-
ness, we study three versions of our method: 1) CG -updates
(four inner iterations) without preconditioning, and exact
-updates, 2) with preconditioned-CG -updates (four inner
iterations), and exact -updates, and 3) with preconditioned-CG
updates (four inner iterations) for both and . We compare
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Fig. 5. The objective values relative to the baseline image objec-
tive value are plotted versus time for the first 60 s of each of the compared
algorithms for the real -weighted spiral data.

our method against NLCG (without preconditioning) and
Split–Bregman iteration, the latter with and without diagonal
preconditioning. We examine the reconstruction quality and
optimality of the objective function values (relative to the
Split–Bregman baseline) after a fixed period of time (25 s for
the real data shown in the paper, and 50 and 100 s for the
simulated 8- and 16-channel data in the supplementary mate-
rial1). The number of inner iterations and parameter choices
for all these methods were set equal when possible to make the
comparisons equitable.
Figs. 5 and 6 compare the first 60 s of objective function

values for the proposed ADMM method against NLCG and
Split–Bregman (SB) iteration for real -weighted spiral and
-weighted radial data, respectively. The objective value

converges much more rapidly for both Split–Bregman
and ADMM when using preconditioning than for their unpre-
conditioned counterparts. In the first 60 s shown in the figures,
preconditioned ADMM with either iterative or exact -updates
converges much faster than both Split–Bregman and NLCG,
yielding lower objective values in a fixed amount of time.
Preconditioned ADMM with exact -updates converges faster
than ADMM with iterative -updates with diagonal precon-
ditioning for both data sets, as expected, since the -update
is no longer iterative. Convergence plots for the simulated
-weighted spiral data with both eight and 16 receive coil

channels are provided in supplementary material. Longer-term
convergence plots in terms of NRMSD and objective function
values also may be found in the supplementary material for all
data sets. The NRMSD curves generally follow the same trend
we observe for the objective function values. These longer-term
plots reveal that after 300–400 s of computation, the NLCG

1The supplementary material is available at http://ieeexplore.ieee.org.

Fig. 6. The objective values relative to the baseline image objec-
tive value are plotted versus time for the first 60 s of each of the compared
algorithms for the real -weighted radial data.

method begins to converge extremely rapidly for a limited time,
after which the objective and NRMSD values remain constant.
For both real data sets, NLCG even outperforms the proposed
methods for a brief time, although one would rarely run so
many iterations in practice.
While all the methods use common code for transforms,

multiplying SPIRiT kernels, and performing the NUFFT, the
number of such operations performed and other overhead
affects the per-iteration computation time: (mean and standard
deviation reported for 8-channel simulated data)
for NLCG, for Split–Bregman without precon-
ditioning, for preconditioned Split–Bregman,

for ADMM without preconditioning (but exact
-updates), for preconditioned ADMM with in-
exact -updates, and for preconditioned ADMM
with exact -updates. Preconditioning requires only negligible
additional computation per iteration.
Fig. 7 portrays reconstructed images and difference im-

ages relative to the fully-sampled ground truth for the real
-weighted spiral data. After 25 s of reconstruction time,

the competing methods’ reconstructed images exhibit swirling
artifacts consistent with an incomplete reconstruction, while
our proposed ADMM method mitigates these artifacts with
either preconditioned or exact -updates. Similar results are
observed for the real -weighted radial data set after 25 s of
reconstruction time in Fig. 8. Additional reconstructions for
the simulated -weighted spiral data sets with eight and 16
receive channels can be found in supplementary material. The
difference images in both figures are relative to the ground
truths in Fig. 3. To save space, we did not show Split–Bregman
or our proposed ADMM method without preconditioning due
to the poor image quality predicted by the objective values in
Figs. 5 and 6.
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Fig. 7. Sum-of-squared combined reconstructed and difference images for
the -weighted real spiral data set after 25 s of reconstruction time using
(a) NLCG, (b) Split–Bregman with diagonal preconditioning, (c) ADMM with
preconditioning both and -updates, and (d) ADMM with preconditioned
-updates and exact -updates demonstrate the advantage of rapid conver-

gence on image quality after a fixed amount of time. Zoomed images of the
inset region show differences in fine details. The difference images in the right
column, relative to the ground truth, are all scaled by .

XI. DISCUSSION AND CONCLUSION

NLCG exhibits comparable or faster convergence in both
NRMSD and objective function value than unpreconditioned
SB and ADMM. Generally speaking, NLCG gains from con-
sidering the (approximate) gradient of the entire objective
function, while unpreconditioned SB and unpreconditioned

Fig. 8. Sum-of-squared combined reconstructed and difference images for
the -weighted real radial data set after 25 s of reconstruction time using
(a) NLCG, (b) Split–Bregman with diagonal preconditioning, (c) ADMM with
preconditioning both and -updates, and (d) ADMM with preconditioned
-updates and exact -updates demonstrate the advantage of rapid conver-

gence on image quality after a fixed amount of time. Zoomed images of the
inset region show differences in fine details. The difference images in the right
column, relative to the ground truth, are all scaled by .

ADMM alternate between two or more subproblems. How-
ever, in the case of preconditioned ADMM, the advantage
of effective preconditioning outweighs the disadvantage of
alternating minimization.
Effective preconditioning yields demonstrable advantages

for many optimization problems in terms of convergence
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rate, especially when appropriate preconditioners are easy to
compute and invert. In designing our proposed ADMM-based
method, we introduce auxiliary variables to decouple matrices
with dissimilar structures into separate subproblems. We em-
ploy circulant and diagonal preconditioners tailored to the
structures of the matrices found in each subproblem. Applying
such preconditioners to the entire problem, as is done for the
Split–Bregman method, is less effective since the combination
of matrices in the overall problem is neither nearly circulant
nor diagonal. As a result, for both simulated and real data, our
proposed ADMM-based method converges much faster than
competing methods when preconditioners are used. All these
methods ideally would converge to the same objective value,
except for corner-rounding errors in the NLCG implementation
and finite-precision effects. However, after a fixed amount of
reconstruction time, both sets of reconstructions showmarkedly
fewer artifacts than either NLCG or Split–Bregman iteration.
The artifacts in these reconstructions demonstrate the impor-
tance of ensuring fast convergence in practice, when a limited
number of iterations is used. Another approach, originally
raised by a reviewer, would involve regridding the data onto an
oversampled Cartesian grid, and running iterations of Cartesian
-SPIRiT. However, the oversampling level would have to

be sufficient to approximate the reconstruction quality of the
non-Cartesian reconstruction, likely resulting in DFT’s large
enough to outweigh any computational gains from employing
Cartesian reconstruction. Alternatively, this approach may
yield an improved initial image over a density-weighted conju-
gate phase reconstruction, reducing the work of the proposed
algorithm and decreasing overall computation time.
A practical limitation of ADMM-based methods in general

is the necessity of selecting tuning parameter values that lead
to fast convergence. We have provided heuristics for choosing
and based on the structure of the subproblems in our

method, and our experiments confirm that these heuristics
ensure reasonable convergence rates across multiple data sets
without the need for additional tuning.
To improve upon our method and enable even faster recon-

structions, we expect that our method would combine readily
with the parallel computing framework described for Cartesian
-SPIRiT [13]. The time-consuming computations like per-

forming the NUFFT and regularizing transforms generally re-
duce to operations that can be parallelized effectively.
Additionally, we expect that some modifications to our pro-

posed method may yield further acceleration. Since a significant
gap exists in our reconstructions between ADMM with exact
-updates and ADMM with iterative -updates, even after di-
agonal preconditioning, our method may benefit from more so-
phisticated preconditioners for the -update subproblem. One
candidate is the “super-optimal” [36] diagonal preconditioner.
Tridiagonal preconditioners also may yield improved perfor-
mance. However, computing these preconditioners from re-
quire operations, comparable to simply inverting the
matrix. Another approach worth further investigation concerns
extending our method to regularizing transforms without circu-
lant Gram matrices. We could accommodate such transforms

in our ADMM framework via introducing an additional split,
, yielding another constrained problem equivalent to (6)

(24)

Hence, we effectively separate the subproblem containing the
measurement matrix from the subproblem containing the reg-
ularizer transforms. Potentially, multiple splits would help when
multiple regularizer transforms have different types of structure.
The current implementation ignores main field inhomo-

geneity effects. Applying a spatial weighting matrix to our
measurement model to account for these distortions would
complicate the implementation of the -update step, since the
Gram matrix would no longer be nearly circulant [30]. A pos-
sible extension to handle field inhomogeneity would involve
an additional variable split to separate the spatial weighting
matrix from the NUFFT operator. We plan to investigate this
approach in future work.
Finally, we mention that our approach enables users to pre-

serve the data in the reconstruction by introducing an additional
scaled dual variable and tuning parameter to penalize
the measurement residual and enforce equality. However, such
preservation typically is not done in non-Cartesian imaging,
where the acquired data is not directly included in the recon-
struction (unlike Cartesian imaging). Enforcing the data fit with
equality would likely have undesirable effects for trajectories
like spiral or radial sampling with a high sampling density near
DC.
To summarize, we have proposed a novel implementation

of non-Cartesian -SPIRiT using variable splitting, ADMM,
and preconditioned iterative methods. We provided experi-
mental evidence that our implementation converges faster than
both NLCG and Split–Bregman iteration, and our heuristic
for choosing ADMM parameters generalizes across real and
simulated data sets. Lastly, we discussed the merits of possible
extensions to our method.
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Here, we provide additional results supporting the use

of our implementation of non-Cartesian L1-SPIRiT, using a

combination of variable splitting, an augmented Lagrangian

formulation, and preconditioned conjugate gradients.

I. DATA ACQUISITION

In the paper [1], we described both simulated and real

data sets. Figure 1, reprinted from [1], portrays ground truth

images for all data sets. To save space, we focused on

convergence plots and reconstructed images resulting from

our real data experiments only. Additional convergence plots

and reconstructions featuring our simulated data sets with

eight and 16 channels of T1-weighted spiral data are included

in this supplement. The eight-channel simulated data was

undersampled by a factor of three, while the 16-channel

simulated k-space was undersampled by a factor of four to

leverage the increased number of coils.

In the experiments that follow, our reconstructions use the

same methods and parameter choices described in the original

paper. In particular, we used the same sparsifying transforms,

regularization parameters, penalty parameter selections, and

conjugate phase image initializations. To evaluate the con-

vergence rates of the different algorithms, our baseline was

the same preconditioned Split-Bregman method run for 20,000

iterations.

II. CONVERGENCE RATE COMPARISONS

In the original paper, relative objective function values

f(X)−f opt are plotted for both the real T1-weighted spiral 2D

data and real T2-weighted radial 2D data. Here, we provide

the same plots over a longer time scale, so that long-term

convergence behavior of the different algorithms is evident.

Since the objective function may vary relatively slowly in a

neighborhood around its minimum, the reconstructed image

X may actually be farther from its optimum Xopt than a

small relative objective function value would lead one to

believe. Therefore, in this supplement, we also include plots

of the normalized root mean squared difference (NRMSD),

as introduced in the original text. To minimize the bias any
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(a) Simulated data.

(b) Real data (T1-weighted).

(c) Real data (T2-weighted).

Fig. 1. Fully-sampled multi-channel magnitude images formed using sum-of-
squares of (a) T1-weighted simulated (Brainweb) data, (b) T1-weighted real
data, and (c) T2-weighted real data. The inset rectangular regions are enlarged
to show fine details. This figure is reprinted from [1].

potential non-uniqueness of the optimal reconstruction may

have on our conclusions, we used the Split-Bregman baseline

image.

The convergence plots for the real T1-weighted spiral

2D data are shown in Fig. 2. Our preconditioned ADMM-

based methods both converge more rapidly than precondi-

tioned Split-Bregman iteration and both approaches without

preconditioning, in terms of both objective function value and
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Fig. 2. The (a) NRMSDs (dB) and (b) objective values f(X) − fopt relative to the baseline image objective value fopt are plotted versus time for each of
the compared algorithms for the real T1-weighted spiral data.

NRMSD. This fast convergence occurs even though we use the

condition numbers calibrated with the simulated data to tune

our method’s penalty parameters. Our proposed method also

beats the NLCG method until the NLCG method experiences

rapid convergence around 400 seconds into the experiment.

The NLCG method flattens out, although the difference in final

objective value or NRMSD appears relatively insignificant for

this data set.

The convergence rate improvements portrayed in Fig. 3 for

the real T2-weighted radially sampled 2D data echo what

were observed for the real T1-weighted spiral data. Again, our

preconditioned ADMM-based methods converge faster than

preconditioned Split-Bregman. The improvement over NLCG

is significant in the initial minutes of run time, but the NLCG

method ungoes a phase of rapid convergence around 300

seconds, before flattening out.

The convergence plots for the 8-channel simulated spiral

2D data shown in Fig. 4 and the 16-channel simulated

spiral 2D data in Fig 5 both depict far more substantial

advantages in both NRMSD and objective function value.

The preconditioned forms of the proposed ADMM method

converge much more rapidly than either competing method

for the simulated data. The non-preconditioned variants have

the slowest convergence rates of all. This performance holds

true when measuring convergence of either the image or the

objective function value. We notice that the difference in

convergence rates for using exact z-updates versus precon-

ditioned z-updates in our proposed algorithm appears to grow

noticeably with the larger number of channels.

Reconstructed images from the 8-channel simulated spiral

2D data captured after 50 seconds are displayed in Fig. 6 for

NLCG and the preconditioned variants of the Split-Bregman

and proposed ADMM-based methods. Figure 7 shows similar

reconstructions from the 16-channel simulated spiral 2D data

after 100 seconds of reconstruction time. Prominent spiral arti-

facts are visible in both the magnitude and difference images

for the NLCG and Split-Bregman methods, in both sets of

reconstructions. The proposed ADMM-based reconstructions

contain no such visible artifacts. These images corroborate

the substantial difference in reconstruction quality after a

limited reconstruction time observed for the two real data sets

in the original manuscript. Furthermore, we demonstrate the

improvement carries over to larger receive array coils, even

using the same condition numbers and shrinkage threshold

fraction to tune our algorithm.

III. DISCUSSION AND CONCLUSIONS

The preconditioned variants of the proposed ADMM-based

method clearly outperform conventional approaches for non-

Cartesian L1-SPIRiT reconstruction, at least for a limited

reconstruction time. The uniform quality of the reconstructions

of all the data sets using the same condition numbers and

sparse threshold fraction demonstrates the generality of both

our proposed method and our approach for tuning the penalty

parameters, which are known to impact the convergence rate

of such algorithms. The importance of preconditioning is also

evident here, as the un-preconditioned ADMM-based method

converges relatively slowly, as does the un-preconditioned

Split-Bregman iteration.
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the compared algorithms for the simulated 8-channel spiral data.
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Fig. 6. Sum-of-squared combined reconstructed and difference images for
the simulated 8-channel data set after 50 seconds of reconstruction time using
(a) NLCG, (b) Split-Bregman with diagonal preconditioning, (c) ADMM with
preconditioning both X and z-updates, and (d) ADMM with preconditioned
X-updates and exact z-updates demonstrate the advantage of rapid conver-
gence on image quality after a fixed amount of time. Zoomed images of the
inset region show differences in fine details. The difference images in the
right column, relative to the ground truth, are all scaled by 10×.
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Fig. 7. Sum-of-squared combined reconstructed and difference images for the
simulated 16-channel data set after 100 seconds of reconstruction time using
(a) NLCG, (b) Split-Bregman with diagonal preconditioning, (c) ADMM with
preconditioning both X and z-updates, and (d) ADMM with preconditioned
X-updates and exact z-updates demonstrate the advantage of rapid conver-
gence on image quality after a fixed amount of time. Zoomed images of the
inset region show differences in fine details. The difference images in the
right column, relative to the ground truth, are all scaled by 5×.


