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Abstract—Statistical image reconstruction algorithms in X-ray
computed tomography (CT) provide improved image quality for
reduced dose levels but require substantial computation time.
Iterative algorithms that converge in few iterations and that
are amenable to massive parallelization are favorable in multi-
processor implementations. The separable quadratic surrogate
(SQS) algorithm is desirable as it is simple and updates all voxels
simultaneously. However, the standard SQS algorithm requires
many iterations to converge. This paper proposes an extension of
the SQS algorithm that leads to spatially nonuniform updates. The
nonuniform (NU) SQS encourages larger step sizes for the voxels
that are expected to change more between the current and the final
image, accelerating convergence, while the derivation of NU-SQS
guarantees monotonic descent. Ordered subsets (OS) algorithms
can also accelerate SQS, provided suitable “subset balance” con-
ditions hold. These conditions can fail in 3-D helical cone-beam
CT due to incomplete sampling outside the axial region-of-interest
(ROI). This paper proposes a modified OS algorithm that is
more stable outside the ROI in helical CT. We use CT scans to
demonstrate that the proposed NU-OS-SQS algorithm handles
the helical geometry better than the conventional OS methods and
“converges” in less than half the time of ordinary OS-SQS.

Index Terms—Computed tomography (CT), ordered subsets
(OS), parallelizable iterative algorithms, separable quadratic
surrogates, statistical image reconstruction.

I. INTRODUCTION

S TATISTICAL image reconstruction methods can improve
resolution and reduce noise and artifacts by minimizing

either penalized likelihood (PL) [1]–[3] or penalized weighted
least-squares (PWLS) [4]–[6] cost functions that model the
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physics and statistics in X-ray computed tomography (CT).
The primary drawback of these methods is their computation-
ally expensive iterative algorithms. This paper describes new
accelerated minimization algorithms for X-ray CT statistical
image reconstruction.
There are several iterative algorithms for X-ray CT. Coordi-

nate descent (CD) algorithms [7] (also known as Gauss Siedel
algorithms [8, p. 507]) and block/group coordinate descent
(BCD/GCD) algorithms [9]–[11], update one or a group of
voxels sequentially. These can converge in few iterations
but can require long computation time per iteration [6], [12].
Considering modern computing architectures, algorithms that
update all voxels simultaneously and that are amenable to
parallelization are desirable, such as ordered subsets based on
separable quadratic surrogate (OS-SQS) [13]–[15] and precon-
ditioned conjugate gradient (PCG) algorithms [16]. However,
those highly parallelizable algorithms require more iterations
than CD algorithms [6], [12], and thus it is desirable to reduce
the number of iterations needed to reach acceptable images.
Splitting techniques [17] can accelerate convergence [18], but
require substantial extra memory.
In this paper, we propose an enhanced version of a highly

parallelizable SQS algorithm that accelerates convergence. SQS
algorithms are optimization transfer methods that replace the
original cost function by a simple surrogate function [19], [20].
Here, we construct surrogates with spatially nonuniform curva-
tures that provide spatially nonuniform step sizes to accelerate
convergence.
Spatially nonhomogeneous (NH) approach [7] accelerated

the CD algorithm by more frequently visiting the voxels that
need updates. This approach is effective because the differences
between the initial and final images are nonuniform. Inspired
by such ideas, we propose a spatially nonuniform (NU) opti-
mization transfer method that encourages larger updates for
voxels that are predicted to be farther from the optimal value,
using De Pierro’s idea in SQS [21]. We provide a theoretical
justification for the acceleration of NU method by analyzing the
convergence rate of SQS algorithm (in Section II-D). The NH
approach also balanced homogeneous and nonhomogeneous
updates for fast overall convergence rate [7]. Section III-C
discusses similar considerations for the proposed NU approach.
OS, also known as incremental gradient methods [22], [23] or

block iterative methods [24], can accelerate gradient-based al-
gorithms by grouping the projection data into (ordered) subsets
and updating the image using each subset. OS algorithms are

0278-0062 © 2013 IEEE



1966 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 11, NOVEMBER 2013

Fig. 1. Diagram of helical CT geometry. A (red) dashed region indicates the
detector rows that measure data with contributions from voxels both within and
outside the ROI.

most effective when a properly scaled gradient of each subset
data-fit term approximates the gradient of the full data-fidelity
term, and then it can accelerate convergence by a factor of the
number of subsets. However, standard OS algorithms usually
approach a limit-cycle where the sub-iterations loop around the
optimal point. OS algorithms can be modified so that they con-
verge by introducing relaxation [25], reducing the number of
subsets, or by using incremental optimization transfer methods
[26]. Unfortunately, such methods converge slower than ordi-
nary OS algorithms in early iterations. Therefore, we investi-
gated averaging the sub-iterations when the algorithm reaches
a limit-cycle, which improves image quality without slowing
convergence. (There was a preliminary simulation study of this
idea in [27].)
In cone-beam CT, the user must define a region-of-interest

(ROI) along the axial ( ) direction for image reconstruction (see
Fig. 1). Model-based reconstruction methods for cone-beam CT
should estimate many voxels outside the ROI, because parts of
each patient usually lie outside the ROI yet contribute to some
measurements. However, accurately estimating non-ROI voxels
is difficult since they are incompletely sampled, which is called
the “long-object problem” [28]. Reconstructing the non-ROI
voxels adequately is important, as theymay impact the estimates
within the ROI. Unfortunately in OS algorithms, the sampling of
these extra slices leads to very imbalanced subsets particularly
for large number of subsets, which can destabilize OS algorithm
outside the ROI. This paper proposes an improved OS algorithm
that is more stable for 3-D helical CT by defining better scaling
factors for the subset-based gradient [29].
The paper is organized as follows. Section II reviews PL and

PWLS problems for X-ray CT image reconstruction. We re-
view the optimization transfer methods including the SQS al-
gorithm and analyze its convergence rate. Section III presents
the proposed spatially nonuniform SQS algorithm (NU-SQS).
Section IV reviews the standard OS algorithm and refines it for
3-D helical CT. Section V shows the experimental results on
various data sets, quantifying the convergence rate and recon-
structed image quality. Finally, Section VI offers conclusions.
The results show that the NU approach more than doubles the

convergence rate, and the improved OS algorithm provides ac-
ceptable images in helical CT.

II. STATISTICAL IMAGE RECONSTRUCTION

A. Problem

We reconstruct a nonnegative image
from noisy measured transmission data by min-

imizing either PL or PWLS cost functions

(1)

(2)

where is a minimizer of subject to a nonnegativity
constraint. The function is a negative log-likelihood
term (data-fit term) and is a regularizer. The matrix

is a projection operator ( for all , ) where
, and is a finite differencing

matrix considering 26 neighboring voxels in 3-D image space.1

The function is a (convex and typically nonquadratic)
edge-preserving potential function. The function is se-
lected based on the chosen statistics and physics.
• PL for pre-log data with Poisson model [1]–[3] uses

(3)

where is the blank scan factor and is the mean number
of background events. The function is nonconvex if

, or convex otherwise. A shifted Poisson model [30]
that partially accounts for electronic recorded noise can be
used instead.

• PWLS for post-log data with
Gaussian model [4]–[6] uses a convex quadratic function

(4)

where provides statistical weighting.
We use the PWLS cost function for our experiments in
Sections IV and V.

The proposed NU-SQS algorithm, based on optimization
transfer methods (in Section II-B), decreases the cost function

monotonically for either (3) or (4).

B. Optimization Transfer Method

When a cost function is difficult to minimize, we re-
place with a surrogate function at the th iteration
for computational efficiency. This method is called optimiza-
tion transfer [19], [20], which is also known as a majorization
principle [31], and a comparison function [32]. There are many
optimization transfer algorithms such as expectation maximiza-
tion (EM) algorithms [33], [34], separable surrogate algorithms

1Each row of consists of a permutation of where
the indexes of the nonzero entries 1 and corresponds to adjacent voxel lo-
cations in 3-D image space.
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based on De Pierro’s lemma [35]–[37] and surrogate algorithms
using Lipschitz constants [38], [39].
The basic iteration of an optimization transfer method is

(5)

To monotonically decrease , we design surrogate functions
that satisfy the following majorization conditions:

(6)

Constructing surrogates with smaller curvatures while sat-
isfying condition (6) is the key to faster convergence in
optimization transfer methods [11].
Optimization transfer has been used widely in tomography

problems. De Pierro developed a separable surrogate (SS) ap-
proach in emission tomography [35], [36]. Quadratic surrogate
(QS) functions have been derived for nonquadratic problems,
enabling monotonic descent [1]. SQS algorithms combine
SS and QS [14], and are the focus of this paper. Partitioned
SQS methods for multi-core processors have been proposed
for separating the image domain by the number of processors
and updating each of them separately while preserving the
monotonicity [40]. In addition, replacing in (6) by an
interval that is known to include the minimizer can reduce
the surrogate curvature [7], [41].
Building on this history of optimization transfer methods that

seek simple surrogates with small curvatures, we propose a spa-
tially nonuniform SQS (NU-SQS) algorithm that satisfies condi-
tion (6) and converges faster than the standard SQS. We review
the derivation of the SQS algorithm next.

C. Separable Quadratic Surrogate Algorithm

We first construct a quadratic surrogate at the th iteration for
the nonquadratic cost function in (2)

(7)

where and are quadratic surrogates for
and . Based on (2), the quadratic surrogate for has
the form

(8)

where and is the curva-

ture of for some small positive value that ensures the
curvature positive [1]. In PWLS problem, is quadratic
already, so . The quadratic surrogate for

is defined similarly.

We choose curvatures that satisfy the monotonicity
conditions in (6). For PL, the smallest curvatures

(9)

where , called “optimal curvatures,” lead to
the fastest convergence rate but require an extra back-projection
each iteration for nonquadratic problems [1]. Alternatively, we
may use “maximum curvatures:”

(10)

that we can precompute before the first iteration [1].
Next, we generate a separable surrogate of the quadratic sur-

rogate. For completeness, we repeat De Pierro’s argument in
[14]. We first rewrite forward projection as follows:

(11)

where a nonnegative real number is zero only if is zero

for all , , and satisfies for all . Using the

convexity of and the convexity inequality yields

(12)

Thus, we have the following SQS (with a diagonal Hes-
sian) for the data-fit term

(13)

(14)

The second derivative (curvature) of the surrogate is

(15)

We can define a SQS for the regularizer similarly,
and it has the curvature

(16)
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where have similar constraints as ,

for maximum curvature [14], or can be
replaced by for Huber’s optimal cur-
vature [32, Lemma 8.3, p.184].
Combining the surrogates for the data-fit term and regularizer

and minimizing it in (5) leads to the following SQS method [14]
that updates all voxels simultaneously with a “denominator”

as

(17)

where a clipping enforces the nonnegativity constraint. This
SQS decreases the cost function monotonically, and it
converges based on the proof in [20]. If is convex, a se-
quence converges to that is a global minimizer .
Otherwise, converges to a local minimizer which
may or may not be a global minimizer depending on the initial
image .
The implementation and convergence rate of SQS depend on

the choice of . A general form for is

(18)

where a nonnegative real number is zero only if is zero.
Then (15) can be rewritten as

(19)

Summations involving the constraint require knowl-
edge of the projection geometry, and thereby each summation
can be viewed as a type of forward or back projection.
The standard choice [11], [14]

(20)

leads to

(21)

and

(22)

This choice is simple to implement, since the (available) stan-
dard forward and back projections can be used directly in (21).
(Computing in (22) is negligible compared with (21).)
The standard SQS generates a sequence in (17) by
defining the denominator as

(23)

However, we prefer choices for (and ) that provide fast
convergence. Therefore, we first analyze the convergence rate
of the SQS algorithm in terms of the choice of in the next
section. Section III introduces acceleration by choosing better

(and ) than the standard choice (20).

D. Convergence Rate of SQS Algorithm

The convergence rate of the sequence generated by
the SQS iteration (17) depends on the denominator

. This paper’s main goal is to choose so that

the sequence converges faster.
The asymptotic convergence rate of a sequence that

converges to is measured by the root-convergence factor
defined as in [31,
p. 288]. The root-convergence factor at for SQS algorithm
is given as in [31, Linear
Convergence Theorem, p. 301] and [42, Theorem 1], where the
spectral radius of a square matrix is its largest absolute
eigenvalue and , assuming that con-
verges to . For faster convergence, we want
and to be smaller. We can reduce the root-convergence
factor based on2[42, Lemma 1], by using a smaller denominator

subject to the majorization conditions in (6) and (13).
However, the asymptotic convergence rate does not help us

design in the early iterations, so we consider another factor
that relates to the convergence rate of SQS.
Lemma 1: For a fixed denominator [using the maximum

curvature (10)], a sequence generated by an SQS algo-
rithm (17) satisfies

(24)

for any , if is convex. Lemma 1 is a simple gener-
alization of Theorem 3.1 in [39], which was shown for a surro-
gate with a scaled identity Hessian (using Lipschitz constant).
The inequality (24) shows that minimizing
with respect to will reduce the upper bound of

, and thus accelerate convergence. (Since the upper
bound is not tight, there should be a room for further acceler-
ation by choosing better , but we leave it as future work.)
We want to adaptively design to accelerate convergence

at the th iteration. We can easily extend Lemma 1 to Corollary
1 by treating the current estimate as an initial image for the
next SQS iteration:
Corollary 1: A sequence generated by an SQS algo-

rithm (17) satisfies

(25)

for any , if is convex. The inequality (25) motivates
us to use when selecting (and ) to ac-
celerate convergence at th iteration. We discuss this further in
Section III-A. We fix after the number of iterations

2If , then
.
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to ensure convergence of SQS iteration (17), based on [20]. In
this case, must be generated by the maximum curvature
(10) to guarantee the majorization condition (6) for subsequent
iterations.
From (17) and (19), the step size of the SQS iteration

(17) has this relationship

(26)

where smaller (and relatively larger ) values lead to

larger steps. Therefore, we should encourage to be small

( to be relatively large) to accelerate the SQS algorithm.

However, we cannot reduce simultaneously for all voxels,
due to themajorization conditions in (6) and (13). Lemma 1 (and
Corollary 1) suggest intuitively that we should try to encourage
larger steps (smaller ) for the voxels that are far from
the optimum to accelerate convergence.

III. SPATIALLY NONUNIFORM SEPARABLE
QUADRATIC SURROGATE

We design surrogates that satisfy condition (6) and provide
faster convergence based on Section II-D.We introduce the “up-
date-needed factors” and propose a spatially nonuniform SQS
(NU-SQS) algorithm.

A. Update-Needed Factors

Based on Corollary 1, knowing would be
helpful for accelerating convergence at the th iteration, but

is unavailable in practice. NH-CD algorithm [7] used the
difference between the current and previous iteration instead

(27)

which we call the “update-needed factors” (originally named
a voxel selection criterion (VSC) in [7]). Including the small
positive values ensures all voxels to have at least a

small amount of attention for updates. This accelerated

the NH-CD algorithm by visiting voxels with large more
frequently.

B. Design

For SQS, we propose to choose to be larger if the th
voxel is predicted to need more updates based on the “update-
needed factors” (27) after the th iteration. We select

(28)

which is proportional to and satisfies the condition for .
This choice leads to the following NU-based denominator:

(29)

which leads to spatially nonuniform updates .

If it happened that

(30)

where is a constant, then the NU denominator would
minimize the upper bound of in Corollary
1:
Lemma 2: The proposed choice in (29) minimizes the

following weighted sum of the denominators:

(31)

over all possible choices of the in (19).
Proof: In Appendix A.

The proposed in (29) reduces to the standard choice

in (21) when is uniform. Similar to the standard

choice , the proposed choice can be implemented
easily using standard forward and back projection. However,
since depends on iteration , additional projections re-

quired for at every iteration would increase computation.
We discuss ways to reduce this burden in Section III-F.
Similar to the data-fit term, we derive the denominator of

NU-SQS for the regularizer term to be

(32)

from the choice and the maximum curva-
ture method in [14]. Alternatively, we may use Huber’s optimal
curvature [32, Lemma 8.3, p.184] replacing in (32) by

. The computation of (32) is much less
than that of the data-fit term.
Defining the denominator in the SQS iteration (17) as

(33)

leads to the accelerated NU-SQS iteration, while the algorithm
monotonically decreases and is provably convergent [20].
We can further accelerate NU-SQS by OS methods [13], [14],
while losing the guarantee of monotonicity. This algorithm,
called OS algorithms based on a spatially nonuniform SQS
(NU-OS-SQS), is explained in Section IV.

C. Dynamic Range Adjustment of

In reality, (30) will not hold, so (27) will be subop-
timal. We could try to improve (27) by finding a function

based on the following:

(34)

where is a small positive value. Then we could use
as (better) update-needed factors. However, solving (34) is in-
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Fig. 2. Shoulder region scan: and after DRA for NU-OS-SQS(82
subsets), with the choice . NU-OS-SQS updates the
voxels with large more, whereas ordinary OS-SQS updates all voxels
equivalently.

tractable, so we searched empirically for good candidates for a
function .
Intuitively, if the dynamic range of the update-needed factors
in (27) is too wide, then there will be too much focus on

the voxels with relatively large , slowing the overall conver-

gence rate. On the other hand, a narrow dynamic range of
will provide no speed-up, since the algorithm will distribute its
efforts uniformly. Therefore, adjusting the dynamic range of
the update-needed factors is important to achieve fast conver-
gence. This intuition corresponds to how the NH-CD approach
balanced between homogeneous update orders and nonhomo-
geneous update orders [7].
To adjust the dynamic range and distribution of , we first

construct their empirical cumulative density function

(35)

to somewhat normalize their distribution, where if
is true or 0 otherwise. Then we map the values of by a
nondecreasing function as follows:

(36)

which controls the dynamic range and distribution of

, and we enforce positivity in to ensure

that the new adjusted parameter is positive if
is positive. (We set in (27) to zero here, since a positive

parameter ensures the positivity of if is positive.)

The transformation (36) from to is called dynamic

range adjustment (DRA), and two examples of such are

presented in Fig. 2. Then we use instead of in (28).
Here, we focus on the following function for adjusting the

dynamic range and distribution:

(37)

where is a nonnegative real number that controls the distri-
bution of and is a small positive value that controls the

maximum dynamic range of . The function reduces to the
ordinary SQS choice in (20) when . The choice of ,

particularly the parameters and here, may influence the con-
vergence rate of NU-SQS for different data sets, but we show
that certain values for and consistently provide fast conver-
gence for various data sets.

D. Related Work

In addition to the standard choice (20), the choice

(38)

with a small nonnegative , has been used in emission tomog-
raphy problems [35], [36] and in transmission tomography prob-
lems [11], [37]. This choice is proportional to , and thereby

provides a relationship . This classical choice (38)
can be also viewed as another NU-SQS algorithm based on “in-
tensity.” However, intensity is not a good predictor of which
voxels need more update, so (38) does not provide fast conver-
gence based on the analysis in Section II-D.

E. Initialization of

Unfortunately, in (27) is available only for , i.e.,
after updating all voxels once. To define the initial update factors

, we apply edge and intensity detectors to an initial filtered
back-projection (FBP) image. This is reasonable since the initial
FBP image is a good low-frequency estimate, so the difference
between initial and final image will usually be larger near edges.
We investigated one particular linear combination of edge and
intensity information from an initial image. We used the 2-D
Sobel operator to approximate the magnitude of the gradient of
the image within each transaxial plane. Then we scaled both
the magnitude of the approximated gradient and the intensity of
the initial image to have same maximum value, and computed a
linear combination of two arrays with a ratio for the initial
update-needed factor , followed by DRA method. We have
tried other linear combinations with different ratios, but the ratio

provided the fastest convergence rate in our experiments.

F. Implementation

The dependence of on iteration increases compu-
tation, but we found two practical ways to reduce the burden.
First, we found that it suffices to update (and ) every

iterations instead of every iteration. This is reason-
able since the update-needed factors usually change slowly with
iteration. In this case, we must generate a surrogate with the
maximum curvature (10) to guarantee the majorization condi-
tion (6) for all iterations. Second, we compute the NU-based
denominator (29) simultaneously with the data-fit gradient in
(17). In 3-D CT, we use forward and back-projectors that com-
pute elements of the system matrix on the fly, and those ele-
ments are used for the gradient in (17). For efficiency, we
reuse those computed elements of for the NU-based denomi-
nator (29). We implemented this using modified separable foot-
print projector subroutines [43] that take two inputs and project
(or back-project) both. This approach required only 29% more
computation time than a single forward projection rather than
doubling the time (see Table I). Combining this approach with

yields a NU-SQS algorithm that required only 11%
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TABLE I
RUN TIME OF ONE ITERATION OF NU-OS-SQS (82 SUBSETS) FOR
DIFFERENT CHOICE OF FOR GE PERFORMANCE PHANTOM

more computation time per iteration than standard SQS, but con-
verges faster.
Computing and the corresponding NU-based denomi-

nator requires one iteration each. In the proposed algorithm,
we computed during one iteration, and then computed the
NU-based denominator (29) during the next iteration combined
with the gradient computation . Then we used the de-
nominator for iterations and then compute again to
loop the process (see outline in Appendix B).

IV. IMPROVED ORDERED SUBSETS ALGORITHM
FOR HELICAL CT

OS methods can accelerate algorithms by a factor of the
number of subsets in early iterations, by using a subset of the
measured data for each subset update. However, in practice,
OS methods break the monotonicity of SQS and NU-SQS, and
typically approach a limit-cycle looping around the optimum.
This section describes a simple idea that reduces this problem,
only slightly affecting the convergence rate unlike previous
convergent OS algorithms. In helical CT geometries, we ob-
served that conventional OS algorithms for PL and PWLS
problem are unstable for large subset numbers as they did not
consider their nonuniform sampling. Thus, we describe an
improved OS algorithm that is more stable for helical CT.

A. Ordinary OS Algorithm

An OS algorithm (with subsets) for accelerating the SQS
or NU-SQS updates (17) has the following th sub-iteration
within the th iteration using the denominator3 in (33)

(39)

where scales the gradient of a subset data-fit term
, and consists of projection

views in th subset for . We count one
iteration when all subsets are used once, since the projection
used for computing data-fit gradients is the dominant opera-

tion in SQS iteration.
If we use many subsets to attempt a big acceleration in OS

algorithm, some issues arise. The increased computation for the
gradient of regularizer in (39) can become a bottleneck (this has

3We consider the maximum curvature (10) here for computational efficiency
in OS methods.

been relieved in [44]). Also having less measured data in each
subset will likely break the subset balance condition

(40)

The update in (39) would accelerate the SQS algorithm by ex-
actly if the scaling factor satisfied the condition

(41)

It would be impractical to compute this factor exactly, so the
conventional OS approach is to simply use the constant .
This “approximation” often works well in the early iterations
when the subsets are suitably balanced, and for small number
of subsets. But in general, the errors caused by the differences
between and a constant scaling factor cause two
problems in OS methods. First, the choice causes insta-
bility in OS methods in a helical CT that has limited projection
views outside ROI, leading to very imbalanced subsets. There-
fore, we propose an alternative choice that better stabilizes
OS for helical CT in Section IV-B. Second, even with replaced
by , OS methods approach a limit-cycle that loops around the
optimal point within sub-iterations [25]. Section IV-C considers
a simple averaging idea that reduces this problem.

B. Proposed OS Algorithm in Helical CT

The constant scaling factor used in the ordinary regu-
larized OS algorithm is reasonable when all the voxels are sam-
pled uniformly by the projection views in all the subsets. But
in geometries like helical CT, the voxels are nonuniformly sam-
pled. In particular, voxels outside the ROI are sampled by fewer
projection views than voxels within the ROI (see Fig. 1). So
some subsets make no contribution to such voxels, i.e., very
imbalanced subsets. We propose to use a voxel-based scaling
factor that considers the nonuniform sampling, rather than a
constant factor .
After investigating several candidates, we focused on the fol-

lowing scaling factor:

(42)

where if is true or 0 otherwise. As expected,
for voxels outside the ROI and for voxels within the
ROI. The scaling factor (42) has small compute overhead as it
can be computed simultaneously with the precomputation of the
initial data-fit denominator (29) by rewriting it as

(43)

We store (42) as a short integer for each voxel outside the ROI
only, so it does not require very much memory.
We evaluated the OS algorithmwith the proposed scaling fac-

tors (42) using the GE performance phantom. Fig. 3 shows that
the OS algorithm using the proposed scaling factors (42) leads to
more stable reconstruction than the ordinary OS approachwhich
diverges outside the ROI. The instability seen with the ordinary
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Fig. 3. Effect of gradient scaling in regularized OS-SQS algorithm with GE performance phantom in helical CT: Each image is reconstructed after running 20
iterations of OS algorithm with 328 subsets, using ordinary and proposed scaling approaches. Standard deviation of a uniform region (in white box) is computed
for comparison. We compute FWHM of a tungsten wire (red arrow) to measure the resolution. (The result of a convergent algorithm is shown for reference. Images
are cropped for better visualization).

Fig. 4. GE performance phantom: mean and standard deviation within a uni-
form region in the first slice of the ROI (see Fig. 3) versus iteration, showing
the instability of ordinary OS approach with 328 subsets, compared with the
proposed OS approach. Also shown is the result from a converged image
generated from several iterations of a convergent algorithm.

OS approach may also degrade image quality within the ROI
as seen by the noise standard deviations in Fig. 3. The results
in Fig. 4 further show that the ordinary OS algorithm exhibits
more variations within the ROI due to the instability outside
ROI, whereas the proposed OS algorithm is robust.

C. OS Algorithm With Averaging

Although the new scaling factors (42) stabilize OS in helical
CT and reduce artifacts, the final noise level is still worse than
a convergent algorithm (see Figs. 3 and 4) because any OS
method with constant scaling factors will not converge [45].
This section discusses one practical method that can reduce
noise without affecting the convergence rate. This approach
helps the OS algorithm come closer to the converged image,
reducing the undesirable noise in images reconstructed using
OS algorithms with large .
To ensure convergence, the incremental optimization transfer

method [26] was proposed, which involves a form of averaging,
but the greatly increased memory space required has prevented
its application in 3-D X-ray CT. As a practical alternative, we

TABLE II
GE PERFORMANCE PHANTOM: NOISE, RESOLUTION AND RMSD BEHAVIOR OF
OS-SQS(328 SUBSETS) AFTER 20 ITERATIONS FOLLOWED BY AVERAGING

investigated an approach where the final image is formed by av-
eraging all of the sub-iterations at the final iteration of the
OS algorithm (after it approaches its limit cycle). A memory-ef-
ficient implementation of this approach uses a recursive in-place
calculation

(44)
where is an initial zero image, and is the final averaged
image. There was a preliminary simulation investigation of av-
eraging the final iteration in [27], and we applied the averaging
technique to CT scans here. In Table II, we investigated this
averaging method using a scan of the GE performance phantom
(GEPP) phantom and quantified the noise and resolution proper-
ties (as described in Fig. 3), and evaluated root mean square dif-
ference (RMSD4) between current and converged image within
ROI. Table II shows that the averaging technique successfully
reduces the noise and RMSD.
Overall, we have enhanced the standard OS-SQS algorithm

into the NU-OS-SQS method for 3-D helical CT. First, we ac-
celerated the standard OS-SQS algorithm by nonuniform (NU)
approach, encouraging larger step sizes for the voxels that need
more updates. We modified the algorithm to handle the helical

4 , where is the

number of voxels in the ROI.
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CT geometry by introducing the scaling factor . We also aver-
aged all sub-iterations at the final iteration to reduce noise. The
outline of the proposed algorithm is presented in Appendix B.
We investigate the performance of the NU-OS-SQS algorithm
for various CT scans in the next section.

V. EXPERIMENTAL RESULTS

We investigated the proposed NU-OS-SQS algorithm for
PWLS image reconstruction with a nonnegativity constraint.
The PWLS cost function is strictly convex and has a unique
global minimizer [46]. We implemented the NU-OS-SQS
algorithm in C and executed it on a Mac with two 2.26 GHz
quad-core Intel Xeon processors and a 16 GB RAM. We used
16 threads, and projection views were grouped and assigned to
each thread.
Three 3-D helical CT data sets are used in this section to

compare the proposed NU-OS-SQS algorithm to the ordinary
OS-SQS algorithm, and we used the GEPP to measure the res-
olution. We used two other clinical data sets to investigate the
performance of NU approach. We investigated tuning the DRA
function in (37) to provide fast convergence rate for various
data sets. We also provide results from a simulation data set in
a supplementary material for reproducibility.5

We chose the parameters of the cost function in (2) to
provide a good image. We defined an edge-preserving potential
function as , where the function:6

(45)

is a generalized version of a Fair potential function in [47], and
the spatial weighting [48] provides resolution properties that
emulate the GE product “Veo.” We used subsets for
the OS algorithms, assigning 12 out of 984 projection views per
rotation to each subset. We used the maximum curvature (10)
for generating the denominator of surrogate function of the cost
function , and focused on which balances the
convergence rate and run time, based on Table I.
In Section II-D, we recommended fixing the denominator
[generated by the maximum curvature (10)] after

iterations in NU-SQS algorithm to guarantee convergence.
This condition is less important theoretically when we accel-
erate the NU-SQS algorithm with OS methods that break the
convergence property. However, we still recommend fixing

after iterations (before approaching the limit-cycle)
in the NU-OS-SQS algorithm, because we observed some
instability from updating (and ) every iterations
near the limit-cycle in our experiments. We selected
for GEPP, but we did not use for other two cases because
the algorithm did not reach a limit-cycle within
iterations, and we leave optimizing as a future work.

5The supplementary material is available at http://ieeexplore.ieee.org.
6The gradient avoids expensive power

operations, saving computation for OS-type methods. The function reduces to
a Fair potential function in [47] when and . We used ,

, and in our experiments.

In Section IV-B, we stabilized the OS-SQS algorithm outside
ROI in helical geometry by using the factor in (42). However,
we experienced some instability outside ROI in NU-OS-SQS
methods even with (42), because a small NU denominator
outside ROI is more likely to lead to instability than for voxels
within the ROI due to the incomplete sampling outside ROI.
Therefore, we prevent the denominator outside ROI from
being very small. We empirically modified the DRA function in
Section III-C, and used it for our experiments, improving sta-
bility outside ROI. We first modified the function (35) as fol-
lows:

(46)

since the value of in (27) outside ROI was found to be rela-
tively large due to the incomplete sampling.We further modified
(36) and (37) to prevent from becoming very small outside
ROI as follows with :

if th voxel within ROI

otherwise.
(47)

A. GE Performance Phantom

We reconstructed images of the GEPP from a
sinogram (the number of detector columns

detector rows projection views) with pitch 0.5. We evaluated
the full-width at half-maximum (FWHM) of a tungsten wire
(see Fig. 3). Fig. 5(a) shows the resolution versus run time and
confirms that nonuniform (NU) approach accelerates the SQS
algorithm. This dramatic speed-up in FWHM is promising since
SQS-type algorithms are known to have slow convergence rate
of high frequency components [6]. We also evaluated the con-
vergence rate by computing RMSD between current and con-
verged7 image versus run time, within ROI.
Fig. 5(a) and (b) illustrates that increasing in in (37)

accelerates the convergence of “update-needed” region, partic-
ularly the wire and edges in GEPP. However, highly focusing
the updates on few voxels will not help speed up the overall
convergence for all objects. Therefore, we further investigate
the choice of using various patient CT scans.
The RMSD plots8 of NU-OS-SQS in Fig. 5(b) reached a

limit-cycle after 1500 s that did not approach zero. Averaging
the sub-iterations at the final iteration improved the final image
with small computation cost, yielding the drop in RMSD at
the last 20th iteration in Fig. 5(b). The reduced noise was
measurable in the reconstructed image, as seen in Table II.

B. Shoulder Region Scan

In this experiment, we reconstructed a image
from a shoulder region scan sinogramwith pitch

7We ran 100 iterations of OS-SQS algorithm with 41 subsets, followed by
each 100 iterations of OS-SQS algorithm with four subsets, and 2000 iterations
of (convergent) SQS.We subsequently performed 100 iterations of (convergent)
NH-ABCD-SQS [21] to generate (almost) converged images .
8We also provide the plots of the cost function for GEPP and shoulder region

scan in the supplementary material.
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Fig. 5. GE performance phantom: plots of (a) FWHM and (b) RMSD as a function of run time for different choice of DRA parameters for . Plot
markers show each iteration. There are no changes during first iteration, since we consider precomputing the denominator using one forward and back projections
as one iteration.

Fig. 6. Shoulder region scan: plot of RMSD versus run time for different choice of parameters (a) and (b) in .

0.5. Fig. 6(a) and (b) shows that the nonuniform approach ac-
celerates convergence, depending on the choice of parameters in

. We investigated the relationship between the convergence
rate and the DRA function by tuning both the parameters
and in (37). Fig. 6(a) shows that increasing to 10 accelerated
convergence, but larger values did not help as the choice of

was slower than . In Fig. 6(b), decreasing to
0.01 accelerated the algorithm in this shoulder region scan, but
not for the data set in Section V-C, so appears to be a
reasonable choice overall.
We averaged the sub-iterations at the last iteration, but

Fig. 6(a) and (b) did not show a drop at the final iteration
[which appeared in Fig. 5(b)], because the algorithm had
not yet reached a limit-cycle. Even though averaging did not
noticeably decrease the RMSD, the reconstructed image had
measurable noise reduction in regions that already reached a
limit-cycle like uniform regions. (Results not shown.)

In Fig. 7(a), we illustrate that statistical image reconstruc-
tion can reduce noise and preserve image features compared
to analytical FBP reconstruction. The reconstructed images of
(NU-)OS-SQS show that NU approach helps OS-SQS to ap-
proach the converged image faster than the ordinary method.
After the same computation (95 min), the reconstructed image
of OS-SQS still contains streaks from the initial FBP image,
while NU-OS-SQS has reduced the streaks. This is apparent in
the difference images between the reconstructed and converged
images in Fig. 7(b).
By analyzing NU-OS-SQS in two CT scans, we observed that

the parameters and consistently accelerated
the algorithm by about a factor of more than two.9 (The choice

9We used the run time and RMSD of standard OS-SQS after 20 iterations
(without averaging) as a reference to compare with the NU-OS-SQS for each
data set. Then we compared the run time of NU-OS-SQS that is required for
achieving the reference RMSD with the reference run time, and confirmed that
NU provided more than two-fold accelerations in two CT scans.
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Fig. 7. Shoulder region scan. (a) Center slice of initial FBP, converged image and reconstructed image by OS-SQS(82) and NU-OS-SQS(82)-
after about 95 min. (b) Difference between the reconstructed and converged images are additionally shown to illustrate the acceleration of NU

approach. (Images are cropped for better visualization).

was too aggressive in our other experiments.) We also
have observed more than two-fold accelerations in other exper-
iments. (Results not shown.) Fig. 6(b) shows the RMSD plot
using the (practically unavailable) oracle update-needed factor

instead of our heuristic choice . This
result suggests that additional optimization of the DRA method
and initialization of could further speed up the NU algo-
rithm in future work.

C. Truncated Abdomen Scan

We also reconstructed a image from a
sinogramwith pitch 1.0. This scan contains transaxial

truncation and the initial FBP image has truncation artifacts [49]
that can be reduced by iterative reconstruction. The choice of

described in Section III-E did not consider truncation ef-
fects, and we found that NU-OS-SQS did not reduce such arti-
facts faster than standard OS-SQS. (The large patient size may
also have reduced the possible speed-up by the NU method,
compared to the previous two scans.) Therefore, we investigated
an alternative NU method that can reduce truncation artifacts
faster than standard algorithm.
We designed a modified NU method using a few sub-

iterations of standard OS-SQS to generate the initial update-
needed factor , which may also be a reasonable approach

for other scans.We perform initial sub-iterations in (39)

efficiently using two-input projectors (in Section III-F) and re-
placing the all-view denominator in (29) by a standard
subset-based denominator [25]

(48)

where consists of projection views in th subset. The
scaling factor in (42) is unavailable at this point, so we use

instead. After sub-iterations, we compute the
following initial update-needed factors:

(49)

where is a DRA function in (36), and we use these
to compute the NU denominators and that we use
for first outer iterations.
Fig. 8(a) shows that statistical image reconstruction provides

better image quality than FBP reconstruction. Fig. 8(b) illus-
trates that this NUsub-OS-SQS approach reduces the truncation
artifacts faster than the standard OS-SQS and NU-OS-SQS. Al-
though standard OS-SQS reduces noise faster than other two
algorithms in Fig. 8(b), both NU-OS-SQS and NUsub-OS-SQS
show better convergence near the spine, the boundary of patient,
and other internal structures than OS-SQS at the same compu-
tation time (90 min).
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Fig. 8. Truncated abdomen scan. (a) Center slice of FBP, converged image, and reconstructed image by NUsub-OS-SQS(82)- using
in (49) generated from sub-iterations. (b) Difference between the reconstructed and converged images, where images are reconstructed by OS-SQS(82) after

5400 s (20 iterations), NU-OS-SQS(82) after 5230 s (18 iterations) using extracted from FBP based on Section III-E, and NUsub-OS-SQS(82) after 5220 s
(17 iterations) using in (49). The (black) arrows indicate truncation artifacts. Images are cropped for better visualization.

VI. CONCLUSION

This paper has presented a spatially nonuniform SQS algo-
rithm that can efficiently minimize both PL and PWLS problems
monotonically. The experimental results show that the proposed
NU-SQS approach converged more than twice as fast as SQS.
The OS algorithm, further applied to SQS method for accelera-
tion, was enhanced to handle nonuniformly sampled geometries
such as helical CT. The improvements showed promising results
on large 3-D helical CT data sets.
The key of the NU-SQS approach is designing “up-

date-needed” factors in (27) that encourage larger step
sizes for voxels that are predicted to need larger changes to
reach the final image. Further optimization of these factors, e.g.,
by improving the initialization of and the DRA function
in (36), should lead to further acceleration and stability of the
proposed NU-SQS and NU-OS-SQS methods.

APPENDIX A
PROOF OF LEMMA 2

The proposed choice in (28) and its

corresponding in (29) are a choice that minimizes

among all possible in (19), i.e.,

subject to the positivity constraint on if .

Proof: By the Schwarz inequality , we
have

where

and

Then
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APPENDIX B
OUTLINE OF THE PROPOSED NU-OS-SQS ALGORITHM

Set , , and initialize by an FBP image.
Generate from an FBP image by edge and intensity detectors.

Compute the maximum curvature .

(50)

for

(51)

end

for

if and

elseif and

elseif and

end

for

if or

(52)

else

compute both by (51) and by
(52) simultaneously using two-input projection
function, and

end

(53)

if

end

end

end
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This material extends the result section of [1] by providing

cost function plots and a simulation study of a helical scan of

the XCAT phantom [2].

References to equations, tables, figures, bibliography are

within this material unless they are specified.

I. COST FUNCTION

In [1], we computed root mean square difference (RMSD)

within region-of-interest (ROI) to evaluate the convergence

rate of the proposed algorithm. Another way to assess the

convergence rate is computing the cost function Ψ(x) in [1,

Eqn. (2)] at each iteration. We used the following metric:

ξ(n) = 20 log10

(
Ψ(x(n))−Ψ(x(∞))

Ψ(x(∞))

)
[dB] (1)

to better visualize how the cost function decreases each

iteration. We used double precision and triple for loops when

accumulating Ψ(x(n)) to ensure high accuracy.

Fig. 2 shows plots of ξ(n) for the choices of parameters used

in [1, Fig. 5 and 6] for two real 3D scans; GE performance

phantom (GEPP) and shoulder region scan. Fig. 2(a) shows

that for the GEPP case, the NU-OS methods decreased the cost

function at about the same rate than the ordinary OS method,

or even perhaps slightly slower. In contrast, when we plotted

RMSD distance to the converged image within the ROI [1, Fig.

5], NU-OS converged significantly faster. The reason for this

different behavior is that the cost function plot considers all

voxels, even those outside the ROI which are not of interest

clinically. It is known that OS methods are not guaranteed

to converge and apparently the non-ROI voxels are either

not converging or perhaps approaching a larger limit-cycle,

presumably due to the poor sampling in the padded slices

outside the ROI, even with the stabilizing methods outside

ROI described in [1, Section V]. Therefore, cost function plots

may not provide practical measures of convergence rate for

OS methods, particularly with acceleration. Future research on
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trying to further stabilize the NU-OS-SQS algorithm outside

the ROI also may be helpful.

The final drops at the right in Fig. 2(a) show that aver-

aging sub-iterations at the last iteration, as described in [1,

Section IV.C], can compensate for the limit-cycle, particularly

outside the ROI.

Unlike Fig. 2(a), the plots in Fig. 2(b) and 2(c) of shoulder

region scan look similar to the plots of RMSD within ROI

in [1, Fig. 6]. The scan geometry of each data set might

explain these behavior of cost function in Fig. 2, where the

shoulder region scan is a helical scan with pitch 1.0 and

7 helical turns and thus the corresponding image space has

relatively few voxels outside the ROI, compared with GEPP

data that is acquired by a helical scan with pitch 0.5 and 3
helical turns. Therefore, we can expect the cost function of

shoulder region scan to be less affected by instability outside

the ROI. Slower convergence of NU-OS-SQS algorithm at

early iterations in Fig. 2(c) means that some choices of initial

update-needed factor ũ
(0)
j were not good enough for voxels

outside the ROI. The effect of averaging at the last iterations

is apparent in Fig. 2(b) and 2(c), because the instability outside

the ROI is suppressed by the averaging.

II. SIMULATION DATA

A. Simulation data

We simulated a helical CT scan data by using XCAT phan-

tom [2]. We first acquired a 1024×1024×154XCAT phantom

for 500 [mm] transaxial field-of-view (FOV) at 70 [keV],

where ∆x = ∆y = 0.4883 [mm] and ∆z = 0.6250 [mm].

(See Fig. 1.)
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Fig. 1. A simulated XCAT phantom: a center slice of 1024 × 1024 × 154
XCAT phantom. (Images are cropped for better visualization.)
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Fig. 2. Plots of ξ(n) in (1) as a function of run time for different choice of DRA parameters for (a) GE performance phantom and (b-c) a shoulder region
scan.

We simulated a helical scan using the blank scan factor bi =
106 and the mean number of background events ri = 0 with

Poisson noise. The sinogram data is in 888× 64× 2934 (the

number of detector columns×detector rows×projection views)

space with pitch 1.0. Then, we reconstructed a 512×512×154
image where ∆x = ∆y = 0.9766[mm] and ∆z = 0.6250[mm]

using the proposed NU-OS-SQS algorithm.

B. Results

We use a cost function that is similar to the cost function

used in [1, Section V]. We solve a PWLS function with a

potential function ψk(t) , ω̄kψ(t) in [1, Eqn. (45)] using a

spatial weighting parameter:

ω̄k , 50 ·
Np∏

j=1
ckj 6=0

max {κj , 0.01 κmax} (2)

that provides uniform resolution properties [3], where

κj ,

√√√√
∑Nd

i=1 aijwi∑Nd

i=1 aij
(3)

and the value of κmax , maxj κj is used in (2) to avoid under-

regularizing some voxels with very small κj . Fig. 3 illustrates

both RMSD within ROI and ξ(n) versus computation time,

which we run the algorithm on the machine described in [1].

In Fig. 3(a), we evaluated the convergence rate using RMSD

within ROI between current and converged image, where

the converged image was generated by many iterations of a

(convergent) SQS. We used parameters of DRA function that

are used in [1, Fig. 5 and 6], and we observed similar trends.

We also illustrate the plot of ξ(n) versus run time in Fig. 3(b),

which looks very similar to Fig. 3(a). This is because we

regularized relatively more than two other experiments in this

simulation experiment, and thus instability outside the ROI

that can be caused by NU-OS-SQS methods is not apparent

here.

In Fig. 4(a), the reconstructed images of (NU-)OS-SQS

show that NU method accelerates OS-SQS and reaches closer

to the converged image after the same computation time (88

min.). This is apparent when comparing the difference images

between the reconstructed and converged images in Fig. 4(b),

particularly around the spine.
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Fig. 3. A simulated XCAT phantom: plots of (a) RMSD and (b) ξ(n) versus run time for different choice of parameters t for ǫ = 0.05 in g(v) = max
{
vt, ǫ

}
.
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