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Abstract—Compensating for the collimator-detector response
(CDR) in SPECT is important for accurate quantification. The
CDR consists of both a geometric response and a septal pene-
tration and collimator scatter response. The geometric response
can be modeled analytically and is often used for modeling the
whole CDR if the geometric response dominates. However, for
radionuclides that emit medium or high-energy photons such as
I-131, the septal penetration and collimator scatter response is
significant and its modeling in the CDR correction is important for
accurate quantification. There are two main methods for modeling
the depth-dependent CDR so as to include both the geometric re-
sponse and the septal penetration and collimator scatter response.
One is to fit a Gaussian plus exponential function that is rotation-
ally invariant to the measured point source response at several
source-detector distances. However, a rotationally-invariant
exponential function cannot represent the star-shaped septal
penetration tails in detail. Another is to perform Monte-Carlo
(MC) simulations to generate the depth-dependent point spread
functions (PSFs) for all necessary distances. However, MC sim-
ulations, which require careful modeling of the SPECT detector
components, can be challenging and accurate results may not be
available for all of the different SPECT scanners in clinics. In
this paper, we propose an alternative approach to CDR modeling.
We use a Gaussian function plus a 2-D B-spline PSF template
and fit the model to measurements of an I-131 point source at
several distances. The proposed PSF-template-based approach is
nearly non-parametric, captures the characteristics of the septal
penetration tails, and minimizes the difference between the fitted
and measured CDR at the distances of interest. The new model is
applied to I-131 SPECT reconstructions of experimental phantom
measurements, a patient study, and a MC patient simulation study
employing the XCAT phantom. The proposed model yields up
to a 16.5 and 10.8% higher recovery coefficient compared to the
results with the conventional Gaussian model and the Gaussian
plus exponential model, respectively.

Index Terms—B-spline point spread function template, colli-
mator-detector response, I-131 quantitative SPECT.
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I. INTRODUCTION

A CCURATE quantification in single photon emission com-
puted tomography (SPECT) is important in many appli-

cations. For example, accurate SPECT-based dosimetry in in-
ternal emitter therapies such as I-131 radioimmunotherapy and
radioiodine therapy can potentially improve dose-response cor-
relations so that the efficacy and toxicity of the treatments can
be better assessed. There has been considerable research on im-
proving the quantitative accuracy in SPECT by using various
correction methods: attenuation correction, object scatter cor-
rection, and collimator-detector response (CDR) compensation
[1]–[6].
The CDR, which consists of both a geometric component and

a septal penetration and collimator scatter component, is one
of the most important degrading factors in quantitative SPECT
imaging. Incorporating depth-dependent CDRs in the system
matrix of an iterative image reconstruction improves perfor-
mance [5]. The septal penetration and collimator scatter com-
ponent is particularly problematic for radionuclides that emit
medium or high-energy photons [7]–[11]. The geometric re-
sponse can easily be modeled analytically, whereas modeling
the septal penetration and collimator scatter response is more
challenging. Up to now, three main approaches have been used.
1) The first approach is to model only the geometric response
and to ignore the septal penetration and collimator scatter
response. One can analytically calculate the geometric
transfer function by using the scanner parameters (e.g.,
collimator specifications and distance between detector
and imaging plane) [12], [13]. This approach is easy to use
and works well when the geometric response dominates
the CDR (e.g., for Tc-99m). It is used for CDR modeling
in most commercial iterative reconstruction software
available with SPECT systems due to its simplicity. The
geometric component can be well fitted with a Gaussian
function [13]. However, this model does not consider the
septal penetration and collimator scatter response.

2) The second approach is to use Monte-Carlo (MC) simu-
lation techniques. One can either generate a table of the
depth-dependent CDR functions using MC simulation [2],
[3], [8], [10], or use a MC simulator itself as a forward
projector in an iterative image reconstruction [14]. With
this approach it is possible to model all components of
the CDR including the septal penetration and collimator
scatter response, which is important for accurate quan-
titative SPECT with radionuclides that emit medium or
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high-energy photons such as I-131, In-111, Ga-67, and
I-123.
However, MC simulations that include the septal penetra-
tion and collimator scatter response are challenging and
accurate results may not be available for all of the dif-
ferent SPECT scanners in clinics. Even though generating
a table of depth-dependent CDRs with very low noise re-
quires their computation only once, it is still computation-
ally demanding [2]. There have been some efforts to de-
velop faster MC simulations that include the septal pene-
tration and collimator scatter response [9], [11], [15], but
using a MC simulator as a forward projector involves high
computational complexity [14]. In addition, one should
validate the MC simulation by comparison of simulated
energy spectra and PSFs with experimental measurements.
For higher-energy photons it has been shown that it is im-
portant to carefully model all components of the SPECT
detector system (collimator, back compartment, shielding)
to get good agreement between measurement and simula-
tion [9], [16], [17]. Even small discrepancies between col-
limator specification provided by the manufacturer and the
actual dimensions of the collimator can lead to significant
mismatch between measurement and simulation.

3) Lastly, one can use point source measurements from a
scanner for CDR modeling. The point source should be
measured at many locations for both a SPECT system
with rotating detectors [18] and a stationary SPECT
system [19], [20]. However, for the former case, the
number of required measurements is usually smaller: by
assumption, one needs only to place the point source at
several source-to-detector distances while keeping the
rotation angle fixed. For conventional SPECT systems
with rotating detectors, one can fit a 2-D function such
as a Gaussian function to the measured point source at
several distances and then use the fit results to produce
a model of the depth-dependent CDR. Since a Gaussian
function cannot describe the septal penetration and colli-
mator scatter response, a 2-D Gaussian plus a heavy-tailed
function such as an exponential have been used to fit the
measurements [6], [18]. Usually, the Gaussian function fits
the geometric component of the CDR and the exponential
function fits the septal penetration and collimator scatter
response component. However, a rotationally-invariant
exponential function cannot represent the “star-shaped”
septal penetration tails of the CDR in detail (see Fig. 1).

In this paper, we focus on this last approach and use point
source measurements from a conventional SPECT system with
rotating detectors. However, we propose a “nearly non-para-
metric” model of the CDR (a 2-D Gaussian function plus a point
spread function (PSF) template) and fit the proposed model to
the measured point source response at six different distances.
This approach is intended to provide an alternative to the MC
simulation technique. It is most appropriate when accurate MC
simulations are not available for a given SPECT scanner. By
better fitting the septal penetration tails, our approach is de-
signed to increase quantification accuracy for radionuclides that
emit medium or high-energy photons compared to that using
Gaussian or Gaussian plus exponential functions.

Fig. 1. Measured I-131 point source images at six different distances between
the front surface of the collimator and the object plane. Top row: 25, 20, 15
cm, bottom row: 10, 5, 2 cm. Zoomed point source image at 10 cm shows hole
pattern due to high-energy collimator. The image intensity is presented on a
logarithmic grey scale except for the zoomed image.

Section II reviews how to model the depth-dependent CDR
by using function fitting. Section III details the PSF template
approach that uses B-spline PSF templates. Sections IV and V
present the results of our proposed approach. The results will
show improved CDR model fitting to the point source measure-
ments compared with previous approaches using fitting by the
Gaussian function and by the Gaussian plus exponential func-
tion. In addition, image reconstruction results for experimental
and digital phantom studies will show improvements in quan-
tification with our method.

II. FUNCTION FITTING APPROACH FOR CDR MODELING

In this section, we review procedures for the “function fitting
approach” of modeling the depth-dependent CDR using point
source measurements at several distances [18].

A. Gaussian Function Fitting Approach

Here, we describe using a Gaussian function to fit the mea-
sured point source CDRs. However, the procedure can be ap-
plied to other parametric functions.
Suppose that we obtained several point source measure-

ments at several source-to-detector distances where
. We assume that is scatter-corrected for

each (e.g., using a triple energy window (TEW) method
[21]) because usually object-specific scatter correction, which
will include collimator scatter, is applied separately during our
reconstruction procedure.
The following two steps are used to obtain a normalized CDR

(or PSF) as a function of distance.
The first step is to fit a discretized version of a 2-D Gaussian

function

(1)

to each . In other words, the amplitude and the width
for each distance are estimated by

(2)
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where is the discretized location of the th pixel in .
One can use any nonlinear least square fitting for (2) [22]. In
this first function fitting, we obtain the amplitude and the
width for all distances , .
The second step is to fit a 1-D function of distance to the

amplitude and the width . One can use any 1-D func-
tion-fitting tool to find good functions of to fit all values of

and . We chose the following functions for the am-
plitude and the width :

(3)

(4)

where and are nonnegative. One can obtain the esti-
mates of , by fitting and

to the amplitude and the width ,
respectively.
Therefore, from these two steps, one can model the depth-

dependent PSF at a distance by plugging (3) and (4) into (1)
as follows:

(5)

where is a normalization factor such that
. Using (5), one can gen-

erate samples of the (normalized) Gaussian CDR at any
distance. Finding is redundant for this Gaussian case
due to the normalization factor , but it will be necessary
for the next two cases.

B. Gaussian + Exponential Function Fitting Approach

The CDR model (5) using a 2-D Gaussian function is well
suited for describing the geometric component of the CDR, but
cannot capture the details of the septal penetration tails. Mod-
eling the septal penetration is important for accurate quantifi-
cation in SPECT imaging with radionuclides that emit medium
or high-energy photons such as I-131. Koral et al. used the sum
of a 2-D Gaussian plus exponential function instead of (1) for
modeling the CDR as follows [18]:

(6)

for each distance where is defined in (1). We use the
same procedure in Section II-A to derive a that
better fits the measurements than (5).
This Gaussian plus exponential function model (6) is cir-

cularly symmetric unlike the star-shaped penetration tails (see
Fig. 1). This mismatch between the model and the data suggests
that we should be able to improve the fit further by using other
functions.

III. B-SPLINE PSF TEMPLATE APPROACH

This section describes the B-spline PSF template model that
can potentially improve the CDR fit to the point source mea-
surements compared to that with either (1) or (6).

A. B-Spline PSF Template

To describe the rotationally-variant, star-shaped penetration
tails of the CDR better, we propose using the following 2-D
B-spline PSF template instead of the exponential function un-
derlying (6):

(7)

where are B-spline coefficients, , are integers, is a
B-spline basis and , denote the B-spline knot spacing be-
tween the centers of the adjacent B-spline bases. We hypothe-
size that the CDR has a common shape at all source-to-detector
distances and, furthermore, assume that (7), by appropriate spa-
tial scaling, can yield a good fit to the point source measure-
ments obtained at different distances.
By using this B-spline template (7), we propose to use the

following CDR model instead of (6):

(8)

for each distance . The B-spline coefficients do not de-
pend on the distance and they describe the common shape.
We estimate the shape of the PSF template (the measurement
minus the Gaussian fit) using all the measurements at all dis-
tances at the same time. Therefore, separate optimization of (2)
for each distance is not applicable to this new CDR model.
We will present a new cost function and an optimization scheme
for the new CDR model in Section III-B and III-C.
We represent a discretized version of (7) by a simple matrix

form as follows:

(9)

where is a vector with the elements and is a matrix
with the elements . In
this case, a discretized version of (8) can also be represented as
follows:

(10)

where

and
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Both and can be implementedwith any image inter-
polation method. We used a cubic B-spline interpolation to im-
plement these matrices [23]. Smaller , can potentially im-
prove the fitting of (10) to the measurements due to the greater
number of degrees of freedom, but the increased number of pa-
rameters to estimate would make the nonlinear, nonconvex op-
timization problem more ill-posed. Considering this trade-off,
we chose pixels in our implementation.

B. Cost Function for Spatially-Invariant PSF Template

Any spatial variations in the hole pattern at a given distance
are usually ignored in SPECT image reconstruction in order

to calculate the CDR in the system matrix more efficiently (e.g.,
using the fast Fourier transform). Both (1) and (6) are space-in-
variant PSF models because they ignore the details of the hole
pattern (see Fig. 1 for a hole pattern example). In the MC simu-
lations, the CDRs at different spatial locations of the source that
had the same source-to-detector distance were averaged.
Due to its considerable flexibility, our proposed PSF tem-

plate can potentially describe the spatially-variant hole pattern,
but doing so is inconsistent with efficient image reconstruc-
tion. Therefore, we designed the cost function to produce a spa-
tially-invariant CDR estimate.
Since we searched for the common shape of a B-spline PSF

template for all measured distances, we effectively averaged the
hole patterns of the CDR from several source-to-detector dis-
tances. However, it was still possible to have some spatially-
variant hole patterns in the PSF template estimate. So, we pos-
tulated the following three properties of the CDR and required
their fulfillment for the estimate of the PSF template (8) so that
the hole patterns were suppressed more completely.
First, the CDR is smooth. Even though the B-spline itself is

a smooth basis, we also penalized the roughness of the PSF
template to further control the smoothness. Second, the CDR
is symmetric. Due to the geometry of the hexagonal collimator
that we used, the CDR should be the same for any number of
60 rotations. (For foil collimators with four penetration tails,
left–right and top–bottom symmetry could be used instead.)
Third, the CDR is nonnegative. This requirement followed from
the fact that the normalized CDR represents a detection proba-
bility and that a probability cannot be negative.
Thus, we used the following cost function with three priors:

(11)

where is the location of the point source measurement
, ’s are regularization parameters , and

’s are regularizers for smooth, symmetric, and nonnegative
properties of the CDR . We set the amplitude

and the width . The first
regularizer is defined as

where is a first-order difference matrix ( and directions).
The second regularizer is described as follows:

where

and

Lastly, the third regularizer is simply
where for and for . We determined
the regularization parameters empirically so that the estimated
PSF template showed the three assumed properties of the CDR
with the following results: , , and .

C. Optimization for B-Spline PSF Template

One can use any optimization algorithm to minimize (11).
We chose to use block alternating minimization. We repeated
two minimization steps: one minimization with respect to the
Gaussian function and the other minimization with respect to
the B-spline PSF template . Although both and contain
variables and , we treated them separately.
We used a nonlinear least square algorithm [22] for mini-

mizing (11) with respect to the Gaussian function

(12)

which is the same minimization method we used to estimate the
parameters for the Gaussian PSF model (1) and the Gaussian
plus exponential PSF model (6). We minimized (11) with re-
spect to the B-spline PSF template as follows:

(13)

(14)

using the L-BFGS [24] algorithm.We performed (12), (13), and
(14) in order, and repeated the process several times.
Once we obtained all parameters from the above minimiza-

tion, we fit the amplitude and the width (scaling) to
the functions in (3) and (4), respectively. Thereby, we finally
obtained the desired function.

IV. EVALUATION

We performed all of our I-131 studies with the Siemens
Symbia TruePoint SPECT-CT using high-energy collimation
for the dual heads. The studies employed both experimental
measurements and simulations with the SIMIND (Simulation
of Imaging Nuclear Detection) MC simulator [25]. The shape
of the high-energy collimators was hexagonal with a septal
thickness of 2 mm, a hole diameter of 4 mm, and a hole length
of 59.7 mm. The system resolution at 10 cm was 13.4 mm.
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Using the TEW method, an object scatter correction was ap-
plied to the point source measurements, and an object scatter
estimate was employed in the phantom reconstructions and in
the patient reconstructions. The main window for the TEW
correction was set at 20% (centerline 364 keV) and the two
adjacent subwindows were set at 6% (subwindow centerlines
at 318 and 413 keV, respectively) [21].

A. Measurement of Point Source at Several Distances

We measured the CDR at several distances between the front
surface of the collimator and the object plane. We placed an
I-131 point-like source (about 7 mm diameter, 658 ) on a
Styrofoam cup (low scatter medium) that stood on a flat bed.
The source was positioned off the center of the image plane by
11 mm in one direction and 7 mm in the other. We acquired
six planar images (512 512 bins, 1.2 1.2 mm pixels), one
each at a distance of 25, 20, 15, 10, 5, and 2 cm. The data were
acquired for 20 min per distance.
Fig. 1 shows the measured I-131 point source at the six dis-

tances. The image intensity is presented on a logarithmic grey
scale to better show the penetration tails [13].
We also simulated our point source (7mm diameter)measure-

ments at the same six distances using the SIMINDMC simulator
and fitted the three CDR models (1), (6), and (8) to the images.
To evaluate the goodness of fit, we performed another MC sim-
ulation to generate the point source measurements at distances
that were different and greater in number (11 instead of six) and
generated with a different random seed.

B. Hot Phantom Studies

We performed two separate studies using an elliptical
phantom with six spherical lesions. The lesion volumes were
96, 62, 16, 11, 8, and 4 cc. In the first study, the spheres
contained I-131 activities in (activity concentration in

in parentheses) of 191 (1.99), 121 (1.95), 35 (2.19),
29 (2.64), 29 (3.63), and 29 (7.25), but there was no activity
in the background water. In the second study, using the same
format, the spheres contained activities of 96 (1.00), 61 (0.98),
18 (1.13), 15 (1.36), 14 (1.75), and 14 (3.50), and the back-
ground water contained 2.20 mCi (concentration 0.19 ).
In the second study, the sphere-to-background concentration
ratios were 5.26:1, 5.18:1, 5.92:1, 7.18:1, 9.21:1, and 18.42:1
from largest to smallest sphere. For each study, the individual
scan time was 40 min and the acquisition was performed with
the SPECT-CT scanner in body-contouring mode. Projection
data were acquired at 60 views (angles) of 128 128 bins
(4.8 4.8 mm). Also, CT images were obtained and used to
calculate attenuation correction maps. Finally, TEW object
scatter estimates were employed during reconstruction. We
repeated the scanning for a total of eight realizations in the first
study, and for a total of seven realizations in the second.
We generated projections that modeled the depth-dependent

normalized CDRs for all projection views and accounted for
the changing radius of rotation due to body contouring. We
employed the three models: Gaussian with (1)
(Gaussian), the Gaussian plus exponential with
(6) (GauExp), and the Gaussian plus B-spline PSF template

with (8) (GauBspl). Then these depth-depen-
dent PSFs were effectively incorporated into the system matrix
by convolving the CDR with the projection at each depth. The
rotate-sum method using bilinear interpolation for rotating the
current estimate of the activity distribution speeds up a CDR
compensation routine by using the fast Fourier transform (FFT)
[26] and we used that method in our implementation. A 3-D
ordered-subset expectation maximization (OSEM) reconstruc-
tion with 35 iterations and six subsets, which is the reconstruc-
tion used in our patient studies [27], was performed using the
CDR-compensated system matrix. The result of the projection
using this system matrix produced an estimate of the primary
photons and the TEW object scatter estimate was then added.
Thus, Poisson statistics were preserved.
The 3-D regions of interest (ROIs) for the six hot spheres

were drawn on the CT image and applied to the SPECT recon-
struction. We calculated an activity recovery coefficient (RC)
from the counts within the ROIs as a quantification measure.
The RC of the ROI relative to the field-of-view (FOV) was cal-
culated as

(15)

Note that

(16)

is the measured activity in the ROI. Thus, (15) becomes the ratio
of measured activity to true activity, the standard definition of
activity recovery coefficient.

C. Patient Study

We applied our proposed CDR compensation method ret-
rospectively to SPECT-CT data from a patient imaged under
an ongoing research protocol for an I-131 radioimmunotherapy
dosimetry study [27]. The SPECT data consisted of a 20-min
acquisition with body contouring, 60 views, and 128 128 bins
(4.8 4.8 mm), and a low-dose CT acquired for attenuation cor-
rection.We applied the TEW object scatter correction to the data
and carried out the SPECT image reconstruction with the three
different CDR models of Section IV-B.
Patient tumors were delineated on the CT image by a trained

Radiologist. Since we did not know the true activity in the ROI
and FOV, we set the activity to 1 in (15) so that the count ratio
(CR) could be defined as follows:

(17)

This CR is directly proportional to the RC since the unknown
true activities do not change between the different reconstruc-
tions. Thus, any increase of the CR with a given reconstruction
implies an increase of the RC with that reconstruction.

D. MC Simulation Study With XCAT Phantom

We also evaluated our proposed method using MC simulated
data corresponding to the XCAT phantom [28] and the same
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SPECT-CT system used in the experimental studies. We simu-
lated the XCAT phantom with five spherical lesions (6, 10, 20,
70, 109 cc) near the liver and kidneys. We set the relative ac-
tivity concentrations in the XCAT phantom as follows: lesion
100, kidney 80, spleen 51, lung 28, liver 21, and whole body
6. These choices were based on data from a patient [4]. We
obtained low noise projection images of the XCAT phantom.
We used the same SPECT image reconstruction methods as de-
scribed in Section IV-B. The reconstructions using the low noise
projections produced approximate mean images [29].
The aim of this MC simulation study was to determine the

performance improvement with our proposedmethod for a more
realistic geometry than the “hot-sphere” phantom. Thus, we did
not use MC-simulation-based CDR compensation, but used the
function fitting approach with different models for the simulated
point source measurements.

V. RESULTS

A. Fitting CDR Models to Measurements

We estimated the amplitudes and widths to fit the
three CDR models (1), (6), and (8) to the point source measure-
ment of Fig. 1 for each distance . Points in Fig. 2
show the measured amplitudes and widths for the Gaussian
component in (1), the exponential component in (6), and the
B-spline component in (8). The amplitude and width for the
Gaussian in (1) were very similar to the Gaussian component
of (6) and (8). By using a curve fitting tool, we fitted (3) and (4)
to the amplitudes and widths as shown in Fig. 2 (dashed lines).
Note that for GauExp and GauBspl, we set in (3)
since these parameters did not yield monotonically decreasing
fits. Using these fitted functions of distance, one can obtain
the amplitude and width of a PSF model at any distance, and
therefore one can have the CDR at any distance that was mod-
eled with Gaussian, GauExp, and GauBspl. In Fig. 2(a), the
amplitudes of the exponential and B-spline components at 250
mm deviated slightly from the fitted curves. Since the axis is
on a logarithmic scale, the differences were relatively small.
Fig. 3(a), (c), and (e) shows the fitted CDR images

with the models of Gaussian, GauExp, and GauBspl.
Fig. 3(b), (d), and (f) shows the absolute difference be-
tween the measured and fitted CDRs for the three different
models. The Gaussian model ignored the septal penetration
tails and the GauExp model tried to account for those tails by
using a rotationally-invariant function. On the other hand, the
GauBspl model represented the details of the septal penetration
component well as seen in Fig. 3(e). The difference image
between the GauBspl model and the measurement contains
very little evidence of the septal penetration tail pattern as
shown in Fig. 3(f). A horizontal profile (which passes through
a septal penetration tail and corresponds to one azimuthal
angle) and a vertical profile (which avoids passing through
a tail and corresponds to a different azimuthal angle) for the
normalized CDR are shown in Fig. 4. The GauExp values fall
below the measured values in one case and above them in the
other because GauExp averaged the values from the entire
range of azimuthal angles. In contrast, GauBspl values match
the measured CDR values for both profiles.

Fig. 2. Measured and fitted amplitudes (a) and widths (b) of Gaussian, ex-
ponential, and B-spline components in the Gaussian, GauExp, and GauBspl
models, plotted as a function of distance. Gaussian components in all three
models were nearly the same for both measurements and fits. The amplitudes
are displayed on a logarithmic scale. (a) Amplitude. (b) Width.

Lastly, Fig. 5 shows quantitative results by measuring the
sum of the absolute difference between the measured (normal-
ized) CDR and the fitted (normalized) CDR for the Gaussian,
GauExp, and GauBspl models. Fig. 5(a) from the experimental
CDRmeasurements shows that overall the fitting was improved
by using the GauBspl model compared to using the Gaussian
and GauExp models at all measured distances. Similar results
were obtained from an initial set of MC simulated CDRs as
shown in the bottom three plots, labeled with the extension [-
fitted], of Fig. 5(b). We also compared the fitted CDR using this
initial MC simulation with another set of MC simulated CDRs
generated using a different random seed at 11 distances. The
absolute difference between them for all three models as shown
in the top three plots, labeled with the extension [- tested], of
Fig. 5(b) shows that our proposed GauBspl model can repre-
sent the CDRs at various distances better than the Gaussian and
GauExp models. The different random seed did change the total
difference at each distance, but did not affect the ranking of the
three methods.
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Fig. 3. The fitted CDR, (a), (c), and (e), and the absolute difference between
the fitted and measured CDR, (b), (d), and (f), for each fitting method (Gaussian,
GauExp, and GauBspl) at 10 cm. The images are shown on a logarithmic grey
scale. The GauBspl model describes the penetration tails of the CDR the best.
(a) Gaussian. (b) . (c) GauExp. (d)

. (e) GauBspl. (f) .

We observed that our proposed GauBspl model yielded the
best fit to the CDR measurement qualitatively and quantita-
tively. Section VI examines how this improvement in fitting the
CDR affected quantification accuracy.

B. Hot Phantom Studies

Fig. 6(a), (c), and (e) shows three reconstructed SPECT im-
ages at 35 iterations (six subsets) using the Gaussian, GauExp,
and GauBspl models for the hot phantom without background
activity. Fig. 6(b), (d), and (f) show similar images for the hot
phantom with background activities. Fig. 6(g) and (h) shows the
CT and schematic images of the phantom. It can perhaps be dis-
cerned that the GauBspl method increased the image intensity
in the spheres compared to the Gaussian and GauExp methods.
Fig. 7 shows that the GauBspl CDR compensation method

yielded higher RC values than the other methods (Gaussian or
GauExp) for all spheres. For the phantom without background
activity, GauBspl yielded 12.9%–15.7% higher RC’s than

Fig. 4. Normalized CDR profiles for the measurement and for each fitting
method (Gaussian, GauExp, and GauBspl), at 10 cm. The profile in the
direction is shown in (a) and that in the direction in (b). GauBspl matched
the measured CDR shape best in both directions. (a) profile. (b) profile.

the Gaussian method and 2.8%–5.4% higher RC’s than the
GauExp method. For the phantom with background activity, it
yielded 10.6%–13.0% higher RC’s than the Gaussian method
and 3.7%–6.6% higher RC’s than the GauExp method. All
improvements of the GauBspl method were achieved with a
negligible increase of the standard deviation of the RC. Note
that the RC value is “usually” larger for the larger ROIs, but
the relationship to size is not linear and not monotonically
increasing. This phenomenon was also observed in our XCAT
phantom study of Section V-D. It may be because the RC
depends not only on count “spill-out” but also on the “spill-in”
effects, which depend on the activity in nearby structures,
and/or because these RCs had not converged to final values
due to our choice of only 35 iterations. Further investigation is
necessary to explain the phenomenon.

C. Patient Study

Fig. 8 shows the transaxial SPECT images using the three dif-
ferent CDR models and one CT image with a delineated tumor
(left inguinal tumor, 38 cc). The GauBspl method yielded in-
creased image intensity compared to the Gaussian and GauExp
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Fig. 5. Sum of the absolute differences between the measured and fitted PSFs
versus distance for all three models: Gaussian, GauExp, and GauBspl. The three
plots in (a) are using the experimentally measured CDRs. The bottom three lines
in (b), labeled with the extension [- fitted], are from an initial set of MC simu-
lated CDRs. The other three plots (top three) in (b), labeled with the extension
[- tested], are from a second set of MC simulated CDRs generated using a dif-
ferent seed. All three comparisons show that our proposed GauBspl model can
represent the CDRs at various distances better than the Gaussian and GauExp
models. (a) Experimental measurements. (b) MC simulations.

methods. The CR of the GauBspl methodwas 12.4% higher than
the CR of the Gaussian method and 6.4% higher than the CR
of the GauExp method. These results imply that our proposed
method increased the RC compared to the Gaussian andGauExp
methods, which is consistent with the results of our hot phantom
studies. However, in this patient study, we do not know whether
our proposed method resulted in improvement of absolute ac-
tivity quantification since we do not know the amount of true
activities.

D. XCAT Phantom Study With MC Simulation

Fig. 9 shows the true and reconstructed SPECT images using
three different CDR models with the XCAT phantom. The
GauBspl method produced somewhat increased image intensity
compared to the other Gaussian and GauExp methods. Fig. 10
shows the quantification results of the XCAT phantom study.
The GauBspl approach yielded 10.2%–16.5% higher RC’s than
the Gaussian method and 7.0%–10.8% higher RC’s than the
GauExp method for the different-size spherical tumors.

Fig. 6. Transaxial OSEMSPECT images of 3-D “hot-sphere” phantomwithout
(no bck), (a), (c), and (e), and with background (with bck), (b), (d), and (f), activ-
ities at 35 iterations (six subsets) using three different CDR models: Gaussian,
GauExp, and GauBspl. CT image (g) and schematic image (h) show the size of
the spheres. The GauBspl method increased the image intensity in the spheres
compared to the Gaussian and GauExp methods. Note that not all spheres are
centered on the same axial plane. (a) Gaussian, no bck. (b) Gaussian, with bck.
(c) GauExp, no bck. (d) GauExp, with bck. (e) GauBspl, no bck. (f) GauBspl,
with bck. (g) CT. (h) Schematic image.

VI. DISCUSSION

We evaluated our method and showed quantification im-
provement in I-131 SPECT imaging for oncologic applications
(tumor dosimetry). However, our proposed method can po-
tentially be useful in improving SPECT quantitative accuracy
using any radionuclides that emit medium or high-energy
photons for various applications with other organs.
We measured an I-131 point source that had a 7 mm diam-

eter because of the difficulties in constructing a smaller point
source with significant activity. We studied the effect of poten-
tially reducing the size of the point source using MC simula-
tion. We simulated a 7 mm diameter and a 1 mm diameter point
source and measured the full-width half-maximum (FWHM) of
the Gaussian fit for both. The MC results show that, at 2, 10,



CHUN et al.: CORRECTION FOR COLLIMATOR-DETECTOR RESPONSE IN SPECT USING POINT SPREAD FUNCTION TEMPLATE 303

Fig. 7. RCs of phantom (a) without and (b) with background activity as a func-
tion of sphere volume. The GauBspl CDR model yielded higher RC values than
the Gaussian or GauExp models for all spheres. (a) RC (no bck) versus sphere
volume. (b) RC (with bck) versus sphere volume.

and 15 cm, the FWHM of the 7 mm point source was 8.5, 15.1,
and 18.6 mm, respectively, while the FWHM of the 1 mm point
source was 7.4, 14.8, and 18.2 mm, respectively. In our XCAT
phantom study, using the results from the smaller point source
resulted in a RC difference RC using 7 mm point source -
RC using 1 mm point source RC using 1 mm point source
100) that ranged from 0.6%–2.3%. The RC differences, there-

fore, seem relatively small. However, recently, small beads with
Tc-99m (180–500 size) were used as point sources in micro
SPECT-CT studies [30]. The same beads could potentially be
used with I-131 to improve the accuracy of our present CDR
measurements.
The location of the point source relative to the septa can also

change the quantification result since the sensitivity depends
on the location. We ran another MC simulation with the point
source at two locations (center of the image plane and 2 mm
shifted from the center in both the x and the y direction). An
observed increase of the FWHM became smaller as the distance
from object to camera became larger. The FWHMchanged from
8.5 to 10.9 mm at 2 cm, from 11.2 to 12.1 mm at 5 cm, and
from 15.0 to 15.1 mm at 15 cm. In our XCAT phantom study,

Fig. 8. (a) CT image with delineated tumor and (b)–(d) SPECT images with
different CDR models of a patient. The GauBspl method yielded increased
image intensity and CR’s (implicitly RC’s) compared to the Gaussian and
GauExp methods. (a) CT image. (b) SPECT image (Gaussian). (c) SPECT
image (GauExp). (d) SPECT image (GauBspl).

these differences resulted in a 0.5%–3.1% difference in the RC
value ( RC using centered point source - RC using shifted point
source /RC using centered point source 100). One may re-
duce this variability by measuring the point source at more than
one location for close distances (e.g., 2 cm) and averaging the
results. Compensating for the sensitivity difference at different
locations would require computationally demanding MC simu-
lations in the forward projection.
Our proposed function fitting based approach is an alternative

way to model the CDR compared to MC-based CDR modeling
[2], [3], [14]. The MC-based CDR modeling method requires
accurate SPECT simulations for a given scanner, but our pro-
posed B-spline PSF template approach requires only the mea-
sured CDRs from the scanner. However, this work did not assess
the relative merits of the twomethods. In a future study, it would
be interesting to compare the performance difference between
the function fitting based and the MC-based CDR models.
We used unregularized OSEM (35 iterations and six sub-

sets), which is the reconstruction method used in our I-131
SPECT-CT imaging-based dosimetry studies [27]. In our
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Fig. 9. Transaxial true images of the XCAT phantom with five tumors near the
liver (a) and the kidney (b). SPECT images were reconstructed using the three
different CDR models for the liver (c), (e), and (g), and for the kidney (d), (f),
and (h). The GauBspl method produced somewhat increased image intensity
compared to the Gaussian and GauExp methods. (a) XCAT phantom (liver).
(b) XCAT phantom (kidney). (c) Gaussian (liver). (d) Gaussian (kidney). (e)
GauExp (liver). (f) GauExp (kidney). (g) GauBspl (liver). (h) GauBspl (kidney).

phantom studies, we observed that more iterations yielded
higher RC values, but they also yielded noisier images due
to the ill-posed nature of the unregularized optimization. The
unregularized optimization also usually yielded lesions or
spheres with edge artifacts [1] [higher activities around the
sharp edges—see Fig. 6(a)–(e)]. Edge-preserving regulariza-
tion methods may be able to reduce both the edge artifacts and
the noise [31].

VII. CONCLUSION

We developed a B-spline PSF template approach to CDR
modeling for more accurate quantification in SPECT. It is most
appropriate for radionuclides that emit medium or high-energy
photons, such as I-131. Our proposed method yielded CDRs

Fig. 10. Recovery coefficients from the XCAT phantom plotted as a function of
sphere volume. The GauBspl approach yielded higher RC’s than the Gaussian
and GauExp methods for all spherical tumors.

that better matched the measured CDRs compared to previous
function fitting methods using Gaussian or Gaussian plus ex-
ponential functions. We also showed that this improved CDR
fitting translated into substantially improved SPECT quantifi-
cation, as determined by increased RCs, in experimental and
digital phantom studies.
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