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Abstract—
Spectral CT provides information on material characterization

and quantification because of its ability to separate different
basis materials. Dual-energy (DE) CT provides two sets of
measurements at two different source energies. In principle,
two materials can be accurately decomposed from DECT mea-
surements. However, many clinical and industrial applications
require three or more material images. For triple-material
decomposition, a third constraint, such as volume conservation,
mass conservation or both, is required to solve three sets of
unknowns from two sets of measurements. The recently proposed
flexible image-domain (ID) multi-material decomposition (MMD)
method assumes each pixel contains at most three materials out
of several possible materials and decomposes a mixture pixel by
pixel. We propose a penalized-likelihood (PL) method with edge-
preserving regularizers for each material to reconstruct multi-
material images using a similar constraint from sinogram data.
We develop an optimization transfer method with a series of
pixel-wise separable quadratic surrogate (PWSQS) functions to
monotonically decrease the complicated PL cost function. The
PWSQS algorithm separates pixels to allow simultaneous update
of all pixels, but keeps the basis materials coupled to allow
faster convergence rate than our previous proposed material-
and pixel-wise SQS algorithms. Comparing with the ID method
using 2D fan-beam simulations, the PL method greatly reduced
noise, streak and cross-talk artifacts in the reconstructed basis
component images, and achieved much smaller root-mean-square
(RMS) errors.

Index Terms—spectral CT, dual-energy CT, multi-material de-
composition, statistical image reconstruction, optimization trans-
fer

I. INTRODUCTION

X-ray computed tomography (CT) images the spatial distri-
bution of attenuation coefficients of the object being scanned.
Attenuation maps have many applications both in medical
diagnosis and treatment and in industry for nondestructive
evaluation. A conventional CT scanner measures a single
sinogram at single X-ray source potential. Conventional image
reconstruction methods process such measurements to produce
a scalar-valued image of the scanned object.

In practice the scanned object always contains multiple
materials. For example, the organs and tissues of human body
under CT scans contain typical basis materials of blood, fat,
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muscle, water, cortical bone, air and contrast agent [1], [2].
Material attenuation coefficients depend on the energy of
the incident photons. An X-ray beam in clinical practice is
usually composed of individual photons with a wide range
of energies, and each photon energy is attenuated differently
by the materials in the object. If uncorrected, this energy
dependence causes artifacts in images reconstructed by con-
ventional methods, such as beam-hardening artifacts [3]. This
energy dependence also allows the possibility of basis-material
decomposition [1], [4]–[8]. Numerous applications of two-
material decomposition have been explored, including CT-
based attenuation correction for positron emission tomography
(PET) [7], [9], beam-hardening artifacts correction [10], [11],
and virtual un-enhancement (VUE) CT [1], [8].

Dual-energy (DE) CT methods, pioneered by Alvarez and
Macovski et al. [4], [12]–[15], are the most predominant
approaches for reconstructing two basis materials (e.g., soft-
tissue and bone). They decomposed the energy dependence
of attenuation coefficients into two components, one approxi-
mated the photoelectric interaction and another approximated
Compton scattering, and separated these two components from
two sets of measurements at two different source energies.
Although DECT methods were originally proposed in the
late 1970s and early 1980s, DECT scanners became clinically
available only recently with technological developments, such
as fast kVp-switching, dual-source CT and dual-layer detec-
tors. These new techniques have brought renewed interest in
DECT [6], [7], [9], [16]–[18], [18]–[26].

Several methods have been developed for reconstructing two
basis materials from one CT scan with a single tube voltage
setting. Ritchings and Pullan [27] described a technique for
acquiring spectrally different data by filtering alternate detec-
tor elements. Taschereau et al. [28] retrofitted a preclinical
microCT scanner with a filter wheel that alternates two beam
filters between successive projections. One filter provides a
low energy beam while the other filter provides a high energy
beam. We [29] proposed a statistical penalized weighted least-
squares (PWLS) method for reconstructing two basis materials
from a single-voltage CT scan, exploiting the incident spectra
difference of rays created by filtration, such as split [30] and
bow-tie filters. One major limitation of decomposition methods
based on single-voltage CT is the significant overlap in the two
spectra that are generated by different filters.

Many clinical and industrial applications desire three or
more component images [1], [22], [31], [32]. Quantifying liver
fat concentration requires images of four constitute materials,
liver tissue, blood, fat and contrast agent [1], [32]. Multi-
material decomposition (MMD) can generate VUE images by
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removing the effect of contrast agents from contrast-enhanced
CT exams without needing an additional contrast-free scan,
reducing patient dose [1]. For radiotherapy, it is also useful
to know the distributions of materials besides bone and soft
tissue, such as calcium, metal (e.g., gold) and iodine-based
contrast agent.

Typically, spectral CT methods reconstruct images of L0 =
M0 basis materials from M0 sets of measurements with M0

different spectra [5]. Sukovic and Clinthorne [5] separated
L0 = 3 basis materials from M0 = 3 sinograms acquired
using M0 = 3 distinct source voltages, one of which was
near the K-edge of one basis material. Generally, spectral CT
requires multiple scans or specialized scanner designs, such as
quasi-monochromatic sources [33] or energy-resolved photon-
counting detectors [34]. In this paper, we focus on MMD using
DECT which is currently the only commerically available
version of spectral CT. However, the general formulation is
applicable to a variety of spectral CT approaches.

A third criteria, such as volume conservation [21], mass
conservation [22] or both [1], can enable reconstructing three
basis materials from DECT measurements. Volume (mass)
conservation assumes the sum of the volumes (masses) of
the three constituent materials is equivalent to the volume
(mass) of the mixture. To reconstruct L0 > 3 materials
from DECT, solving this ill-posed problem requires additional
assumptions. Mendonca et al. [1] proposed an image-domain
(ID) method to reconstruct multiple materials pixel by pixel
from a DECT scan. In addition to both volume and mass
conservation assumptions, that method assumes that each pixel
contains a mixture of at most three materials where the ma-
terial types can vary between pixels. It establishes a material
library containing all the possible triplets of basis materials
for a specific application. It obtains a dual-material-density
pair through projection-based decomposition approach from
DECT measurements, and then generates a linear-attenuation-
coefficient (LAC) pair for each pixel at two selected distinct
energies (e.g.. 70 and 140 keV). Given a LAC pair, a material
triplet and the sum-to-one constraint that was derived using
both the volume and mass conservation assumption, triple
material decomposition is solved for each pixel. This method
sequentially decomposes each pixel into different triplets in
the material library in a prioritized order, and collects solutions
of volume fractions that satisfy a box ([0, 1]) constraint and
sum-to-one constraint. If there is a solution, it moves on to
the next pixel and skips material triplets with lower priorities.
If there is no feasible solution for all the material triplets, it
relaxes the box constraints and accepts the volume fractions
corresponding to the triplet with minimal Hausdorff distance
to the LAC pair over all possible triplets.

Inspired by the ID method [1], [35] we proposed
a penalized-likelihood (PL) method [36] with an edge-
preserving regularizer to reconstruct multi-material images. It
is well known that statistical image reconstruction methods
based on physical models of the CT system and scanned object
and statistical models of the measurements can obtain lower
noise images with higher quality. The proposed PL method
considers each material image as a whole, instead of pixel by
pixel, so prior knowledge, such as piecewise smoothness, can

help solve the reconstruction problem.

The cost function of the PL method is minimized under the
constraints that each pixel contains at most three materials,
the volume fractions of basis materials sum to one, and the
fractions are in the box [0, 1]. It is difficult to minimize the PL
cost function directly. The preliminary PL method [36] applied
optimization transfer principles to develop a series of pixel-
and material-wise separable quadratic surrogates to monoton-
ically decrease the cost function. The separability both in the
pixel and material made the curvatures of surrogate functions
large, causing slow convergence. In this paper, we propose
an optimization transfer method with pixel-wise separable
quadratic surrogates (PWSQS) that keep the materials coupled.
The coupling in materials results in faster convergence. The
maintained separability in pixels makes the PWSQS algorithm
simultaneous and constrained optimization on each pixel easy.

We evaluated the proposed PL method on a modified NCAT
chest phantom [37] containing fat, blood, omnipaque300
(iodine-based contrast agent), cortical bone, and air. Compar-
ing with the ID method, the PL method was able to reconstruct
component images with lower noise, greatly reduced streak
artifacts, and alleviated the cross-talk phenomenon where a
component of one material appearing in the image of another
material. The RMS errors of the PL method were about
60% lower for fat, blood, omnipaque300 and cortical bone,
compared to the filtered ID method.

The organization of this paper is as follows. Section II in-
troduces the physical models, including the measurement and
object model. Section III describes the PL method. Section IV
derives the PWSQS algorithm. Section V shows the results.
Section VI presents conclusions.

II. PHYSICAL MODELS

A. Measurement Model

We use the following general model to describe the mea-
surement physics for X-ray CT. The detector measures X-ray
photons emerging from the object at M0 ≥ 1 different inci-
dent spectra. Based on current technologies, different incident
spectra can be realized by either scanning with different X-ray
spectra, such as fast kVp-switching [16] or dual-source CT
[18], or by energy-resolved photon-counting detectors [34].
Let Yim denote the measurement for the ray Lim which is
the ith ray for the mth energy scan, where m = 1, . . . ,M0,
i = 1, . . . , Nd, and Nd is the number of rays. For notational
simplicity we assume that the same number of rays are
measured for each incident spectrum, but the physics model
and methods presented in this paper can be easily generalized
to cases where different incident spectra have different number
of recorded rays. For a ray Lim of infinitesimal width, the
mean of the projection measurements can be expressed as:

ȳim
!
=

∫

Iim(E) exp

(

−

∫

Lim

µ(!x, E) d"

)

dE +rim, (1)

where µ(!x, E) denotes the 3D unknown spatially- and energy-
dependent attenuation distribution,

∫

Lim
· d" denotes the “line

integral” function along line Lim, and the incident X-ray inten-
sity Iim(E) incorporates the source spectrum and the detector
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gain. In reality, the measurements suffer from background
signals such as Compton scatter, dark current and noise. The
ensemble mean of those effects (for the ray Lim) is denoted
as rim. We treat each Iim(E) and rim as known nonnegative
quantities. In practice, Iim(E) can be determined by careful
calibration [38], and rim are estimated by some preprocessing
steps prior to iterative reconstruction [39]–[41].

B. Object Model for Basis Material Decomposition

We describe the object model for basis material decompo-
sition as

µ(!x, E) =
L0
∑

l=1

µl(E)
Np
∑

j=1

bj(!x) xlj , (2)

where µl(E) denotes the energy-dependent LAC of the lth
material type, bj(!x) denotes spatial basis functions (e.g.,
pixels), and xlj denotes the volume fraction of the lth material
in the jth pixel. Conventionally, one reconstructs L0 = M0

sets of basis materials from M0 sets of measurements with
M0 different spectra [42].

Volume conservation [21], mass conservation [22] and com-
binations [1] have been used to provide extra information
for solving L0 = M0 + 1 sets of unknowns from M0 sets
of independent measurements. Volume (mass) conservation
assumes the sum of the volumes (masses) of the three con-
stituent materials is equivalent to the volume (mass) of the
mixture. Mendonca et al. [1] pointed out that any reasonable
method for material decomposition already makes an implicit
assumption of mass conservation. They used both volume
and mass conservation to produce a model for the LAC of
a mixture of materials. In this paper we adopt their model
where the volume fractions xlj should satisfy the following
sum to one and box constraints:

{

∑L0

l=1 xlj = 1, ∀j,
al ≤ xlj ≤ bl, ∀l, j.

(3)

We relax the lower limit of the box constraint to be slightly
smaller than 0, and the upper limit to be slightly greater
than 1, i.e., al = −εal where εal % 1/2, and bl = 1 + εbl
where εbl % 1/2. This relaxation is similar to the work in
[43], where negative values are allowed for the reconstructed
densities of basis materials, such as water and iodine. This is
because the estimated volume fractions are just coefficients for
combining the linear attenuation coefficients of basis materials
to produce the equivalent attenuation of a mixture. The sum
to one constraint in (3) provides an extra criteria for solving
L0 = M0+1 sets of unknowns from M0 sets of measurements.

Additional assumptions are needed to estimate L0 > M0 +
1 sets of unknowns from M0 sets of measurements [1]. We
assume that each pixel contains at most (M0 + 1) types of
materials and the material types can vary between pixels, i.e.

L0
∑

l=1

{xlj "=0} ≤ M0 + 1, ∀j. (4)

Let Ω be a (M0+1)-tuple library containing all tuples formed
from L0 pre-selected materials of interest. Given a tuple ω in
Ω, there are only (M0+1) unknowns for each pixel, which are

solvable from M0 sets of measurements with the help of the
box and sum-to-one constraints given in (3). Note that air must
be included as one basis material type even if it is typically not
of primary interest. This is because there are always locations
with LACs of zeros in the field of view (FOV) of the scanner
and only the LAC of air is zero.

C. Combining Measurement and Object Model

Let x denote the image vector x = (x1, . . . ,xl, . . . ,xL0) ∈
RNp×L0 for xl = (xl1, . . . , xlj , . . . , xlNp) ∈ RNp of the lth
material. Combining the general measurement model (1) and
the object model (2), the mean of the projection measurement
ȳim(x) can be represented as follows,

ȳim(x) = zim(sim(x)) + rim, (5)

for m = 1, . . . ,M0 and i = 1, . . . , Nd where

zim(sim(x))
!
=

∫

Iim(E) e−µ(E) ·sim(x) dE . (6)

The linear attenuation vector µ(E) and the sinogram vector
sim(x) are defined as

µ(E)
!
= (µ1(E), . . . , µL0(E)) (7)

sim(x)
!
= (sim1(x), . . . , simL0(x)) (8)

siml(x)
!
= [Amxl]i =

Np
∑

j=1

amijxlj , (9)

where Am denotes the Nd ×Np system matrix with entries

amij
!
=

∫

Lim

bj(!x) d" . (10)

As usual, we ignore the exponential edge gradient effects
caused by the nonlinearity of Beer’s law [44], [45].

III. PENALIZED-LIKELIHOOD (PL) RECONSTRUCTION

For the case of normal clinical exposures, the X-ray CT
measurements are often modeled as independently Poisson
random variables with means (1), i.e.

Yim ∼ Poisson{ȳim(x)} .

The corresponding negative log-likelihood for independent
measurements Yim has the form

L̄(x) ≡
M0
∑

m=1

Nd
∑

i=1

tim(sim(x)), (11)

where ≡ means “equal to within irrelevant constants indepen-
dent of x”, and

tim(sim)
!
= ȳim(sim)− Yimhim(sim) (12)

him(sim)
!
= log(ȳim(sim)). (13)

We estimate component fraction images x from the noisy
measurements Yim by minimizing a Penalized-Likelihood
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(PL) cost function subject to constraints given in (3) and (4)
on the elements of x as follows:

x̂ = argmin
x subject to (3)&(4)

Ψ(x) (14)

Ψ(x)
!
= L̄(x) +R(x). (15)

The edge-preserving regularization term R(x) is

R(x) =
L0
∑

l=1

βlRl(xl), (16)

where the regularizer for the lth material is

Rl(xl) =

Np
∑

j=1

∑

k∈Nlj

κljκlk ψl(xlj − xlk), (17)

where the potential function ψl is a hyperbola

ψl(t) =
δ2l
3





√

1 + 3

(

t

δl

)2

− 1



 , (18)

and where κlj and κlk are parameters encouraging uniform
spatial resolution [46] and Nlj is some neighborhood of voxel
xlj . The regularization parameters βl and δl can be chosen
differently for different materials according to their properties.

Since the LAC of air is zero there is no contribution of
air component to the data fitting term L̄(x) in (11), but the
regularizer term R(x) in (16) should include the air component
because its image is piecewise smooth like other components.
One could generalize the regularizer to consider joint sparsity
of the component images [47], [48].

IV. OPTIMIZATION ALGORITHM

Because the cost function Ψ(x) in (15) is difficult to
minimize directly, we apply optimization transfer principles
(OTP) [49]–[52] to develop an algorithm that monotonically
decreases Ψ(x) each iteration. We find a pixel-wise separable
quadratic surrogate (PWSQS) φ(n)(x) of the cost function, and
then minimize φ(n)(x) under constraints given in (3) and (4)
on each pixel. We loop over all tuples in the pre-determined
material library Ω, minimize the surrogates under box and
sum-to-one constraints in (3), and determine the optimal tuple
for each pixel as the one minimizing the surrogate of that
pixel.

A. Optimization Transfer Principles

The optimization transfer method [49], [50] replaces the cost
function Ψ(x) that is difficult to minimize with a surrogate
function φ(n)(x) that is easier to minimize at the nth iteration.
The next estimate x(n+1) is the minimizer of the surrogate
function, i.e.,

x(n+1) !
= argmin

x
φ(n)(x) . (19)

Repeatedly choosing a surrogate function and minimizing it
at each iteration, one obtains a sequence of vectors

{

x(n)
}

that monotonically decrease the original cost function Ψ(x).

The monotonicity is guaranteed by the following surrogate
conditions:

φ(n)

(

x(n)
)

= Ψ
(

x(n)
)

,

φ(n)(x) ≥ Ψ(x), ∀x ∈ R
Np×L0 . (20)

To derive surrogate functions for Ψ(x) in (15), we consider
the data fidelity term (11) and regularizer term (16) separately.

B. Surrogate of the Data Fidelity Term

1) First Surrogate: Non-Separable Convex Surrogate: The
first step is to derive a convex surrogate as a function of
the sinogram vector sim. Since him(sim) is convex (See
Appendix A-A), it is bounded below by its tangent plane:

him(sim) ≥ him(s(n)im ) +∇sim
him(s(n)im )(sim − s

(n)
im ), (21)

where s
(n)
im

!
= sim(x(n)). This inequality and the nonnegativ-

ity of Poisson random variable Yim lead to our first surrogate
for the data fidelity term L̄(x):

L̄(x) ≤ L(n)
1 (x)

!
=

M0
∑

m=1

Nd
∑

i=1

f (n)
1,im(sim(x)), (22)

where

f (n)
1,im(sim)

!
= ȳim(sim)

−Yim

(

him(s(n)im ) +∇sim
him(s(n)im )(sim − s

(n)
im )

)

.

(23)

If the source is monoenergetic and if rim = 0, then him

is linear and the first surrogate L(n)
1 (x) exactly equals the

original negative log-likelihood data fidelity term L̄(x), so it
should be a “reasonably tight” surrogate function.

2) Second Surrogate: Non-Separable Quadratic Surrogate:

The second step is to find a quadratic surrogate of the
first convex surrogate given in (22) and (23). We rewrite

f (n)
1,im(sim) as follows,

f (n)
1,im(sim)

= ȳim(sim)− Yim∇sim
him(s(n)im )sim + C

= ȳim(sim)−
Yim

ȳim(s(n)im )
∇sim

ȳim(s(n)im )sim + C

= C +

∫

Iim(E) e−µ(E) ·sim dE

+

∫

Y (n)
im Iim(E) e−µ(E) ·s(n)

im µ(E) ·sim dE

=

∫

Iim(E) f
(

µ(E) ·sim ; Y (n)
im e−µ(E) ·s(n)

im

)

dE +C,

(24)

where Y (n)
im

!
= Yim

ȳim(s
(n)
im )

, and

f(x;α)
!
= e−x + αx, (25)

and C denotes the constants in (23) that are irrelevant to sim.
Let c̆(·;α) given in (55) denote the optimal curvature

for f(x;α) given in [52, Eqn. (28)]. We form the optimal
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quadratic surrogate of f(x;α) using c̆(·;α), and substitute

it into (24) to obtain a quadratic surrogate of f (n)
1,im(sim) as

follows (See Appendix A-B),

f (n)
2,im(sim) = f (n)

1,im(s(n)im )

+∇sim
f (n)
1,im(s(n)im )

(

sim − s
(n)
im

)

+
1

2

(

sim − s
(n)
im

)′
C̆

(n)
im

(

sim − s
(n)
im

)

, (26)

where the L0 × L0 curvature matrices are given by

C̆
(n)
im

!
=

∫

Iim(E) c̆(n)im (E)µ(E)µ′(E) dE , (27)

c̆(n)im (E)
!
= c̆

(

µ(E) ·s(n)im ;Y (n)
im e−µ(E) ·s(n)

im

)

. (28)

Summing this quadratic surrogate leads to the following
non-separable quadratic surrogate for the first convex surrogate

L(n)
1 (x):

L(n)
1 (x) ≤ L(n)

2 (x)
!
=

M0
∑

m=1

Nd
∑

i=1

f (n)
2,im(sim(x)), (29)

where f (n)
2,im(sim(x)) is given in (26).

3) Third Surrogate: Pixel-Wise Separable Quadratic Surro-

gate: Define pixel vector as xj
!
= (x1j , . . . , xL0j) . The surro-

gate function L(n)
2 (x) is a non-separable quadratic function of

xj . Non-separable surrogates are inconvenient for simultane-
ous update algorithms and for enforcing the constraint in (3)
and (4) on each pixel. To derive a simple simultaneous update
algorithm that is fully parallelizable and suitable for ordered-
subsets implementation [53], [54], we find next a pixel-wise

separable quadratic surrogate L(n)
3 (x) of the non-separable

quadratic surrogate L(n)
3 (x) by applying De Pierro’s additive

convexity trick [50], [53]. This novel pixel-wise separable
quadratic surrogate remains non-separable with respect to the
basis materials.

Appendix A-C derives L(n)
3 (x) in detail. It is defined as

L(n)
2 (x) ≤ L(n)

3 (x)
!
=

Np
∑

j=1

f (n)
3,j (xj), (30)

where

f (n)
3,j (xj)

!
=

Nd
∑

i=1

M0
∑

m=1

πmijf
(n)
2,im(bmij(xj)) (31)

bmij(xj)
!
=

amij

πmij
(xj − x

(n)
j ) +

Np
∑

j=1

amijx
(n)
j . (32)

The πmij values are non-negative and are zero only when amij

is zero, and satisfy
∑Np

j=1 πmij = 1. For our empirical results,
we use the following typical choice for πmij [53],

πmij
!
=

|amij |

ami
, ami

!
=

Np
∑

j=1

|amij | . (33)

4) Pixel-Wise Separable Quadratic Surrogate in Matrix-

Vector Formation: We have designed three surrogate functions
sequentially having relationships

L̄(x) ≤ L(n)
1 (x) ≤ L(n)

2 (x) ≤ L(n)
3 (x). (34)

Therefore, L(n)
3 (x) is a surrogate function of L̄(x). It is much

easier to minimize the the surrogate L(n)
3 under the proposed

constraints since it is quadratic and separable with respect to
pixels.

Combining the function value (60), gradient (61) and Hes-
sian (62) derived in Appendix A-C, the pixel-wise separable
quadratic surrogate has the following matrix-vector form

L(n)
3 (x) = L̄(x(n)) +∇L̄(x(n))(x− x(n))

+
1

2
(x− x(n))′D(n)

L̄
(x− x(n)), (35)

where D
(n)
L̄

is a block diagonal matrix over j = 1, . . . , Np,
i.e.,

D
(n)
L̄

!
= diag

{

D
(n)
L̄,j

}

, (36)

D
(n)
L̄,j

!
=

Nd
∑

i=1

M0
∑

m=1

a2mij

πmij
C̆

(n)
im , (37)

and C̆
(n)
im (E) is defined in (27). The L0 × L0 matrix D

(n)
L̄,j

is
not diagonal due to the outer products in (27).

C. Surrogate of the Penalty Term

To derive a SQS function for the penalty term, we apply
De Pierro’s additive convexity trick [50], [53], [55] in a similar
fashion and use Huber’s optimal curvature [56, p. 185] for
the potential function ψl. The SQS function has the following
matix-vector form

R(n)(x) = R(x(n)) +∇R(x(n))(x− x(n))

+
1

2
(x− x(n))′D(n)

R (x− x(n)), (38)

where D
(n)
R is a diagonal matrix, i.e.,

D
(n)
R

!
= diag

{

D
(n)
R,j

}

, (39)

D
(n)
R,j

!
= diag







4βl
∑

k∈Nlj

κljκlk ωψl

(

x(n)
lj − x(n)

lk

)







,

(40)

where ωψ(t)
!
= ψ̇(t) /t.

D. Pixel-Wise Separable Quadratic Surrogate (PWSQS)

Combining the surrogates for the data fidelity term (35) and
penalty term (38), the PWSQS function for the cost function
Ψ(x) is

φ(n)(x) = L(n)
3 (x)+R(n)(x) . (41)

It is easier to minimize φ(n)(x) than the original cost function
Ψ(x) because it is quadratic and separable with respect to
pixels by construction. For the sake of optimization under
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constraints on each pixel, we rewrite φ(n)(x) in terms of j
as

φ(n)(x) ≡

Np
∑

j=1

φ(n)j (xj) , (42)

where

φ(n)j (xj) ≡ ∇xj
Ψ
(

x(n)
)

xj +
1

2

∥

∥

∥
xj − x

(n)
j

∥

∥

∥

2

D
(n)
j

, (43)

where ∇xj
denotes the gradient with respect to xj , and the

L0 × L0 Hessian matrix of φ(n)j is

D
(n)
j

!
= D

(n)
L̄,j

+D
(n)
R,j . (44)

E. Optimization With Material Constraints

After designing the surrogate (42), the next step of the
optimization transfer algorithm is to minimize φ(n)(x) under
constraints given in (3) and (4) on each pixel. Because φ(n)(x)
is pixel-wise separable, one can minimize φ(n)

j (xj) for all
pixels simultaneously. We now focus on the problem of
minimizing φ(n)

j (xj) under the proposed constraints.
Let ω denote a tuple in the material library Ω, i.e., ω ∈ Ω.

The optimization problem on the jth pixel is

(x̂j , ω̂) = argmin
xj ,ω∈Ω

φ(n)

j (xj)

s.t.







∑L0

l=1 xlj = 1,
al ≤ xlj ≤ bl, l ∈ ω,
xlj = 0, l /∈ ω,

(45)

where

φ(n)

j (xj)
!
=

1

2
x′
jHxj + p′xj , (46)

H
!
= D

(n)
j , (47)

p
!
= ∇xj

Ψ
(

x(n)
)

−(x(n)
j )

′

D
(n)
j . (48)

The goal of this optimization is to estimate xj and material
types ω. We solve it as follows.

1) For each ω ∈ Ω, find the optimal x̂j(ω) and the
corresponding function values φ(n)

j (x̂j(ω)).
Without loss of generality, we consider the case where
a given ω = (1, . . . , L) for some L between 1 and L0,
then the optimization problem is

x̂j(ω) = argmin
xj(ω)

φ(n)

j (xj(ω))

φ(n)

j (xj(ω)) ≡
1

2
x′
j(ω)H(ω)xj(ω) + p′(ω)xj(ω)

s.t.

{

∑L
l=1 xlj = 1,

al ≤ xlj ≤ bl,
(49)

where xj(ω)
!
= (x1j , . . . , xLj), x

(n)
j (ω)

!
=

(x(n)
1j , . . . , x(n)

Lj ), and H(ω) and p(ω) are formed
from elements in H and p with indexes corresponding
to ω = (1, . . . , L) respectively.

2) Determine the best tuple ω̂ by comparing all
φ(n)

j (x̂j(ω)), i.e.,

ω̂ = argmin
ω∈Ω

φ(n)

j (x̂j(ω)).

3) Obtain x̂j ≡ x̂j(ω̂) with padded zeros for l /∈ ω.

Given material types, i.e., given ω, the optimization problem
defined in (49) is a typical convex quadratic programming
problem. We used the Generalized Sequential Minimiza-
tion Algorithm (GSMO) [57] to solve (49), and parallelized
GSMO to update all pixels simultaneously. The pseudo-code
of GSMO for solving the quadratic optimization problem
with constraints in (49) is summarized in the supplementary
material. One can use other quadratic programming methods
to solve (49).

F. Ordered-Subset PWSQS Algorithm Outline

We use the ordered subsets approach to accelerate the
“convergence” to a good local minimum [52] by replacing
the gradient in (43) with a subset gradient scaled by the total
number of subsets.

The overall ordered-subset pixel-wise separable quadratic
surrogate (OS-PWSQS) algorithm for minimizing the PL cost
function with constraints given in (14) is outlined in Table I.

V. RESULTS

To evaluate the proposed PL method for MMD and to
compare it with the ID method [1], we simulated a DECT scan
and reconstructed volume fractions of a modified NCAT chest
phantom [37] containing fat, blood, omnipaque300 (iodine-
based contrast agent), cortical bone and air. We generated
virtual un-enhancement (VUE) images from the reconstructed
volume fractions using these two methods.

Fig. 1 shows true volume fractions and monoenergetic
image at 70 keV of the simulated NCAT chest phantom. The
simulated true images were 1024 × 1024 and the pixel size
was 0.49 mm, while the reconstructed images were 512×512
and the pixel size was 0.98 mm. We introduced this model
mismatch deliberately to test the MMD methods. We down-
sampled the simulated true component images to the sizes of
the reconstructed images by linearly averaging, and used these
down-sampled images for comparisons with the reconstructed
images.

We simulated the geometry of a GE LightSpeed X-ray
CT fan-beam system with an arc detector of 888 detector
channels by 984 views over 360◦. The size of each detector
cell was 1.0239 mm. The source to detector distance was
Dsd = 949.075mm, and the source to rotation center distance
was Ds0 = 541mm. We included a quarter detector offset to
reduce aliasing. We used the distance-driven (DD) projector
[58] to generate projections of the true object. We simulated
two incident spectra of X-ray tube voltages at 140 kVp and
80 kVp, and normalized them by their corresponding total
intensities by summing the intensities over all energy bins.
We generated noiseless measurements ȳim of the simulated
NCAT phantom using (1) and the normalized spectra. To add
Poisson distributed noise to the noiseless measurements ȳim,
we first chose 2×105 incident photons per ray for the 140 kVp
measurements, and then determined the value of incident
photons per ray for the 80 kVp measurements according to
the ratio of total intensities of the originally simulated spectra
at high and low energies. The incident photons per ray for the
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1) Choose πmij factors using (33).
2) Initialize x(0) using the results of the image-domain method [1].
3) For each iteration d = 1, . . . , Diter

a) For each subset (subiteration) q = 1, . . . , Qiter

i) n = d+ q/Qiter

ii) Compute gradient of the data fidelity term L̇qj .

L̇qj =
∑

i∈Sq

M0
∑

m=1

amij∇sim tim(s(n)
im ), ∇simtim(s(n)

im ) = ∇sim ȳim(s(n)
im )− Yim∇simhim(s(n)

im ),

where ∇sim ȳim and ∇simhim are given in (50) and (52) respectively, and

s
(n)
im =

(

sim1(x
(n)), . . . , simL0 (x

(n))
)

, siml(x
(n)) =

Np
∑

j=1

amijx
(n)
l , l = 1, . . . , L0.

iii) Compute gradient of penalty term Ṙqj .

Ṙqj =
1
Q



β1
∂

∂x1j
R1(x1)

∣

∣

∣

∣

x1=x
(n)
1

, . . . ,βL0

∂
∂xL0j

RL(xL0)

∣

∣

∣

∣

xL0
=x

(n)
L0





∂
∂xlj

Rl(xl)

∣

∣

∣

∣

xl=x
(n)
l

=
∑

k∈Nlj

κljκlk ψ̇l

(

x(n)
lj − x(n)

lk

)

, l = 1, . . . , L0

iv) Compute L0 × L0 curvature matrices D
(n)
qj .

D
(n)
qj = D

(n)
L̄,qj

+
1
Q
D

(n)
R,j , D

(n)
L̄,qj

=
∑

i∈Sq

M0
∑

m=1

a2
mij

πmij
C̆

(n)
im ,

where C̆
(n)
im and D

(n)
R,j are defined in (27) and (40) respectively.

v) Compute H and p using (47) and (48), i.e.,

H = D
(n)
qj , p = L̇qj + Ṙqj − (x(n)

j )
′

D
(n)
qj .

vi) For each tuple ω ∈ Ω

A) Form x
(n)
j (ω),H(ω),p(ω) by extracting elements in x

(n)
j , H and p with indexes corresponding to ω respectively.

B) Obtain minimizer x̂j(ω) of the QP problem in (49) using GSMO.
C) Compute and store minimal surrogate function value φ(n)

j (x̂j(ω)) using (49).

End
vii) Determine optimal ω̂ by comparing all φ(n)

j (x̂j(ω)), i.e.,

ω̂ = argmin
ω∈Ω

φ(n)

j (x̂j(ω)).

viii) Obtain x̂j ≡ x̂j(ω̂) with padded zeros for l /∈ ω.
ix) Update all pixels x(n+1/Qiter) = x̂ =

(

x̂1, . . . , x̂j , . . . , x̂Np

)

.

End

x(n+1) = x(n+Qiter/Qiter).
End

TABLE I
ORDERED-SUBSET PIXEL-WISE SEPARABLE QUADRATIC SURROGATE (OS-PWSQS) ALGORITHM OUTLINE.

80 kVp measurements was 2× 105 · Ii2/Ii1 = 6× 104 where
Ii1 and Ii2 denote the total intensity of the ith ray for the
140 kVp and 80 kVp spectrum respectively.

For this simulation we let the triplet material library Ω
contain five triplets selected from five materials: fat, blood,
omnipaque300, cortical bone and air, excluding the combina-
tion of omnipaque300 and cortical bone and the combination
of omnipaque300 and fat. (This material library is based on the
fact that contrast agent does not spread into the cortical bone

area and fat area.) We implemented the ID method with several
different priority lists of material triplets as described in [1].
We found that the performance of the ID method depends
on the priorities of material triplets in the list. We selected
the priority list that produces the best ID image quality in
terms of noise, artifacts and crosstalk of component images.
To initialize the PL iteration, we applied a 3×3 median filter
to the ID images to decrease noise, especially salt-and-pepper
noise due to crosstalk among component images. (See Fig. 1
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in the supplementary material for the ID images.) A priority
list is not used in the PL method as it determines the optimal
triplet as the one that minimizes the PWSQS function in (46)
for each pixel.

We used the conventional projection-domain dual-material
decomposition method with polynomial approximation [4]
followed by FBP to reconstruct water-iodine density images
and chose 70 keV and 140 keV to yield LAC pairs for the
ID method. We also tried a more sophisticated dual-material
decomposition method, the statistical sinogram restoration
method proposed in [9], but the final reconstructed com-
ponent images were very similar to those of using poly-
nominal approximation. For the PL method we chose βl =
28, 211, 211, 28, 24 and δl = 0.01, 0.01, 0.005, 0.01, 0.1 for fat,
blood, omnipaque300, cortical bone and air, respectively. We
ran 500 iterations of the optimization transfer algorithm in
Table I with 41 subsets to accelerate the convergence. Because
(14) is a nonconvex problem, the algorithm finds a local
minimum.

Fig. 2–Fig. 6 show estimated volume fractions of the five
materials reconstructed by the PL method and the filtered ID
method. The grayscale values represent volume fractions of
each material. The big white disks in Fig. 6 are due to the
circular reconstruction support. The streak-like artifacts in the
reconstructed images by the filtered ID method are very similar
to those in Figure 4 in [35] and Fig. 6 in [1]. The PL method
greatly reduces these streak-like artifacts. Material cross talk
is evident in the filtered ID results. Blood went into the fat
image in Fig. 2, especially in the heart region. Cortical bone
presented in the blood image in the upper left image in Fig. 3.
Fat appeared in the cortical bone image, as evident in the lower
left image in Fig. 5. The PL method alleviated this cross-
talk phenomenon very effectively. In addition, the PL method
reconstructed component images with lower noise.

Fig. 4 shows the profiles of the down-sampled true and
reconstructed omnipaque300 component images by the PL
and filtered ID method respectively in the lower image. The
locations of the profiles are indicated as a blue line and green
line in the PL and filtered ID images. The PL method corrected
the bias introduced by the filtered ID method. Profiles of
reconstructed other component images are provided in the
supplementary material.

We constructed the virtual un-enhancement (VUE) images
by replacing the volume of contrast agent (omnipaque300)
in each pixel by the same amount of blood according to
the method introduced in [1], [35]. Fig. 7 shows true and
constructed VUE images at 70 keV using the component
images reconstructed by the filtered ID and PL method. The
images are displayed in a window of [800, 1200] with the
shifted Hounsfield unit (HU) scale where air is 0 HU and
water is 1000 HU. Having more accurate contrast agent and
blood component images, the PL method produced a VUE
image that is closer to the truth, while the VUE image using
the filtered ID method has more obvious residuals of contrast
agent. The PL method decreased beam-hardening artifacts in
the monochromatic VUE image.

We calculated the root-mean-square (RMS) errors of the

component fractions
√

1
Np

∑Np

j=1(x̂lj − xlj) within the recon-

struct support for each material based on the down-sampled
true images. Table II shows RMS errors of the component
images reconstructed by the ID method, filtered ID method
and the PL method. The errors of the component images were
scaled by 103 for easy comparison. Table II also shows the
RMS errors of the VUE images using the ID, filtered ID
and PL method. The median filtering greatly decreased the
RMS errors of the ID images, especially for the fat and blood
basis materials. Comparing with the filtered ID method, the PL
method lowered the RMS errors by about 60% for fat, blood,
omnipaque300 and cortical bone component images, 2% for
air image, and 20% for the monochromatic VUE image at
70 keV.
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Fig. 1. True volume fractions and the monoenergetic image at 70 keV of
the NCAT chest phantom. The volume fractions are in the range of [0, 1]
and the monoenergetic image is displayed over [800, 1200] with the shifted
Hounsfield unit (HU) scale where air is 0 HU and water is 1000 HU.
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Fig. 2. Fat component fraction images reconstructed by the filtered ID method
(left) and the PL method (right).
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Fig. 7. True and estimated virtual un-enhancement (VUE) images at 70 KeV. The display window is [800, 1200] HU where the HU scale is shifted by
1000 HU, i.e., air is 0 HU and water is 1000 HU.
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Fig. 3. Blood component fraction images reconstructed by the filtered ID
method (left) and the PL method (right).

Method Fat Blood Omnipaque Bone Air VUE
ID 156.3 134.7 4.0 38.1 49.5 54.6

Filtered ID 101.6 62.5 3.3 34.9 42.0 54.3
PL 51.3 19.4 1.4 16.6 41.2 43.6

TABLE II
RMS ERROR COMPARISON OF THE RECONSTRUCTED COMPONENT

FRACTION IMAGES BY THE ID METHOD, FILTERED ID METHOD AND THE

PL METHOD. THE ERRORS OF COMPONENT FRACTION IMAGES ARE

UNITLESS AND ENLARGED BY 103 . THE ERRORS OF THE VUE IMAGES

ARE IN HU UNIT.

VI. CONCLUSIONS

We proposed a statistical image reconstruction method for
multi-material decomposition (MMD) using DECT measure-
ments. We used a PL cost function containing a negative log-
likelihood term and an edge-preserving regularization term
for each basis material. We adopted the mass and volume
conservation assumption and assumed each pixel contains at
most three basis materials to help solve this ill-posed problem
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Fig. 4. Zoomed-in omnipaque300 component fraction images reconstructed
by the filtered ID method (upper left) and the PL method (upper right). The
lower image shows the horizontal profiles.

of estimating multiple sets of unknowns from two sets of
sinograms. Comparing with the ID method [1], [35] that uses
the same assumptions, the proposed PL method reconstructed
component and monochromatic VUE images with reduced
noise, streak artifacts and cross-talk. The PL method was
able to lower the RMS error by about 60% for fat, blood,
omnipaque300 and cortical bone basis material images, and
20% for the monochromatic VUE image at 70 keV, compared
to the filtered ID method.

Due to the complexity and non-convexity of the PL cost
function it is difficult to minimize the cost function directly.
We previously introduced an optimization transfer method [36]
with a series of material- and pixel-wise separable quadratic
surrogate functions to monotonically decrease the PL cost
function. The separability in both pixel and material caused the
curvature of each surrogate function to be small. The smaller
the curvature, the slower the convergence rate. The constraints
on each pixel couple the estimates of material fractions, so
even if we used a surrogate function that is separable across
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Fig. 5. Cortical bone component fraction images reconstructed by the filtered
ID method (left) and the PL method (right).
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Fig. 6. Air component fraction images reconstructed by the filtered ID
method (left) and the PL method (right).

materials, the minimization step would not be separable due
to the constraints. In this paper, we proposed a PWSQS op-
timization transfer method with separable quadratic surrogate
functions that decouples pixels only. The PL cost function
decreases faster with the PWSQS method (results not shown).
However, iterative methods for MMD are computationally
expensive. In each iteration, a MMD method requires one
forward projection and one back-projection for each basis-
material image, solving a constrained quadratic programming
problem for each physically meaningful material tuple, and
comparing results of all material tuples to determine the
optimal tuple for each pixel. The simulations in this paper used

2D fan-beam data; to apply the PWSQS method to 3D data,
more future work on accelerating the optimization process is
needed. One potential accelerating method is combining OS-
PWSQS with spatially non-uniform optimization transfer [59].

The PL cost function has two parameters, one regularizer
coefficient βl and one edge-preserving parameter δl for each
material. We found that the choice of parameters for one
material component influenced the reconstructed image of
another component. An appropriate combination of parameters
needs to be carefully determined for each application. Huh
and Fessler [60] used a material-cross penalty for DECT
reconstruction. This penalty used the prior knowledge that
different component images have common edges; this idea
could be used for MMD as well. Choosing regularizers for
the PL method and optimizing the parameters needs further
investigation.

Since the PL cost function is non-convex, good initialization
is important. We used the results of the ID method followed
by median filtering as the initialization of the PL method. The
median filtering decreased noise and RMS errors of the ID
images, but did not preserve the sum-to-one constraint that the
ID images satisfied. Even with this initialization the PL method
was able to converge to a good local minimum that is close
to the truth. As future work we will investigate image-domain
“statistical” reconstruction methods that are computationally
more practical than the PL method. Such methods could also
serve to initialize the PL method.

We used the contrast agent, omnipaque300, as a basis
material in this paper. Alternatively one can use diluted
contrast agent or iodine as basis materials. Future work would
investigate the effects of using various basis materials. Future
work also includes applying the PL method to real spectral
CT data, e.g., from fast-kVp switching DE scans, dual-source
scans, or dual-layer detectors, to decompose materials as
needed by the application.

APPENDIX A
SURROAGTE FUNCTION DERIVATIONS

This section describes derivation details of the surrogate
design in Section IV.

A. Convexity Proof

This section proves the convexity of him(sim). The gradient
of ȳim(sim) with respect to sim is

∇sim
ȳim(sim) = −

∫

Iim(E) e−µ(E) ·sim(x) µ(E) dE , (50)

and the Hessian is

∇2
sim

ȳim(sim) =

∫

Iim(E) e−µ(E) ·sim(x)µ(E)µ′(E) dE .

(51)
Since the Hessian matrix is positive-semidefinite, i.e.

∇2
sim

ȳim(sim) + 0, the function ȳim(sim) is convex.

The gradient of him(sim) with respect to sim is

∇sim
him(sim) =

1

ȳim(sim)
∇sim

ȳim(sim). (52)
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The Hessian of him(sim) is,

∇2
sim

him(sim)

=
1

ȳim(sim)

∫

Iim(E) e−µ(E) ·sim(x)µ(E)µ′(E) dE

−
1

ȳ2im(sim)

(
∫

Iim(E) e−µ(E) ·sim(x) µ(E) dE

)

·

(
∫

Iim(E) e−µ(E) ·sim(x) µ(E) dE

)′

=
zim(sim)

ȳim(sim)

∫

qim(E)µ(E)µ′(E) dE

−
z2im(sim)

ȳ2im(sim)

(
∫

qim(E)µ(E) dE

)

·

(
∫

qim(E)µ(E) dE

)′

+
z2im(sim)

ȳ2im(sim)

∫

qim(E)µ(E)µ′(E) dE

−
z2im(sim)

ȳ2im(sim)

(
∫

qim(E)µ(E) dE

)

·

(
∫

qim(E)µ(E) dE

)′

=
z2im(sim)

ȳ2im(sim)
Cov{µ(E)}

+ 0, (53)

where we define the following “probability density function”

qim(E)
!
=

Iim(E) e−µ(E) ·sim(x)

zim(sim)
, (54)

and used the fact that zim(sim) ≤ ȳim(sim) for the first
inequality. Since the Hessian matrix of him(sim) is positive-
semidefinite, him(sim) is a convex function of sim.

B. Derivation of Non-Separable Quadratic Surrogate

The section derives the non-separable quadratic surrogate in
Section IV-B2 in details.

The optimal curvature c̆(·;α) for f(x;α) derived in [52] is

c̆(x;α) =







[

2
1− e−x − x e−x

x2

]

+

, x > 0

1, x = 0.
(55)

Thus the optimal quadratic surrogate for f(x;α) is

q(x;x0,α)
!
= f(x0;α)+ḟ(x0;α)(x−x0)+

1

2
c̆(x0;α)(x−x0)

2,

(56)
where q(x;x0,α) ≥ f(x;α).

Substituting (56) into (24) leads to a non-separable quadratic

surrogate f (n)
2,im(sim) of f (n)

1,im(sim), i.e.,

f (n)
2,im(sim)

!
= C +

∫

Iim(E)
(

f
(

µ(E) ·s(n)im ; Y (n)
im e−µ(E) ·s(n)

im

)

+ ḟ
(

µ(E) ·s(n)im ; Y (n)
im e−µ(E) ·s(n)

im

)

µ(E) ·
(

sim − s
(n)
im

)

+
1

2
c̆(n)im (E)

(

µ(E) ·
(

sim − s
(n)
im

))2 )

dE , (57)

where c̆(n)im (E) is defined in (28). Because f (n)
2,im(sim) is a

quadratic function of sim, one can rewrite it as (26).

C. Derivation of Pixel-Wise Separable Quadratic Surrogate

This section derives the pixel-wise separable quadratic sur-
rogate in Section IV-B3.

We rewrite the sinogram vector as

sim(x) =

Np
∑

j=1

amijxj

=

Np
∑

j=1

πmij





amij

πmij
(xj − x

(n)
j ) +

Np
∑

j=1

amijx
(n)
j



 ,

(58)

provided
∑Np

j=1 πmij = 1 and πmij is zero only if amij is
zero. If the πmij’s are nonnegative, then we can apply the

convexity inequality to the quadratic function f (n)
2,im(sim(x))

defined in (26) to write

f (n)
2,im(sim(x))

= f (n)
2,im





Np
∑

j=1

πmij





amij

πmij
(xj − x

(n)
j ) +

Np
∑

j=1

amijx
(n)
j









≤

Np
∑

j=1

πmijf
(n)
2,im(bmij(xj)) , (59)

where bmij is defined in (32).

The value of L(n)
3 evaluated at x(n) is

L(n)
3 (x)

∣

∣

∣

x=x(n)
=

Np
∑

j=1

f (n)
3,j

(

x
(n)
j

)

=
Nd
∑

i=1

M0
∑

m=1

f (n)
2,im

(

sim

(

x(n)
))

=
Nd
∑

i=1

M0
∑

m=1

tim
(

sim

(

x(n)
))

= L̄(x)
∣

∣

x=x(n) . (60)

The column gradient of L(n)
3 has elements xlj

∂

∂xlj
L(n)
3 (x)

∣

∣

∣

∣

xj=x
(n)
j

=
∂

∂xlj
f (n)
3,j (xj)

∣

∣

∣

∣

xj=x
(n)
j

=
Nd
∑

i=1

M0
∑

m=1

amij ḟ
(n)
2,im





Np
∑

j=1

amijx
(n)
j





=
Nd
∑

i=1

M0
∑

m=1

amij ṫim





Np
∑

j=1

amijx
(n)
j





=
∂

∂xlj
L̄(x)

∣

∣

∣

∣

xj=x
(n)
j

. (61)
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The “matched function value” and “matched derivative” prop-
erties are inherent to optimization transfer methods [51].

The Hessian D
(n)
L̄,j

!
= ∇2f (n)

3,j (x) has elements

[

D
(n)
L̄,j

]

lk
=

∂2

∂xlj ∂xkj
f (n)
3,j (xj)

=
Nd
∑

i=1

M0
∑

m=1

amij
∂2

∂xlj ∂xkj
f (n)
2,im(bmij(xj))

=
Nd
∑

i=1

M0
∑

m=1

a2mij

πmij

[

C̆
(n)
im

]

lk
, (62)

where C̆
(n)
im is defined in (28).
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1 Generalized Sequential Minimization Algorithm (GSMO) for Optimiza-

tion with Given Material Types

The Generalized Sequential Minimization Algorithm (GSMO) [1] was proposed originally for solving

quadratic programming problems arising in support vector machines. The GSMO is derived using Karush-

Kuhn-Tucker (KKT) conditions, guaranteed to converge and significantly faster than the original SMO [1].

For simplification of notation, we drop the notations on iteration (n), pixel index j and material triplet

ω, and write the quadratic optimization problem with constraints in equation (47) of this paper as

x̂ = argmin
x

φ(x)

φ(x) ≡
1

2
x′Hx+ p′x

s.t.

{

∑

L

l=1
xl = 1,

al ≤ xl ≤ bl.
(1)

Table 1 summarizes the pseudo-code of GSMO for solving (1). Please refer to the original GSMO publica-

tion [1] for details and derivations of this algorithm. The algorithm is available in the image reconstruction

toolbox online [2].

2 Supplementary Figures

Fig. 1 shows the fraction images reconstructed by the ID method [3] without median filtering. Fig. 2, Fig. 3,

Fig. 4 and Fig. 5 show profiles of reconstructed fat, blood, bone and air component fraction images by the

filtered ID method and the PL method.
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1. Choose a tolerance parameter τ > 0.

2. Initialize k = 0 and x̂(0) ∈ F where F denotes the feasible set of (1).

3. Repeat

(a) Compute derivatives of φ
(

x̂(k)
)

F
(k)
l =

[

Hx̂(k) + p
]

l

(b) Update the following index sets

I
(k)
0 =

{

l : al <
[

x̂(k)
]

l
< bl

}

, I
(k)
1 =

{

l : al =
[

x̂(k)
]

l

}

, I
(k)
2 =

{

l : bl =
[

x̂(k)
]

l

}

I(k)
up = I

(k)
0 ∪ I

(k)
1 , I

(k)
low = I

(k)
0 ∪ I

(k)
2

(c) Find the most τ -violating index pair (m,n) as

m = m(k) = argmin
l∈I

(k)
up

F
(k)
l , n = n(k) = argmax

l∈I
(k)
low

F
(k)
l

(d) Minimize φ(x̂) on F while varying only (xm, xn) and update them with the minimizer.

x̂(k+1)
m = x̂(k)

m + t, x̂(k+1)
n = x̂(k)

n − t,

where

t = min

(

max

(

F
(k)
m − F

(k)
n

[H ]mm + [H ]nn − 2 [H ]mn

, t1

)

, t2

)

,

t1 = max
(

am − x̂(k)
m , x̂(k)

n − bn

)

, t2 = min
(

bm − x̂(k)
m , x̂(k)

n − an

)

(e) k = k + 1

Until x̂
(k)
j (ω) satisfies the KKT condition

min
l∈I

(k)
up

F
(k)
l ≥ max

l∈I
(k)
low

F
(k)
l − τ

4. Minimizer x̂ = x̂(k)

Table 1: Pseudo-code of GSMO for solving the quadratic optimization problem with constraints in (1).
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Figure 1: Reconstructed volume fractions of five component images and VUE image at 70 keV by the ID

method. The volume fractions are in the range of [0, 1] and the monoenergetic image is displayed over [800,

1200] with the shifted Hounsfield unit (HU) scale where air is 0 HU and water is 1000 HU.
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Figure 2: Fat component fraction images reconstructed by the filtered ID method (upper center) and the PL

method (upper right). The upper left image is the down-sampled true image. The lower image shows the

horizontal profiles through the red line in the down-sampled true image.
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Figure 3: Zoom-in blood component fraction images reconstructed by the filtered ID method (upper center)

and the PL method (upper right). The upper left image is the down-sampled true image. The lower image

shows the horizontal profiles through the red line in the down-sampled true image.
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Figure 4: Cortical bone component fraction images reconstructed by the filtered ID method (upper center)

and the PL method (upper right). The upper left image is the down-sampled true image. The lower image

shows the vertical profiles through the red line in the down-sampled true image.
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Figure 5: Air component fraction images reconstructed by the filtered ID method (upper center) and the PL

method (upper right). The upper left image is the down-sampled true image. The lower image shows the

horizontal profiles through the red line in the down-sampled true image.

7



[2] J. A. Fessler. Matlab tomography toolbox, 2004. Available from

http://www.eecs.umich.edu/∼fessler.

[3] P. R. S. Mendonca, P. Lamb, and D. Sahani. A flexible method for multi-material decomposition of

dual-energy CT images. IEEE Trans. Med. Imag., 33(1):99–116, January 2014.

8




