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Abstract—The ordered subset expectation maximization
(OSEM) algorithm approximates the gradient of a likelihood
function using a subset of projections instead of using all pro-
jections so that fast image reconstruction is possible for emission
and transmission tomography such as SPECT, PET, and CT.
However, OSEM does not significantly accelerate reconstruction
with computationally expensive regularizers such as patch-based
non-local (NL) regularizers, because the regularizer gradient is
evaluated for every subset. We propose to use variable splitting
to separate the likelihood term and the regularizer term for
penalized emission tomographic image reconstruction problem
and to optimize it using the alternating direction method of
multiplier (ADMM). We also propose a fast algorithm to optimize
the ADMM parameter based on convergence rate analysis.
This new scheme enables more sub-iterations related to the
likelihood term. We evaluated our ADMM for 3D SPECT image
reconstruction with a patch-based NL regularizer that uses the
Fair potential function. Our proposed ADMM improved the
speed of convergence substantially compared to other existing
methods such as gradient descent, EM and OSEM using De
Pierro’s approach, and the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) algorithm.

Index Terms—ordered-subset expectation-maximization, non-
local regularizer, emission tomography, alternating direction
method of multiplier

I. INTRODUCTION

INCORPORATING noise models in tomographic image

reconstruction can improve image quality. However, unlike

analytical image reconstruction methods such as filtered back-

projection (FBP), statistical image reconstruction methods

such as the expectation-maximization (EM) algorithm [1],

often require gradient-based iterative algorithms. Since the

gradient of a likelihood function should be evaluated at each

iteration, these algorithms (including EM) are undesirably

slow.

Statistical image reconstruction for emission tomography

started to be used widely in clinics and in commercial scanners
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after the fast algorithm called ordered-subset expectation-

maximization (OSEM) was developed [2]. The main idea

was to speed up gradient computation by approximating it

using a subset of projections instead of using all projections

(ordered-subset or OS approximation). This approximation

has been used for unregularized emission tomographic image

reconstruction [2] and regularized emission and transmission

tomographic image reconstruction with simple quadratic or

edge-preserving regularizers [3]. Since the computation cost

for these regularizers is fairly low compared to that for the

likelihood term, OS algorithms that approximate the gradient

of the likelihood term often speed up penalized likelihood (PL)

image reconstruction, too.

Recently, non-local (NL) regularizers have been proposed

that improve image quality substantially compared to con-

ventional regularizers such as quadratic or edge-preserving

functions in image deconvolution [4], emission image re-

construction with convex functions [5], [6], and MRI image

reconstruction with non-convex functions [7]. NL regularizers

have been extended to use high-resolution CT or MRI side in-

formation for emission and super-resolution image reconstruc-

tion for further improvement of image quality [8]–[11]. For

emission tomography problems such as [6], [9]–[11], various

optimization algorithms were used for image reconstruction

such as gradient descent (GD) [10], EM (or OSEM) algorithm

based on optimization transfer using De Pierro’s lemma [6],

the EM algorithm using one-step late approach [11], and the

quasi-Newton algorithm called the Limited-memory Broyden-

Fletcher-Goldfarb-Shanno with a Box constraint (L-BFGS-

B) [9]. They showed promising improvement of image quality,

but their algorithms were undesirably slow since the computa-

tion cost of the NL regularizers can be comparable to or even

higher than that of the likelihood. Therefore, the OS approx-

imation does not significantly accelerate the convergence rate

of existing PL image reconstruction algorithms with these NL

regularizers.

In this paper, we propose to use variable splitting to separate

the likelihood term and the regularizer term for PL image

reconstruction problem and to optimize it using the alternat-

ing direction method of multipliers (ADMM) [12]. We also

propose a fast algorithm to optimize the ADMM parameter

based on convergence rate analysis that was extended from

the work of Ghadimi et al. with quadratic data fitting and

regularizer terms [13]. There are existing methods that use

variable splitting for the data fidelity term and the regularizer

term [4], [14]–[16]. These previous methods address non-

smooth regularizers such as total variation (TV). A sub-

problem with non-smooth regularizers can be solved quickly
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by using efficient proximal operators such as shrinkage. Our

proposed variable splitting has different motivation. We divide

the original optimization into a few sub-problems and we

solve the sub-problem related to the likelihood term using OS

approximation and we update the sub-problem related to the

NL regularizer less often.

We evaluated our new ADMM for 3D SPECT image

reconstruction with a patch-based convex NL regularizer that

uses the Fair potential [6]. Our simulation using the XCAT

phantom [17] shows that our proposed ADMM for image

reconstruction with NL regularizers accelerated convergence

substantially compared to existing methods such as GD,

EM and OSEM using De Pierro’s approach [3], and the L-

BFGS-B algorithm [18]. This paper is organized as follows.

Section II reviews statistical image reconstruction in emission

tomography, OS approximation, and various NL regularizers.

Section III proposes an efficient method for NL regularized

image reconstruction by using variable splitting and ADMM.

Section IV proposes an analytical method to select auto-

matically a suitable ADMM parameter for fast convergence

rate. Lastly, Section V presents 3D SPECT simulation results

with the XCAT phantom [17] for an application in I-131

radioimmunotherapy (RIT) [19].

II. IMAGE RECONSTRUCTION WITH NL REGULARIZERS

A. Statistical image reconstruction for tomography

The usual form of statistical image reconstruction is to

perform the following optimization with respect to an image

f :

f̂ , argmin
f≥0

L(y|f) + βR(f) (1)

where y is a measured sinogram data, L denotes a negative

log-likelihood function, β is a regularization parameter, and R
is a regularizer.

For emission tomography, the negative Poisson log-

likelihood is

L(y|f) =
∑

l∈Ω

ȳl(f)− yl log ȳl(f) (2)

where yl is the lth element of the measurement y, Ω is the

set of indices of all measurements, and ȳl(f) ,
∑

j aljfj+sl
where alj is the element of the system matrix A at the lth
row and the jth column, fj is the jth element of the image

vector f , and sl is a random and scatter component for the

lth measurement. We focus on SPECT imaging where we

incorporate an attenuation map and a depth-dependent point

spread function model including penetration tails [20] in the

system matrix A. We assume known sl; in practice, this scatter

component can be estimated by using a triple energy window

(TEW) method or by Monte Carlo methods [21].

B. Ordered-subset approximation

Iterative image reconstruction algorithms for (1) usually

require calculating the gradient of L(y|f) and R(f) at every

iteration. The gradient is evaluated at f (n) where f (n) is an

estimate of f at the nth iteration. These algorithms include

GD, EM [1], and L-BFGS-B [18]. Calculating the gradient of

typical R(f) such as quadratic or edge-preserving regularizers

is very fast. Evaluating the gradient of L(y|f) is much

slower since this requires one forward projection and one back

projection of A for each iteration.

OS methods [2] approximate the gradient of L(y|f) at f (n)

with the gradient of Lk(y|f) at f (n+k/K) where

Lk(y|f) , K
∑

l∈Ωk

ȳl(f)− yl log ȳl(f), (3)

Ωk are mutually exclusive, Ω = ∪kΩk, and k = 1, · · · , K .

Evaluating the OS approximated gradient in (3) is about K
times faster than calculating the original gradient in (2). In this

way, OSEM achieves faster image reconstruction. Note that

OS methods with a fixed K > 1 do not guarantee convergence,

but yield approximate PL images.

C. Non-local regularizers

Recently, many researchers have formed high-quality im-

ages in many image reconstruction problems by replacing

R(f) in (1) with a NL regularizer [4]–[7]. A typical NL

regularizer looks like

R(f) ,
∑

i,j∈Si

pij
(

‖Nif −Njf‖
2
)

(4)

where pij(t) is a function of a scalar variable t, ‖ · ‖ is the

ℓ2 norm, Si is the search neighborhood around the ith voxel

(usually the set of all voxels within a fixed ℓ∞ distance from

the ith voxel), and Ni is an operator on the image f such

that Nif is a vector of image intensities of all voxels within

a fixed ℓ∞ distance from the ith voxel (cube-shaped patch).

A typical choice for the function pij is [4], [5]

pij(t) =
wi,j(f̃ )

2Nf
t (5)

where Nf is the number of voxels in the patch Nif (assuming

that the patch size is the same for all i), a weighting function

is

wi,j(f) = exp

(

−
‖Nif −Njf‖

2

2Nfσ2
f

)

, (6)

and σf is a design parameter. For the image f̃ , Lou et al.

used an initial image from any analytical image reconstruction

(e.g., FBP) [5] and Zhang et al. used an estimated image

from the previous iteration f (n−1) so that pij(t) changes over

iterations [4].

Yang et al. used a few non-convex potentials including the

Welsh potential [22]

pij(t) = σ2
f

(

1− exp

(

−
t

2Nfσ2
f

))

(7)

and showed that using (7) is equivalent to using (5) with an

estimated value f (n−1) for f̃ at the nth iteration [7]. Wang et

al. used the Fair potential [23], [24]

pij(t) = σ2
f

(√

t

σ2
f Nf

+ log

(

1 +

√

t

σ2
f Nf

))

. (8)
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Both (7) and (8) do not depend on an initial image and (8) is

convex while (7) is non-convex. It has been reported that non-

convex functions yielded better image quality than a convex

function [7].

One can also design NL regularizers that incorporate high-

resolution side information such as CT or MR images [9]–[11]

to further improve image quality. One way to incorporate high-

resolution side information into the NL regularizer is to use

the following type of NL regularizer [10]:

pij(t) =
wi,j(f

(n−1))vi,j(g)

2Nf
t (9)

where

vi,j(g) = exp

(

−
‖Mig −Mjg‖

2

2Naσ2
a

)

, (10)

g is a high-resolution image such as MR or CT, Mi is an

operator on the image g such that Mig is a vector of image

intensities in a patch around the ith voxel, Na is the number of

voxels in the patch Mig, and σa is another design parameter.

Another NL regularizer incorporating high resolution side

information is [9]

pij(t) =
wi,j(f

(n−1)) + vi,j(g)

4Nf
t. (11)

All of these NL regularizers are computationally expensive

due to the calculation of (6) at each iteration. The gradients of

both L(y|f) and R(f) should be evaluated at each iteration

for optimization. Using OS approximations of the gradient of

L(y|f) does not improve the speed of convergence much since

one can not use OS approximations for R(f) so the gradient

of R(f) must be evaluated at each sub-iteration.

III. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

A. ADMM for NL regularization

To benefit from an OS approximation for L(y|f), while

avoiding heavy computation of the gradient of R(f) at each

sub-iteration, we split the variable for the likelihood term

and the regularizer term by replacing (1) with the following

equivalent constrained optimization problem:

f̂ , argmin
f≥0,u

L(y|f) + βR(u), subject to u = f . (12)

The augmented Lagrangian for (12) is

L(y|f)+βR(u)+
µ

2
‖f −u−d‖2, subject to f ≥ 0 (13)

where µ is a scalar value (design parameter) and d is a

Lagrangian multiplier vector. We need to find a saddle point

of the augmented Lagrangian (13).

We solve (13) using the ADMM algorithm [25], [26] as

follows:

For n =1 , 2 , · · ·

u(n) ∈ argmin
u

µ

2
‖u− f (n−1) + d(n−1)‖2 + βR(u)

f (n) = argmin
f≥0

L(y|f) +
µ

2
‖f − u(n) − d(n−1)‖2

d(n) = d(n−1) − (f (n) − u(n))

End .

(14)

(15)

(16)

For convex R, this ADMM algorithm is guaranteed to con-

verge for any µ > 0 [26]. We can solve the sub-problems of

(14) and (15) using any existing method. One need not solve

the sub-problems exactly to guarantee the convergence of the

ADMM algorithm [26, Theorem 8].

B. Optimization for the sub-problem (14)

We used the GD algorithm to solve (14) as follows:

u(n+1) = u(n) − α(n)∇Φ(n)(u(n)) (17)

where α is a step size and

Φ(n)(u) ,
µ

2
‖u− f (n) + d(n)‖2 + βR(u). (18)

We plug (17) into (14) to determine the step size as follows:

α(n) = argmin
α

φ(n)(α) (19)

where

φ(n)(α) , Φ(n)(u(n) − α∇Φ(n)(u(n))). (20)

The gradient of Φ(n)(u) is

∇Φ(n)(u) = µ(u− f (n) + d(n)) + β∇R(u) (21)

where

∇R(u) =
∑

i,j∈Si

2ṗij
(

‖Niu−Nju‖
2
)

·(Ni −Nj)
′(Ni −Nj)u (22)

and ṗij(t) is the derivative of pij(t). Since solving (19) is an

intermediate step of solving (14), we do not need to find an

exact α value to minimize (19). We chose to use one step of

Newton’s method for (19) as follows [27]:

α(n) = −
φ̇(n)(0)

φ̈(n)(0)
(23)

where φ̇(n)(α) and φ̈(n)(α) are the first and second derivatives

of φ(n)(α) with respect to α:

φ̇(n)(0) = −‖∇Φ(n)
u ‖2 (24)

where ∇Φ
(n)
u , ∇Φ(n)(u(n)) and

φ̈(n)(0) ≈ ∇Φ(n)
u

′
(

µ∇Φ(n)
u +∇R(∇Φ(n)

u )
)

. (25)

We approximate φ̈(n)(α) by excluding the second derivative

of p(t) as suggested in [28, p. 683].

C. Optimization for the sub-problem (15)

One can solve (15) using any statistical image reconstruction

algorithms with a slight modification for a shifted quadratic

regularizer. OS approximation can be usually used to speed

up convergence rate. Using this splitting, one may focus

more computational resources on solving the sub-problem

(15) instead of solving the sub-problem (14) so that one may

achieve faster overall convergence rate.
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We modified De Pierro’s EM algorithm [3] for (15) by con-

sidering a simple shifted quadratic regularizer. The surrogate

function for the likelihood term in (15) is

L(y|f) ≤
∑

j

Q̃j(fj |f
(n−1)) (26)

where Q̃j(fj |f
(n−1)) is a surrogate function that can be found

in [3] and [6]. We use a surrogate function Qj(fj |f
(n−1)) that

is equivalent to Q̃j(fj |f
(n−1)) by omitting the terms that are

independent of fj as follows:

Qj(fj |f
(n−1)) = ajfj − ej(f

(n−1))f
(n−1)
j log(fj) (27)

where

aj =
∑

l

alj

and

ej(f) =
∑

l

alj
yl

ȳl(f)
. (28)

Note that Q̃j(fj |f
(n−1)) and Qj(fj |f

(n−1)) are minimized at

the same fj .

The regularizer in (15) is separable in the image domain:

µ

2
‖f −u(n)−d(n−1)‖2 =

∑

j

µ

2
(fj −u

(n)
j −d

(n−1)
j )2. (29)

Therefore, one must minimize the following surrogate function

to solve the sub-problem in (15):

Qj(fj |f
(n−1)) +

µ

2
(fj − u

(n)
j − d

(n−1)
j )2 (30)

for all j. Differentiating (30) with respect to fj and setting

it to be zero leads to the following second order polynomial

with respect to fj

µf2
j +

(

aj − µ(u
(n)
j + d

(n−1)
j )

)

fj

−ej(f
(n−1))f

(n−1)
j = 0. (31)

The nonnegative root of (31) is the minimizer of (30). This

root always exists because ej(f
(n−1)) and f

(n−1)
j are non-

negative [29].

An OS approximation for this modified De Pierro’s al-

gorithm can be easily done by substituting the most time-

consuming part (28) in (15) at each iteration with the following

approximate term

ej(f) ≈ K
∑

l∈Ωk

alj
yl

ȳl(f)
. (32)

This new term (32) requires about K times less computation

than the term (28) does. Since calculating (28) dominates the

overall calculation of (31) for each iteration, OS approximation

for (15) substantially reduces the computation time per update.

In this Section, we proposed to use variable splitting and

ADMM for efficient computation of NL regularized image

reconstruction in (14), (15), and (16). We also described

detailed algorithms for each sub-problem: gradient descent

with one step of Newton’s method for (14) and modified De

Pierro’s OSEM algorithm for (15). Even though our proposed

ADMM algorithm for convex R guarantees to converge for any

µ, the parameter µ in (13) affects convergence rate. In the next

Section, we propose a method to optimize µ automatically.

IV. PARAMETER SELECTION FOR ADMM

A. Ideal ADMM update and approximation

Ghadimi et al. optimized µ in ADMM for ℓ2-regularized

minimization with a quadratic data fitting term [13]. We

generalize and extend their analysis to optimize µ for our case

of having NL regularizers with the negative Poisson likelihood

term.

Let us derive the ‘ideal’ ADMM update for (14), (15), and

(16). Using the gradient of (14) with respect to u, the first

update for (14) at the nth iteration is

u(n) =

[

I +
β

µ
R(u(n−1))

]−1

(f (n−1) − d(n−1)) (33)

where the approximate Hessian of (4) is

R(u) ,
∑

i,j∈Si

2ṗij
(

‖(Ni −Nj)u‖
2
)

(Ni−Nj)
′(Ni−Nj).

We used the GD algorithm in (17) since (33) is impractical.

Similarly, using the gradient of (15) with respect to f and

ignoring the non-negative constraint for f , “ideally” the update

for (15) at the nth iteration is

f (n) =
[

A′W (n−1)A+ µI
]−1

(34)

×(A′W (n−1)(y − s) + µu(n) + µd(n−1))

where

W (n−1) , D(1/ȳl(f
(n−1))).

Because (34) is impractical, we used De Pierro’s EM algorithm

in (31). We can use (16) itself as the third ‘ideal’ ADMM

update at the nth iteration.

To facilitate the analysis using these ideal ADMM updates

(33), (34), and (16), we need to fix R(u(n−1)) and W (n−1)

for all iterations or for all n. We conjecture that we can set

u(n−1) = f (n−1) = f̂ init for R(u(n−1)) and W (n−1) so that

we can fix

R , R(f̂ init) (35)

and

W , D(1/ȳl(f̂
init)). (36)

We used these approximations only for selecting µ. The initial

image f̂ init can be anything like the FBP image or the

reconstructed image using the OSEM with a few iterations.

For the results in Section V, we used the reconstructed image

using unregularized OSEM with 5 iterations (6 subsets). Please

see Appendix A for technical details for the approximation of

(35) and (36).

B. Nearly optimal ADMM parameter

To study the convergence rate, we need to derive the update

equation of f (n) in terms of f (n−1). Here, we generalize the

approach of [13] for our ‘ideal’ ADMM update equations for

(14), (15), and (16).

First, rearrange (34) with (36) and use it for (16). Then,

(16) becomes

d(n) =
1

µ
A′W

[

Af (n) + s− y
]

(37)
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and this also works for n−1. Secondly, we use (37) with n−1
for (14) with (35) to obtain

u(n) =

[

I +
β

µ
R

]−1(

I −
1

µ
A′WA

)

f (n−1) + c (38)

where c is a constant vector. Lastly, combining (37) (with

n− 1), (38), and (34) (with (36)) yields

f (n) = Sµf
(n−1) + c̃ (39)

where c̃ is a constant vector and

Sµ , [H + µI]
−1

[βR + µI]
−1 (

βRH + µ2I
)

(40)

where H , A′WA.

With the goal of approximately optimizing the convergence

rate, we choose the ADMM parameter µ as follows:

µ∗ = argmin
µ

ρ(Sµ) (41)

where ρ(Sµ) is the spectral radius of the matrix Sµ, which

is the maximum eigen value of the matrix Sµ. However, it is

very challenging to find eigen values for large matrices such

as Sµ and it is also infeasible to find the matrix Sµ itself

due to the inversion of large matrices such as H + µI and

βR + µI.

To make the problem (41) tractable, we approximately

optimize the ADMM parameter µ for the center of the image

and use that parameter everywhere else. We approximate

H and R as being locally circulant around that local area;

a similar assumption often is used when analyzing spatial

resolution properties [30], [31]. Then, the eigen value of the

matrix Sµ for the pth eigen vector (or the pth discrete Fourier

basis) becomes

λp(Sµ) =
βrphp + µ2

(hp + µ)(βrp + µ)
(42)

where rp and hp are the eigen values of R and H for the

corresponding pth eigen vector, respectively. Then, our choice

for the ADMM parameter µ is

µo = argmin
µ∈Λ

max
p

λp(Sµ). (43)

Unlike the case in [13], it is not easy to find the analytical

solution for (43). Instead, we can quickly solve the problem

(43). We find rp and hp for all p using the Fast Fourier Trans-

form (FFT) of R1c and H1c, respectively, where 1c is a unit

vector where the element of 1c is one at the center voxel of the

image and zero otherwise. Then, we calculated maxp λp(Sµ)
for a finite set of µ values on Λ = [0,maxp

√

βrphp], and

then obtain µo from maxp λp(Sµ). Since λp(Sµ) is a non-

decreasing function of µ for µ >
√

βrphp, µo must be less

than or equal to maxp
√

βrphp. The computational cost for

evaluating maxp λp(Sµ) is linear in the number of voxels.

This procedure is fast since it is parallelizable. One can speed

up this procedure using coarse-to-fine approach. One could

also use the Golden section search [28, p. 397] to find µo to

minimize maxp λp(Sµ).

V. RESULT

A. Simulation setup

We simulated the Siemens Symbia Truepoint 3D SPECT

system with high energy collimators (parallel hexagonal col-

limators with a septal thickness of 2 mm, a hole diameter

of 4 mm, and a hole length of 59.7 mm) with a non-

uniform attenuation map, depth-dependent collimator-detector

response [20], and scatter component (128 × 21, 4.82mm2

pixel size). The system resolution at 10 cm was 13.4 mm and

60 views were collected around 360◦. We used the XCAT

phantom [17] to generate the true SPECT image with activity

distributions realistic for I-131 RIT. The dimension of the

SPECT image was 128×128×21, 4.83mm3 voxel size. Three

spherical lesions were placed within the XCAT phantom with

volumes 176 cc, 32 cc, and 9 cc as shown in the bottom-

right figure of Fig. 4 (a) or (b). Poisson noise was added after

scaling the projections to the count-level corresponding to day

2 post-therapy in I-131 RIT (about 600K total counts per slice

with about 300K scatter counts per slice).

We set the common regularization parameters for all opti-

mization methods as follows: β = 2−13, σf = 21.5, the patch

size 3×3×3, and the search neighborhood size 7×7×7. Six

subsets were used for OSEM and ADMM. ADMM separates

the likelihood update and the regularizer update by splitting

and we chose to run more sub-iterations for the likelihood

update (2 outer-iterations ×6 subsets) than for the regularizer

update (1 outer-iteration). We used 6 threads for computation

(Intel Core i7 2.8GHz) for all methods and they used the same

compiled ANSI C99 code to evaluate the cost function and the

gradient of the cost function. We measured the normalized

root mean square error (RMSE) over the whole image at each

(outer) iteration:

RMSE =
‖f̂ − fTRUE‖

‖fTRUE‖
. (44)

B. Parameter selection

There are parameters to tune for each optimization method.

We selected the step size for GD and the number of past

estimated images for hessian approximation of L-BFGS-B. We

chose those values to yield the fastest convergence rate empir-

ically: the step size for GD was 0.04 and the number of past

estimated images for L-BFGS-B was 5. In our experiment, not

shown here, the step size for GD was critical for convergence.

GD diverged with too large step size and GD converged slowly

with too small step size. However, the number of past images

used for L-BFGS-B did not affect convergence rate much.

We selected the ADMM parameter µ using (43). We first

obtained maxp λp(Sµ) for µ = 0, 0.0001, 0.0002, · · · , 0.2125
as shown in Fig. 1 where maxp

√

βrphp = 0.2125. Based

on this plot, we chose the ADMM parameter µ to be 0.0106,

which is the red star mark (*) in Fig. 1.

We evaluated the ADMM convergence rate as a function

of µ empirically. Fig. 2 shows that our choice of ADMM

parameter µ = 0.0106 achieved reasonably fast convergence

compared to other choices of µ. Too large µ such as µ =
0.1250 (green square mark) yielded slower convergence rate
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and too small µ value such as µ = 0.0005 (magenta triangle

mark) resulted in fluctuating tails. Due to the approximations

such as local shift invariance and fixing some matrices like R

and W , we can not claim that our choice of µ is optimal, but

Fig. 2 suggests that our choice is adequate for fast convergence

of ADMM.

C. Simulation results for NL regularization

We reconstructed images using different optimization algo-

rithms for the cost function (1) with the (convex) Fair potential

(8).

Fig. 3 shows the plots of RMSE values versus computa-

tion time for different methods: GD, EM and OSEM using

De Pierro’s lemma, L-BFGS-B, and proposed ADMM. EM

yielded faster convergence rate than GD with fixed step size.

OSEM does improve convergence speed as compared to EM,

but it provides little acceleration due to computationally expen-

sive NL regularizer calculation for all sub-iterations. L-BFGS-

B yielded similar convergence rate to OSEM with 6 subsets.

Our proposed ADMM substantially improved convergence

speed over all other methods. Other methods did not reach the

minimum RMSE before 2000 seconds, but ADMM achieved

the minimum RMSE before 1000 seconds. These simulation

results illustrate that repeated likelihood updates are more

important for fast convergence than regularizer updates.

Fig. 4 (a) and (b) show reconstructed images by different

methods at 500 and 1000 seconds and the true image for NL

regularization with the Fair potential. At this early time of 500

seconds, ADMM yielded the best contrast recovery among

all other methods. As time goes by (at 1000 seconds), other

methods also started to yield similar images to that of ADMM

since all optimization methods minimize the almost same cost

function. However, they may not be exactly the same due to

the OS approximation.

Fig. 5 (a), (b) and (c) show recovery coefficients of different

methods over time when using the Fair potential. The larger

the lesion is, the faster it approached to the achievable RC

value. Note that we did not optimize NL regularizer parameters
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Fig. 1. The plot of maxp λp(Sµ) for µ = 0, 0.0001, 0.0002, · · · , 0.1. The
red star (*) denotes our choice of µo.

0 500 1000 1500 2000

0.3

0.32

0.34

0.36

0.38

0.4

time (sec)

R
M

S
E

 

 
µ = 0.1250
µ = 0.0312
µ = 0.0106
µ = 0.0020
µ = 0.0005

Fig. 2. RMSEs of estimated images over time using ADMM with different
µ values. The automatically selected value (µ = 0.0106, red star *) yielded
relatively fast convergence rate of ADMM compared to other choices of µ.

such as σf and one may achieve better RC for smaller lesions

like 9 cc than that in Fig. 5 (c).

VI. DISCUSSION

We developed a new algorithm for tomography with com-

putationally expensive NL regularizers using ADMM. We

also proposed a method to determine automatically a suitable

µ value for fast convergence rate. By combining with the

OS approach, our proposed ADMM approached convergence

much faster than existing methods such as GD, EM and OSEM

using the De Pierro lemma, and L-BFGS-B. Since it seems

more important to update the likelihood part frequently, our

ADMM yielded faster convergence. Since the cost function

has both the likelihood term and the regularization term,

increasing the number of iterations for the likelihood term did

not always further accelerate convergence. We chose a good

combination of iterations for both terms empirically. Similarly,
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Fig. 3. RMSEs of estimated images using different algorithms versus time
for NL regularization with the Fair potential. Proposed ADMM showed faster
convergence rate than other methods.
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GD EM (De Pierro) OSEM (De Pierro)

L−BFGS−B ADMM True

(a) 500 seconds

GD EM (De Pierro) OSEM (De Pierro)

L−BFGS−B ADMM True

(b) 1000 seconds

Fig. 4. Estimated images of different methods at 500 and 1000 seconds and
the true image for the case of the Fair potential. ADMM yielded the best
contrast recovery among all other methods.

one could use an approximate gradient for the NL regularizer

to reduce computation, but in our simulation not shown here,

our ADMM outperformed this approximation.

In this paper, we minimized the same NL regularized cost

function (the Fair potential) as Wang et al. did [6]. Whereas

Wang et al. used De Pierro’s algorithm with the surrogate

function of their NL regularizer, we use De Pierro’s algorithm

with a shifted quadratic regularizer, which requires far less

computation. Zhang et al. also applied a splitting approach to

the optimization problem with NL regularizers [4]. However,

their motivation for splitting was to apply shrinkage operator

to the non-smooth potential function such as TV. In addition,

our way of splitting in (12) was different from theirs. Xu et al.

used the same type of splitting as ours for the case of using

non-smooth regularizer [16]. They used a similar formula for

the sub-problem of (15) except a Lagrangian multiplier vector,

but their motivation was to deal with non-smooth regularizer

rather than to deal with computation-intensive NL regularizer.

Our approach to optimizing µ was based on ‘ideal’ updates.

In other words, we assumed fully converged images for sub-

iterations of (14) and (15). Nevertheless, our optimized µ
worked well even for sub-iterations that did not converge fully.

This may be because a few sub-iterations yielded good approx-

imations of fully converged images for the sub-problems (14)

and (15).

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

time (sec)

R
ec

ov
er

y 
C

oe
ffi

ci
en

t (
R

C
)

Lesion (176 cc)

 

 

GD
EM (De Pierro)
OSEM (De Pierro)
L−BFGS−B
ADMM

(a) 176 cc

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (sec)

R
ec

ov
er

y 
C

oe
ffi

ci
en

t (
R

C
)

Lesion (32 cc)

 

 

GD
EM (De Pierro)
OSEM (De Pierro)
L−BFGS−B
ADMM

(b) 32cc

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

time (sec)

R
ec

ov
er

y 
C

oe
ffi

ci
en

t (
R

C
)

Lesion (9 cc)

 

 

GD
EM (De Pierro)
OSEM (De Pierro)
L−BFGS−B
ADMM

(c) 9cc

Fig. 5. Recovery coefficients for different size lesions over time when using
the Fair potential. ADMM yielded the best recovery coefficients among all
other methods.

The proposed method worked well for SPECT image re-
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construction with the patch-based convex Fair potential func-

tion [6]. Our proposed method can be easily extended to other

computationally expensive NL regularizers [4], [5], [7] and

NL regularizers that use high-resolution side information [9]–

[11] for both emission and transmission tomography. Even

though ADMM works only with convex cases theoretically,

our proposed ADMM can be a practical method for many non-

convex NL regularizers. Improving image quality with proper

regularizers and appropriate regularization parameter selection

using our fast ADMM algorithm will be an important and

interesting future work.

APPENDIX A

APPROXIMATION FOR IDEAL ADMM UPDATE

For R, even though f̂ init and u(n−1) differ substantially,

the patch selection operator Ni − Nj and the ℓ2 norm

can make this difference much smaller. Therefore, it seems

reasonable to use the approximation (35). For W , this type

of approximation in (36) has been used in different gradient-

based analysis such as mean-variance analysis [32], spatial

resolution analysis [30], [31], and noise analysis [33]. Even

though there may be non-negligible difference between f̂ init

and f (n−1), the approximation A′WA ≈ A′W (n−1)A still

holds fairly well. Thus, it also seems reasonable to use the

approximation (36).
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