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Noise Properties of Motion-Compensated
Tomographic Image Reconstruction Methods
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Abstract—Motion-compensated image reconstruction (MCIR)
methods incorporate motion models to improve image quality in
the presence of motion. MCIR methods differ in terms of how
they use motion information and they have been well studied
separately. However, there have been less theoretical comparisions
of different MCIR methods. This paper compares the theoret-
ical noise properties of three popular MCIR methods assuming
known nonrigid motion. We show the relationship among three
MCIR methods—motion-compensated temporal regularization
(MTR), the parametric motion model (PMM), and post-recon-
struction motion correction (PMC)—for penalized weighted
least square cases. These analyses show that PMM and MTR
are matrix-weighted sums of all registered image frames, while
PMC is a scalar-weighted sum. We further investigate the noise
properties of MCIR methods with Poisson models and quadratic
regularizers by deriving accurate and fast variance prediction
formulas using an “analytical approach.” These theoretical noise
analyses show that the variances of PMM and MTR are lower
than or comparable to the variance of PMC due to the statistical
weighting. These analyses also facilitate comparisons of the noise
properties of different MCIR methods, including the effects
of different quadratic regularizers, the influence of the motion
through its Jacobian determinant, and the effect of assuming that
total activity is preserved. Two-dimensional positron emission
tomography simulations demonstrate the theoretical results.

Index Terms—Motion-compensated image reconstruction, noise
properties, nonrigid motion, quadratic regularization.

I. INTRODUCTION

M OTION-COMPENSATED image reconstruction
(MCIR) methods have been actively studied for var-

ious imaging modalities. MCIR methods can provide high
signal-to-noise ratio (SNR) images (or low radiation dose
images) and reduce motion artifacts [1]–[14]. Gating methods
implicitly use motion information (i.e., no explicit motion
estimation required) for motion correction, but yield low SNR
images due to insufficient measurements (or require longer
acquisition to collect enough measurements) [15], [16]. In
contrast, MCIR methods use explicit motion information (i.e.,
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motion estimation obtained jointly or separately) to correct
for motion artifacts and to produce high SNR images with all
collected data.
This paper analyzes three popular MCIR methods that

differ in their way of incorporating motion information:
post-reconstruction motion correction (PMC) [1]–[3], mo-
tion-compensated temporal regularization (MTR) [4], [5], and
the parametric motion model (PMM) [6]–[14]. Each MCIR
method has been well studied separately, but there has been less
theoretical research on comparing different MCIR methods.
There are some empirical comparisons between PMC and
PMM [17], [18], and between MTR and PMM [19]. Asma et
al. compared PMC and PMM theoretically in terms of their
mean and covariance by using a discrete Fourier transform
(DFT) based approximation [20]. However, the analytical com-
parison was limited to the unregularized case and the empirical
comparison was performed for the regularized case.
Theoretical noise analyses of MCIR methods can be useful

for regularizer design and for performance comparisons. Noise
prediction methods include matrix-based approaches [21],
DFT methods [22], and an “analytical approach” that is much
faster [23]. We extend this analytical approach to MCIR, and
investigate the noise properties of PMC, PMM, and MTR with
quadratic regularizers theoretically, assuming known nonrigid
motion. This assumption is applicable to some multi-modal
medical imaging systems such as positron emission tomog-
raphy-computerized tomography (PET-CT) [7], [8], [10] and
PET-MR [14]. These analyses provide fast variance prediction
for MCIR methods and may also provide some insight into
unknown motion cases. These noise analyses not only facilitate
theoretical comparisons of the performance of different MCIR
methods, but also help one understand the influence of the
motion (through its Jacobian determinant) and the effect of
assuming that the total activity is preserved.
This paper is organized as follows. Section II reviews the

basic models and the estimators of the MCIR methods [24]:
PMC, PMM, andMTR. Section III shows the similarity and dif-
ference between three MCIR estimators in penalized weighted
least square (PWLS) cases. It shows that MTR and PMM are es-
sentially the Fisher information-based matrix-weighted sum of
all registered image frames, while PMC is the scalar-weighted
sum. Section IV derives fast variance prediction formulas for
PMC and PMM with Poisson likelihoods and general quadratic
regularizers. Section V compares the theoretical noise proper-
ties of MCIRmethods. Section VI illustrates the theories by 2-D
PET simulations with digital phantoms for given affine and non-
rigid motions.
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II. MCIR MODELS AND METHODS

This section reviews MCIR models that were also described
in [24] and derives the PWLS estimator for each model.
Although we focus on PWLS for simplicity, the general con-
clusions are also applicable to penalized-likelihood estimation
based on Poisson models [25]. We consider three MCIR
methods: PMC [1]–[3], PMM [6]–[12], [26], [27], and MTR
[4], [5], [19], [28]. We treat the nonrigid motion information as
predetermined (known) and focus on how the motion models
affect noise propagation from the measurements into the recon-
structed image. In practice, errors in the motion models lead to
further variability in the image.

A. Review of Basic MCIR Models

1) Measurement Model: MCIR methods are needed when
the time-varying object has non-negligible motion
during an acquisition interval where denotes spatial
coordinate and denotes time. Often one can use gating or
temporal binning to group the measurements into sets, called
“frames” here. Let denote the vector of measurements asso-
ciated with the th frame. We assume the time varying object

is approximately motionless during the acquisition of
each . Let denote the time associated with the th frame,
and let denote a spatial
discretization of the object where denotes the center
of the th voxel for , and denotes the number
of voxels. We assume that the measurements are related to the
object linearly as follows:

(1)

where denotes the system model for the th frame,
denotes noise, and is the number of gates or frames.We allow
the system model to possibly differ for each frame.
2) Warp Model: For a given spatial transformation

, define a warp operator as follows:

(2)

where the total activity is preserved when . We discretize
the warp to define a matrix relating the image
to the image as follows:

(3)

For applications with periodic motion, we can additionally de-
fine and . The matrix
can be implemented with any interpolation method; we used a
B-spline based image warp [29]. Let denote the de-
terminant of the Jacobian matrix of a transform for a
warp . Throughout we assume the warps (or equiv-
alently or ) are known. We also assume that invert-
ibility, symmetry, and transitivity properties hold for [24].

B. Single Gated Reconstruction (SGR)

Often one can reconstruct each image from the corre-
sponding measurement based on the model (1) and some
prior knowledge (e.g., a smoothness prior). A single gated
(frame) reconstruction (SGR) can be obtained as follows:

(4)

where , is a negative likelihood function
derived from (1), is a spatial regularizer, and is a spatial
regularization parameter.
For the PWLS case, i.e.,

where is a weight matrix that usually
approximates the inverse of the covariance of , one can
obtain a closed form estimator as follows:

(5)

where the Fisher information matrix for the th frame is
“ ” denotes matrix transpose, and is the Hes-

sian matrix of a quadratic regularizer .

C. Post-Reconstruction Motion Correction (PMC)

Once the frames are reconstructed individually
from (4), one can improve SNR by averaging all reconstructed
images. Using the motion information to map each image
to a single image’s coordinates can reduce motion artifacts.
Without loss of generality, we chose as our reference image.
Using (3) and (4), a natural definition for the (scalar-weighted)
PMC estimator is the following motion-compensated average:

(6)

where . One choice is for all
(unweighted PMC). Another option is
where is the acquisition time (or the number of counts) for
the th frame (scalar-weighted PMC). For the PWLS case,
there is an explicit form for using (3), (5), and (6)

(7)

where and are es-
sentially Hessian matrices for the th frame in the coordinates
of the first (reference) frame.

D. Parametric Motion Model (PMM)

Without loss of generality, we assume that is our reference
image frame for the PMM approach. Combining the measure-
ment model (1) with the warp (3) yields a new measurement
model that depends only on the image instead of the all im-
ages (i.e., parameterizing all images with )
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Stacking up these models yields the overall model

(8)

where the components are each stacked accordingly

and

(9)

The PMM estimator for the measurement model (8) with a spa-
tial regularizer is

(10)

where is a negative likelihood function and is a spatial
regularizer.
For the PWLS data fidelity function

where is a diag-
onal matrix, the PMM estimator is

(11)

where is a block-di-
agonal matrix, and is the Hessian matrix of a quadratic
regularizer . Since we can
rewrite the PMM estimator in (11) as

(12)

E. Motion-Compensated Temporal Regularization (MTR)

The MTR method incorporates the motion information that
matches two adjacent images into a temporal regularization
term [4], [5]

(13)

for . This penalty is added to the cost function
in (4) for all to define the MTR cost function.
Equation (4) for all and (13) can be represented in a simpler

vector-matrix notation. First, stack up (1) for all as follows:

(14)

where and , are defined in (9). Then,
the MTR estimator based on (13) and (14), and a spatial regu-
larizer is

(15)

where is a negative likelihood function from the noise model
of (14), is a spatial regularizer, is a temporal regularization
parameter, and the temporal differencing matrix is

. . .
. . . (16)

We may also modify for periodic (or pseudo-periodic)
image sequences by adding a row corresponding to the term

. Note that unlike the PMMmethod that estimates
one frame , MTR estimates all image frames . The MTR
estimate of (reference image) is

(17)

For the PWLS case, the solution to (15) is

(18)

where and .

III. RELATIONSHIP BETWEEN MCIR ESTIMATORS

In this section, we investigate the relationship among PWLS
MCIR estimators in (5), (7), (12), and (18). Considering PWLS
estimators helps show the similarity and differences among
MCIR methods more clearly than estimators for Poisson
likelihoods. Although the observations in this section focus
on PWLS estimators, similar results can be obtained for the
mean and variance of MCIR estimators with Poisson likelihood
models [25]. The next section analyzes the variance of these
MCIR methods.

A. Properties of MTR Estimator for and

The temporal regularization term (13) in (15) will increase
the correlation between the estimators and for as
is increased. Even though (18) provides the exact relationship
between the PWLS MTR estimator and , this form itself may
not be informative in terms of comparing it with other MCIR
methods. So, we investigate the limiting behavior of the PWLS
MTR estimator as and as . This provides insights
for comparisons with PMM and PMC.
It is straightforward to determine the limit of in (18) as

because

(19)

where is a block-diagonal matrix, i.e.,
Therefore, as , the PWLS

MTR estimator approaches

(20)

where are defined in (5). Thus, by (17), as
. In other words, as , the PWLS MTR estimator for

each frame approaches the PWLS SGR estimator (5).
As , has more interesting limiting behavior. The

following theorem is proven in Appendix A.
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Theorem 1: As , the MTR estimator becomes

(21)

where , is defined in (9),

, and .

B. Equivalence of MTR and PMM Estimators

Equation (21) in Theorem 1 and (12) show that the PWLS
estimators of PMM and MTR are remarkably similar.
In particular, if we choose a PMM regularizer with

(22)

then the analysis leading to (21) with (17) shows that

(23)

In other words, as . Therefore, assuming
some mild conditions on motion and spatial regularizers, the
PWLS estimators of PMM and MTR with sufficiently large
will be approximately the same, and thus so will the mean and
covariance. For the Poisson likelihood, one can show that the
mean and covariance of the MTR estimator will approach the
mean and covariance of the PMM estimator as increases. We
will show the covariance case for the Poisson likelihood in the
next section. The mean case with the Poisson likelihood can be
shown by consulting [24] and using Appendix A.

C. Difference Between PMC and PMM Estimators

Using (5), (7), and (22), we rewrite the PWLS PMMestimator
(12) as follows:

(24)

where the weighting matrices are given by

(25)

Comparing the PWLS PMM estimator (24) and the PWLS
PMC estimator (6), we see that the PWLS PMC estimator is a
scalar-weighted average of the motion corrected PWLS SGR
estimators of all frames whereas the PWLS PMM estimator is
a matrix-weighted average of the motion corrected PWLS es-
timators. The PWLS MTR estimator (with proper motion and
regularizers) approaches the same matrix-weighted average of
the motion corrected estimators (24) as .

The weights in (25) are calculated using the Fisher in-
formation matrices . This implies that the PWLS PMM es-
timator (and the PWLS MTR estimator with ) automat-
ically assigns different weights to the estimate depending
on factors such as noise (Fisher information matrix ) and
motion . For the Poisson likelihood case, the next section
shows the benefit of this matrix-weighted average (24) by inves-
tigating the noise properties of MCIR methods using an “ana-
lytical approach” extended from [24] and [23].

IV. NOISE PROPERTIES OF MCIR

This section analyzes the noise properties of different MCIR
methods. The analysis applies both to PWLS estimators and
to maximum a posteriori (MAP) estimators based on Poisson
likelihoods. Since the analysis is based on a first-order approx-
imation of the gradient of the likelihood, the accuracy of the
analysis for Poisson likelihoods will decrease as the number of
counts per frame decreases as shown in [25]. For simplicity, we
focus on 2-D PET with a few assumptions. We consider an ideal
tomography system, i.e., we ignore detector blur. We also as-
sume that for all . The (unitless) elements of
describe the probability that an emission from the th pixel

is recorded by the th detector in the absence of attenuation or
scatter and for an ideal detector. The th element of the diagonal
matrix has units of time and includes the detector efficiency,
the patient-dependent attenuation along the th ray, and the ac-
quisition time for the th frame.
We assume known attenuation map (i.e., is given), which

is the usual assumption for PET-CT [30] or PET-MR [31]. We
still allow the warp to differ for each . We assume that
the given nonrigid motion is locally affine [24]. We also as-
sume that the measurements for all are independent, i.e.,

for all .
We use an “analytical approach” to derive approximate vari-

ances for SGR and MCIR methods. This appproach provides
fast variance prediction methods [23] compared to the DFT-
based variance approximations or numerical simulations.

A. Single Gated Reconstruction (SGR)

If in (4) is a negative Poisson log-likelihood function (i.e.,
), then one can approximate the

covariance of the SGR estimator of (4) by [25]

(26)

where , is
a diagonal matrix, is the mean of , the Hessian of the
regularizer is , and .
To study (26) using the “analytical approach” of [23], we

focus on a first-order difference quadratic regularizer

(27)

where denotes 2-D convolution, is a non-negative regu-
larization weight (e.g., regularization designs for uniform and/or
isotropic spatial resolution [24], [32]), denotes the 2-D
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array corresponding to the lexicographically ordered vector ,
is the lexicographic index of the pixel at 2-D coordinates ,
and

(28)

where denote the spatial offsets of the th pixel’s neigh-
bors and denotes the 2-D Kronecker impulse. We used
the usual 8-pixel 2-D neighborhood with and

.
For a polar coordinate in the frequency domain, we can

represent the variance of (26) at the th voxel in an analytical
form as follows [23]:

(29)

where , is the pixel spatial sampling distance,
and the local power spectrum at the th pixel, which
is the Fourier transform of the th column of the covariance in
(26) (see also [33, p. 220]), is

(30)

where the angular component of the local frequency response
of the regularizer (27) is

(31)

and . For a standard quadratic regularizer,
where is a constant. The analytical forms of and

at the th voxel are and (see [23]
and [32]) where

(32)

is the set of rays at the angle , ,
, , is a de-

tector sampling interval, and is an angular sam-
pling interval. For fast computation, one can approxi-
mate where

. One can further simplify the local
variance in (29) by calculating the intergral (29)
with respect to as follows [23]:

(33)

where . The variance of the SGR
estimator for the Poisson likelihood depends on the measure-
ment statistics , the sampling distances , , , and the
regularization parameter . One can also obtain the local au-
tocovariance of the SGR estimator at the th pixel by taking

an inverse Fourier transform (FT) of the local power spectrum
in (30).

B. Post-Reconstruction Motion Correction (PMC)

Assuming that the measurements for each frame are sta-
tistically independent and the reconstruction algorithm uses the
Poisson likelihood, the covariance of the PMC estimator (6) is
approximately

(34)

We can derive the analytical forms of and [the quadratic
regularizer (27)] in the frequency domain as follows (see [24,
Appendix B]):

(35)

(36)

where is the closest pixel to and
. Therefore, by using analyt-

ical forms, we approximate the variance of at the th
voxel

(37)

where the local power spectrum, , at the th pixel is
given by

where the following factors arise from the Fisher information
matrix and the Hessian of the regularizer , respectively,
due to motion compensation

(38)

For rigid motion, whereas for nonrigid
motion such as (isotropic or anisotropic) scaling, and

usually differ from 1. By integrating, we simplify the
local variance in (37) further as follows:

(39)
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Note that the variance of the PMC estimator depends on the mo-
tion through and terms. One can also obtain the
local autocovariance of the PMC estimator by taking an inverse
FT of .

C. Parametric Motion Model

For the PMM estimator (10) with the Poisson likelihood, the
covariance of the PMM estimator, , can be approx-
imated using the matrix-based methods of [25] as

(40)
Using the analytical forms in (35) and (36), the variance of the
PMM estimator at the th pixel is approximately

(41)

where the local power spectrum, , at the th pixel
for (40) is defined as follows:

where . Integrating
over simplifies the local variance

in (41) to

(42)

Like the PMC case, the noise depends on the given motion. The
local covariance of the PMM estimator can be approximated
with an inverse FT of .
The covariance of the PMM estimator with the regularizer

(22) will be approximately

(43)

and with the same procedure as above, the variance of the PMM
estimator at the th pixel for (43) is approximately

(44)

One can evaluate (33), (39), (42), and (44) using a simple back
projection (i.e., approximate integral by sum over projection
angle ) to predict variance for every image pixel.

D. Motion-Compensated Temporal Regularization

From (15) with the Poisson likelihood, the covariance matrix
of the MTR estimator is approximately

(45)

where . Section III showed that the PWLS
MTR estimator converges to the PWLS SGR and PMM estima-
tors as and , respectively. For the estimators with
the Poisson likelihood, one can show that the covariance of the
MTR estimator (45) “approximately” converges to the covari-
ance of the SGR estimator and the PMM estimator as
and , respectively, using (64) in Appendix A. Therefore,
the local variance of the MTR estimator at the th pixel will ap-
proach the SGR result (33) approximately as and will
approach the PMM result (44) approximately as .
Obtaining an analytical form for the variance of MTR with

any seems challenging due to the complicated structure of
matrix. However, from (45) one can show that the co-

variance of the MTR decreases as increases. We can also intu-
itively expect that high value will increase the correlation be-
tween estimated image frames, which will reduce the variance
of MTR. We evaluate this intuition empirically in Section VI.

V. PERFORMANCE COMPARISONS IN MCIR

This section presents theoretical comparisons of the noise
properties of SGR and MCIR methods with the Poisson like-
lihood.

A. Comparing Noise Properties Between PMC and PMM

As discussed in Section III-C, the PMC estimator is a
scalar-weighted average of the motion corrected estimators of
all frames, whereas the PMM estimator is a matrix-weighted
average using the weight in (25). This difference led to the
different variances of the PMC estimator (39) and of PMM
(44) (and the variance of MTR for ). By matching the
spatial resolutions of PMM and PMC using the regularizer (22)
for PMM (see [24]), we can also compare the variance of PMC
and PMM theoretically.
For , one can show that

(46)

using the Cauchy–Schwarz inequality [20] and .
If we set

then (39), (44), and (46) show that

(47)

for the regularized PMC and PMM. Equality holds when all
are the same for all . This inequality is consistent with the
empirical observations in [20]. Therefore, PMM (andMTRwith
sufficiently large ) is preferable over PMC in terms of noise
variance.

B. Comparing Noise Properties of SGR for Three Regularizers

Because of the interactions between the likelihood and regu-
larizer, spatial resolution will be anisotropic and nonuniform if
one uses a standard regularizer [21], i.e., in (30),
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which we call SGR-S. There has been some research on reg-
ularizers that provide approximately uniform and/or isotropic
spatial resolution [21], [32], [34]. This section analyzes the ef-
fect of such regularizers on the noise properties of SGR.
The certainty-based quadratic regularizer proposed in [21]

can provide approximately uniform (but still anisotropic) spa-
tial resolution. In this case, in (27) is designed to approxi-
mately satisfy

(48)

and we call the estimation SGR-C. Alternatively, one can design
to approximately satisfy

(49)

so that the spatial resolution will be approximately uniform
and isotropic [32], [35], which we call SGR-P. From (33), one
can show the relationship between the variances of SGR-S and
SGR-C as follows:

(50)

The same relationship holds between SGR-S and SGR-P. The
variance of SGR-S can be larger or smaller than the variance of
SGR-C and SGR-P for each location ( th pixel).
There is a more interesting relationship between the variances

of SGR-C and SGR-P. In both (48) and (49),
[21], [32], and substituting this further approximation

into (33) yields the following simplified variance approxima-
tion:

(51)

This approximation becomes increasingly accurate as
and/or increase. In our simulations, using (49) in (51) signifi-
cantly reduced the accuracy of (51) because small differences
in (49) became large differences in (51) due to their reciprocal
relationship. Using (48) and (49) to achieve approximately uni-
form and/or isotropic spatial resolution will increase the effect
of the measurement statistics on the estimator variance
(51) compared to (33). This tendency was empirically observed
in [21]. Using the Cauchy–Schwarz inequality, one can show
that the variance approximation in (51) satisfies

(52)

This inequality is verified empirically in Section VI-B. Evi-
dently, imposing more properties on the spatial resolution such
as isotropy requires sacrificing the noise performance, which
shows the spatial resolution-noise trade-off.

C. Comparing Noise Properties Between SGR and MCIR

If there is no motion between image frames and
for all , then (33), (39), and (44) yield

, as expected since PMC and
PMM used times more counts than SGR. The MTR variance

with very high also yields approximately the
same variance as PMM and PMC in this case.
However, this relationship between MCIR and SGR

variances may not hold exactly when there is motion between
image frames. For example, if there is locally isotropic scaling
motion between frames as follows:

(53)

where , then and in
(38). For PMC, if we design the regularizer to achieve isotropic
resolution by using

(54)

and if and/or are relatively large, then the variance of the
PMC estimator at the th pixel in (39) approximately reduces to

(55)

Comparing with (51), the variance of PMC (55) will be approx-
imately times the variance of SGR for . The
variance of PMM (44) will have a similar relationship with the
variance of SGR. If the total activity is preserved (i.e., ),
then local expansion will increase the variance and
local shrinkage will decrease the variance. Intuitively,
if the same amount of total activity produces the same number
of Poisson counts, the expanded area that contains the same total
activity will have larger image area to estimate, i.e., effectively
more parameters. Thus, the expanded area will lead to higher es-
timator variance. For regularizers other than (54), the variance
of PMC will also be affected by motion through and

terms.

D. Total Activity Preserving Condition for MCIR

The total activity preserving condition (2) is important for ac-
curate motion modeling and it also affects the spatial resolution
[24] and noise properties of MCIR. Using the example in Sec-
tion V-C, we analyze the influence of motion on the noise, fo-
cusing on PMC and PMM. (MTR with sufficiently large will
have approximately the same noise properties as PMM.)
If one uses standard quadratic regularizers for PMC and

PMM [e.g., and in (31)],
then the variance of the PMC estimator in (39) reduces to

(56)

since and when (53) holds. The
variance of the PMM estimator in (42) reduces to

(57)

When (e.g., rigid motion), the variance is not affected
by motion. However, when , the variance of PMC will
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be always affected by motion, whether the total activity is pre-
served or not, due to the and terms in (56). However,
when and/or are relatively large, the variance of PMM
may be less affected by motion when than when
since (57) only contains , which is relatively closer to 1 than
or . Since the regularizer in PMM does not involve the

motion warp, there is no term in the variance (42) of
PMM. Thus, when we use the total activity preserving condi-
tion with the standard regularizers, the variance of PMM
may be less affected by motion than the variance of PMC.
When one designs the spatial regularizers [i.e., determine
in (27)] to achieve approximately uniform and/or isotropic

spatial resolution for the MCIR methods [24], as shown in
Section V-C, the variances of PMC and PMM will be affected
by motion with the factor of . Thus, the variance of PMC
and PMM will be less affected by motion when than
when . Note that the analyses above assumed that both
measurement model and reconstruction model follow the same
condition. One could generalize these analyses to consider the
effects of motion model mismatch.

VI. SIMULATION RESULTS

The analyses in this paper apply to nonrigid motions that are
approximately locally affine [24]. We performed PET simula-
tions with two digital phantoms: one is a simple phantom with
global affine motion between frames and the other is the XCAT
phantom [36] with nonaffine nonrigid motion that we modeled
using B-splines [37].

A. Simulation Setting

Two digital phantoms were used, each with four frames of
160 160 pixels with 3.4 mm pixel width. Sinogramswere gen-
erated using a PET scanner geometry with 400 detector samples,
1.9 mm spacing, 220 angular views, and 1.9 mm strip width. We
used 300 K, 500 K, 200 K, 200 K mean true coincidences for
each frame (1.2M total) with 10% random coincidences. Simple
uniform attenuation maps were used for the first simulation and
no attenuation was used for the second.
We investigated SGR, PMC, and PMM by comparing an-

alytical standard deviation (SD) with empirical SD from 500
Poisson noise realizations. We used spatial regularizers (with
regularization parameter ) that provide approximately
uniform (SGR-C, PMC-C, PMM-C) and uniform/isotropic
(SGR-P, PMC-P, PMM-P) spatial resolutions, respectively
[20], [21], [24], [32]. We also studied the noise properties of
MTR empirically with various values. The spatial resolutions
of SGR, PMC, PMM, and MTR were all matched to each
other using the regularization designs in [24]. All images were
reconstructed using a L-BFGS-B (quasi-Newton) algorithm
with non-negativity constraints [38], [39].

B. Simple Phantom With Affine Motion

We used a simple digital phantom with known affine motion
(anisotropic scaling between frame 1 and 2, rotation between
frame 2 and 3, and translation between frame 3 and 4) as shown
in Fig. 1. The total activity is preserved between frames.
Fig. 2 displays profiles through the variance image and shows

that our analytical equation for SGR in (33) [and (51)] provides

Fig. 1. Four true images with anisotropic scaling, rotation, and translation.
Total activity is preserved.

Fig. 2. Analytical SD of SGR (A-SGR-P, A-SGR-C) matches well with em-
pirical SD of SGR (E-SGR-P, E-SGR-C), respectively. SD of SGR-P (with reg-
ularizer that approximately uniform and isotropic spatial resolution) is higher
than SD of SGR-C (with regularizer that approximately uniform spatial resolu-
tion), which is consistent with theoretical comparison.

accurate noise predictions. (The location of the profile is indi-
cated in Fig. 1 as a horizontal line). The analytical SD of SGR
with quadratic regularizers (A-SGR-C and A-SGR-P) matches
well with the empirical SD of SGR from 500 noise realizations
(E-SGR-C and E-SGR-P). Fig. 2 also shows that the variance
of SGR-C is lower than the variance of SGR-P as shown in (52)
(in this case, was fairly large). This analytical and empirical
agreement of SGR does not hold well near the boundary of and
outside the object because of the non-negativity constraint and
because the “locally shift invariant” approximation is less accu-
rate there. We observed similar results for a constant quadratic
regularizer (not shown).
Fig. 3 shows that our analytical variance prediction for PMC

(A-PMC-C and A-PMC-P) in (39) agrees with the empirical
variance of PMC (E-PMC-C and E-PMC-P). Fig. 4 also shows
that the analytical variance formula for PMM in (44) predicts
the empirical variance of PMM well.
Fig. 5 confirms the theoretical noise comparison between

PMC and PMM shown in (47). As shown in Fig. 5, the SD
of unweighted PMC was generally lower than the SD of
PMM. However, the difference between the SD of PMM and
the SD of scalar-weighted PMC (using weights that account
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Fig. 3. Analytical SD of PMC (A-PMC-P, A-PMC-C) matches well with em-
pirical SD of PMC (E-PMC-P, E-PMC-C), respectively.

Fig. 4. Analytical SD of PMM (A-PMM-P, A-PMM-C) matches well with em-
pirical SD of PMM (E-PMM-P, E-PMM-C), respectively.

Fig. 5. If the spatial resolutions are matched, the SD of PMC is higher than or
comparable to the SD of PMM, depending on the choice of weights .

for the number of counts per frame) was very small. Using
the spatial regularizer for PMM as proposed in (22) that
matches to PMC, the full-width at half-maximum (FWHM)
of PMC pixels was slightly larger than the
FWHM of PMM pixels . Our target FWHM was

. This small discrepancy was because our
analysis assumed perfect interpolations for warps, whereas
the actual interpolations induce slight blurring. For PMC, the
warp is applied after the reconstruction, thus the FWHM was
slightly larger than the target FWHM. We observed that the

Fig. 6. Empirical SD of SGR versus empirical SD of PMC (MCIR) with four
frames . The SD of PMCwill be affected by both the number of frames
and the motion (Jacobian determinant of transformation ).

Fig. 7. Empirical SD of MTR with different . As , the SD of MTR
approaches the analytical SD of SGR. As , the SD of MTR approaches
the analytical SD of PMM.

SD of scalar-weighted PMC was slightly lower than the SD of
PMM empirically, due to it being slightly blurred more.
Section V-C showed that if we combine image frameswith

the motion (53), then the variance of MCIR would not be
of the variance of SGR due to motion effects. In other words, as
shown in Fig. 6, the SD of PMC will not be of the SD of
SGR (4 frames), but will be approximately of the SD
of SGR where and . This example confirms
that the variance of MCIR methods depend on the Jacobian de-
terminant of the transformation .
Fig. 7 shows that the empirical variance of MTR approaches

the analytical variance of SGR if and to the analytical
variance of PMM if as shown in Section IV-D.
We also repeated the reconstructions and noise predic-

tions using motion parameters that were translated by 1 pixel
(3.4 mm) away from their true values. We examined the empir-
ical and predicted noise standard deviations for all pixels within
two pixels of the outer boundary of the object. For PMC-C
the maximum (mean) percent error between the predicted and
empirical SD increased from 16.5% (3.2%) without motion
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Fig. 8. Four true images with nonrigid motion. Total activity is preserved.

Fig. 9. Analytical SD of PMC (A-PMC-P, A-PMC-C) matches well with em-
pirical SD of PMC (E-PMC-P, E-PMC-C), respectively.

error to 17.0% (3.3%) with motion error. For PMM-C the
maximum (mean) percent errors were 16.0% (3.7%) and 15.0%
(3.8%) without and with motion error, respectively.

C. XCAT Phantom With Nonrigid Motion

We used the XCAT digital phantom [36] to generate four vol-
umes with respiratory and cardiac motion and selected one slice
per each volume (same location) for a 2-D simulation. After es-
timating transformations between frames for all MCIR methods
consistently (see [24] for details), we used them as the true mo-
tion, leading to the true images shown in Fig. 8. Thus, there is
no motion model mismatch in this experiment.
As shown in the previous simulation with affine motion, our

fast variance predictions for PMC and PMM, which correspond
to (39) and (44), work well for the case of nonrigid, nonaffine
motion as shown in Figs. 9 and 10. There are some areas that
match less well than other areas (and compared to the case of
affinemotion) since there are areas that contain abrupt change of
motion so that the local affine approximation does not hold well.
Fig. 11 also shows that the empirical SD of MTR approached to
the analytical SD of SGR and PMM as and ,
respectively.

VII. DISCUSSION

We analyzed the noise properties of three different PWLS
MCIR methods for the case of known nonrigid motion. We

Fig. 10. Analytical SD of PMM (A-PMM-P, A-PMM-C) matches well with
empirical SD of PMM (E-PMM-P, E-PMM-C), respectively.

Fig. 11. Empirical SD of MTR with different . As , the SD of MTR
approaches to the analytical SD of SGR.As , the SD ofMTR approaches
to the analytical SD of PMM.

showed that the PMC is a scalar-weighted sum of the motion
corrected estimated image frames, whereas the PMM and the
MTR with are matrix-weighted sum with weights that
depend on the Fisher information matrix of each frame. We fur-
ther investigated the noise properties of three different MCIR
methods with Poisson likelihood. We derived approximate vari-
ance prediction equations for PMC and PMM and also studied
the limiting behavior of the MTR variance as and

. These predictions worked well for digital phantoms with
affine motion and nonaffine nonrigid motion. Furthermore, as in
[23], the variance predictions (33), (39), and (42) require com-
putation time comparable to a back-projection, which is much
faster than DFT-based variance prediction methods [20]. How-
ever, as the number of counts per frame decreases (due to less
total counts or more number of frames), the accuracy of the vari-
ance predictions will also decrease since our variance approxi-
mations are based on a first-order approximation of the gradient
of the likelihood function. [25]. More accurate variance predic-
tions based on higher-order approximations will be challenging.
These analytical variance formulas showed a few interesting

relationship between MCIR methods. The variance of SGR-C
(using spatial regularizer that approximately provides uniform
spatial resolution) is lower than the variance of SGR-P (using
spatial regularizer that approximately provides uniform and
isotropic spatial resolution). We observed this trend in PMC
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and PMM as well. The variance of PMM is less than or com-
parable to the variance of PMC and the gap between them will
be larger when the frames have significantly different counts
and PMC uses equal scalar weighted sum. When PMC uses
proper weights (e.g., normalized scan durations), PMC and
PMM empirically had similar variances in our simple phantom
simulation with affine motions. The variance of PMM is also
less affected by motion than the variance of PMC when the total
activity preserving condition is used. The variance of MCIR
with frames may not provide times lower variance
than the variance of SGR due to motion. This suggests that one
can choose the reference frame to minimize the variance of
MCIR methods based on this intuition. Lastly, MTR with very
large usually yields images as good as PMM. However, too
large can slow convergence of the reconstruction algorithm.
When the motion is given, PMM seems to be preferable to
PMC and MTR.
This paper has focused on the case of known true motion. In

practice motion is never known perfectly and motion errors may
introduce further bias and/or variability into MCIR results and
motion errors may also degrade the accuracy of noise predic-
tions. Our anecdotal results with motion errors in Section VI-B
suggest that the noise predictions are not highly sensitive to
small motion errors; in fact the noise predictions seem to be less
sensitive to motion errors than were the regularizer designs for
MCIR described in [24]. Methods for reducing motion errors
will of course improve MCIR results, regularizer designs, and
noise prediction accuracy.
This analysis can serve as a starting point for understanding

joint estimation of image and motion [12]. Since the Jacobian
determinant of estimated deformations affects the noise proper-
ties, it is important to enforce correct prior knowledge for local
volume changes. Extending this analysis for unknown nonrigid
motion will be interesting future work [40]. Our work has been
focused on spatial resolution [24] and noise analyses of MCIR
methods; it would also be interesting to extend the work to an-
alyze detection performance [41], [42].

APPENDIX
PROOF OF THEOREM 1

To prove this theorem, we need to treat the null space of
carefully. Since the matrix in (18) is symmetric nonneg-
ative definite (i.e., positive semidefinite), it has an orthonormal
eigen-decomposition of the form

(58)

where the columns of the matrices , are orthonormal and
, i.e., is positive definite. The columns of span

the null space of . From the definition of in (16), it is
clear that the null space of consists of images that satisfy
the following conditions:

...

(59)

for any image . In other words, the matrix
has a null space of dimension . (In contrast, the spatial

regularizer usually has a null space only of dimension 1,
which is usually formed of constant images.) We rewrite the
system of (59) as

(60)

where is defined in (9) and . Even
if we add a periodic condition to (16), then

still has a null space of dimension provided the tran-
sitivity property of the motion model holds. Using (60) we can
construct in (58) as follows:

(61)

where so that is orthonormal. Note that

because and is
positive definite. So, is invertible.
Under the usual assumption that and have disjoint null

spaces, one can verify that

(62)

To proceed, we express in (19) as follows:

Thus,

where . By Schur complement [43], we have

(63)

where . Since is positive
definite, as . Thus, by (62)

(64)

Therefore, as

(65)
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