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Abstract—Radiation imaging has many applications ranging
from health care to homeland security and defense, and source
motion is present in many of these applications. When the mo-
tion profile of the source is known or otherwise estimated, one
can use motion-compensation techniques to reduce blur in the
reconstructed image. In this paper, we present a model-based
source-intensity reconstruction in the energy and spatial domains
using list-mode data. The model includes separate parameteriza-
tion for objects moving with known motion that is independent
of the stationary backdrop. This approach corrects for object
motion without smearing stationary sources in the backdrop
space. The goal is to simultaneously obtain an estimate of the
incident energy and spatial distribution of the radiation field for
the stationary backdrop and for each moving object. Experi-
mental Compton-imaging results using an 18-detector array of
3-D-position-sensitive CdZnTe detectors show that the method
can successfully reconstruct the source intensity of moving objects
while also revealing stationary sources in the backdrop. Also, by
modeling the possibility of partial photon energy deposition in
the detector, the incident energy spectrum is reconstructed more
accurately.

Index Terms—Algorithms, CdZnTe, Compton imaging, image
reconstruction, maximum-likelihood estimation, source motion.

I. INTRODUCTION

A CCOUNTING for motion in image reconstruction is im-
portant in many situations. In the medical field, there has

been active research on this topic for many years including an
early derivation of the list-mode MLEM algorithm for dynamic
reconstructions by Snyder [1]. Menke et al. tracked patient
movement by using an optical tracking system and corrected the
lines of response for this motion before image reconstruction
[2]. Later, Qi et al. expanded on the work to include the motion
compensation in the reconstruction model itself [3], which,
among other things, accounted for the change in sensitivity of
the system as the patient moved. This improvement was an
important step to reduce model mismatch.
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Related work in the medical field attempts to reconstruct the
time dependency of the object rather than just remove the ef-
fects of motion (e.g., 4-D poitive PET). Often, this approach
uses a standard pixel mesh in the spatial domain and then uses
B-splines to parameterize the time domain [4], [5]. The resulting
reconstruction represents the time-dependent activity distribu-
tion, revealing physiological processes that would otherwise be
unobservable with a single 3-D image. Variants of this approach
have been studied, including using Fourier basis functions [6]
and using list-mode data to improve temporal resolution [7] as
well as many others.
In other applications, such as homeland security, imaging

and/or detection of gamma-ray sources contained in moving ob-
jects is desired. For example, one can imagine placing detectors
near border crossings or other choke points to detect illicit nu-
clear material carried in vehicles or by pedestrians. In this case,
motion compensation would be required to faithfully recon-
struct the intensity distributions around these (moving) objects
[8]. In certain situations, there may also be stationary sources
of gamma rays residing in what we refer to as the backdrop that
are also of interest for imaging and detection. The work pre-
sented here focuses on this homeland security application, and
assumes that the motion of the object(s) of interest are known
through some other means of estimation, such as video-tracking
systems [8]–[10].
The algorithm described in this paper extends the energy

imaging integrated deconvolution (EIID) method of Xu and
He [11]. The model developed here to account for source
motion could be directly applied in detection methods that
use the EIID system model, such as [12]. However, here we
focus on determining the radiation distribution (in space and
energy) originating from the moving objects, as well as from
any stationary sources, while avoiding interference between
them. Compton imaging using position-sensitive gamma-ray
spectrometers [13]–[15], combined with a computer-controlled
source-positioning system, is used to demonstrate the algo-
rithm, though the proposed methods are general enough to
accommodate other detectors and imaging modalities.

II. MODEL

A. Data Model

Let denote an attribute vector recorded by a 3-D-position-
sensitive spectrometer such as a pixelated CdZnTe detector [15].
For example, if a single incident photon results in two inter-
actions in the detector, then may have eight elements: the
recorded energies and 3-D positions of the two interactions.
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A list-mode acquisition for a fixed scan duration records
attributes at corresponding times . The

goal is to reconstruct the incident energy and spatial distribu-
tions from these measurements.
A gamma-ray imaging system is characterized by a system

model that consists of some probability distributions that are
assumed to be known, that is, are modeled based on the physics
of the system. One component is the system sensitivity function

(1)

which describes the probability that a gamma-ray emission from
spatial position at energy and time is detected by the
system. is used here to denote the probability of a discrete
random variable; whereas for continuous random variables we
use instead. For a single detector, often denotes coordinates
on a sphere (i.e., the far field); whereas for a system with mul-
tiple detectors, it may be reasonable to consider 3-D image re-
construction where . For simplicity, this paper focuses
on the case of a single-detector system where the 2-D coordi-
nates on a sphere are used [11]. Often when the system is sta-
tionary, the time dependence of the sensitivity is ignored [11],
[16], [17], but wemust include it here since our model will allow
for moving objects.
In general, the sensitivity is a complicated function of the de-

tection time and the source energy and position , but we
describe some basic dependencies here. Since this work focuses
on Compton scatter events for image reconstruction, the sensi-
tivity is negligible below about 200 keV in CdZnTe. At about
200 keV, the sensitivity increases rapidly, peaks at about 350
keV, and then slowly decreases as the incident photon energy
increases. For low-energy photons, the spatial dependence of
the sensitivity is most dependent on the cross-sectional surface
area of the detector as seen from the source direction. As photon
energy increases, the thickness of the detector in the source di-
rection dominates the sensitivity since high-energy photons are
more likely to forward scatter.
The sensitivity becomes a function of time when the detector

is in motion or when the spatial basis functions move as a func-
tion of time. This time dependence would be particularly impor-
tant when reconstructing a 3-D image. In the 3-D case, any de-
tector motion, or motion of the basis functions (as in our case),
significantly changes the sensitivity of the detector system to
any point in space because of the inverse square law.
Another model component that is needed is

(2)

which describes the probability of recording attributes for
emissions of energy originating from spatial position for a
specific event and was derived by Wang et al. for our system
[18]. The first term on the right describes the probability of
recording given that it is detected, and the second term is the
sensitivity function which describes the probability of detecting
the event at all. We use the time at which the event occurred
to correct the spatial position for the object motion as will be
described.

B. Target Object Model

For a static (stationary) scene, the usual goal is to reconstruct
the radioactive source intensity distribution in some
spatial-energy domain from the measured list-mode data, and
the existing list-mode approach [11], [16], [19] is appropriate.
This paper extends this formulation to the case where the scene
consists of one or more target objects that are moving relative to
a stationary backdrop, that is, the overall source intensity distri-
bution is a function of time . We shall consider here
the case of “known” motion, that is, the motion is estimated
separately, for example, by a video-tracking system. Note that
the time dependence is only present in the motion of the target
through space. The intensities of the sources are assumed to be
constant over the scan time in this paper.
We model the intensity distribution as consisting of an un-

known stationary backdrop intensity distribution and
a set of target objects that may be moving. The unknown in-
tensity distribution of the th object at time is denoted

(3)

for . For simplicity of presentation, we assume that
the target-object motion can be modeled adequately by spatial
translation. Other forms of motion, such as rotation, could be
accommodated as well. The spatial shift of the th target object
at time is denoted , where for a 3-D imaging
problem or for the 2-D case. Under this assumption, we
model the intensity distribution of the th target object at time
as

(4)

Also for simplicity, our model ignores occlusions and the ab-
sorption of gamma photons by target objects that move in front
of one another.
Finally, we model the overall time-varying intensity distribu-

tion of the scene as the superposition of the stationary backdrop
and the moving target-object contributions

(5)

The goal is to reconstruct the intensity distribu-
tions of the backdrop and the target objects, i.e.,

, from the list-mode data,
assuming known motion for .
To facilitate numerical implementation, the intensity distri-

butions are parameterized using a finite-series model [20]

(6)

where is the total number of basis functions in the backdrop,
denotes the unknown intensity of the th basis function, and
denotes the basis function (typically a 2-D region of space in

spherical coordinates or a 3-D “voxel” in Cartesian coordinates,



JAWORSKI et al.: MODEL-BASED RECONSTRUCTION OF SPECTRAL AND SPATIAL SOURCE DISTRIBUTION 3983

Fig. 1. Illustration of target-object model with a pixelated stationary backdrop
and one pixelated target object that moves during the imaging process.

covering an energy interval). The basis functions are non-nega-
tive, which ensures that the estimate is also non-negative. Con-
vergence of the MLEM algorithm that will be described also
uses this non-negativity assumption [21]. Similarly, we param-
eterize the moving target objects (at time ) as

(7)

where the number of basis functions used to represent the
th target object may differ between target objects of different
sizes. If the th moving target object is treated as a point source,
then reduces to the number of energy bins. The overall time-
varying intensity distribution is thus parameterized as

(8)

where the backdrop mesh has been included over the target sum
for conciseness and . Typically, the basis functions
are unitless and the coefficients have units of “emissions
per unit time per unit solid angle (or volume) per unit energy.”
With this parameterization, the goal is to estimate the co-

efficients of the backdrop and of the targets
from the list-mode data.

Fig. 1 illustrates the model. Note that if the th target object
does not move, then this formulation could be over-parameter-
ized because the intensity within the support of that target ob-
ject could be modeled by the target-object pixel and a corre-
sponding backdrop pixel , in the case that and
overlap. Therefore, one should include only moving target ob-
jects in this formulation; otherwise, the solution will not be
unique. (Stationary sources will be reconstructed as part of the
backdrop.)

III. ALGORITHM

The Appendix shows that the list-mode log likelihood for a
time-varying emission distribution is

(9)

where the expected number of recorded counts during a mea-
surement time of is given by

(10)

Substituting in the finite-series model (8) yields a list-mode
log-likelihood expression in terms of the coefficients and

. After some algebraic manipulation, the log likelihood is
simplified to the following form:

(11)

where we define

(12)

(13)

Here, describes the overall sensitivity of the detector to
emissions from the th spatial-energy voxel of the th target
and describes the probability of recording event given
that it came from the th spatial-energy voxel of the th target.
The likelihood function (11) is of a form where it is appro-

priate to use the standard MLEM algorithm derived by Parra
and Barrett [19], yielding the following update equation:

(14)

The key term of this more general form of the MLEM al-
gorithm is the time integral of the system sensitivity in (13).
Due to motion of the object and/or the system itself, we com-
pute (13) by Riemann sum over a list of discretized target and
detector positions and rotations. An example where this gen-
eralization is important is when a target gets very close to the
system during the measurement time. If relatively few counts
are recorded during that period, the instantaneous sensitivity

would be large for only a small fraction of events,
but the integrated sensitivity would be large and that high
overall sensitivity would suppress the reconstruction from esti-
mating a source that passes that direction.
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IV. EXPERIMENTS

A. Detector Array System

The detector array system used in this paper consists of 18
-cm 3-D-position-sensitive room-temperature-

pixelated CdZnTe detectors. The array operates as a single de-
tector, that is, if a photon scatters from one detector module
into another, the system reads that as one event and is able
to use it for Compton imaging. The system is able to achieve
1.08% single-pixel and 1.44% overall FWHM energy resolu-
tion at 662 keV. By recording which anode pixel(s) collected
the electrons generated by the photon interaction(s), the 2-D-lat-
eral position(s) are known within the pixel pitch of 1.72 mm.
The depth of interaction is determined by either the cathode-to-
anode signal ratio for single-pixel events or drift time for mul-
tiple-pixel events, with a resolution of about 1 mm [22], [23].
The energy and 3-D position of each interaction for each event
(incident photon) are recorded in list mode. These list-mode data
for 2-, 3-, and 4-pixel events constitute the attribute vectors
used for image reconstruction.
Wang et al. [18] describe the system model that

we use for pixelated CdZnTe detectors in detail. In brief, the
model accounts for several physical phenomena, including at-
tenuation, scattering, and absorption of the incident photons.
The attenuation probabilities are calculated for the photons as
they travel through the active detector volume only (i.e., ig-
noring attenuation through the electronics or enclosure mate-
rials). The model also includes the probability that a particular
photon interaction is a Compton scatter or photoelectric absorp-
tion as well as the probability that the photon eventually escaped
the detector (i.e., the full energy of the photonwas not recorded).
Xu [24, p. 130] describes in detail how we calculate the sen-

sitivity of the system by using a single iteration
of the standard MLEM algorithm with data from a simulated
source uniform in space and energy. Using this sensitivity and
system model in the stationary case, the standard MLEM algo-
rithm estimates the photon emission distribution in energy and
space. In this paper, we assume the sources are in the far field.
Therefore, we model the source distribution as the surface of a
sphere rather than as 3-D distribution.

B. Source Motion

To demonstrate the presented algorithm experimentally,
a method of recording the source position as a function of
time was required. Thus, we assembled the apparatus shown
in Fig. 2 to rotate a source around the 18-detector array. A
computer-controlled actuator, attached to the top of a table, was
set to rotate with a constant angular velocity to known angular
displacements. An “L”-shaped aluminum arm was attached to
this actuator so that the bottom-most tip of the arm was in the
plane of the array system positioned below the table. Then, we
placed the center of the detector head directly below the actu-
ator pivot point so that the resulting motion at the bottom-most
tip of the actuator arm would revolve completely around the
center of the detector array.

Fig. 2. Computer-controlled actuator arm, which is mounted to a table, is used
to control the position of the source with known motion. The detector system
is depicted as two rectangles. The smaller rectangle contains the actual CdZnTe
crystals, and the larger body contains the supporting electronics, including high-
and low-voltage power supplies and the data readout. The array of detectors is
positioned directly underneath the actuator pivot point, and the source is placed
at the bottom of the actuator arm, inplane with the detectors.

Fig. 3. Raw and imagable energy spectra of the events used for the image re-
construction of a moving source and stationary source described
in Section V-A.

V. RESULTS

A. One Moving and One Stationary Source

In the first experiment, a 122- source was rotated
360 at a constant angular velocity around the detector system
at a radius of 1.2 m during the course of a 46-min measurement
in the counterclockwise direction (when viewed from the top).
Also, a source was placed in a stationary position in the
backdrop 1.0 m from the center of the detector. Because of com-
putational constraints, a smaller set of events was used for the
following reconstructions. To use data from the entire data-col-
lection time, the first event of every 50 events was used for each
reconstruction of this data set, which resulted in 3928 imagable
events in the energy range of 300 to 1300 keV. An imagable
event is defined as a recorded 2-, 3-, or 4-pixel event. The en-
ergy spectrum of imagable events is shown in Fig. 3 along with
the overall raw spectrum which includes all recorded counts.
1) Standard MLEM Reconstruction: A standard list-mode

MLEM reconstruction, which reconstructs only the spatial do-
main, is performed to be compared with the new algorithm pre-
sented in this paper. No motion compensation is performed,
and energy windows are used so that only photopeak counts are
reconstructed.
Figs. 4 and 5 show the reconstructed images of the stan-

dard MLEM reconstruction after 20 EM iterations using a 36
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Fig. 4. Results for the standard MLEM spatial reconstruction for the
energy window (620–700 keV). The estimated intensity is smeared through the
equator since no motion compensation was applied and the source was in con-
stant motion. The motion path is described by the arrow in the image.

Fig. 5. Results for the standard MLEM spatial reconstruction for the
energy window (490–530 keV and 1100–1200 keV). A single localized hotspot
is visible, corresponding to the location of the stationary source.

72 pixel backdrop imaging mesh (over 4 ). Fig. 5 shows
that the spatial distribution for the photopeak energy range
is deconvolved correctly as expected since the source was sta-
tionary. However, the deconvolved spatial distribution for the

photopeak window, seen in Fig. 4, does not show a clear
hotspot since the source was in constant motion, and that mo-
tion was not included in the model.
2) MLEM Reconstruction Using Separate Target Binning:

The same data are reconstructed using the newly proposed
method with a similar backdrop mesh and a 9 9 pixel
target-object mesh spanning 40 in the polar and azimuthal
directions. We use 250 evenly spaced energy bins over a range
of 300–1300 keV since relatively few imagable events fall
outside this energy range, and the accuracy of the system model
degrades below 300 keV. Thus, we limit the energy dimension
to this set of energies.
Figs. 6–8 show the reconstructed images after 20 EM itera-

tions of the proposed model-based algorithm. The desired re-
sults in this situation would estimate a single hotspot in the sta-
tionary backdrop with a spectrum and a hotspot at 662 keV
in the target object space, which tracked the source mo-
tion. The actual reconstruction for the backdrop space, seen in
Fig. 6, is similar to the desired result. Fig. 6(b) shows the single

Fig. 6. Results for the backdrop space after 20 iterations of the proposed mo-
tion-compensated EM algorithm for a moving source and a stationary

source: (a) reconstructed incident energy spectrum for the entire back-
drop space, (b) reconstructed spatial distribution for the energy window
(490–530 keV and 1100–1200 keV), and (c) reconstructed spatial distribution
for the energy window (620–700 keV).

hotspot at the energies, and even though there is again
some contamination in the backdrop seen in Fig. 6(c), it
still does not form a single hotspot but is distributed over the
entire 4 space.
Fig. 6(a) shows the reconstructed spectrum for the entire

backdrop space, but it has a significant amount of con-
tamination. Fig. 7 shows the spectrum just in the direction of
the stationary source, which is a well-deconvolved
spectrum as expected. Fig. 8 shows the reconstruction results
for the target object space. The reconstructed spectrum shown
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Fig. 7. Reconstructed incident energy spectrum corresponding to just the
hotspot direction in Fig. 6(b).

Fig. 8. Results for the target-object space after 20 iterations of the proposed
motion-compensated EM algorithm for a moving source and a stationary

source: (a) reconstructed incident energy spectrum for this target, (b) re-
constructed spatial distribution for the energy window (620–700 keV),
and (c) reconstructed spatial distribution for the energy window (490–530
keV and 1100–1200 keV).

in Fig. 8(a) is a well-deconvolved spectrum free of
contamination. Fig. 8(b) shows the hotspot at the

energy, and Fig. 8(c) shows that there is no crosstalk at the
energies.

For comparison of the reconstruction quality with the sim-
plest case of a single stationary source and no target bins, we
performed an experiment to reconstruct the image of a single
stationary source using a similar number of counts from
the source as in the preceding experiment and the same number
of iterations. The resulting image looks very similar to Fig. 6(b),

Fig. 9. The reconstructed incident energy spectrum, after 20 iterations, for a
single stationary source (a) integrated over all space and (b) corresponding
to just the source direction.

and the resulting spectra for all directions and just the source di-
rection are shown in Fig. 9. Compare these spectra with those
in Figs. 6(a) and 7. Although the source does have an
effect on the overall backdrop spectrum, the reconstructed di-
rectional spectrum is essentially independent of the presence of
the moving source.

B. Two Sources Moving in Opposite Directions

In the second motion experiment, the same source was
rotated 360 around the detector system similar to the first ex-
periment, and then the previously stationary source was
rotated 360 around the detector in the opposite direction in a
similar fashion. The two datasets were then combined and re-
constructed as if they occurred simultaneously with the sources,
crossing paths at 180 in the azimuthal direction. This com-
bined dataset, consisting of 4449 imagable events in a similar
energy range (after downsampling), was reconstructed using
similar imaging and energy meshes as the previous experiment
(except that now there are two target-object meshes tracking
the twomoving sources). The standard nonmotion-compensated
MLEM image for this dataset looks very similar to that of the

energy window in the first reconstruction: a smear of in-
tensity through the equator, and without tracking information,
the two sources would appear to simply overlap. The raw spec-
trum for the events used in this reconstruction is similar to that
of the first reconstruction seen in Fig. 3.



JAWORSKI et al.: MODEL-BASED RECONSTRUCTION OF SPECTRAL AND SPATIAL SOURCE DISTRIBUTION 3987

Fig. 10. Results for the backdrop space after 20 iterations of the proposed mo-
tion-compensated EM algorithm for a source moving counterclockwise
and a source moving clockwise: (a) reconstructed incident energy spec-
trum for the entire backdrop space, (b) reconstructed spatial distribution for the

energy window (620–700 keV), and (c) reconstructed spatial distribution
for the energy window (490–530 keV and 1100–1200 keV).

The results for the proposed model-based algorithm after 20
EM iterations are shown in Figs. 10 and 11. The desired results
for this reconstruction would be zero (or some small amount
of background) in the backdrop space, and a single hotspot at
the energy in the first target object (which tracked the

source), and a single hotspot at the energies for the
second target object (which tracked the source). The back-
drop results seen in Fig. 10 roughly show the desired results.
Some and intensity is incorrectly estimated in the
backdrop, but this contamination is small and distributed in all

Fig. 11. Results for the two target-object spaces after 20 iterations of the pro-
posed motion-compensated EM algorithm for a source moving coun-
terclockwise and a source moving clockwise: (a) reconstructed incident
energy spectrum for both targets, (b) reconstructed spatial distribution for the

energy window (620–700 keV) in target object 1, (c) reconstructed spa-
tial distribution for the energy window (490–530 keV and 1100–1200
keV) in target object 1, (d) reconstructed spatial distribution for the en-
ergy window in target object 2, and (e) reconstructed spatial distribution for the

energy window in target object 2.

directions. Fig. 11 shows the results for the two target objects.
Here, it is obvious that the first target object has a single hotspot
at 662 keV and a zero distribution at the energy window.
Also, the second target object has a hotspot at the energies
and a flat distribution at the energy as desired. Finally,
the estimated incident spectra for the two target objects show
well-deconvolved and energy spectra.

VI. CONCLUSIONS

We presented a model-based reconstruction method that
successfully separates moving source(s) with known motion
from stationary sources with minimal crosstalk contamination
between sources. This new approach is an extension of the
standard MLEM reconstruction for the combined energy and
spatial domain. Even in the case of target objects that overlap
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in the course of their motion, the proposed approach can es-
timate the contribution from each target object. This enables
simultaneous image reconstruction of gamma-ray emissions
from a number of simultaneously moving target objects and a
nonmoving backdrop as long as the motion paths are known.
We have demonstrated this method by using several situations
and data from an 18-detector position-sensitive CdZnTe array
system. Furthermore, this algorithm can be implemented for
other list-mode imaging systems or for other applications, such
as source detection.

APPENDIX

DERIVATION OF TIME-DEPENDENT LIST-MODE LOG
LIKELIHOOD

This derivation was modified from [25].
Assume that the detection system is set to record photon in-

teraction events for a preset time. In this case, the number of
counts the system records will be a Poisson random variable
. We also assume that the detector records the time of the
th recorded event as well as a set of attributes describing

the event, including the number of interactions as well as the
locations and energies of each interaction. The log likelihood
associated with these observations is

(15)

where is the total number of events recorded in a particular
scan, denotes that the th event is detected, and is the
intensity distribution in space and energy from (8). This expres-
sion describes the log of the joint probability of recording the
attributes since they were detected and that exactly events
were detected, multiplied by the probability that events were
detected. We define the following term, which describes the ex-
pected count rate as a function of time, to simplify future ex-
pressions

(16)

The last term in the log likelihood, which follows a Poisson
distribution, describes the probability of recording exactly
counts during the scan time. Thus

(17)

where is the expected number of recorded counts for source
distribution . Since is the instantaneous expected count
rate, the expected total number of photons recorded over the
scan time is

(18)

The first part of the list-mode log likelihood can be rewritten
using the chain rule as

(19)

Note that the recorded time of each event cannot be in-
cluded in the attribute vector because the times follow a spe-
cific order and, thus, cannot be considered independent parame-
ters. However, we do make the usual assumption that, given the
event times, the attribute vectors are conditionally independent
of each other (meaning we ignore dead time and pileup). Thus,
the first term on the right-hand side of (19) can be further sim-
plified to

(20)

The second term in (19) describes the conditional distribution
of the ordered arrival times. For a Poisson random process, Ross
[26, p. 37, 53] shows that

otherwise
(21)

where

otherwise.
(22)

Substituting (17)–(22) into (15) yields the following simpli-
fied expression for the list-mode log-likelihood for time-varying
sources:

(23)

To analyze , we use total probability

(24)
The first term in the integral is simply

(25)

which is the distribution of recorded attributes expected from
a source at location and energy recorded at time . It is
independent of the overall intensity distribution and is a key
term in the system model (see (2)).
The second term in the integral is the probability density func-

tion (pdf) for the emission of a photon at position and energy
. This term is related to but is a bit more complicated as
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a result of the conditioning on , because the photon is only
recorded if the photon is detected. Particularly, the conditional
distribution of the origin of the incident photons is

(26)

The first term in the numerator is simply the conditional sensi-
tivity of the system at time , which is independent of , and the
second term in the numerator is the pdf of the source intensity
distribution , and is directly proportional to
since the decay constant of the radioactive isotopes is assumed
to be long compared to the measurement time. Finally, the de-
nominator is the total probability of detection at time , which is
calculated by integrating the sensitivity multiplied by .
Thus, (26) reduces to

(27)

Substituting (25) and (27) into (24) yields

(28)
After substituting (28) into (23), the time-dependent log-like-

lihood expression is

(29)

which simplifies to (9) using (2).
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