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Abstract—Magnetic resonance image (MRI) reconstruction
from undersampled k-space data requires regularization to
reduce noise and aliasing artifacts. Proper application ofreg-
ularization however requires appropriate selection of associated
regularization parameters. In this work, we develop a data-driven
regularization parameter adjustment scheme that minimizes
an estimate (based on the principle of Stein’s unbiased risk
estimate—SURE) of a suitable weighted squared-error measure
in k-space. To compute this SURE-type estimate, we propose
a Monte-Carlo scheme that extends our previous approach to
inverse problems (e.g., MRI reconstruction) involving complex-
valued images. Our approach depends only on the output of a
given reconstruction algorithm and does not require knowledge of
its internal workings, so it is capable of tackling a wide variety of
reconstruction algorithms and nonquadratic regularizers includ-
ing total variation and those based on theℓ1-norm. Experiments
with simulated and real MR data indicate that the proposed
approach is capable of providing near mean squared-error (MSE)
optimal regularization parameters for single-coil undersampled
non-Cartesian MRI reconstruction.

Index Terms—Image reconstruction, non-Cartesian MRI, reg-
ularization parameter, Stein’s unbiased risk estimate (SURE),
Monte-Carlo methods.

I. I NTRODUCTION

I MAGE reconstruction is a crucial task in magnetic reso-
nance imaging (MRI). Model-based reconstruction methods

[1] can improve image-quality over direct methods such as
iFFT- or gridding-based reconstruction [2], especially for
undersampled k-space data. The problem is usually solved
by minimizing a cost function involving a model-based data-
fidelity term and regularization. Regularization is often in-
cluded to reduce ill-posedness of the problem for undersam-
pled cases, to stabilize the reconstruction process and also to
incorporate prior information about the object being recon-
structed. Nonquadratic regularizers can better suppress noise
and aliasing artifacts compared to quadratic ones [3]. Sparsity
promoting regularizers such as those based on theℓ1-norm and
edge-preserving total variation (TV) are popular nonquadratic
regularizers in MRI [4]–[9]. Successful regularization requires
careful selection of associatedregularization parameters that
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control the strength of these regularizers during reconstruction.
These parameters are often set manually (based on visual
perception) for MRI reconstruction. In this paper, we focus
on the problem of automatic selection of these parameters for
MRI reconstruction from undersampled k-space data.

Various quantitative criteria exist for automatic selection
of parameters for regularized image reconstruction in general
[10], [11]. These may be broadly classified as those based
on the discrepancy principle [10], [11], the L-curve [12]–[14],
generalized cross-validation (GCV) [15]–[19] and estimation
of (weighted) mean squared-error (MSE, also known asrisk)
using the principles underlyingStein’s unbiased risk estimate
(SURE) [20]–[27]. Unlike task-based methods [28]–[30] that
focus on developing quality assessment criteria specific to
a given task (e.g., detecting a lesion), the above parameter
selection methods only determine a “reasonable” solution from
a “feasible set” that is predetermined by the chosen cost
function.

Among these methods, we focus on the weighted MSE
(WMSE) based approach since WMSE is easily manipulated
and estimated using the SURE-framework [23], [24], [27] and
also because it is commonly used to quantify reconstruction
quality [22]–[27]. Moreover, SURE-based methods can tackle
noniterative nonlinear reconstruction [22], [25], [26] and itera-
tive regularized reconstruction using nonquadratic regularizers
[23], [24], [27] and also provide (near) MSE-optimal (regular-
ization) parameter selection [22]–[27]. SURE-based parameter
selection assumes that real- or complex-valued noise in the
observed data follows a Gaussian distribution with known
mean and covariance, so it is well-suited for MRI.

Previous applications of SURE-type parameter selection for
MRI include noniterative denoising of magnitude images [25],
SENSitivity Encoding [31] (SENSE) based noniterative recon-
struction fromuniformly undersampled multi-coilCartesian
k-space data [26] and iterative MRI reconstruction (using
nonquadratic regularizers) from single-coilCartesian k-space
data witharbitrary undersampling [27]. These papers derive
analytically a (weighted) SURE-type estimate of a (weighted)
MSE for a particular (iterative) reconstruction algorithm.

In this work, we propose a SURE-based regularization pa-
rameter selection method for iterative MRI reconstructionfrom
undersampled data using nonquadratic regularizers. Unlike
earlier work [23]–[27], we propose a Monte-Carlo scheme
for computing the desired weighted SURE-type estimate. This
Monte-Carlo scheme extends our previous work for real-
valued denoising algorithms [32] to complex-valued recon-
struction algorithms with application to MRI reconstruction.
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Our Monte-Carlo method depends only on the output of a
given reconstruction algorithm and does not require knowledge
of its internal workings beyond confirming that it satisfies
certain (weak) differentiability conditions, so it is veryflexible
and can be applied to a wide variety of iterative/noniterative
nonlinear algorithms.

We illustrate the efficacy of the proposed Monte-Carlo
scheme for MRI reconstruction from single-coil undersampled
non-Cartesian k-space data with several nonquadratic regular-
izers such as a smooth edge-preserving one, TV and anℓ1-
regularizer. We present numerical results for simulationswith
the analytical Shepp-Logan phantom [33] and experiments
with real GE phantom data and in-vivo human brain data.
These results extend those in our previous work [27] for MRI
reconstruction from single-coil undersampled Cartesian data.
We demonstrate that the proposed Monte-Carlo SURE-based
method provides near-MSE-optimal regularization parameter
selection and performs equally well or better than GCV for
nonlinear algorithms [18], [27, Eq. (7)]. Methods proposed
in this paper can also be extended to tackle nonquadratic
regularization based iterative parallel MRI reconstruction from
Cartesian and non-Cartesian k-space data with arbitrary under-
sampling (see Section VII).

The paper is organized as follows. We introduce our data
model and describe the parameter selection problem mathe-
matically in Section II. We briefly review the principles under-
lying SURE in Section III and describe the proposed Monte-
Carlo method in detail in Section IV. We briefly describe reg-
ularized iterative single-coil non-Cartesian MRI reconstruction
in Section V. We present a variety of experimental results in
Section VI and discuss implementation aspects and possible
extensions to this work in Section VII. We finally conclude
with Section VIII.

In the rest of the paper,(·)⊤, (·)′ respectively denote the
non-Hermitian and Hermitian transposes, and(·)R and (·)I
respectively indicate the real and imaginary components ofa
complex vector or matrix. Themth element of any vectory
is denoted by either[y]m or ym and themnth element of
any matrixA is written as[A]mn. For any vectory and any
matrix W, ‖y‖2W

△
= y′Wy.

II. PROBLEM DESCRIPTION

A. Data Model

In MRI, noise originates in the analog domain (due to
thermal fluctuations of spins) before acquisition of k-space
samples but can be modeled reasonably accurately as additive
Gaussian in the acquired k-space samples. So, we use the
following data-model [1, Eq. (12)]:

y = ytrue + ξ, (1)

where we assume thatytrue ∈ CM , containing samples of
the true unknown MR signal, is a deterministic unknown,
y ∈ CM contains noisy measurements, andξ ∈ CM is
a zero-mean complex-valued Gaussian random vector with
covariance matrixΩ ∈ CM×M .

At this point, (1) does not involve discretization of the un-
derlying continuous-domain objectχtrue that is being scanned.

Thus, (1) can accommodate continuous-domain physical-
effects representative of MR physics and imaging such as
transverse relaxation, inhomogeneity of the applied magnetic
field, chemical shifts and nonuniform sensitivity of receive
coils [1, Eq. (10)] viaytrue. It also applies to several types
of MRI including single-coil/parallel imaging, undersampled
Cartesian/non-Cartesian imaging and combinations thereof.

B. Image Reconstruction

For the purpose of image reconstruction, we use the follow-
ing discretizedlinear model [1, Eq. (18)]

y = Axtrue + ξ, (2)

that is based on a discretization [1, Eq. (14)],xtrue, of
the continuous-domain objectχtrue. This discretization cor-
respondingly yields [1, Eqs. (14)-(17)] a system matrix,A,
that approximates continuous-domain imaging operations such
as those mentioned in Section II-A. The matrixA depends
mainly upon (among other factors such as the pulse sequence
and coil geometry) the k-space trajectory used to acquirey
and is assumed to be known. WhileA is essential for image
reconstruction, we remark thatxtrue is a hypothetical object
that is not necessary for the methods proposed in this paper
and is used purely for validating our simulations. For an
appropriate discretization [1],A represents (nonuniform) dis-
crete Fourier transform for (non-Cartesian) single-coil imaging
(ignoring field inhomogeneity and relaxation effects) while
for parallel MRI, it corresponds to the combined Fourier and
spatial sensitivity encoding matrix [3].

Given (1)-(2), the goal of image reconstruction is to obtain
a discretized estimate,̂x, of χtrue from y. This corresponds
to an ill-posed inverse problem whenM < N and is usually
tackled in a regularized-reconstruction framework where an
iterative reconstruction algorithm is applied ony to yield x̂.
We denote the reconstruction process by

x̂ = uλλλ(y), (3)

whereuλλλ : CM → CN is a (possibly nonlinear) operator
representative of the corresponding iterative reconstruction
algorithm. The vectorλλλ in uλλλ denotes one or more tunable
parameters (e.g., number of iterations, regularization strength)
that characterize the reconstruction method and govern the
quality of x̂. Selecting a suitableλλλ thus plays an important
role in problems such as (3). Often,λλλ is adjusted manually
based on visual perception of̂x. In this work, we focus on
quantitative methods for selectingλλλ automatically. Specifi-
cally, we propose to use a weighted squared-error measure in
the measurement domain that can be estimated using Stein’s
principle [20], [21] and then minimized to yield an appropriate
choice ofλλλ.

C. Weighted Squared-Error Measures

In imaging inverse problems, reconstruction quality is often
quantified using mean squared-error,MSE(λλλ)

△
= N−1‖xtrue−

uλλλ(y)‖22, and is thus a reasonable metric for adjustingλλλ.
However,MSE(λλλ) is neither accessible in practice (due to
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its dependence onxtrue) nor amenable for estimation1 (e.g.,
using Stein’s principle) in ill-posed inverse problems dueto
the ill-posedness of (2) forM < N [21], [23], [27].

1) Previous Extensions to MSE: To circumvent this diffi-
culty, some authors [21], [23] have focussed on

Projected-MSE(λλλ)
△
= M−1‖P[xtrue − uλλλ(y)]‖22, (4)

where P
△
= A′(AA′)†A, (·)† represents pseudo-inverse.

Another alternative [11], [27] is

Predicted-MSE(λλλ)
△
= M−1‖A[xtrue − uλλλ(y)]‖22. (5)

Both of these metrics are tractable with Stein’s principle
[21], [23], [27]. In our previous work [27], we considered
a weighted variant,

WMSE(λλλ)
△
= M−1‖A[xtrue − uλλλ(y)]‖2W, (6)

that subsumes both Projected-MSE(λλλ) and Predicted-MSE(λλλ)
for appropriate choices of the symmetric positive semi-definite
weighting matrix W � 0 [27, Sec. III-B]. All of these
metrics that depend onxtrue assume that the observed datay
follows the discretized linear model in (2). For such a model
(2), WMSE(λλλ) can be unbiasedly estimated using Stein’s
principle to yieldWSURE(λλλ) [27, Eq. (12)] whenξ in (2) is
Gaussian [27, Thm. 2]. UnlikeMSE(λλλ) however,WMSE(λλλ)
evaluates the error in the measurement-domain, i.e., the range
space ofA; for MRI, WMSE(λλλ) corresponds to evaluating
weighted squared-error in k-space. Despite this dissimilarity
from MSE(λλλ), we found thatWMSE(λλλ), via its estimate
WSURE(λλλ) [27, Eq. (12)], can be used to obtain near-
MSE-optimal regularization parameters for iterative nonlinear
image-deblurring and MRI reconstruction from undersampled
Cartesian k-space data [27].

Using Stein’s principle [20], [21] to estimateWMSE(λλλ)
involves substitutingAxtrue = y − ξ from (2) in WMSE(λλλ)
(6) and exploiting the statistics ofξ to analytically evaluate
ξ-related terms in the expectation sense [27, Thm. 1]. The
resulting unbiased estimateWSURE(λλλ) [27, Eq. (12)] is
independent ofAxtrue and depends only ony, a first-order
differential response ofuλλλ and the mean and covariance ofξ
thereby making it a practical proxy forWMSE(λλλ). However,
the unbiasedness of WSURE(λλλ) to WMSE(λλλ) is meaningful
only when the observed data follows (2). The discretized linear
model (2), although crucial for image reconstruction, doesnot
adequately describe how imaging systems work in practice:
observed datay often involves continuous-domain imaging
operations, e.g., representative of MR physics described in
Section II-A, that may not be completely captured by the
discretization inAxtrue. Thus, sinceWSURE(λλλ) depends
on y and not onAxtrue, a discrepancy arises inreasoning
that WSURE(λλλ) is unbiased for practical imaging inverse
problems.

1In some special cases such as whereA has full column-rank or when
uλλλ(y) belongs to the range-space ofA′, it is possible to estimateMSE(λλλ)
[21], [23], [27].

2) Proposed Measure: To avoid this discrepancy in rea-
soning, we propose to consider the following WMSE metric
with respect to the True Dataytrue sinceytrue accounts for
continuous-domain imaging operations:

WMSETD(λλλ)
△
= M−1‖ytrue −Auλλλ(y)‖2W. (7)

We still require Auλλλ(y) in (7) because we are recon-
structing a discretized version, i.e.,uλλλ(y), of the origi-
nal continuous-domain objectχtrue so thatA mapsuλλλ(y)
to its corresponding k-space vector. Similar toWMSE(λλλ),
WMSETD(λλλ) is also a measurement-domain error metric
that is not directly accessible due to its dependence on the
true unknown samplesytrue. However, sinceytrue describes
MR data-acquisition more realistically via continuous-domain
operations thanAxtrue, WMSETD(λλλ) is a more accurate
representation of the k-space error thanWMSE(λλλ). Below, we
show that Stein’s principle [20], [21] can be used to estimate2

WMSETD(λλλ) and leads to an expression forWSURE(λλλ)
that is very similar to that reported in our previous work [27,
Eq. (12)].

Due to the generality of (1)-(2), we can useWMSETD(λλλ)
[via WSURE(λλλ)] to tuneλλλ in a variety of MRI reconstruction
problems including single-coil / multi-coil MRI reconstruc-
tion (from undersampled data) with / without compensation
for field-inhomogeneity and relaxation effects. However, the
appropriateness ofWMSETD(λλλ) for a given MRI technique
needs to be validated using numerical experiments on a case-
by-case basis. In this paper, we considersingle-coil non-
Cartesian MRI ignoring field-inhomogeneity and relaxation
effects as an extension to our previous work [27] that focussed
on single-coil Cartesian3 MRI. We present experimental re-
sults in Section VI illustrating thatWSURE(λλλ) can provide
near-MSE-optimal regularization parameter selection forreg-
ularized MRI reconstruction fromsingle-coil undersampled
non-Cartesian k-space data. We also briefly discuss extensions
to parallel MRI in Section VII and report results for using the
proposed methods for parallel MRI reconstruction using two
different algorithms in [34]–[36].

III. E STIMATING WMSETD USING STEIN’ S PRINCIPLE

ExpandingWMSETD(λλλ) and using (1) to writeytrue =
y − ξ, we get that

WMSETD(λλλ) = M−1‖ytrue‖2W +M−1‖Auλλλ(y)‖2W
− 2M−1R{y′WAuλλλ(y)}
+ 2M−1R{ξ′WAuλλλ(y)},

(8)

whereR{·} stands for real part of a complex-number. Apart
from the irrelevant constant‖ytrue‖2W that does not depend

2Since (1) and (2) are based on the same noise model,WMSE(λλλ) (6)
and WMSETD(λλλ) (7) lead to functionally similarWSURE(λλλ) such as
[27, Eq. (12)] and (12) in this paper. However, it is more apt to interpret
WSURE(λλλ) as an unbiased estimate ofWMSETD(λλλ) for practical imaging
inverse problems.

3Previously [27], we assumed that the observed data followedthe dis-
cretized linear model (2) for single-coil MRI reconstruction with retrospective
undersampling, so we focussed onWMSE(λλλ) (6) in [27]. However, since
the model in (1) is more realistic than that in (2), we preferWMSETD(λλλ)
overWMSE(λλλ) in this work.
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on λλλ, the only inaccessible term isξ′WAuλλλ(y). In the
sequel, we use the principles underlying Stein’s result [20]
and generalized SURE [21] for estimating this term.

Lemma 1: Let the following be true:

1) ξ ∈ CM in (1) is complex Gaussian withEξ{ξ} = 0,
Eξ{ξξ⊤} = 0, andEξ{ξξ′} = Ω ≻ 0, whereEξ denotes
expectation with respect toξ,

2) uλλλ : CM → CN is individually analytic [37] with
respect to the real and imaginary parts of its argument
(in the weak sense of distributions [38, Ch. 6]), and

3) the matrix

Γ
△
= ΩWA ∈ CM×N (9)

satisfiesEξ{|[Γuλλλ(y)]m|} < ∞, m = 1, . . . ,M .

Then, we have that

Eξ{ξ′WAuλλλ(y)} = Eξ {tr{ΓJuλλλ
(y)}} , (10)

where tr{·} denotes the trace of a matrix andJuλλλ
(y) ∈

CN×M is the Jacobian matrix of (weak) partial derivatives
of the components ofuλλλ with respect to the components ofy
and is defined via its elements as

[Juλλλ
(y)]nm

△
=

1

2

(
∂[uλλλ(y)]n
∂yRm

− ι
∂[uλλλ(y)]n
∂yIm

)
. (11)

Proof: The proof is a straightforward extension of previ-
ous results [20], [21, Thm. 1], [27, Lem. 1] and is given in
Appendix A for completeness.

We now use (10) to show that

WSURE(λλλ)
△
= M−1‖y−Auλλλ(y)‖2W −M−1tr{ΩW}
+ 2M−1R{tr{ΓJuλλλ

(y)}} (12)

is an unbiased estimate ofWMSETD(λλλ).
Theorem 1: Let uλλλ(y) and Γ in (9) satisfy the hypothe-

ses of Lemma 1. ThenWSURE(λλλ) (12) is an unbiased
estimate ofWMSETD(λλλ) (7), i.e., Eξ{WMSETD(λλλ)} =
Eξ{WSURE(λλλ)}.

Proof: The proof is straightforward and uses Lemma 1
to estimateξ′Auλλλ(y) in WMSETD(λλλ) (8).

The estimate,WSURE(λλλ) (12), of WMSETD(λλλ) (7) is
independent ofytrue and depends only ony, the noise covari-
ance matrixΩ anduλλλ via tr{ΓJuλλλ

(y)}. Thus, it is feasible to
computeWSURE(λλλ) as a proxy forWMSETD(λλλ) for tuning
λλλ. In our previous work [27], we analytically evaluatedJuλλλ

(y)
recursively for some iterative reconstruction algorithmsfor
image-deblurring and single-coil undersampled CartesianMRI
reconstruction. Although accurate, such an analytical approach
demands tedious mathematical derivations that depend on the
specifics ofuλλλ and that must be repeated for differentuλλλ

individually on a case-by-case basis.
In this work, we propose a Monte-Carlo scheme for nu-

merically estimatingtr{ΓJuλλλ
(y)} in WSURE(λλλ) (12). The

proposed scheme does not require knowledge of the implemen-
tation details ofuλλλ as we shall see next; this advantage makes
it readily applicable to a wide variety of (weakly differentiable)
estimatorsuλλλ.

IV. M ONTE-CARLO ESTIMATION

The proposed Monte-Carlo method for tuningλλλ extends our
previous result, [32, Thm. 2] that focussed on real-valueduλλλ

for denoising applications, to handle complex-valueduλλλ in
(3) with application to imaging inverse problems, especially
MRI. Similar to [32, Thm. 2], we probeuλλλ and analyze
its response to complex-valued random perturbations iny to
estimatetr{ΓJuλλλ

(y)}.
Theorem 2: Consider the random vector

̺(uλλλ,y,Λb, ε)
△
= uλλλ(y + εΛb)− uλλλ(y), (13)

whereb ∈ CM is an i.i.d. random vector independent ofy
such thatEb{b} = 0, Eb{bb⊤} = 0, Eb{bb′} = IM , and
Λ ∈ CM×M is an invertible deterministic matrix. Ifuλλλ admits
a second order Taylor expansion in addition to satisfying the
hypotheses in Lemma 1, we have that

tr{ΓJuλλλ
(y)} = lim

ε→0

1

ε
Eb{b′Λ−1Γ̺(uλλλ,y,Λb, ε)}. (14)

Proof: Whenuλλλ(y) admits a second-order Taylor expan-
sion, we have that [39]

̺(uλλλ,y,Λb, ε) = εJuλλλ
(y)Λb + εJuλλλ

(y∗)Λ∗b∗ + o(Λb, ε),
(15)

where o(Λb, ε) satisfieslimε→0 Eb{|bm o(Λb, ε)|}/ε = 0,
for m = 1, . . . ,M . Then, from (15), we have that

lim
ε→0

1

ε
Eb{b′Λ−1Γ̺(uλλλ,y,Λb, ε)}

= Eb{b′Λ−1ΓJuλλλ
(y)Λb} + Eb{b′Λ−1ΓJuλλλ

(y∗)Λ∗b∗},
(16)

where the last term in the right-hand-side (rhs) of (15) vanishes
due to the limit. The second term in the rhs of (16) vanishes
since

Eb{b′Λ−1ΓJuλλλ
(y∗)Λ∗b∗}

= Eb{tr{Λ−1ΓJuλλλ
(y∗)Λ∗b∗b′}}

= tr{Λ−1ΓJuλλλ
(y∗)Λ∗(Eb{bb⊤})∗} = 0, (17)

while the first term can be manipulated as

Eb{b′Λ−1ΓJuλλλ
(y)Λb} = Eb{tr{Λ−1ΓJuλλλ

(y)Λbb′}}
= tr{Λ−1ΓJuλλλ

(y)ΛEb{bb′}}
= tr{Λ−1ΓJuλλλ

(y)Λ}
= tr{ΓJuλλλ

(y)}, (18)

which is the desired result.
Theorem 2 generalizes [32, Thm. 2] to complex-valued

problems allowing for a correlation matrixΛ in (13)-(14).
We briefly discuss the role ofΛ later in this section and in
Section VII. The Monte-Carlo result (14) does not explicitly
rely on the functional form ofuλλλ and is equally applicable to
both linear and nonlinearuλλλ.

A generic linear reconstruction algorithm has the form

uλλλ(y) = Hλλλy (19)

for some (reconstruction) matrixHλλλ ∈ CN×M parametrized
by λλλ. Our Monte-Carlo result (14) further simplifies for linear
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uλλλ (19) as shown in the following corollary that extends our
previous result [32, Prop. 2] to the case of complex-valueduλλλ.

Corollary 1: When uλλλ is linear, (14) holds without the
limit, independent ofε leading to the following identity

Eb{b′Λ−1ΓHλλλΛb} = tr{ΓHλλλ}. (20)

Proof: For linear uλλλ (19), the rhs of (14) reduces to
Eb{b′Λ−1ΓHλλλΛb} without limε→0, which does not depend
on ε. A manipulation similar to that in (18) leads to (20).

When Λ = IM , Corollary 1 is a restatement of existing
results [40]–[43] for Monte-Carlo estimation of the trace
of a matrix and is useful [viaWSURE(λλλ)] for adjusting
λλλ of linear MRI reconstruction algorithms [32], [40], e.g,
conjugate phase reconstruction with density compensation[2],
[44] where λλλ could describe some parametrization of the
density compensation weights or such as those encountered
when using Tikhonov-type quadratic regularizers [32], [40]
whereλλλ could denote regularization parameters.

For MRI reconstruction from undersampled data, it is
preferable to use nonquadratic regularizers to better reduce
aliasing artifacts and noise in the reconstructed image [3],
[5]. The reconstruction process associated with a nonquadratic
regularizer is nonlinear, so henceforth we concentrate on
nonlinearuλλλ.

In practice, for nonlinearuλλλ, the limit in (14) cannot be
applied analytically except in some special cases whereuλλλ is
analytically tractable. So we make an approximation to (14)
by dropping the limit and theEb{·} operations similar to [32,
Eq. (17)] and use

tr{ΓJuλλλ
(y)} ≈ ε−1b′Λ−1Γ̺(uλλλ,y,Λb, ε) (21)

for a sufficiently smallε and one realization of a complex-
valued random vectorb satisfying the hypotheses of Theorem
2. The choice ofε represents a trade-off: for too small anε-
value,uλλλ may be insensitive to the perturbationεΛb in y +
εΛb due to finite numerical precision of digital computers, so
the Monte-Carlo estimate (21) could be unstable, i.e., it could
have large variance. On the other hand, the approximation (21)
may be inaccurate for largeε-values for nonlinearuλλλ.

The robustness of (21) to the choice ofε depends on
several factors such as the magnitude of the elements ofΓ
(9), the energy ofΛb, Eb{‖Λb‖22}, relative to that ofy,
Eξ{‖y‖22}, numerical precision of the variables used in the
implementation and the sensitivity ofuλλλ(y) to changes iny;
the approximation (21) must thus be validated for a given data
model (1)-(2) and a reconstruction algorithm (3) individually.
The matrixΛ in (21) may be chosen so as to scale the elements
of Λb relative to those ofy, essentially allowing different
amounts of perturbation for different elements ofy. This may
be beneficial in some applications such as MRI where the
elements ofy span several orders of magnitude and relatively
scaling the perturbation can help maintain the accuracy of
the approximation (21) for a fixed, sufficiently smallε for
varyingy. Althoughε is a user-provided parameter, we show
in Section VI-B that the choice ofε spans several decades
without significantly affecting the results, so the proposed
MCSURE method can be applied without having to repeatedly
adjustε.

Using (21), we thus require only two evaluations ofuλλλ for
a giveny andλλλ, i.e., the response ofuλλλ to y andy + εΛb
for estimatingtr{ΓJuλλλ

(y)} for a givenλλλ. Our approach does
not need the knowledge of the structure ofuλλλ, so (21) is
very flexible in its applicability. This is unlike the analytical
development in our earlier work [27] that varied with the
choice of uλλλ and also required storage and computation
equivalent to 3 evaluations ofuλλλ for a givenλλλ as discussed
in [27, Sec. VI-C].

Theorem 2 is somewhat restrictive in its applicability since
it is based on a Taylor expansion ofuλλλ. In practice,uλλλ

may involveweakly differentiable operators that do not admit
(15). A typical instance is whenℓ1-type (including total
variation) regularizers are used for reconstruction;uλλλ for
these regularizers would involve (for certain implementations)
a nonsmooth shrinkage operator that satisfies Lemma 1 but
not (15). In such cases, it is possible to extend the scope of
Theorem 2 toweakly differentiable functions similar to that
documented in [32, Thm. 2]. However, this would require
tedious derivations using measure theory and the theory of
distributions [38, Ch. 6] and is beyond the scope of this paper.
Instead, we investigate using (21) foruλλλ corresponding toℓ1-
type regularizers based on empirical validation with numerical
experiments both in the paper (see Secs. VI-C-VI-D) and in a
supplementary material.4

Finally, our Monte-Carlo result (14) precludes iterative /
noniterative estimators that involve non-weakly-differentiable
operators, e.g., the hard-thresholding operator [45], [32,
Sec. V-B]; such operators do not satisfy the conditions of
Lemma 1 and are not suitable for use withWSURE(λλλ).

V. SINGLE-COIL NON-CARTESIAN MRI
RECONSTRUCTION

The theoretical development so far has been general both in
terms of the data model (1)-(2) and the reconstruction algo-
rithm (3) due to the Monte-Carlo nature of our approach for
estimatingWMSETD(λλλ) (7). However, numerical validation
of our approach needs to be done on a case-by-case basis
for different applications and reconstruction algorithms. For
illustration, we henceforth focus onsingle-coil non-Cartesian
MRI ignoring field-inhomogeneity and relaxation effects as
an extension to our previous work [27] onsingle-coil Carte-
sian MRI. In this case, a good model for noise in (1) is
ξ ∼ N (0, σ2IM ), so that

Γ = σ2WA (22)

in (9). For the purpose of reconstruction (3), we use the
discretized linear model in (2). Unlike for Cartesian MRI
[27], A is not a simple undersampled DFT matrix for non-
Cartesian MRI. But for a suitable discretization,A in (2)
can be implemented using nonuniform FFT (NUFFT) [46]
for single-coil non-Cartesian MRI. We then formulate MRI
reconstruction in (3) as

x̂ = uλ(y)
△
= argmin

x
‖y −Ax‖22 + λΨ(Rx), (23)

4The supplementary material is available at http://ieeexplore.ieee.org.
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wherex̂ ∈ CN is the reconstructed image,λλλ
△
= λ > 0 is the

scalar regularization parameter,Ψ is a (possibly nonsmooth)
convex regularizer, andR

△
= [R⊤

1 · · ·R⊤
P ]

⊤ ∈ RPN×N is a
regularization operator, e.g., finite differences.

We used the split-Bregman (SB) scheme [47] foruλ in
(23). At each iteration, the SB algorithm requires (among other
simple update steps) “inverting” a matrixB

△
= A′A+ µR′R

[27, Eq. (32)] for some penalty parameter5 µ > 0 [27], [47].
For Cartesian MRI, this step can be achieved via FFTs [47,
Sec. 5.2], [27, Sec. IV-F]. For non-Cartesian MRI however,
B is block-Toeplitz with Toeplitz-blocks [49] and cannot be
inverted noniteratively for large image sizes, i.e., for large
N , so we used a preconditioned conjugate gradient (PCG)
solver with a circulant preconditioner [48] that approximately
matchedB−1. We implementedA′A using the “embedding-
toeplitz-in-circulant” trick, i.e.,A′A = Z′QZ, whereZ is
a PN × N zero-padding matrix andQ is an appropriate
PN×PN circulant matrix [50] (P = 2 for 1D andP = 4 for
2D images). In all our experiments, we ran 5 PCG iterations
for this step [27, Eq. (32)] and 100 iterations of the SB
algorithm. These numbers ensured that the SB algorithm
nearly converged in the sense that the normalized “distance”
between two successive iterates‖x(k) − x(k−1)‖2/‖x(k−1)‖2
was close to zero for a large range ofλ-values.

VI. EXPERIMENTS

A. Setup

In all our experiments, we focussed on selectingλ in (23) by
minimizing the proposed Monte-Carlo estimate,WSURE(λ)
(12), of WMSETD(λ) (7). We investigated two versions of
WMSETD(λ) corresponding toW = IM and

W = WD
△
= αIM +D, (24)

whereD � 0 is a diagonal matrix of suitable density com-
pensation weights [2] for non-Cartesian trajectories andα > 0
is chosen so thatW has a user-provided condition number
κ(W); we setα such thatκ(W) = 100. For W = IM ,
WMSETD(λ) can be interpreted as the predicted squared-
error (similar to Predicted-MSE [11], [27]) that uniformly
weighs the error at all sample locations in k-space. ForW in
(24), WMSETD(λ) favors errors at certain sample locations
in k-space more than others depending uponD; typically, for
non-Cartesian trajectories, the central k-space is more densely
sampled than outer k-space, soD is designed to provide higher
weighting for outer k-space samples than around central k-
space [2].

We implemented the SB algorithm and conducted all exper-
iments in Matlab using double-precision variables. We used
the conjugate phase (CP) reconstruction with suitable density
compensation [2] (described later),A′Dy, to initialize the SB
algorithm in all experiments.

In the proposed Monte-Carlo estimation scheme (21), we
usedb = b±

△
= (bR + ιbI)/

√
2 wherebR,bI are inde-

pendent binary random vectors6 whose elements are i.i.d. and

5We choseµ = µmin × 10−2 in all experiments, whereµmin minimized
the condition number of̃A′Ã + µR′R for a given R, where Ã′Ã is a
circulant approximation toA′A [48].

6Another choice is complex Gaussianb ∼ N (0, IM ).

assume either+1 or −1 with equal probability. It is easily
verified thatb± satisfies the hypotheses of Theorem 2. For
simplicity, we usedΛ = IM in (21) throughout. To avoid
repeated computation ofΓ′b in (21) for use in (12) with
severalλ-values, we precomputed and storedc

△
= Γ′b and

usedc′ in (21). In our simulations, we assumed that the noise
varianceσ2 was known for computingWSURE(λ) via (12)
and (22), while for experiments with real MR data, we used
an estimate computed by empirical sample-variance from outer
k-space data samples as those are mostly dominated by noise.
We comparedλ-selection using the proposedWSURE(λ) (12)
against that using generalized cross-validation for nonlinear
algorithms (NGCV) [18], [27, Eq. (7)]:

NGCV(λ)
△
=

M−1‖y−Auλ(y)‖22
(1−M−1R{tr{ΓJuλλλ

(y)}})2 , (25)

where we used the Monte-Carlo estimation procedure (21)
for tr{ΓJuλλλ

(y)} in the denominator ofNGCV(λ). Thus,
NGCV(λ) has the same computation cost as the proposed
WSURE(λ).

We experimented with 3 types of regularizers in (23): a
smooth convex regularizer with Fair potential (FP) [51], [52]
given by

ΨFP(Rx)
△
=

PN∑

r=1

ΦFP(| [Rx]r |), (26)

whereΦFP(x)
△
= x/δ − log(1 + x/δ), δ > 0, total variation

(TV) regularizer

ΨTV(Rx)
△
=

N∑

r=1

√√√√
P∑

p=1

| [Rpx]r |2, (27)

and anℓ1-regularizer

Ψℓ1
△
=

PN∑

r=1

| [Rx]r |. (28)

We used finite differences forR in (26)-(28) with P = 4
(horizontal, vertical, and two diagonal) directions in allexper-
iments.

It is possible to verify that the SB algorithm foruλ satisfies
the hypotheses of Theorem 2 forΨFP (26) because it is
differentiable everywhere. However, Theorem 2 is not directly
applicable whenΨTV or Ψℓ1 are involved in (23) as the
correspondinguλ may not satisfy the hypotheses of Theo-
rem 2. As discussed at the end of Section IV, we demonstrate
using numerical experiments in Sections VI-C – VI-D (and
in the supplementary material) that the proposed Monte-Carlo
approach can be used for estimatingWSURE(λ) for ΨTV and
Ψℓ1 in (23). In all experiments, we minimizedWSURE(λ)
andNGCV(λ) as a function ofλ.

B. Radial MRI Simulation

We used the analytical Shepp-Logan phantom [33] to simu-
late noisy datay of 40 dB SNR on a radial trajectory with 96
spokes each containing 512 samples (reduction factor≈ 8).
We used the approach in [53], [54] for selecting the density
compensation weightsD (24). We setΨ = ΨFP (26) in (23)
with δ = M−1‖y‖22 × 10−4.
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Fig. 1. Plots of standard deviation ofWSURE(λ) normalized by
WMSETD(λ) as a function ofε in (21) for (top)λ = λopt/10, (middle)
λ = λopt, and (bottom)λ = 10λopt, whereλopt is theMSE-optimal value
of the regularization parameter. The curves correspond to the experiment in
Section VI-B1 whereWSURE(λ) was obtained by averaging (21) over 25
realizations ofb±. As expected, the variance rapidly increases for smallerε.

1) Variance of WSURE: To analyze the accuracy of (21),
we reconstructed512 × 512 images of the Shepp-Logan
phantom for three different values ofλ, and correspondingly
computed the standard deviation of Monte-CarloWSURE(λ)
by averaging it over 25 realizations ofb± for differentε. Fig. 1
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Fig. 2. Plots of (a) regularization parameterλ, and (b)PSNR(λ) as functions
of ε for λ selected to minimizeWSURE(λ) with W = IM andWD in
(24) andMSE(λ) for the experiment described in Section VI-B2.

plots the standard deviation of Monte-CarloWSURE(λ)
normalized byWMSETD(λ) as a function ofε. The plots
indicate thatε < 10−7 consistently leads to increased variance.
Moreover, the variance is approximately constant forε ∈
[10−7, 10−3] indicating the robustness of the approximation
in (21). We present similar results for varying SNR of data in
the supplementary material.

2) Selection of λ for different ε: We used only one realiza-
tion of b± in (21) for computingWSURE(λ) (12). We varied
ε, minimizedMSE(λ) andWSURE(λ) with respect toλ for
eachε. Fig. 2a plots the resultingλ-values, while Fig. 2b plots
peak-SNR (PSNR) defined as

PSNR(λ)
△
= 10 log10[max

n
{|[xtrue]n|2}/MSE(λ)]

as functions ofε for the variousλ-selections. Forε ∈
[10−7, 10−2], WSURE(λ) basedλ-selection and correspond-
ing PSNR(λ) are close to those of minimumMSE(λ) selec-
tion. We present similar results for varying SNR of data and
the TV regularizer in the supplementary material.

Based on Figs. 1-2 and corresponding results in the sup-
plementary material, a suitable choice ofε appears to be
in the range[10−7, 10−2]. However, from our experience,
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Fig. 3. Simulation with the analytical Shepp-Logan phantom(Section VI-B3). Plots ofMSE(λ), WMSETD(λ), WSURE(λ) versusλ for W = IM
(left) andWD in (24) (right). Vertical dashed lines indicate minima of various curves.WSURE(λ) captures the trend ofWMSETD(λ) in both plots and
their minima are close to that of the trueMSE(λ).
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Fig. 4. Simulation with the analytical Shepp-Logan phantom(Section VI-B3).
Plot of PSNR(λ) versusλ. Vertical dashed lines indicateλ-selections made
by various methods.WSURE(λ) andNGCV(λ) lead to near-PSNR-optimal
reconstructions.

it is beneficial to be conservative withε, so we recommend
choosingε ∈ [10−5, 10−2].

In the remaining experiments, we setε = 10−4 and used
only one realization ofb± in (21) for computingWSURE(λ)
(12) andNGCV(λ) (25).

3) Trends of WMSETD(λ) and WSURE(λ): We re-
constructed512 × 512 images, and computedWSURE(λ),
the oraclesWMSETD(λ), andMSE(λ), for a range ofλ-
values. Fig. 3 plotsWSURE(λ), WMSETD(λ), andMSE(λ)
as a function of λ. WSURE(λ) captures the trend of
WMSETD(λ) over the entire range ofλ indicating the
accuracy of the proposed Monte-Carlo scheme with a single
realization ofb±. Moreover, the minima ofWMSETD(λ)
and WSURE(λ) are all close to that of the trueMSE(λ)
indicating their reliability in selectingλ. In Fig. 4, we plot
PSNR(λ) for a range ofλ-values indicating theλ-selections
made byNGCV(λ) and WSURE(λ). Both NGCV(λ) and

TABLE I
EXPERIMENT IN SECTION VI-B4: PSNR OF IMAGES RECONSTRUCTED

USINGΨFP WITH λ OPTIMIZED BY VARIOUS METHODS FOR DATA WITH

VARYING SNR.

PSNR (dB)
SNR MSE(λ) NGCV(λ) WSURE(λ)
(dB) W = IM W = WD

20 28.60 28.60 28.60 28.60
30 32.26 32.26 32.26 32.26
40 33.81 33.66 33.66 33.66

TABLE II
EXPERIMENT IN SECTION VI-B5: PSNR OF IMAGES RECONSTRUCTED

USINGΨTV WITH λ OPTIMIZED BY VARIOUS METHODS FOR DATA WITH
VARYING NUMBER OF SAMPLES(REDUCTION FACTORS).

PSNR (dB)
Reduction MSE(λ) NGCV(λ) WSURE(λ)

Factor W = IM W = WD

5 28.41 28.37 28.34 28.34
4 28.58 28.54 28.54 28.51
3 28.81 28.81 28.81 28.78
2 28.98 28.94 28.98 28.94

WSURE(λ) led to the sameλ-value close to the MSE-optimal
one in this experiment. Fig. 5 presents512 × 512 images
reconstructed usingλ-values that minimizedNGCV(λ) and
WSURE(λ). As expected, the respective reconstructed im-
ages, Fig. 5d-5f, closely resemble that obtained using the true
minimum-MSE-λ in Fig. 5c. Finally, all the regularized re-
constructed images, Fig. 5c-5f, have almost no radial-artifacts
and display improved quality over CP reconstruction, Fig. 5b.

4) Varying Noise Level: We repeated the radial MRI sim-
ulation with varying levels of noise in the simulated data. We
tabulatePSNR of reconstructed images obtained by minimiz-
ing WSURE(λ) andNGCV(λ) in Table I.WSURE(λ) was
able to provide near-MSE-optimalλ-selections as indicated
by the PSNR-values in Table I.NGCV also provided similar
λ-selections in this experiment.

5) Varying Reduction Factor: We repeated the radial MRI
simulation for varying number of spokes of the radial trajec-
tory corresponding to reduction factors of 2, 3, 4 and 5 and for
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Simulation with the analytical Shepp-Logan phantom(Section VI-B3). (a) Discretized noise-free512 × 512 phantom; (b) CP reconstruction
(PSNR = 16.57 dB) has prominent streak artifacts and noise; Images reconstructed usingΨFP regularizer withλ selected to minimize (c) trueMSE(λ)
(λ = 4.3 × 10−7; PSNR = 33.81 dB); (d) NGCV(λ) (λ = 1.7 × 10−7; PSNR = 33.66 dB); (e) WSURE(λ) with W = IM (λ = 1.7 × 10−7;
PSNR = 33.66 dB); (f) WSURE(λ) with WD in (24) (λ = 1.7 × 10−7; PSNR = 33.66 dB). In this experiment,WSURE andNGCV lead to the
sameλ-selections, see Fig. 4, thus resulting in similar visual quality comparable to the trueMSE(λ)-based reconstruction in (c).

(a) (b) (c) (d) (e)

Fig. 6. Experiment with real GE phantom data (Section VI-C).(a) Very mildlyΨTV-regularized256×256 reference reconstruction from “fully-sampled” data
averaged over 3 acquisitions; (b) CP reconstruction (from2× undersampled data from a single acquisition) is strewn withspiral artifacts; Images reconstructed
from 2× undersampled data (from a single acquisition) usingΨTV-regularizer withλ selected to minimize (c)NGCV(λ) (λ = 53); (d) WSURE(λ) with
W = IM (λ = 37); (e) WSURE(λ) with WD in (24) (λ = 37). The λ-value selected byNGCV is slightly higher than those selected byWSURE.
The resulting image (e) is thus slightly over smoothed, although the over smoothing is not visually apparent due to the piece-wise constant nature of the GE
phantom. Moreover, some fine details present in (a) are lost in (c)-(e) owing both to undersampling and regularization.

fixed data-SNR of 40 dB. We tabulatePSNR of reconstructed
images obtained by minimizingWSURE(λ) andNGCV(λ)
for ΨTV in Table II. WSURE(λ) was able to provide near-
MSE-optimal λ-selection as indicated by the PSNR-values
in Table II. NGCV also provides similarλ-selections. This
experiment illustrates thatWMSETD(λ) [via WSURE(λ)] is
a reasonable metric for optimizingλ for agreeable reduction
factors for single-coil non-Cartesian MRI reconstruction.

C. GE Phantom MRI Scan

We scanned a GE resolution phantom using a 3T GE scan-
ner with the following scan setting: gradient-echo sequence,
TR = 300 ms, TE ≈ 2 ms, FOV = 15 cm, flip angle =40◦,
slice thickness = 5 mm. We used a 2D variable density (VD)

spiral k-space trajectory7 with 120 leaves each containing 841
samples. The readout duration per leaf was 3.3 ms, which is
sufficiently short to make the assumption that any distortion
due to field-inhomogeneity is negligible. We designed the VD
spiral so that the central k-space was over-sampled by a factor
of two and achieved Nyquist sampling at the periphery. We
acquired 3 independent 2D data-sets using the same scan-
setting and averaged them to obtain a relatively less-noisy
data-set. We usedD = diag{d} in CP reconstructionA′Dy,
where the l-th element [d]l = |k1l + ιk2l| with k1l and
k2l indexing the k-space sample locations in 2D. Then, we

7An illustration of the VD spiral trajectory used in this experiment is
presented in the supplementary material.
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(a) (b) (c) (d) (e)

Fig. 7. Experiment with real in-vivo human head data (Section VI-D); Slice 14. (a) Very mildlyΨℓ1 -regularized256× 256 reference reconstruction from
“fully-sampled” data averaged over 3 acquisitions; (b) CP reconstruction (from2× undersampled data from a single acquisition) is strewn withspiral artifacts;
Images reconstructed from2× undersampled data (from a single acquisition) usingΨℓ1 -regularizer withλ selected to minimize (c)NGCV(λ) (λ = 3); (d)
WSURE(λ) with W = IM (λ = 0.6); (e)WSURE(λ) with WD in (24) (λ = 0.3). In this experiment,NGCV(λ) resulted in a noticeably over-smoothed
image due to a correspondingly higher value ofλ, while WSURE(λ) still yielded results comparable to the reference (a). Somefine details in (a) are lost
in (d), (e) that also contain minor residual spiral artifacts; these can be attributed to undersampling of k-space data.

Fig. 8. Experiment with real in-vivo human head data (Section VI-D);
Slice 14. Images were reconstructed usingΨFP (26) with λ and δ cho-
sen to minimizeWSURE(λ, δ). Left image corresponds toW = IM ,
λ = 0.36×10−7, δ = 0.31×10−7. Right image corresponds toW = WD,
λ = 10 × 10−7, δ = 6.7 × 10−7. Although the parameter selections are
different, the resulting image quality is similar in both cases and is comparable
to Figs. 7d, 7e.

reconstructed a256 × 256 reference image,xref in Fig. 6a,
by running the SB algorithm on this data-set using (23) with
ΨTV andλ ≈ 0 (such thatλ ≪ ‖y‖2) in (23).

Next, we simulated undersampling of one of the 3 data-
sets by retaining only 60 equally spaced interleaves (reduction
factor = 2) and reconstructed256× 256 images withΨTV in
(23) by minimizingNGCV(λ) andWSURE(λ). The corre-
sponding reconstructed images, Fig. 6c-6e, are devoid of spiral
artifacts present in CP reconstruction, Fig. 6b, and closely
resemblexref , Fig. 6a, in this experiment. These results also
illustrate the reliability of the proposed Monte-Carlo scheme
(21) employed inWSURE(λ) (12) andNGCV(λ) (25) for
optimizingλ for ΨTV.

D. In-vivo Human Brain Imaging

We acquired 3 independent 3D VD stack-of-spiral data-sets
(with the same 2D VD spiral trajectory described in Section
VI-C) of a live human brain using a 3T GE scanner with the
following scan setting: spoiled gradient-echo sequence,TR ≈
18.5 ms, TE ≈ 2 ms, FOV = 25 cm, flip angle =15◦, slice
thickness = 5 mm, number of slices = 24. We averaged these
3 data-sets and reconstructed a single256× 256 2D reference

image (corresponding to Slice 14),xref in Fig. 7a, by running
the SB algorithm withΨℓ1 andλ ≈ 0 (such thatλ ≪ ‖y‖2)
in (23).

We again undersampled one of the 3 data-sets (corre-
sponding to Slice 14) with a reduction factor of 2 and
reconstructed256 × 256 2D images withΨℓ1 in (23) by
minimizing NGCV(λ) andWSURE(λ). In this experiment,
NGCV yielded an over-smoothed result, Fig. 7c, that lacks
fine details inxref , Fig. 7a. However,WSURE(λ) led to
images that exhibit reasonably better quality than CP re-
construction, Fig. 7b and theNGCV-result, Fig. 7c, and
closely resemblexxref . These results indicate the robustness
of the proposed Monte-CarloWSURE(λ) for λ-selection and
also its applicability forΨℓ1 in (23). We obtained similar
promising results (included in the supplementary material) for
reconstructing other slices of this 3D volume.

VII. D ISCUSSION

As with other parameter tuning methods such as the dis-
crepancy principle, L-curve, and generalized cross-validation,
the proposed Monte-CarloWSURE-method requires multiple
evaluations of the reconstruction algorithmuλλλ for optimizing
λλλ. For the purpose of illustration, we optimizedλλλ = λ by
searching over a range of scalarλ-values in our experiments.
In practice, derivative-free optimization schemes can be used,
e.g., golden-section search for optimizing the scalarλ or the
Powell method [55] for optimizing the vectorλλλ.
WSURE(λ) with W = IM andWD (24) led to similar

λ-selections in all our experiments both in the paper and
in supplementary material. This is probably because there
is only one degree of freedom, in terms of the scalarλ, in
minimizing WSURE(λ). However, minimizingWSURE(λλλ)
with respect to the vectorλλλ may lead to different parameter
selections depending upon whetherW = IM or WD (24) in
WMSETD(λλλ) (7) andWSURE(λλλ) (12). As an illustration,
we repeated the experiment in Section VI-D, but usedΨFP

(26) and optimizedλ and δ of ΨFP jointly by exhaustive
search. OptimizingWSURE(λ, δ) with W = IM led to
(λ, δ) = (0.36, 0.31) × 10−7, while WSURE(λ, δ) with
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W = WD yielded (λ, δ) = (10, 6.7)× 10−7. While (λ, δ)-
values are different in each case, the images reconstructed
with these selections, Fig. 8, appear visually similar. This is
probably because the ratioλ/δ that appears inλΨFP (23),
(26) is approximately the same for these selections.

Methods proposed in this paper can also tackleWSURE(λλλ)
with arbitrary measurement-domain symmetric positive semi-
definite weighting matricesW � 0, e.g., a nondiagonal
matrix such as that encountered in Projected-MSE(λλλ) [27,
Sec. III-B] or a diagonal matrix with zeros and ones that
corresponds to specifying a subset of k-space locations that
contribute toWMSETD(λλλ) andWSURE(λλλ). One could also
use a diagonalW with significantly larger weights for outer
k-space samples so as to boost the error in high spatial
frequencies when computingWMSETD(λλλ) andWSURE(λλλ).
The proposed methods thus allow the user some freedom in
choosing the type of k-space weightingW for the quadratic
error WMSETD(λλλ). Finding suitable weighting matrices,
WD, that yield “better” parameter selections thanW = IM
is interesting future work.

Theorem 2 is a key result in this work that forms the basis
of our Monte-Carlo parameter selection method for single-
coil MRI. While it demands strong differentiability hypotheses
on uλλλ as presented in Section IV, numerical experiments
in this paper and the accompanying supplementary material
corroborate its applicability to complex-valued weakly dif-
ferentiableuλλλ as well. Broadening the theoretical scope of
Theorem 2 to suchuλλλ along with a bias-variance analysis
of the Monte-Carlo estimate (21) are interesting directions
for future research. The bias-variance analysis especially is
important from a practical perspective as it can help the user
choose a suitableΛ and ε in (21) for a given reconstruction
methoduλλλ.

Another interesting extension of this work is application to
parameter selection for parallel MRI. A straightforward way
of doing this would be to directly apply the proposed Monte-
CarloWSURE approach individually for data from each coil
of a multi-coil array and combine the resulting MR images
for all coils via a sum-of-squares-type method. Alternatively,
one could use a SENSE-based [3], [31], [56] approach: the
data model (1), proposed metric (7) and Monte-CarloWSURE
(12), (21) are directly applicable to this case withA = FS
[3], [9], where F represents the Fourier encoding matrix
and S denotes the matrix of sensitivity maps for all coils.
However caution must be exercised in this case: in practice,S
is usually unknown and needs to be estimated, e.g., from low-
resolution images. SinceWMSETD(λλλ) [and WSURE(λλλ)]
involves S (via A), its appropriateness as an image-quality
metric depends on the quality of the estimate,Ŝ, of S, and
needs to be validated for a given̂S. One faces a similar
issue with image-domain SURE-based methods for SENSE-
type parallel MRI reconstruction [26].

To circumvent the dependence onS, we recently proposed a
similar Monte-CarloWSURE-based parameter tuning scheme
[34]–[36] for some existing parallel MRI reconstruction meth-
ods such asℓ1-SPIRiT [7] and DESIGN [8] (based on
GRAPPA [57] and sparsity) that do not need explicit knowl-
edge of coil-sensitivity mapsS. Preliminary results [34]–[36]

for undersampledCartesian parallel MR data indicate that our
WSURE-based approach is able to provide near-MSE-optimal
selection of regularization parameters for these methods.We
are currently investigating extensions to undersamplednon-
Cartesian parallel MRI.

VIII. S UMMARY & CONCLUSION

Selection of proper regularization parametersλλλ is a crucial
task in regularized MRI reconstruction from undersampled k-
space data. We proposed a weighted squared-error measure
in k-space,WMSETD(λλλ) (7), to assess MRI reconstruction
quality and thereby adjustλλλ by minimizing it. The proposed
WMSETD(λλλ) is amenable for estimation using Stein’s prin-
ciple [20], [21] for Gaussian noise. The Stein-type estimate of
WMSETD(λλλ), denoted byWSURE(λλλ), requires (in addition
to the noise covariance matrix) computing the trace of a
linear transformation of the Jacobian matrix of the MRI
reconstruction algorithmuλλλ with respect to k-space datay.
Our major contribution in this work is a Monte-Carlo scheme
that enables the estimation of this trace without requiringthe
knowledge of the internal working ofuλλλ. This feature thus
enables its applicability for a wide-range of reconstruction
algorithms involving a variety of convex nonquadratic reg-
ularizers including total variation andℓ1-regularization. The
proposed Monte-Carlo method extends our previous result for
denoising of real-valued images in [32, Thm. 2] to the case
of inverse problems involving complex-valued images with
application to MRI reconstruction.

Although WMSETD(λλλ) differs from the image-domain
MSE(λλλ) that is not amenable for estimation in practical in-
verse problems [21], we demonstrated using experiments with
undersampled synthetic and real MR data thatWMSETD(λλλ),
via its estimateWSURE(λλλ), is able to provide near-MSE-
optimal selection of regularization parameters for single-coil
non-Cartesian MRI reconstruction. These results both extend
and corroborate our previous work [27] on similar parameter-
tuning methods for single-coil undersampled Cartesian MRI
reconstruction. Theoretical developments in this paper are
fairly general and can be readily extended to handle parameter-
tuning for (iterative) linear/nonlinear parallel MRI reconstruc-
tion from undersampled Cartesian/non-Cartesian k-space data.

APPENDIX A
PROOF OFLEMMA 1

From the hypotheses of Lemma 1, it is clear that the
probability density function ofξ is given by g(ξ) =
K exp(−ξ′Ω−1ξ), where K > 0 is some normalization
constant. It is easy to verify thatg(ξ) satisfies

g(ξ) ξ′ = −∇ξg(ξ)Ω, (29)

where ∇ξ
△
= 1

2 (∇ξR − ι∇ξI ) and ∇ξR , ∇ξI are 1 × M
gradient operators with respect to the real,ξR, and imaginary,
ξI , parts ofξ, respectively. We start from the left hand side
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of (10) and use (9), (29) anddξ
△
= dξR dξI to obtain

Eξ{ξ′WAuλλλ(y)} =

∫
g(ξ)ξ′WAuλλλ(y)dξ

= −
∫

∇ξg(ξ)Γuλλλ(y)dξ

= −1

2

∫
∇ξRg(ξ)Γuλλλ(y)dξ

+
ι

2

∫
∇ξIg(ξ)Γuλλλ(y)dξ.

(30)

In the sequel,m = 1, . . . ,M and n = 1, . . . , N ,
respectively. We focus on the term involving∇ξR in
(30) and use integration-by-parts along with the fact that
Eξ{|[Γuλλλ(y)]m|} < ∞, to get that [21, Thm. 1]
∫

∇ξRg(ξ)Γuλλλ(y)dξ = −
∑

m,n

∫
g(ξ)[Γ]mn

∂[uλλλ(y)]n
∂ξRm

dξ

= −
∑

m,n

∫
g(ξ)[Γ]mn

∂[uλλλ(y)]n
∂yRm

dξ,

(31)

where we have set∂/∂ξRm = ∂/∂yRm sinceytrue in (1) is
a deterministic constant. Similarly,
∫

∇ξIg(ξ)Γuλλλ(y)dξ = −
∑

m,n

∫
g(ξ)[Γ]mn

∂[uλλλ(y)]n
∂yIm

dξ.

(32)

Combining (30)-(32) and using (11), we get that

Eξ{ξ′WAuλλλ(y)}

= Eξ

{∑

m,n

[Γ]mn
1

2

(
∂[uλλλ(y)]n
∂yRm

− ι
∂[uλλλ(y)]n
∂yIm

)}

= Eξ

{∑

m,n

[Γ]mn[Juλλλ
(y)]nm

}

= Eξ {tr{ΓJuλλλ
(y)}} ,

which is the desired result.
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We provide here additional results for various experiments
in [1]. Fig. 1 illustrates some of the non-Cartesian trajectories
used in [1]. References to equations, tables, figures, bibli-
ography, etc., are within this material only unless specified
otherwise.

I. ROBUSTNESS OFMONTE-CARLO ESTIMATION

We are interested in determining the range ofε for which
the Monte-Carlo estimation procedure (with only one real-
ization of random vectorb) in [1, Sec. IV] is an adequate
approximation:

tr{ΓJuλλλ
(y)} ≈ ε−1b′Λ−1Γ̺(uλλλ,y,Λb, ε) (1)

where

̺(uλλλ,y,Λb, ε)
△
= uλλλ(y + εΛb)− uλλλ(y). (2)

The Monte-Carlo estimate (1) is used in

WSURE(λ)
△
= M−1‖y−Auλ(y)‖2W −M−1tr{ΩW}
+ 2M−1R{tr{ΓJuλ

(y)}} (3)

that is an unbiased estimate of

WMSETD(λ)
△
= M−1‖ytrue −Auλ(y)‖2W. (4)

We use the experimental setup described in [1, Sec. VI-A]
throughout this material withW = IM and W = WD in
[1, Eq. (24)] andΛ = IM in (1)-(2). The proposed Monte-
Carlo estimation scheme (1) and the hypotheses of [1, Thm.
2] are applicable to the smooth-convex regularizerΨFP [1,
Eq. (26)], but they do not directly apply to the total-variation
regularizerΨTV [1, Eq. (27)]. One of our aims in this note is
to provide numerical results that further corroborate those in
[1] extending the scope of (1)-(4) to nonsmooth regularizers
such asΨTV.

We repeated the radial MRI simulation in [1, Sec. VI-B.1]
for varying levels of noise in the data and plotted the standard
deviation of Monte-CarloWSURE normalized byWMSETD
in Figs. 2-5. The plots were generated by averaging Monte-
CarloWSURE(λ) (1)-(3) over 25 Monte-Carlo realizations of
b in (1)-(2). These plots indicate that the variance of Monte-
Carlo WSURE increases with decreasingε consistently in
all experiments and corroborate the expected behavior of (1)
described in [1, Sec. IV]. From these plots,ε = 10−7 appears
to be a reasonable lower bound forε for such experiments.

This work was supported by the National Institutes of Healthunder Grant
P01 CA87634 and by CPU donations from Intel.

Fig. 1. Top: 32 spokes (with 512 samples each) of the non-Cartesian radial
k-space trajectory used in [1, Sec. VI-B]. Bottom: 20 interleaves (with 841
samples each) of the non-Cartesian variable density spiralk-space trajectory
used in [1, Secs. VI-C, VI-D].

Next, we repeated the experiment in [1, Sec. VI-B.2] for
varying SNR of data using only one realization ofb as is
desirable in practice. Figs. 6-13 plotλ-values andPSNR(λ)
as functions ofε whereλ was chosen to minimizeWSURE(λ)
and the trueMSE(λ). These plots indicate that a suitable
choice ofε is ε ∈ [10−5, 10−2]; however, it should be kept
in mind this range may change depending upon the type of
imaging problem, the reconstruction algorithmuλ in [1] and
the scale ofy relative to that ofb.

We successfully usedε = 10−4 with the SB algorithm in
all experiments in this material and also in [1] for near-MSE-
optimal MRI reconstruction from single-coil undersampled



2 NON-CARTESIAN MRI RECONSTRUCTION WITH AUTOMATIC REGULARIZATION VIA MONTE-CARLO SURE: SUPPLEMENTARY MATERIAL

TABLE I
EXPERIMENT IN [1, SEC. VI-B]: PSNR OF IMAGES RECONSTRUCTED

USINGΨTV WITH λ OPTIMIZED BY VARIOUS METHODS FOR DATA WITH
VARYING SNR.

PSNR (dB)
SNR MSE(λ) NGCV(λ) WSURE(λ)
(dB) W = IM W = WD

20 28.21 28.21 28.21 28.21
30 31.20 31.14 31.14 31.20
40 32.85 32.85 32.85 32.85

data (both simulated and acquired using a GE 3T MRI scanner)
on different non-Cartesian (radial and variable-density spiral)
k-space trajectories. These experimental results also indicate
that the proposed Monte-Carlo estimation scheme (1) can be
successfully used with nonsmooth regularizers such asΨTV.

II. SIMULATION WITH VARYING NOISE LEVEL

Here, we repeated the experiment in [1, Sec. VI-C] with
varying levels of noise in the simulated data, but withΨTV.
We again assumed that the noise varianceσ2 was known in
each case for use inWSURE(λ) (3). We tabulatePSNR
[1, Sec. VI-B] of reconstructed images obtained by mini-
mizing WSURE(λ) and NGCV(λ) [1, Sec. VI-A] in Ta-
ble I. WSURE(λ) was able to provide near-MSE-optimalλ-
selections as indicated by the PSNR-values in Table I.NGCV
also provides similarλ-selections in this experiment.

III. I N-VIVO HUMAN BRAIN DATA

We repeated the experiment in [1, Sec. VI-D] for different
slices of the acquired 3D volume. Figs. 14-15 show images
reconstructed usingΨℓ1 [1, Sec. VI-A] as the regularizer with
λ selected by minimizingWSURE(λ) and NGCV(λ) [1,
Sec. VI-A]. In agreement with the results in [1, Sec. VI-
D], NGCV(λ) yielded over-smoothed images for this data-
set whileWSURE(λ) was able to provide images that appear
comparable to the corresponding references.
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Fig. 2. Radial MRI simulation with the analytical Shepp-Logan phantom [4]
in [1, Sec. VI-B.2]. Plots of standard deviation ofWSURE(λ) normalized
by WMSETD(λ) as a function ofε in (1) for (top)λ = λopt/10, (middle)
λ = λopt, and (bottom)λ = 10λopt, whereλopt is theMSE-optimal value
of the regularization parameter. The curves were obtained by averaging (1)
over 25 realizations ofb. As expected, the variance rapidly increases for
smallerε. The SNR of data was 20 dB.
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Fig. 3. Same experiment as in Fig. 2. The SNR of data was 30 dB.
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Fig. 4. Same experiment as in Fig. 2. The SNR of data was 40 dB.
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Fig. 5. Same experiment as in Fig. 2. The SNR of data was 50 dB.
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Fig. 6. Plots of (left)λ, and (right)PSNR(λ) as functions ofε for λ selected to minimizeWSURE(λ) with W = IM andWD in (3) andMSE(λ) for
the experiment described in [1, Sec. VI-B2] withSNR = 20 dB and ΨFP as the regularizer.
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Fig. 7. Same as in Fig. 6, but SNR = 30 dB.
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Fig. 8. Same as in Fig. 6, but SNR = 40 dB.
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Fig. 9. Same as in Fig. 6, but SNR = 50 dB.
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Fig. 10. Plots of (left)λ, and (right)PSNR(λ) as functions ofε for λ selected to minimizeWSURE(λ) with W = IM andWD in (3) andMSE(λ)
for the experiment described in [1, Sec. VI-B2] withSNR = 20 dB and ΨTV as the regularizer.
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Fig. 11. Same as in Fig. 10, but SNR = 30 dB.
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Fig. 12. Same as in Fig. 10, but SNR = 40 dB.
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Fig. 13. Same as in Fig. 10, but SNR = 50 dB.
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(a) (b) (c) (d) (e)

Fig. 14. Experiment with real in-vivo human head data [1, Sec. VI-D]; Slice 10. (a) Very mildlyΨℓ1 -regularized reference reconstruction from “fully-sampled”
data averaged over 3 acquisitions; (b) conjugate phase reconstruction from2× undersampled data (from a single acquisition) with densitycompensation; Images
reconstructed from2× undersampled data (from a single acquisition) usingΨℓ1 -regularizer withλ selected to minimize (c)NGCV(λ); (d) WSURE(λ)
with W = IM ; (e) WSURE(λ) with WD [1, Eq. (24)].

(a) (b) (c) (d) (e)

Fig. 15. Same experiment as in Fig. 14; Slice 12.




