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Abstract—Magnetic resonance image (MRI) reconstruction
from undersampled k-space data requires regularization to
reduce noise and aliasing artifacts. Proper application of regu-
larization however requires appropriate selection of associated
regularization parameters. In this work, we develop a data-driven
regularization parameter adjustment scheme that minimizes an
estimate [based on the principle of Stein’s unbiased risk estimate
(SURE)] of a suitable weighted squared-error measure in k-space.
To compute this SURE-type estimate, we propose a Monte-Carlo
scheme that extends our previous approach to inverse problems
(e.g., MRI reconstruction) involving complex-valued images. Our
approach depends only on the output of a given reconstruction
algorithm and does not require knowledge of its internal workings,
so it is capable of tackling a wide variety of reconstruction algo-
rithms and nonquadratic regularizers including total variation
and those based on the -norm. Experiments with simulated
and real MR data indicate that the proposed approach is capable
of providing near mean squared-error optimal regularization
parameters for single-coil undersampled non-Cartesian MRI
reconstruction.

Index Terms—Image reconstruction, Monte-Carlo methods,
non-Cartesian MRI, regularization parameter, Stein’s unbiased
risk estimate (SURE).

I. INTRODUCTION

I MAGE reconstruction is a crucial task in magnetic res-
onance imaging (MRI). Model-based reconstruction

methods [1] can improve image-quality over direct methods
such as iFFT- or gridding-based reconstruction [2], espe-
cially for undersampled k-space data. The problem is usually
solved by minimizing a cost function involving a model-based
data-fidelity term and regularization. Regularization is often
included to reduce ill-posedness of the problem for undersam-
pled cases, to stabilize the reconstruction process and also to
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incorporate prior information about the object being recon-
structed. Nonquadratic regularizers can better suppress noise
and aliasing artifacts compared to quadratic ones [3]. Sparsity
promoting regularizers such as those based on the -norm and
edge-preserving total variation (TV) are popular nonquadratic
regularizers in MRI [4]–[9]. Successful regularization requires
careful selection of associated regularization parameters that
control the strength of these regularizers during reconstruction.
These parameters are often set manually (based on visual
perception) for MRI reconstruction. In this paper, we focus on
the problem of automatic selection of these parameters for MRI
reconstruction from undersampled k-space data.
Various quantitative criteria exist for automatic selection

of parameters for regularized image reconstruction in general
[10], [11]. These may be broadly classified as those based on
the discrepancy principle [10], [11], the L-curve [12]–[14],
generalized cross-validation (GCV) [15]–[19] and estimation
of (weighted) mean squared-error (MSE, also known as risk)
using the principles underlying Stein’s unbiased risk estimate
(SURE) [20]–[27]. Unlike task-based methods [28]–[30] that
focus on developing quality assessment criteria specific to a
given task (e.g., detecting a lesion), the above parameter se-
lection methods only determine a “reasonable” solution from a
“feasible set” that is predetermined by the chosen cost function.
Among these methods, we focus on the weighted MSE

(WMSE) based approach since WMSE is easily manipulated
and estimated using the SURE-framework [23], [24], [27] and
also because it is commonly used to quantify reconstruction
quality [22]–[27]. Moreover, SURE-based methods can tackle
noniterative nonlinear reconstruction [22], [25], [26] and itera-
tive regularized reconstruction using nonquadratic regularizers
[23], [24], [27] and also provide (near) MSE-optimal (regular-
ization) parameter selection [22]–[27]. SURE-based parameter
selection assumes that real- or complex-valued noise in the
observed data follows a Gaussian distribution with known
mean and covariance, so it is well-suited for MRI.
Previous applications of SURE-type parameter selection

for MRI include noniterative denoising of magnitude images
[25], SENSitivity Encoding [31] (SENSE) based noniterative
reconstruction from uniformly undersampled multi-coil Carte-
sian k-space data [26] and iterative MRI reconstruction (using
nonquadratic regularizers) from single-coil Cartesian k-space
data with arbitrary undersampling [27]. These papers derive
analytically a (weighted) SURE-type estimate of a (weighted)
MSE for a particular (iterative) reconstruction algorithm.
In this work, we propose a SURE-based regularization pa-

rameter selection method for iterative MRI reconstruction from
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undersampled data using nonquadratic regularizers. Unlike ear-
lier work [23]–[27], we propose aMonte-Carlo scheme for com-
puting the desired weighted SURE-type estimate. This Monte-
Carlo scheme extends our previous work for real-valued de-
noising algorithms [32] to complex-valued reconstruction al-
gorithms with application to MRI reconstruction. Our Monte-
Carlo method depends only on the output of a given reconstruc-
tion algorithm and does not require knowledge of its internal
workings beyond confirming that it satisfies certain (weak) dif-
ferentiability conditions, so it is very flexible and can be applied
to a wide variety of iterative/noniterative nonlinear algorithms.
We illustrate the efficacy of the proposed Monte-Carlo

scheme for MRI reconstruction from single-coil undersam-
pled non-Cartesian k-space data with several nonquadratic
regularizers such as a smooth edge-preserving one, TV and an
-regularizer. We present numerical results for simulations

with the analytical Shepp-Logan phantom [33] and experi-
ments with real GE phantom data and in vivo human brain data.
These results extend those in our previous work [27] for MRI
reconstruction from single-coil undersampled Cartesian data.
We demonstrate that the proposed Monte-Carlo SURE-based
method provides near-MSE-optimal regularization parameter
selection and performs equally well or better than GCV for
nonlinear algorithms [18], [27, eq. (7)]. Methods proposed
in this paper can also be extended to tackle nonquadratic
regularization based iterative parallel MRI reconstruction
from Cartesian and non-Cartesian k-space data with arbitrary
undersampling (see Section VII).
The paper is organized as follows. We introduce our data

model and describe the parameter selection problem mathemat-
ically in Section II. We briefly review the principles underlying
SURE in Section III and describe the proposed Monte-Carlo
method in detail in Section IV. We briefly describe regular-
ized iterative single-coil non-Cartesian MRI reconstruction
in Section V. We present a variety of experimental results in
Section VI and discuss implementation aspects and possible
extensions to this work in Section VII. We finally conclude
with Section VIII.
In the rest of the paper, , respectively denote the

non-Hermitian and Hermitian transposes, and and re-
spectively indicate the real and imaginary components of a com-
plex vector or matrix. The th element of any vector is de-
noted by either or and the th element of any matrix
is written as . For any vector and any matrix ,

.

II. PROBLEM DESCRIPTION

A. Data Model

In MRI, noise originates in the analog domain (due to thermal
fluctuations of spins) before acquisition of k-space samples but
can be modeled reasonably accurately as additive Gaussian in
the acquired k-space samples. So, we use the following data-
model [1, eq. (12)]:

(1)

where we assume that , containing samples of the
true unknown MR signal, is a deterministic unknown,
contains noisy measurements, and is a zero-mean
complex-valued Gaussian random vector with covariance ma-
trix .
At this point, (1) does not involve discretization of the

underlying continuous-domain object that is being
scanned. Thus, (1) can accommodate continuous-domain phys-
ical-effects representative of MR physics and imaging such as
transverse relaxation, inhomogeneity of the applied magnetic
field, chemical shifts and nonuniform sensitivity of receive
coils [1, eq. (10)], via . It also applies to several types
of MRI including single-coil/parallel imaging, undersampled
Cartesian/non-Cartesian imaging and combinations thereof.

B. Image Reconstruction

For the purpose of image reconstruction, we use the following
discretized linear model [1, eq. (18)]

(2)

that is based on a discretization [1, eq. (14)], , of the contin-
uous-domain object . This discretization correspondingly
yields [1, eqs. (14)–(17)] a system matrix, , that approximates
continuous-domain imaging operations such as thosementioned
in Section II-A. The matrix depends mainly upon (among
other factors such as the pulse sequence and coil geometry)
the k-space trajectory used to acquire and is assumed to be
known. While is essential for image reconstruction, we re-
mark that is a hypothetical object that is not necessary for
the methods proposed in this paper and is used purely for val-
idating our simulations. For an appropriate discretization [1],
represents (nonuniform) discrete Fourier transform for (non-

Cartesian) single-coil imaging (ignoring field inhomogeneity
and relaxation effects) while for parallel MRI, it corresponds
to the combined Fourier and spatial sensitivity encoding matrix
[3].
Given (1) and (2), the goal of image reconstruction is to ob-

tain a discretized estimate, , of from . This corresponds
to an ill-posed inverse problem when and is usually
tackled in a regularized-reconstruction framework where an it-
erative reconstruction algorithm is applied on to yield . We
denote the reconstruction process by

(3)

where is a (possibly nonlinear) operator rep-
resentative of the corresponding iterative reconstruction algo-
rithm. The vector in denotes one or more tunable param-
eters (e.g., number of iterations, regularization strength) that
characterize the reconstruction method and govern the quality
of . Selecting a suitable thus plays an important role in prob-
lems such as (3). Often, is adjusted manually based on visual
perception of . In this work, we focus on quantitative methods
for selecting automatically. Specifically, we propose to use
a weighted squared-error measure in the measurement domain
that can be estimated using Stein’s principle [20], [21] and then
minimized to yield an appropriate choice of .
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C. Weighted Squared-Error Measures

In imaging inverse problems, reconstruction quality is often
quantified using mean squared-error,

, and is thus a reasonable metric for adjusting . How-
ever, is neither accessible in practice (due to its depen-
dence on ) nor amenable for estimation1 (e.g., using Stein’s
principle) in ill-posed inverse problems due to the ill-posedness
of (2) for [21], [23], [27].
1) Previous Extensions to MSE: To circumvent this diffi-

culty, some authors [21], [23] have focussed on

(4)

where , represents pseudo-inverse. An-
other alternative [11], [27] is

(5)

Both of these metrics are tractable with Stein’s principle [21],
[23], [27]. In our previous work [27], we considered a weighted
variant

(6)

that subsumes both and
Predicted for appropriate choices of the
symmetric positive semi-definite weighting matrix
[27, Sec. III-B]. All of these metrics that depend on
assume that the observed data follows the discretized
linear model in (2). For such a model (2), can
be unbiasedly estimated using Stein’s principle to yield

[27, eq. (12)] when in (2) is Gaussian [27, Th.
2]. Unlike however, evaluates the error in
the measurement-domain, i.e., the range space of ; for MRI,

corresponds to evaluating weighted squared-error
in k-space. Despite this dissimilarity from , we
found that , via its estimate [27, eq.
(12)], can be used to obtain near-MSE-optimal regularization
parameters for iterative nonlinear image-deblurring and MRI
reconstruction from undersampled Cartesian k-space data [27].
Using Stein’s principle [20], [21] to estimate in-

volves substituting from (2) in (6)
and exploiting the statistics of to analytically evaluate -re-
lated terms in the expectation sense [27, Th. 1]. The resulting
unbiased estimate [27, eq. (12)] is independent
of and depends only on , a first-order differential re-
sponse of and the mean and covariance of thereby making
it a practical proxy for . However, the unbiasedness
of to is meaningful only when the ob-
served data follows (2). The discretized linear model (2), al-
though crucial for image reconstruction, does not adequately
describe how imaging systems work in practice: observed data
often involves continuous-domain imaging operations, e.g.,

representative of MR physics described in Section II-A, that
may not be completely captured by the discretization in .

1In some special cases such as where has full column-rank or when
belongs to the range-space of , it is possible to estimate [21], [23],
[27].

Thus, since depends on and not on , a dis-
crepancy arises in reasoning that is unbiased for
practical imaging inverse problems.
2) Proposed Measure: To avoid this discrepancy in rea-

soning, we propose to consider the following WMSE metric
with respect to the True Data since accounts for
continuous-domain imaging operations

(7)

We still require in (7) because we are reconstructing a
discretized version, i.e., , of the original continuous-do-
main object so that maps to its corresponding
k-space vector. Similar to , is also a
measurement-domain error metric that is not directly accessible
due to its dependence on the true unknown samples .
However, since describes MR data-acquisition more
realistically via continuous-domain operations than ,

is a more accurate representation of the k-space
error than . Below, we show that Stein’s principle
[20], [21] can be used to estimate2 and leads
to an expression for that is very similar to that
reported in our previous work [27, eq. (12)].
Due to the generality of (1) and (2), we can use

[via ] to tune in a variety of
MRI reconstruction problems including single-coil/multi-coil
MRI reconstruction (from undersampled data) with/without
compensation for field-inhomogeneity and relaxation effects.
However, the appropriateness of for a given
MRI technique needs to be validated using numerical exper-
iments on a case-by-case basis. In this paper, we consider
single-coil non-Cartesian MRI ignoring field-inhomogeneity
and relaxation effects as an extension to our previous work [27]
that focussed on single-coil Cartesian3MRI. We present exper-
imental results in Section VI illustrating that can
provide near-MSE-optimal regularization parameter selection
for regularized MRI reconstruction from single-coil under-
sampled non-Cartesian k-space data. We also briefly discuss
extensions to parallel MRI in Section VII and report results for
using the proposed methods for parallel MRI reconstruction
using two different algorithms in [34]–[36].

III. ESTIMATING WMSETD USING STEIN’S PRINCIPLE

Expanding and using (1) to write
, we get that

(8)

2Since (1) and (2) are based on the same noise model, (6) and
(7) lead to functionally similar such as [27, eq.

(12)] and (12) in this paper. However, it is more apt to interpret as
an unbiased estimate of for practical imaging inverse problems.
3Previously [27], we assumed that the observed data followed the discretized

linear model (2) for single-coil MRI reconstruction with retrospective un-
dersampling, so we focussed on (6) in [27]. However, since the
model in (1) is more realistic than that in (2), we prefer over

in this work.
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where stands for real part of a complex-number. Apart
from the irrelevant constant that does not depend on
, the only inaccessible term is . In the sequel, we
use the principles underlying Stein’s result [20] and generalized
SURE [21] for estimating this term.
Lemma 1: Let the following be true.
1) in (1) is complex Gaussian with ,

, and , where denotes
expectation with respect to .

2) is individually analytic [37] with respect
to the real and imaginary parts of its argument (in the weak
sense of distributions [38, Ch. 6]).

3) The matrix

(9)

satisfies , .
Then, we have that

(10)

where denotes the trace of a matrix and
is the Jacobian matrix of (weak) partial derivatives of the com-
ponents of with respect to the components of and is defined
via its elements as

(11)

Proof: The proof is a straightforward extension of previous
results [20], [21, Th. 1], [27, Lem.1] and is given in Appendix A
for completeness.
We now use (10) to show that

(12)

is an unbiased estimate of .
Theorem 1: Let and in (9) satisfy the hypotheses

of Lemma 1. Then (12) is an unbiased es-
timate of (7), i.e.,

.
Proof: The proof is straightforward and uses Lemma 1 to

estimate in (8).
The estimate, (12), of (7) is

independent of and depends only on , the noise covari-
ance matrix and via . Thus, it is feasible to
compute as a proxy for for tuning
. In our previous work [27], we analytically evaluated
recursively for some iterative reconstruction algorithms for
image-deblurring and single-coil undersampled Cartesian MRI
reconstruction. Although accurate, such an analytical approach
demands tedious mathematical derivations that depend on the
specifics of and that must be repeated for different
individually on a case-by-case basis.
In this work, we propose a Monte-Carlo scheme for numer-

ically estimating in (12). The pro-
posed scheme does not require knowledge of the implementa-
tion details of as we shall see next; this advantage makes it

readily applicable to a wide variety of (weakly differentiable)
estimators .

IV. MONTE-CARLO ESTIMATION

The proposed Monte-Carlo method for tuning extends our
previous result, [32, Th. 2], that focussed on real-valued
for denoising applications, to handle complex-valued in (3)
with application to imaging inverse problems, especially MRI.
Similar to [32, Th. 2], we probe and analyze its response
to complex-valued random perturbations in to estimate

.
Theorem 2: Consider the random vector

(13)

where is an i.i.d. random vector independent of
such that , , , and

is an invertible deterministic matrix. If admits
a second-order Taylor expansion in addition to satisfying the
hypotheses in Lemma 1, we have that

(14)

Proof: When admits a second-order Taylor expan-
sion, we have that [39]

(15)
where satisfies , for

. Then, from (15), we have that

(16)

where the last term in the right-hand side (rhs) of (15) vanishes
due to the limit. The second term in the rhs of (16) vanishes
since

(17)

while the first term can be manipulated as

(18)

which is the desired result.
Theorem 2 generalizes [32, Th. 2], to complex-valued

problems allowing for a correlation matrix in (13) and (14).
We briefly discuss the role of later in this section and in
Section VII. The Monte-Carlo result (14) does not explicitly
rely on the functional form of and is equally applicable to
both linear and nonlinear .
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A generic linear reconstruction algorithm has the form

(19)

for some (reconstruction) matrix parametrized
by . Our Monte-Carlo result (14) further simplifies for linear
(19) as shown in the following corollary that extends our

previous result [32, Prop.2] to the case of complex-valued .
Corollary 1: When is linear, (14) holds without the limit,

independent of leading to the following identity:

(20)

Proof: For linear (19), the rhs of (14) reduces to
without , which does not depend

on . A manipulation similar to that in (18) leads to (20).
When , Corollary 1 is a restatement of existing

results [40]–[43] for Monte-Carlo estimation of the trace of
a matrix and is useful [via ] for adjusting of
linear MRI reconstruction algorithms [32], [40], e.g., conju-
gate phase reconstruction with density compensation [2], [44]
where could describe some parametrization of the density
compensation weights or such as those encountered when using
Tikhonov-type quadratic regularizers [32], [40] where could
denote regularization parameters.
For MRI reconstruction from undersampled data, it is prefer-

able to use nonquadratic regularizers to better reduce aliasing
artifacts and noise in the reconstructed image [3], [5]. The re-
construction process associated with a nonquadratic regularizer
is nonlinear, so henceforth we concentrate on nonlinear .
In practice, for nonlinear , the limit in (14) cannot be ap-

plied analytically except in some special cases where is an-
alytically tractable. So we make an approximation to (14) by
dropping the limit and the operations similar to [32, eq.
(17)], and use

(21)

for a sufficiently small and one realization of a com-
plex-valued random vector satisfying the hypotheses of
Theorem 2. The choice of represents a trade-off: for too small
an -value, may be insensitive to the perturbation in

due to finite numerical precision of digital computers,
so theMonte-Carlo estimate (21) could be unstable, i.e., it could
have large variance. On the other hand, the approximation (21)
may be inaccurate for large -values for nonlinear .
The robustness of (21) to the choice of depends on several

factors such as the magnitude of the elements of (9), the en-
ergy of , , relative to that of , , nu-
merical precision of the variables used in the implementation
and the sensitivity of to changes in ; the approximation
(21) must thus be validated for a given data model (1) and (2)
and a reconstruction algorithm (3) individually. The matrix in
(21) may be chosen so as to scale the elements of relative to
those of , essentially allowing different amounts of perturba-
tion for different elements of . This may be beneficial in some
applications such as MRI where the elements of span several
orders of magnitude and relatively scaling the perturbation can
help maintain the accuracy of the approximation (21) for a fixed,

sufficiently small for varying . Although is a user-provided
parameter, we show in Section VI-B that the choice of spans
several decades without significantly affecting the results, so the
proposed MCSURE method can be applied without having to
repeatedly adjust .
Using (21), we thus require only two evaluations of for a

given and , i.e., the response of to and for esti-
mating for a given . Our approach does not need
the knowledge of the structure of , so (21) is very flexible in
its applicability. This is unlike the analytical development in our
earlier work [27] that varied with the choice of and also re-
quired storage and computation equivalent to three evaluations
of for a given as discussed in [27, Sec. VI-C].
Theorem 2 is somewhat restrictive in its applicability since

it is based on a Taylor expansion of . In practice, may
involve weakly differentiable operators that do not admit (15).
A typical instance is when -type (including total variation)
regularizers are used for reconstruction; for these regular-
izers would involve (for certain implementations) a nonsmooth
shrinkage operator that satisfies Lemma 1 but not (15). In such
cases, it is possible to extend the scope of Theorem 2 to weakly
differentiable functions similar to that documented in [32, Th.
2]. However, this would require tedious derivations using mea-
sure theory and the theory of distributions [38, Ch. 6], and is
beyond the scope of this paper. Instead, we investigate using
(21) for corresponding to -type regularizers based on em-
pirical validation with numerical experiments both in the paper
(see Sections VI-C and VI-D) and in a supplementary material.4

Finally, our Monte-Carlo result (14) precludes iterative/non-
iterative estimators that involve nonweakly-differentiable oper-
ators, e.g., the hard-thresholding operator [32, Sec.V-B], [45];
such operators do not satisfy the conditions of Lemma 1 and are
not suitable for use with .

V. SINGLE-COIL NON-CARTESIAN MRI RECONSTRUCTION

The theoretical development so far has been general both in
terms of the data model (1) and (2) and the reconstruction al-
gorithm (3) due to the Monte-Carlo nature of our approach for
estimating (7). However, numerical validation
of our approach needs to be done on a case-by-case basis for
different applications and reconstruction algorithms. For illus-
tration, we henceforth focus on single-coil non-Cartesian MRI
ignoring field-inhomogeneity and relaxation effects as an exten-
sion to our previous work [27] on single-coil CartesianMRI. In
this case, a good model for noise in (1) is , so
that

(22)

in (9). For the purpose of reconstruction (3), we use the dis-
cretized linear model in (2). Unlike for CartesianMRI [27], is
not a simple undersampled DFT matrix for non-Cartesian MRI.
But for a suitable discretization, in (2) can be implemented
using nonuniform FFT (NUFFT) [46] for single-coil non-Carte-
sian MRI. We then formulate MRI reconstruction in (3) as

(23)

4The supplementary material is available at http://ieeexplore.ieee.org.
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where is the reconstructed image, is
the scalar regularization parameter, is a (possibly nonsmooth)
convex regularizer, and is a
regularization operator, e.g., finite differences.
We used the split-Bregman (SB) scheme [47] for in

(23). At each iteration, the SB algorithm requires (among other
simple update steps) “inverting” a matrix
[27, eq. (32)], for some penalty parameter5 [27], [47].
For Cartesian MRI, this step can be achieved via FFTs [47, Sec.
5.2], [27, Sec.IV-F]. For non-Cartesian MRI however, is
block-Toeplitz with Toeplitz-blocks [49] and cannot be inverted
noniteratively for large image sizes, i.e., for large , so we used
a preconditioned conjugate gradient (PCG) solver with a circu-
lant preconditioner [48] that approximately matched . We
implemented using the “embedding-toeplitz-in-circulant”
trick, i.e., , where is a zero-padding
matrix and is an appropriate circulant matrix
[50] ( for 1-D and for 2-D images). In all our
experiments, we ran five PCG iterations for this step [27, eq.
(32)], and 100 iterations of the SB algorithm. These numbers
ensured that the SB algorithm nearly converged in the sense
that the normalized “distance” between two successive iterates

was close to zero for a large
range of -values.

VI. EXPERIMENTS

A. Setup

In all our experiments, we focussed on selecting in (23) by
minimizing the proposed Monte-Carlo estimate,
(12), of (7). We investigated two versions of

corresponding to and

(24)

where is a diagonal matrix of suitable density compen-
sation weights [2] for non-Cartesian trajectories and is
chosen so that has a user-provided condition number ;
we set such that . For ,
can be interpreted as the predicted squared-error (similar to Pre-
dicted-MSE [11], [27]) that uniformly weighs the error at all
sample locations in k-space. For in (24), fa-
vors errors at certain sample locations in k-space more than
others depending upon ; typically, for non-Cartesian trajec-
tories, the central k-space is more densely sampled than outer
k-space, so is designed to provide higher weighting for outer
k-space samples than around central k-space [2].
We implemented the SB algorithm and conducted all experi-

ments in Matlab using double-precision variables. We used the
conjugate phase (CP) reconstruction with suitable density com-
pensation [2] (described later), , to initialize the SB algo-
rithm in all experiments.
In the proposed Monte-Carlo estimation scheme (21), we

used where , are inde-
pendent binary random vectors6 whose elements are i.i.d. and

5We chose in all experiments, where minimized the
condition number of for a given , where is a circulant
approximation to [48].
6Another choice is complex Gaussian .

assume either or with equal probability. It is easily
verified that satisfies the hypotheses of Theorem 2. For
simplicity, we used in (21) throughout. To avoid
repeated computation of in (21) for use in (12) with several
-values, we precomputed and stored and used in
(21). In our simulations, we assumed that the noise variance
was known for computing via (12) and (22),

while for experiments with real MR data, we used an estimate
computed by empirical sample-variance from outer k-space
data samples as those are mostly dominated by noise. We
compared -selection using the proposed (12)
against that using generalized cross-validation for nonlinear
algorithms (NGCV) [18], [27, eq. (7)]

(25)

where we used the Monte-Carlo estimation procedure (21)
for in the denominator of . Thus,

has the same computation cost as the proposed
.

We experimented with three types of regularizers in (23): a
smooth convex regularizer with Fair potential (FP) [51], [52]
given by

(26)

where , , total variation
(TV) regularizer

(27)

and an -regularizer

(28)

We used finite differences for in (26)–(28) with (hori-
zontal, vertical, and two diagonal) directions in all experiments.
It is possible to verify that the SB algorithm for satisfies

the hypotheses of Theorem 2 for (26) because it is differ-
entiable everywhere. However, Theorem 2 is not directly ap-
plicable when or are involved in (23) as the corre-
sponding may not satisfy the hypotheses of Theorem 2. As
discussed at the end of Section IV, we demonstrate using nu-
merical experiments in Sections VI-C–VI-D (and in the supple-
mentary material) that the proposed Monte-Carlo approach can
be used for estimating for and in (23).
In all experiments, we minimized and
as a function of .

B. Radial MRI Simulation

We used the analytical Shepp-Logan phantom [33] to simu-
late noisy data of 40 dB SNR on a radial trajectory with 96
spokes each containing 512 samples (reduction factor ). We
used the approach in [53], [54] for selecting the density com-
pensation weights (24). We set (26) in (23) with

.
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Fig. 1. Plots of standard deviation of normalized by
as a function of in (21) for (top) , (middle)

, and (bottom) , where is the -optimal value
of the regularization parameter. The curves correspond to the experiment in
Section VI-B1 where was obtained by averaging (21) over 25
realizations of . As expected, the variance rapidly increases for smaller .

1) Variance of WSURE: To analyze the accuracy of (21), we
reconstructed 512 512 images of the Shepp–Logan phantom
for three different values of , and correspondingly computed
the standard deviation of Monte-Carlo by aver-
aging it over 25 realizations of for different . Fig. 1 plots
the standard deviation of Monte-Carlo normalized
by as a function of . The plots indicate that

consistently leads to increased variance. Moreover,
the variance is approximately constant for in-
dicating the robustness of the approximation in (21). We present
similar results for varying SNR of data in the supplementary
material.

Fig. 2. Plots of (a) regularization parameter , and (b) as functions
of for selected to minimize with and in (24)
and for the experiment described in Section VI-B2.

2) Selection of for Different : We used only one realiza-
tion of in (21) for computing (12). We varied
, minimized and with respect to for
each . Fig. 2(a) plots the resulting -values, while Fig. 2(b)
plots peak-SNR (PSNR) defined as

as functions of for the various -selections. For
, based -selection and corre-

sponding are close to those of minimum
selection. We present similar results for varying SNR of data
and the TV regularizer in the supplementary material.
Based on Figs. 1 and 2 and corresponding results in the sup-

plementary material, a suitable choice of appears to be in the
range . However, from our experience, it is ben-
eficial to be conservative with , so we recommend choosing

.
In the remaining experiments, we set and used only

one realization of in (21) for computing (12)
and (25).
3) Trends of WMSETD and WSURE : We recon-

structed 512 512 images, and computed , the
oracles , and , for a range of -values.
Fig. 3 plots , , and as a
function of . captures the trend of
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Fig. 3. Simulation with the analytical Shepp–Logan phantom (Section VI-B3). Plots of , , versus for (left)
and in (24) (right). Vertical dashed lines indicate minima of various curves. captures the trend of in both plots and their minima
are close to that of the true .

Fig. 4. Simulation with the analytical Shepp–Logan phantom (Section VI-B3).
Plot of versus . Vertical dashed lines indicate -selections made
by various methods. and lead to near-PSNR-optimal
reconstructions.

over the entire range of indicating the accuracy of the pro-
posed Monte-Carlo scheme with a single realization of .
Moreover, the minima of and are
all close to that of the true indicating their reliability
in selecting . In Fig. 4, we plot for a range of
-values indicating the -selections made by and

. Both and led to the
same -value close to the MSE-optimal one in this experiment.
Fig. 5 presents 512 512 images reconstructed using -values
that minimized and . As expected,
the respective reconstructed images, Fig. 5(d) and (f), closely
resemble that obtained using the true minimum-MSE- in
Fig. 5(c). Finally, all the regularized reconstructed images,
Fig. 5(c) and (f), have almost no radial-artifacts and display
improved quality over CP reconstruction [Fig. 5(b)].

Fig. 5. Simulation with the analytical Shepp-Logan phantom (Section VI-B3).
(a) Discretized noise-free 512 512 phantom; (b) CP reconstruction

has prominent streak artifacts and noise; Im-
ages reconstructed using regularizer with selected to mini-
mize (c) true ;
(d) ; (e)
with ; (f)
with in (24) . In this experiment,

and lead to the same -selections, see Fig. 4, thus resulting
in similar visual quality comparable to the true -based reconstruction
in (c).

4) Varying Noise Level: We repeated the radial MRI sim-
ulation with varying levels of noise in the simulated data. We
tabulate PSNR of reconstructed images obtained by minimizing

and in Table I. was able
to provide near-MSE-optimal -selections as indicated by the
PSNR-values in Table I. also provided similar -selec-
tions in this experiment.
5) Varying Reduction Factor: We repeated the radial MRI

simulation for varying number of spokes of the radial trajectory
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TABLE I
EXPERIMENT IN SECTION VI-B4: PSNR OF IMAGES RECONSTRUCTED
USING WITH OPTIMIZED BY VARIOUS METHODS FOR

DATA WITH VARYING SNR

TABLE II
EXPERIMENT IN SECTION VI-B5: OF IMAGES RECONSTRUCTED
USING WITH OPTIMIZED BY VARIOUS METHODS FOR DATA
WITH VARYING NUMBER OF SAMPLES (REDUCTION FACTORS)

corresponding to reduction factors of 2, 3, 4, and 5 and for fixed
data-SNR of 40 dB.We tabulate of reconstructed images
obtained by minimizing and for
in Table II. was able to provide near-MSE-optimal
-selection as indicated by the PSNR-values in Table II.
also provides similar -selections. This experiment illustrates
that [via ] is a reasonable metric
for optimizing for agreeable reduction factors for single-coil
non-Cartesian MRI reconstruction.

C. GE Phantom MRI Scan

We scanned a GE resolution phantom using a 3T GE scanner
with the following scan setting: gradient-echo sequence,

ms, ms, FOV cm, flip angle ,
slice thickness mm. We used a 2-D variable density (VD)
spiral k-space trajectory7 with 120 leaves each containing 841
samples. The readout duration per leaf was 3.3 ms, which is
sufficiently short to make the assumption that any distortion due
to field-inhomogeneity is negligible. We designed the VD spiral
so that the central k-space was over-sampled by a factor of two
and achieved Nyquist sampling at the periphery. We acquired
three independent 2-D data-sets using the same scan-setting
and averaged them to obtain a relatively less-noisy data-set.
We used in CP reconstruction , where
the th element with and indexing
the k-space sample locations in 2-D. Then, we reconstructed
a 256 256 reference image, in Fig. 6(a), by running the
SB algorithm on this data-set using (23) with and
(such that ) in (23).
Next, we simulated undersampling of one of the three

data-sets by retaining only 60 equally spaced interleaves
reduction factor and reconstructed 256 256 images
with in (23) by minimizing and .
The corresponding reconstructed images [Fig. 6(c)–(e)] are de-
void of spiral artifacts present in CP reconstruction [Fig. 6(b)]
and closely resemble [Fig. 6(a)] in this experiment. These

7An illustration of the VD spiral trajectory used in this experiment is pre-
sented in the supplementary material.

results also illustrate the reliability of the proposedMonte-Carlo
scheme (21) employed in (12) and
(25) for optimizing for .

D. In Vivo Human Brain Imaging

We acquired three independent 3-D VD stack-of-spiral
data-sets (with the same 2-D VD spiral trajectory described in
Section VI-C) of a live human brain using a 3T GE scanner with
the following scan setting: spoiled gradient-echo sequence,

ms, ms, cm, flip angle ,
slice thickness mm, number of slices . We averaged
these three data-sets and reconstructed a single 256 256 2-D
reference image (corresponding to slice 14), in Fig. 7(a),
by running the SB algorithm with and (such that

) in (23).
We again undersampled one of the three data-sets (cor-

responding to Slice 14) with a reduction factor of 2 and
reconstructed 256 256 2-D images with in (23) by
minimizing and . In this experiment,

yielded an over-smoothed result [Fig. 7(c)] that lacks
fine details in [Fig. 7(a)]. However, led to
images that exhibit reasonably better quality than CP recon-
struction [Fig. 7(b)] and the -result [Fig. 7(c)] and
closely resemble . These results indicate the robustness
of the proposed Monte-Carlo for -selection
and also its applicability for in (23). We obtained similar
promising results (included in the supplementary material) for
reconstructing other slices of this 3-D volume.

VII. DISCUSSION

As with other parameter tuning methods such as the dis-
crepancy principle, L-curve, and generalized cross-validation,
the proposed Monte-Carlo -method requires multiple
evaluations of the reconstruction algorithm for optimizing
. For the purpose of illustration, we optimized by
searching over a range of scalar -values in our experiments.
In practice, derivative-free optimization schemes can be used,
e.g., golden-section search for optimizing the scalar or the
Powell method [55] for optimizing the vector .

with and (24) led to similar
-selections in all our experiments both in the paper and
in supplementary material. This is probably because there
is only one degree of freedom, in terms of the scalar , in
minimizing . However, minimizing
with respect to the vector may lead to different parameter
selections depending upon whether or (24) in

(7) and (12). As an illustration,
we repeated the experiment in Section VI-D, but used
(26) and optimized and of jointly by exhaustive
search. Optimizing with led to

, while with
yielded . While

-values are different in each case, the images recon-
structed with these selections [Fig. 8] appear visually similar.
This is probably because the ratio that appears in
(23), (26) is approximately the same for these selections.
Methods proposed in this paper can also tackle WSURE

with arbitrary measurement-domain symmetric positive
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Fig. 6. Experiment with real GE phantom data (Section VI-C). (a) Very mildly -regularized 256 256 reference reconstruction from “fully-sampled” data
averaged over three acquisitions; (b) CP reconstruction (from undersampled data from a single acquisition) is strewn with spiral artifacts; Images reconstructed
from undersampled data (from a single acquisition) using -regularizer with selected to minimize (c) ; (d) with

; (e) with in (24) . The -value selected by NGCV is slightly higher than those selected by WSURE. The
resulting image (e) is thus slightly over smoothed, although the over smoothing is not visually apparent due to the piece-wise constant nature of the GE phantom.
Moreover, some fine details present in (a) are lost in (c)–(e) owing both to undersampling and regularization.

Fig. 7. Experiment with real in vivo human head data (Section VI-D); Slice 14. (a) Very mildly -regularized 256 256 reference reconstruction from “fully-
sampled” data averaged over three acquisitions; (b) CP reconstruction (from undersampled data from a single acquisition) is strewn with spiral artifacts; Images
reconstructed from undersampled data (from a single acquisition) using -regularizer with selected to minimize (c) ; (d)
with ; (e) with in (24) . In this experiment, resulted in a noticeably over-smoothed image due to
a correspondingly higher value of , while still yielded results comparable to the reference (a). Some fine details in (a) are lost in (d), (e) that also
contain minor residual spiral artifacts; these can be attributed to undersampling of k-space data.

Fig. 8. Experiment with real in vivo human head data (Section VI-D); Slice 14.
Images were reconstructed using (26) with and chosen to minimize

. Left image corresponds to , ,
. Right image corresponds to , ,
. Although the parameter selections are different, the resulting

image quality is similar in both cases and is comparable to Fig. 7(d) and (e).

semi-definite weighting matrices , e.g., a nondiagonal
matrix such as that encountered in Projected [27, Sec.
III-B] or a diagonal matrix with zeros and ones that corresponds
to specifying a subset of k-space locations that contribute to

and . One could also use a diagonal
with significantly larger weights for outer k-space sam-

ples so as to boost the error in high spatial frequencies when
computing and . The proposed
methods thus allow the user some freedom in choosing the type
of k-space weighting for the quadratic error .
Finding suitable weighting matrices, , that yield “better”
parameter selections than is interesting future work.

Theorem 2 is a key result in this work that forms the basis
of our Monte-Carlo parameter selection method for single-coil
MRI. While it demands strong differentiability hypotheses on
as presented in Section IV, numerical experiments in this

paper and the accompanying supplementary material corrobo-
rate its applicability to complex-valued weakly differentiable
as well. Broadening the theoretical scope of Theorem 2 to

such along with a bias-variance analysis of the Monte-Carlo
estimate (21) are interesting directions for future research. The
bias-variance analysis especially is important from a practical
perspective as it can help the user choose a suitable and in
(21) for a given reconstruction method .
Another interesting extension of this work is application to

parameter selection for parallel MRI. A straightforward way of
doing this would be to directly apply the proposed Monte-Carlo

approach individually for data from each coil of a
multi-coil array and combine the resulting MR images for all
coils via a sum-of-squares-type method. Alternatively, one
could use a SENSE-based [3], [31], [56] approach: the data
model (1), proposed metric (7) and Monte-Carlo
(12), (21) are directly applicable to this case with
[3], [9], where represents the Fourier encoding matrix and
denotes the matrix of sensitivity maps for all coils. However
caution must be exercised in this case: in practice, is usually
unknown and needs to be estimated, e.g., from low-resolution
images. Since [and ] involves
(via ), its appropriateness as an image-quality metric depends
on the quality of the estimate, , of , and needs to be validated
for a given . One faces a similar issue with image-domain
SURE-based methods for SENSE-type parallel MRI recon-
struction [26].
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To circumvent the dependence on , we recently proposed a
similar Monte-Carlo -based parameter tuning scheme
[34]–[36] for some existing parallel MRI reconstruction
methods such as -SPIRiT [7] and DESIGN [8] (based on
GRAPPA [57] and sparsity) that do not need explicit knowl-
edge of coil-sensitivity maps . Preliminary results [34]–[36]
for undersampled Cartesian parallel MR data indicate that our

-based approach is able to provide near-MSE-op-
timal selection of regularization parameters for these methods.
We are currently investigating extensions to undersampled
non-Cartesian parallel MRI.

VIII. SUMMARY AND CONCLUSION

Selection of proper regularization parameters is a crucial
task in regularized MRI reconstruction from undersampled
k-space data. We proposed a weighted squared-error measure
in k-space, (7), to assess MRI reconstruction
quality and thereby adjust by minimizing it. The proposed

is amenable for estimation using Stein’s prin-
ciple [20], [21] for Gaussian noise. The Stein-type estimate of

, denoted by , requires (in addition
to the noise covariance matrix) computing the trace of a linear
transformation of the Jacobian matrix of the MRI reconstruc-
tion algorithm with respect to k-space data . Our major
contribution in this work is a Monte-Carlo scheme that enables
the estimation of this trace without requiring the knowledge
of the internal working of . This feature thus enables its
applicability for a wide-range of reconstruction algorithms
involving a variety of convex nonquadratic regularizers in-
cluding total variation and -regularization. The proposed
Monte-Carlo method extends our previous result for denoising
of real-valued images in [32, Th. 2] to the case of inverse
problems involving complex-valued images with application to
MRI reconstruction.
Although differs from the image-domain

that is not amenable for estimation in practical in-
verse problems [21], we demonstrated using experiments with
undersampled synthetic and real MR data that ,
via its estimate , is able to provide near-MSE-op-
timal selection of regularization parameters for single-coil
non-Cartesian MRI reconstruction. These results both extend
and corroborate our previous work [27] on similar param-
eter-tuning methods for single-coil undersampled Cartesian
MRI reconstruction. Theoretical developments in this paper
are fairly general and can be readily extended to handle pa-
rameter-tuning for (iterative) linear/nonlinear parallel MRI
reconstruction from undersampled Cartesian/non-Cartesian
k-space data.

APPENDIX
PROOF OF LEMMA 1

From the hypotheses of Lemma 1, it is clear that the
probability density function of is given by

, where is some normalization
constant. It is easy to verify that satisfies

(29)

where and , are
gradient operators with respect to the real, , and imaginary,
, parts of , respectively. We start from the left hand side of

(10) and use (9), (29) and to obtain

(30)

In the sequel, and , respectively.
We focus on the term involving in (30) and use integra-
tion-by-parts along with the fact that ,
to get that [21, Th. 1]

(31)

where we have set since in (1) is a
deterministic constant. Similarly

(32)
Combining (30)–(32) and using (11), we get that

which is the desired result.
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We provide here additional results for various experiments
in [1]. Fig. 1 illustrates some of the non-Cartesian trajectories
used in [1]. References to equations, tables, figures, bibli-
ography, etc., are within this material only unless specified
otherwise.

I. ROBUSTNESS OFMONTE-CARLO ESTIMATION

We are interested in determining the range ofε for which
the Monte-Carlo estimation procedure (with only one real-
ization of random vectorb) in [1, Sec. IV] is an adequate
approximation:

tr{ΓJuλλλ
(y)} ≈ ε−1b′Λ−1Γ̺(uλλλ,y,Λb, ε) (1)

where

̺(uλλλ,y,Λb, ε)
△
= uλλλ(y + εΛb)− uλλλ(y). (2)

The Monte-Carlo estimate (1) is used in

WSURE(λ)
△
= M−1‖y−Auλ(y)‖2W −M−1tr{ΩW}
+ 2M−1R{tr{ΓJuλ

(y)}} (3)

that is an unbiased estimate of

WMSETD(λ)
△
= M−1‖ytrue −Auλ(y)‖2W. (4)

We use the experimental setup described in [1, Sec. VI-A]
throughout this material withW = IM and W = WD in
[1, Eq. (24)] andΛ = IM in (1)-(2). The proposed Monte-
Carlo estimation scheme (1) and the hypotheses of [1, Thm.
2] are applicable to the smooth-convex regularizerΨFP [1,
Eq. (26)], but they do not directly apply to the total-variation
regularizerΨTV [1, Eq. (27)]. One of our aims in this note is
to provide numerical results that further corroborate those in
[1] extending the scope of (1)-(4) to nonsmooth regularizers
such asΨTV.

We repeated the radial MRI simulation in [1, Sec. VI-B.1]
for varying levels of noise in the data and plotted the standard
deviation of Monte-CarloWSURE normalized byWMSETD
in Figs. 2-5. The plots were generated by averaging Monte-
CarloWSURE(λ) (1)-(3) over 25 Monte-Carlo realizations of
b in (1)-(2). These plots indicate that the variance of Monte-
Carlo WSURE increases with decreasingε consistently in
all experiments and corroborate the expected behavior of (1)
described in [1, Sec. IV]. From these plots,ε = 10−7 appears
to be a reasonable lower bound forε for such experiments.

This work was supported by the National Institutes of Healthunder Grant
P01 CA87634 and by CPU donations from Intel.

Fig. 1. Top: 32 spokes (with 512 samples each) of the non-Cartesian radial
k-space trajectory used in [1, Sec. VI-B]. Bottom: 20 interleaves (with 841
samples each) of the non-Cartesian variable density spiralk-space trajectory
used in [1, Secs. VI-C, VI-D].

Next, we repeated the experiment in [1, Sec. VI-B.2] for
varying SNR of data using only one realization ofb as is
desirable in practice. Figs. 6-13 plotλ-values andPSNR(λ)
as functions ofε whereλ was chosen to minimizeWSURE(λ)
and the trueMSE(λ). These plots indicate that a suitable
choice ofε is ε ∈ [10−5, 10−2]; however, it should be kept
in mind this range may change depending upon the type of
imaging problem, the reconstruction algorithmuλ in [1] and
the scale ofy relative to that ofb.

We successfully usedε = 10−4 with the SB algorithm in
all experiments in this material and also in [1] for near-MSE-
optimal MRI reconstruction from single-coil undersampled
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TABLE I
EXPERIMENT IN [1, SEC. VI-B]: PSNR OF IMAGES RECONSTRUCTED

USINGΨTV WITH λ OPTIMIZED BY VARIOUS METHODS FOR DATA WITH
VARYING SNR.

PSNR (dB)
SNR MSE(λ) NGCV(λ) WSURE(λ)
(dB) W = IM W = WD

20 28.21 28.21 28.21 28.21
30 31.20 31.14 31.14 31.20
40 32.85 32.85 32.85 32.85

data (both simulated and acquired using a GE 3T MRI scanner)
on different non-Cartesian (radial and variable-density spiral)
k-space trajectories. These experimental results also indicate
that the proposed Monte-Carlo estimation scheme (1) can be
successfully used with nonsmooth regularizers such asΨTV.

II. SIMULATION WITH VARYING NOISE LEVEL

Here, we repeated the experiment in [1, Sec. VI-C] with
varying levels of noise in the simulated data, but withΨTV.
We again assumed that the noise varianceσ2 was known in
each case for use inWSURE(λ) (3). We tabulatePSNR
[1, Sec. VI-B] of reconstructed images obtained by mini-
mizing WSURE(λ) and NGCV(λ) [1, Sec. VI-A] in Ta-
ble I. WSURE(λ) was able to provide near-MSE-optimalλ-
selections as indicated by the PSNR-values in Table I.NGCV
also provides similarλ-selections in this experiment.

III. I N-VIVO HUMAN BRAIN DATA

We repeated the experiment in [1, Sec. VI-D] for different
slices of the acquired 3D volume. Figs. 14-15 show images
reconstructed usingΨℓ1 [1, Sec. VI-A] as the regularizer with
λ selected by minimizingWSURE(λ) and NGCV(λ) [1,
Sec. VI-A]. In agreement with the results in [1, Sec. VI-
D], NGCV(λ) yielded over-smoothed images for this data-
set whileWSURE(λ) was able to provide images that appear
comparable to the corresponding references.
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Fig. 2. Radial MRI simulation with the analytical Shepp-Logan phantom [4]
in [1, Sec. VI-B.2]. Plots of standard deviation ofWSURE(λ) normalized
by WMSETD(λ) as a function ofε in (1) for (top)λ = λopt/10, (middle)
λ = λopt, and (bottom)λ = 10λopt, whereλopt is theMSE-optimal value
of the regularization parameter. The curves were obtained by averaging (1)
over 25 realizations ofb. As expected, the variance rapidly increases for
smallerε. The SNR of data was 20 dB.



3

−11 −9 −7 −5 −3 −1
−2.5

−2

−1.5

−1

−0.5

0

ε (log
10

−scale)

N
or

m
al

iz
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

of
 W

S
U

R
E

 (
lo

g
10

−s
ca

le
)

 

 
W = I

M

W = W
D

−11 −9 −7 −5 −3 −1
−2

−1.5

−1

−0.5

0

0.5

ε (log
10

−scale)

N
or

m
al

iz
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

of
 W

S
U

R
E

 (
lo

g
10

−s
ca

le
)

 

 
W = I

M

W = W
D

−11 −9 −7 −5 −3 −1
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

ε (log
10

−scale)

N
or

m
al

iz
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

of
 W

S
U

R
E

 (
lo

g
10

−s
ca

le
)

 

 
W = I

M

W = W
D

Fig. 3. Same experiment as in Fig. 2. The SNR of data was 30 dB.
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Fig. 4. Same experiment as in Fig. 2. The SNR of data was 40 dB.
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Fig. 5. Same experiment as in Fig. 2. The SNR of data was 50 dB.
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Fig. 6. Plots of (left)λ, and (right)PSNR(λ) as functions ofε for λ selected to minimizeWSURE(λ) with W = IM andWD in (3) andMSE(λ) for
the experiment described in [1, Sec. VI-B2] withSNR = 20 dB and ΨFP as the regularizer.
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Fig. 7. Same as in Fig. 6, but SNR = 30 dB.
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Fig. 8. Same as in Fig. 6, but SNR = 40 dB.
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Fig. 9. Same as in Fig. 6, but SNR = 50 dB.
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Fig. 10. Plots of (left)λ, and (right)PSNR(λ) as functions ofε for λ selected to minimizeWSURE(λ) with W = IM andWD in (3) andMSE(λ)
for the experiment described in [1, Sec. VI-B2] withSNR = 20 dB and ΨTV as the regularizer.
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Fig. 11. Same as in Fig. 10, but SNR = 30 dB.
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Fig. 12. Same as in Fig. 10, but SNR = 40 dB.
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Fig. 13. Same as in Fig. 10, but SNR = 50 dB.
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(a) (b) (c) (d) (e)

Fig. 14. Experiment with real in-vivo human head data [1, Sec. VI-D]; Slice 10. (a) Very mildlyΨℓ1 -regularized reference reconstruction from “fully-sampled”
data averaged over 3 acquisitions; (b) conjugate phase reconstruction from2× undersampled data (from a single acquisition) with densitycompensation; Images
reconstructed from2× undersampled data (from a single acquisition) usingΨℓ1 -regularizer withλ selected to minimize (c)NGCV(λ); (d) WSURE(λ)
with W = IM ; (e) WSURE(λ) with WD [1, Eq. (24)].

(a) (b) (c) (d) (e)

Fig. 15. Same experiment as in Fig. 14; Slice 12.


