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Abstract—The ordered subset expectation maximization
(OSEM) algorithm approximates the gradient of a likelihood
function using a subset of projections instead of using all projec-
tions so that fast image reconstruction is possible for emission and
transmission tomography such as SPECT, PET, and CT. However,
OSEM does not significantly accelerate reconstruction with com-
putationally expensive regularizers such as patch-based nonlocal
(NL) regularizers, because the regularizer gradient is evaluated
for every subset. We propose to use variable splitting to separate
the likelihood term and the regularizer term for penalized emis-
sion tomographic image reconstruction problem and to optimize it
using the alternating direction method of multiplier (ADMM). We
also propose a fast algorithm to optimize the ADMM parameter
based on convergence rate analysis. This new scheme enables more
sub-iterations related to the likelihood term. We evaluated our
ADMM for 3-D SPECT image reconstruction with a patch-based
NL regularizer that uses the Fair potential function. Our pro-
posed ADMM improved the speed of convergence substantially
compared to other existing methods such as gradient descent, EM,
and OSEM using De Pierro’s approach, and the limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm.

Index Terms—Alternating direction method of multiplier, emis-
sion tomography, nonlocal (NL) regularizer, ordered-subset expec-
tation maximization (OSEM).

I. INTRODUCTION

I NCORPORATING noise models in tomographic image re-
construction can improve image quality. However, unlike

analytical image reconstruction methods such as filtered back-
projection (FBP), statistical image reconstruction methods such
as the expectation-maximization (EM) algorithm [1], often re-
quire gradient-based iterative algorithms. Since the gradient of
a likelihood function should be evaluated at each iteration, these
algorithms (including EM) are undesirably slow.
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Statistical image reconstruction for emission tomography
started to be used widely in clinics and in commercial scanners
after the fast algorithm called ordered-subset expectation-max-
imization (OSEM) was developed [2]. The main idea was
to speed up gradient computation by approximating it using
a subset of projections instead of using all projections (or-
dered-subset or OS approximation). This approximation has
been used for unregularized emission tomographic image
reconstruction [2] and regularized emission and transmission
tomographic image reconstruction with simple quadratic or
edge-preserving regularizers [3]. Since the computation cost
for these regularizers is fairly low compared to that for the
likelihood term, OS algorithms that approximate the gradient
of the likelihood term often speed up penalized likelihood (PL)
image reconstruction, too.
Recently, nonlocal (NL) regularizers have been proposed that

improve image quality substantially compared to conventional
regularizers such as quadratic or edge-preserving functions in
image deconvolution [4], emission image reconstruction with
convex functions [5], [6], and magnetic resonance imaging
(MRI) image reconstruction with nonconvex functions [7].
NL regularizers have been extended to use high-resolution
CT or MRI side information for emission and super-resolu-
tion image reconstruction for further improvement of image
quality [8]–[11]. For emission tomography problems such as
[6], [9]–[11], various optimization algorithms were used for
image reconstruction such as gradient descent (GD) [10], EM
(or OSEM) algorithm based on optimization transfer using
De Pierro’s lemma [6], the EM algorithm using one-step late
approach [11], and the quasi-Newton algorithm called the lim-
ited-memory Broyden–Fletcher–Goldfarb–Shanno with a Box
constraint (L-BFGS-B) [9]. They showed promising improve-
ment of image quality, but their algorithms were undesirably
slow since the computation cost of the NL regularizers can
be comparable to or even higher than that of the likelihood.
Therefore, the OS approximation does not significantly accel-
erate the convergence rate of existing PL image reconstruction
algorithms with these NL regularizers.
In this paper, we propose to use variable splitting to sepa-

rate the likelihood term and the regularizer term for PL image
reconstruction problem and to optimize it using the alternating
direction method of multipliers (ADMM) [12]. We also propose
a fast algorithm to optimize the ADMM parameter based on
convergence rate analysis that was extended from the work of
Ghadimi et al. with quadratic data fitting and regularizer terms
[13]. There are existing methods that use variable splitting for
the data fidelity term and the regularizer term [4], [14]–[16].
These previous methods address nonsmooth regularizers such
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as total variation (TV). A sub-problem with nonsmooth regu-
larizers can be solved quickly by using efficient proximal op-
erators such as shrinkage. Our proposed variable splitting has
different motivation. We divide the original optimization into
a few sub-problems and we solve the sub-problem related to
the likelihood term using OS approximation and we update the
sub-problem related to the NL regularizer less often.
We evaluated our new ADMM for 3-D SPECT image recon-

struction with a patch-based convex NL regularizer that uses
the Fair potential [6]. Our simulation using the XCAT phantom
[17] shows that our proposed ADMM for image reconstruc-
tion with NL regularizers accelerated convergence substantially
compared to existing methods such as GD, EM, and OSEM
using De Pierro’s approach [3], and the L-BFGS-B algorithm
[18]. This paper is organized as follows. Section II reviews sta-
tistical image reconstruction in emission tomography, OS ap-
proximation, and various NL regularizers. Section III proposes
an efficient method for NL regularized image reconstruction by
using variable splitting and ADMM. Section IV proposes an an-
alytical method to select automatically a suitable ADMM pa-
rameter for fast convergence rate. Lastly, Section V presents 3-D
SPECT simulation results with the XCAT phantom [17] for an
application in I-131 radioimmunotherapy (RIT) [19].

II. IMAGE RECONSTRUCTION WITH NL REGULARIZERS

A. Statistical Image Reconstruction for Tomography

The usual form of statistical image reconstruction is to per-
form the following optimization with respect to an image :

(1)

where is a measured sinogram data, denotes a negative log-
likelihood function, is a regularization parameter, and is a
regularizer.
For emission tomography, the negative Poisson log-likeli-

hood is

(2)

where is the th element of the measurement , is the set
of indexes of all measurements, and
where is the element of the system matrix at the th row
and the th column, is the th element of the image vector
, and is a random and scatter component for the th mea-
surement. We focus on SPECT imaging where we incorporate
an attenuation map and a depth-dependent point spread function
model including penetration tails [20] in the system matrix .
We assume known ; in practice, this scatter component can be
estimated by using a triple energy window (TEW) method or by
Monte Carlo methods [21].

B. Ordered-Subset Approximation

Iterative image reconstruction algorithms for (1) usually re-
quire calculating the gradient of and at every itera-
tion. The gradient is evaluated at where is an estimate
of at the th iteration. These algorithms include GD, EM [1],

and L-BFGS-B [18]. Calculating the gradient of typical
such as quadratic or edge-preserving regularizers is very fast.
Evaluating the gradient of is much slower since this re-
quires one forward projection and one back projection of for
each iteration.
OS methods [2] approximate the gradient of at

with the gradient of at where

(3)

are mutually exclusive, , and .
Evaluating the OS approximated gradient in (3) is about
times faster than calculating the original gradient in (2). In this
way, OSEM achieves faster image reconstruction. Note that OS
methods with a fixed do not guarantee convergence, but
yield approximate PL images.

C. Nonlocal Regularizers

Recently, many researchers have formed high-quality images
inmany image reconstruction problems by replacing in (1)
with a NL regularizer [4]–[7]. A typical NL regularizer looks
like

(4)

where is a function of a scalar variable , is the
norm, is the search neighborhood around the th voxel

(usually the set of all voxels within a fixed distance from
the th voxel), and is an operator on the image such that

is a vector of image intensities of all voxels within a fixed
distance from the th voxel (cube-shaped patch).
A typical choice for the function is [4], [5]

(5)

where is the number of voxels in the patch (assuming
that the patch size is the same for all ), a weighting function is

(6)

and is a design parameter. For the image , Lou et al. used
an initial image from any analytical image reconstruction (e.g.,
FBP) [5] and Zhang et al. used an estimated image from the pre-
vious iteration so that changes over iterations [4].
Yang et al. used a few nonconvex potentials including the

Welsh potential [22]

(7)

and showed that using (7) is equivalent to using (5) with an
estimated value for at the th iteration [7]. Wang et
al. used the Fair potential [23], [24]

(8)
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Both (7) and (8) do not depend on an initial image and (8) is
convex while (7) is nonconvex. It has been reported that non-
convex functions yielded better image quality than a convex
function [7].
One can also design NL regularizers that incorporate high-

resolution side information such as CT or MR images [9]–[11]
to further improve image quality. One way to incorporate high-
resolution side information into the NL regularizer is to use the
following type of NL regularizer [10]:

(9)

where

(10)

is a high-resolution image such as MR or CT, is an
operator on the image such that is a vector of image
intensities in a patch around the th voxel, is the number of
voxels in the patch , and is another design parameter.
Another NL regularizer incorporating high resolution side
information is [9]

(11)

All of these NL regularizers are computationally expensive
due to the calculation of (6) at each iteration. The gradients
of both and should be evaluated at each iteration
for optimization. Using OS approximations of the gradient of

does not improve the speed of convergence much since
one can not use OS approximations for so the gradient of

must be evaluated at each sub-iteration.

III. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

A. ADMM for NL Regularization

To benefit from an OS approximation for , while
avoiding heavy computation of the gradient of at each
sub-iteration, we split the variable for the likelihood term
and the regularizer term by replacing (1) with the following
equivalent constrained optimization problem:

(12)

The augmented Lagrangian for (12) is

(13)

where is a scalar value (design parameter) and is a La-
grangian multiplier vector. We need to find a saddle point of
the augmented Lagrangian (13).

We solve (13) using the ADMM algorithm [25], [26] as fol-
lows:

For convex , this ADMM algorithm is guaranteed to converge
for any [26]. We can solve the sub-problems of (14) and
(15) using any existing method. One need not solve the sub-
problems exactly to guarantee the convergence of the ADMM
algorithm [26, Th. 8].

B. Optimization for the Sub-Problem (14)

We used the GD algorithm to solve (14) as follows:

(17)

where is a step size and

(18)

We plug (17) into (14) to determine the step size as follows:

(19)

where

(20)

The gradient of is

(21)

where

(22)

and is the derivative of . Since solving (19) is an
intermediate step of solving (14), we do not need to find an exact
value to minimize (19). We chose to use one step of Newton’s

method for (19) as follows [27]:

(23)

where and are the first and second derivatives
of with respect to

(24)
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where and

(25)

We approximate by excluding the second derivative of
as suggested in [28, p. 683].

C. Optimization for the Sub-Problem (15)

One can solve (15) using any statistical image reconstruction
algorithms with a slight modification for a shifted quadratic reg-
ularizer. OS approximation can be usually used to speed up con-
vergence rate. Using this splitting, one may focus more compu-
tational resources on solving the sub-problem (15) instead of
solving the sub-problem (14) so that one may achieve faster
overall convergence rate.
We modified De Pierro’s EM algorithm [3] for (15) by con-

sidering a simple shifted quadratic regularizer. The surrogate
function for the likelihood term in (15) is

(26)

where is a surrogate function that can be found
in [3] and [6]. We use a surrogate function that
is equivalent to by omitting the terms that are
independent of as follows:

(27)

where

and

(28)

Note that and are minimized at
the same .
The regularizer in (15) is separable in the image domain

(29)
Therefore, one must minimize the following surrogate function
to solve the sub-problem in (15):

(30)

for all . Differentiating (30) with respect to and setting it
to be zero leads to the following second-order polynomial with
respect to

(31)

The nonnegative root of (31) is the minimizer of (30). This root
always exists because and are nonnegative
[29].
An OS approximation for this modified De Pierro’s algorithm

can be easily done by substituting the most time-consuming part
(28) in (15) at each iteration with the following approximate
term

(32)

This new term (32) requires about times less computation
than the term (28) does. Since calculating (28) dominates the
overall calculation of (31) for each iteration, OS approximation
for (15) substantially reduces the computation time per update.
In this Section, we proposed to use variable splitting and

ADMM for efficient computation of NL regularized image re-
construction in (14), (15), and (16). We also described detailed
algorithms for each sub-problem: gradient descent with one step
of Newton’s method for (14) and modified De Pierro’s OSEM
algorithm for (15). Even though our proposed ADMM algo-
rithm for convex R guarantees to converge for any , the pa-
rameter in (13) affects convergence rate. In the next Section,
we propose a method to optimize automatically.

IV. PARAMETER SELECTION FOR ADMM

A. Ideal ADMM Update and Approximation

Ghadimi et al. optimized in ADMM for -regularizedmin-
imization with a quadratic data fitting term [13]. We generalize
and extend their analysis to optimize for our case of having
NL regularizers with the negative Poisson likelihood term.
Let us derive the “ideal” ADMM update for (14), (15), and

(16). Using the gradient of (14) with respect to , the first update
for (14) at the th iteration is

(33)

where the approximate Hessian of (4) is

We used the GD algorithm in (17) since (33) is impractical. Sim-
ilarly, using the gradient of (15) with respect to and ignoring
the non-negative constraint for , “ideally” the update for (15)
at the th iteration is

(34)

where
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Because (34) is impractical, we used De Pierro’s EM algorithm
in (31).We can use (16) itself as the third “ideal” ADMMupdate
at the th iteration.
To facilitate the analysis using these ideal ADMM updates

(33), (34), and (16), we need to fix and for
all iterations or for all . We conjecture that we can set

for and so that we can fix

(35)

and

(36)

We used these approximations only for selecting . The initial

image can be anything like the FBP image or the recon-
structed image using the OSEM with a few iterations. For the
results in Section V, we used the reconstructed image using un-
regularized OSEM with five iterations (six subsets). Please see
Appendix A for technical details for the approximation of (35)
and (36).

B. Nearly Optimal ADMM Parameter

To study the convergence rate, we need to derive the update
equation of in terms of . Here, we generalize the
approach of [13] for our “ideal” ADMM update equations for
(14)– (16).
First, rearrange (34) with (36) and use it for (16). Then, (16)

becomes

(37)

and this also works for . Secondly, we use (37) with
for (14) with (35) to obtain

(38)

where is a constant vector. Lastly, combining (37) (with ),
(38), and (34) [with (36)] yields

(39)

where is a constant vector and

(40)

where .
With the goal of approximately optimizing the convergence

rate, we choose the ADMM parameter as follows:

(41)

where is the spectral radius of the matrix , which is
the maximum eigen value of the matrix . However, it is very
challenging to find eigen values for large matrices such as
and it is also infeasible to find the matrix itself due to the
inversion of large matrices such as and .

To make the problem (41) tractable, we approximately opti-
mize the ADMM parameter for the center of the image and
use that parameter everywhere else. We approximate and
as being locally circulant around that local area; a similar as-
sumption often is used when analyzing spatial resolution prop-
erties [30], [31]. Then, the eigen value of the matrix for the
th eigen vector (or the th discrete Fourier basis) becomes

(42)

where and are the eigen values of and for the cor-
responding th eigen vector, respectively. Then, our choice for
the ADMM parameter is

(43)

Unlike the case in [13], it is not easy to find the analytical
solution for (43). Instead, we can quickly solve the problem
(43). We find and for all using the fast Fourier trans-
form (FFT) of and , respectively, where is a unit
vector where the element of is one at the center voxel of the
image and zero otherwise. Then, we calculated
for a finite set of values on , and
then obtain from . Since is a nonde-
creasing function of for , must be less than or
equal to . The computational cost for evaluating

is linear in the number of voxels. This procedure
is fast since it is parallelizable. One can speed up this procedure
using coarse-to-fine approach. One could also use the Golden
section search [28, p. 397] to find to minimize .

V. RESULT

A. Simulation Setup

We simulated the Siemens Symbia Truepoint 3-D SPECT
system with high energy collimators (parallel hexagonal col-
limators with a septal thickness of 2 mm, a hole diameter of
4 mm, and a hole length of 59.7 mm) with a nonuniform at-
tenuation map, depth-dependent collimator-detector response
[20], and scatter component (128 21, pixel size).
The system resolution at 10 cm was 13.4 mm and 60 views
were collected around 360 . We used the XCAT phantom [17]
to generate the true SPECT image with activity distributions
realistic for I-131 RIT. The dimension of the SPECT image
was , voxel size. Three spherical
lesions were placed within the XCAT phantom with volumes
176 cc, 32 cc, and 9 cc as shown in the bottom-right figure of
Fig. 4(a) or (b). Poisson noise was added after scaling the pro-
jections to the count-level corresponding to day 2 post-therapy
in I-131 RIT (about 600 K total counts per slice with about 300
K scatter counts per slice).
We set the common regularization parameters for all opti-

mization methods as follows: , , the patch
size , and the search neighborhood size .
Six subsets were used for OSEM and ADMM. ADMM sepa-
rates the likelihood update and the regularizer update by split-
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Fig. 1. Plot of for . Red star
denotes our choice of .

ting and we chose to run more sub-iterations for the likelihood
update (2 outer-iterations 6 subsets) than for the regularizer
update (one outer-iteration). We used six threads for computa-
tion (Intel Core i7 2.8 GHz) for all methods and they used the
same compiled ANSI C99 code to evaluate the cost function and
the gradient of the cost function. We measured the normalized
root mean square error (RMSE) over the whole image at each
(outer) iteration

(44)

B. Parameter Selection

There are parameters to tune for each optimization method.
We selected the step size for GD and the number of past es-
timated images for hessian approximation of L-BFGS-B. We
chose those values to yield the fastest convergence rate empir-
ically: the step size for GD was 0.04 and the number of past
estimated images for L-BFGS-B was 5. In our experiment, not
shown here, the step size for GD was critical for convergence.
GD diverged with too large step size and GD converged slowly
with too small step size. However, the number of past images
used for L-BFGS-B did not affect convergence rate much.
We selected the ADMM parameter using (43). We first ob-

tained for as
shown in Fig. 1 where . Based on this
plot, we chose the ADMM parameter to be 0.0106, which is
the red star mark in Fig. 1.
We evaluated the ADMM convergence rate as a function of

empirically. Fig. 2 shows that our choice of ADMM parameter
achieved reasonably fast convergence compared

to other choices of . Too large such as (green
square mark) yielded slower convergence rate and too small
value such as (magenta triangle mark) resulted in
fluctuating tails. Due to the approximations such as local shift
invariance and fixing some matrices like and , we can not
claim that our choice of is optimal, but Fig. 2 suggests that
our choice is adequate for fast convergence of ADMM.

Fig. 2. RMSEs of estimated images over time using ADMM with different
values. Atomatically selected value ( , red star ) yielded relatively
fast convergence rate of ADMM compared to other choices of .

Fig. 3. RMSEs of estimated images using different algorithms versus time for
NL regularization with the Fair potential. Proposed ADMM showed faster con-
vergence rate than other methods.

C. Simulation Results for NL Regularization

We reconstructed images using different optimization algo-
rithms for the cost function (1) with the (convex) Fair poten-
tial (8).
Fig. 3 shows the plots of RMSE values versus computa-

tion time for different methods: GD, EM, and OSEM using De
Pierro’s lemma, L-BFGS-B, and proposed ADMM. EM yielded
faster convergence rate than GD with fixed step size. OSEM
does improve convergence speed as compared to EM, but it
provides little acceleration due to computationally expensive
NL regularizer calculation for all sub-iterations. L-BFGS-B
yielded similar convergence rate to OSEM with six subsets.
Our proposed ADMM substantially improved convergence
speed over all other methods. Other methods did not reach
the minimum RMSE before 2000 s, but ADMM achieved
the minimum RMSE before 1000 s. These simulation results
illustrate that repeated likelihood updates are more important
for fast convergence than regularizer updates.
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Fig. 4. Estimated images of different methods at 500 and 1000 s and the true
image for the case of the Fair potential. ADMM yielded the best contrast re-
covery among all other methods. (a) 500 s. (b) 1000 s.

Fig. 4(a) and (b) shows reconstructed images by different
methods at 500 and 1000 s and the true image for NL regulariza-
tion with the Fair potential. At this early time of 500 s, ADMM
yielded the best contrast recovery among all other methods. As
time goes by (at 1000 s), other methods also started to yield
similar images to that of ADMM since all optimization methods
minimize the almost same cost function. However, they may not
be exactly the same due to the OS approximation.
Fig. 5(a)–(c) shows recovery coefficients (RCs) of different

methods over time when using the Fair potential. The larger the
lesion is, the faster it approached to the achievable RC value.
Note that we did not optimize NL regularizer parameters such
as and one may achieve better RC for smaller lesions like 9
cc than that in Fig. 5(c).

VI. DISCUSSION

We developed a new algorithm for tomography with com-
putationally expensive NL regularizers using ADMM. We also
proposed amethod to determine automatically a suitable value
for fast convergence rate. By combining with the OS approach,
our proposedADMMapproached convergencemuch faster than
existing methods such as GD, EM, and OSEM using the De
Pierro lemma, and L-BFGS-B. Since it seems more important
to update the likelihood part frequently, our ADMM yielded
faster convergence. Since the cost function has both the like-
lihood term and the regularization term, increasing the number
of iterations for the likelihood term did not always further accel-
erate convergence. We chose a good combination of iterations

Fig. 5. Recovery coefficients for different size lesions over time when using
the Fair potential. ADMMyielded the best recovery coefficients among all other
methods. (a) 176 cc. (b) 32 cc. (c) 9 cc.

for both terms empirically. Similarly, one could use an approxi-
mate gradient for the NL regularizer to reduce computation, but
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in our simulation not shown here, our ADMMoutperformed this
approximation.
In this paper, we minimized the same NL regularized cost

function (the Fair potential) as Wang et al. did [6]. Whereas
Wang et al. used De Pierro’s algorithm with the surrogate func-
tion of their NL regularizer, we use De Pierro’s algorithm with
a shifted quadratic regularizer, which requires far less computa-
tion. Zhang et al. also applied a splitting approach to the op-
timization problem with NL regularizers [4]. However, their
motivation for splitting was to apply shrinkage operator to the
nonsmooth potential function such as TV. In addition, our way
of splitting in (12) was different from theirs. Xu et al. used
the same type of splitting as ours for the case of using non-
smooth regularizer [16]. They used a similar formula for the
sub-problem of (15) except a Lagrangian multiplier vector, but
their motivation was to deal with nonsmooth regularizer rather
than to deal with computation-intensive NL regularizer.
Our approach to optimizing was based on ‘ideal’ updates.

In other words, we assumed fully converged images for sub-iter-
ations of (14) and (15). Nevertheless, our optimized worked
well even for sub-iterations that did not converge fully. This
may be because a few sub-iterations yielded good approxima-
tions of fully converged images for the sub-problems (14) and
(15).
The proposed method worked well for SPECT image recon-

struction with the patch-based convex Fair potential function
[6]. Our proposed method can be easily extended to other
computationally expensive NL regularizers [4], [5], [7] and NL
regularizers that use high-resolution side information [9]–[11]
for both emission and transmission tomography. Even though
ADMM works only with convex cases theoretically, our pro-
posed ADMM can be a practical method for many nonconvex
NL regularizers. Improving image quality with proper regular-
izers and appropriate regularization parameter selection using
our fast ADMM algorithm will be an important and interesting
future work.

APPENDIX A
APPROXIMATION FOR IDEAL ADMM UPDATE

For , even though and differ substantially, the
patch selection operator and the norm can make
this difference much smaller. Therefore, it seems reasonable to
use the approximation (35). For , this type of approxima-
tion in (36) has been used in different gradient-based analysis
such as mean-variance analysis [32], spatial resolution analysis
[30], [31], and noise analysis [33]. Even though there may be

non-negligible difference between and , the approx-
imation still holds fairly well. Thus, it
also seems reasonable to use the approximation (36).
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