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Accelerated Edge-Preserving Image Restoration
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Abstract—To reduce blur in noisy images, regularized image
restoration methods have been proposed that use non-quadratic
regularizers (like l1 regularization or total-variation) that sup-
press noise while preserving edges in the image. Most of these
methods assume a circulant blur (periodic convolution with a
blurring kernel) that can lead to wraparound artifacts along
the boundaries of the image due to the implied periodicity of
the circulant model. Using a non-circulant model could prevent
these artifacts at the cost of increased computational complexity.

In this work we propose to use a circulant blur model
combined with a masking operator that prevents wraparound
artifacts. The resulting model is non-circulant, so we propose
an efficient algorithm using variable splitting and augmented
Lagrangian (AL) strategies. Our variable splitting scheme, when
combined with the AL framework and alternating minimization,
leads to simple linear systems that can be solved non-iteratively
using FFTs, eliminating the need for more expensive CG-type
solvers. The proposed method can also efficiently tackle a variety
of convex regularizers including edge-preserving (e.g., total-
variation) and sparsity promoting (e.g., l1 norm) regularizers.
Simulation results show fast convergence of the proposed method,
along with improved image quality at the boundaries where the
circulant model is inaccurate.

Index Terms—Image restoration, Non-Circulant System, Edge-
preserving Regularization, Variable splitting, Augmented La-
grangian

I. INTRODUCTION

IMAGE restoration is a well studied problem and there
are many methods for deblurring and denoising. Usually

image restoration is treated as an optimization problem where
the restored image is obtained by minimizing a cost function
consisting of a data fidelity term and a regularization term.
The data fidelity term ensures good fit of the blur model to
the measurements, and the regularizer ensures stability of the
solution and incorporates smoothness to suppress noise. A
quadratic data fidelity term is often used, based on the additive
zero-mean Gaussian noise model. For the regularizer, using
a quadratic term can lead to over-smoothing. Recently there
is increasing interest in non-quadratic regularizers, especially
edge-preserving ones like total variation (TV) [1]–[3] and
sparsity promoting ones like l1 regularization [4], [5].

Most existing restoration methods make simplifying as-
sumptions concerning the system model and the most common
one is the use of a circulant blurring model [3]–[10] because
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it facilitates FFT-based optimization (e.g., non-iterative matrix
inversions [6], [10]). Despite its popularity, the purely circulant
model is inaccurate, since it implies an unrealistic periodic
extension at the image boundaries that can lead to severe
reconstruction artifacts [11].

In this work we focus on a more realistic non-circulant blur-
ring model that is shift-invariant within the region of interest
and propose an efficient algorithm for image restoration with
non-quadratic regularization. Our model is equivalent to that
proposed in [11], and similarly to [12] we focus on edge-
preserving regularizers instead of the quadratic regularizer
used in [11]. However, unlike [11], [12] which treat boundaries
explicitly via a low-dimensional auxiliary variable, our ap-
proach is based on an elegant formulation that requires no pre-
processing of the data or explicit treatment of the unknown,
extrapolated boundaries. In addition, the methods in [11], [12]
require CG-type solvers to optimize the associated auxiliary
variable that is avoided in our proposed algorithm based on
the AL framework with variable splitting.

Our formulation combines a circulant blur model with a
masking operator to prevent wraparound artifacts. Then we use
a specific variable splitting strategy that decouples the circulant
blur and the mask. When combined with the AL framework
and alternating minimization, our splitting leads to an iterative
algorithm with simple update steps that can be implemented
non-iteratively in closed-form. We present numerical results
that illustrate the improved quality of reconstructed images us-
ing a non-circulant model and also the improved convergence
speed of our proposed algorithm compared to other state-of-
the-art methods that can be used to tackle the non-circulant
reconstruction problem.

II. PROBLEM FORMULATION

Regularized image restoration can be approached in two
main ways. One is the analysis formulation [13], where the
objective is to obtain an estimate of the true image x̂, and the
other is the synthesis formulation [4], where the objective is
to estimate a set of transform coefficients ŵ and obtain the
reconstructed image through a transform as x̂ = Wŵ. In this
work, we focus on the analysis formulation. Our approach can
be extended to the synthesis one using techniques similar to
that proposed in [6].

For image restoration, we consider the following analysis
formulation, where the image estimate x̂ is obtained by
minimizing a cost function

x̂ = argmin
x

{
Ψ(x) , J(x) + λΦ(Rx)

}
, (1)
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J(·) is the data fidelity term, Φ(·) is a regularizer function,
R is a sparsifying transform (e.g., wavelet frames or finite
differences) and λ is the regularization parameter.

A. Data Fidelity

To design a restoration algorithm one must make some mod-
eling assumptions. Often deblurring algorithms are developed
assuming a circulant blur model represented by Ǎ and the data
fidelity term is modeled as [3]–[10]:

J(x̌) ,
∥∥y − Ǎx̌

∥∥2
2

(2)

where y is the observed (M ×1) vectorized blurred and noisy
image, x̌ is the vectorized (M ×1) image to be reconstructed,
and Ǎ is an (M ×M ) circulant blurring matrix. Even though
this model is very popular in the image restoration literature
[3]–[10], it is inaccurate since the assumption of circulant blur
rarely, if ever, applies in practice.

Reconstructing images under the assumption of a purely
circulant model can lead to severe artifacts due to discontinu-
ities at the boundaries caused by the periodic extension of the
image [11]. Simple approaches like zero-padding or replicated
boundary extension do not resolve this issue since they do not
eliminate the discontinuity at the boundaries. As suggested in
[11] data pre-processing techniques like replicated boundary
extension combined with edge-tapering can reduce, but not
completely eliminate the artifacts. This will be illustrated in
the experiments section (§IV). A typical data preprocessing
approach yields an augmented (N × 1, with N > M )1 data
vector

ỹ , edgetaper{replicate(y)} , (3)

where replicate corresponds to replicated boundary exten-
sion, e.g., for 1D y[k] = y[n] for k > n (implemented
using Matlab’s padarray function with the ‘replicate’
option), and edgetaper corresponds to edge-tapering, i.e.,
blurring the boundaries of the image using the known PSF
to eliminate discontinuities caused by periodic extension [11,
§I] (implemented using Matlab’s edgetaper function). A
corresponding data fidelity term is given by:

J(x) , ‖ỹ −Ax‖22 , (4)

where x is the (N × 1) image to be reconstructed, and A is
an (N ×N ) circulant blurring matrix.

Instead of the circulant model (which uses periodic bound-
ary conditions), an alternative is to use reflexive boundary
conditions along with DCT, as suggested in [14]. In this case
the blurring matrix has the Toeplitz-plus-Hankel form and can
be diagonalized using the DCT. A corresponding data fidelity
term is given by:

J(x̌) , ‖y −ARx̌‖22 , (5)

where x̌ is the (M × 1) image to be reconstructed, and AR is
an (M ×M ) Toeplitz-plus-Hankel blurring matrix. This DCT
method requires the PSF to be symmetric [11], [14], which

1For an observed image y of size M = Ny×Ny and a PSF of size Nh×
Nh the size of the processed data is N = (Ny +Nh−1)× (Ny +Nh−1).

may not hold for some applications e.g., motion blur. In cases
of non-symmetric PSFs this method can only be used to find
preconditioners that facilitate iterative solvers like CG [14].

To eliminate boundary artifacts, the methods in [11], [12]
use a data fidelity term

J(x) ,
∥∥∥y − Ãx

∥∥∥
2

2
, (6)

with an (M ×N ) non-circulant blurring matrix Ã. Then, the
non-circulant matrix Ã is augmented with additional rows
(using a low dimensional auxiliary matrix a) to create a
circulant (N × N ) system matrix A. Instead of tackling the
non-circulant Hessian Ã

′
Ã directly, it is rewritten as:

Ã
′
Ã = A′A− a′a, (7)

consisting of a block-circulant (with circulant blocks) Hessian
A′A and a low rank component a′a. Inverting the non-
circulant Hessian Ã

′
Ã (along with a suitable block-circulant

regularization matrix) is then carried out using the Sherman–
Morrison Matrix Inversion Lemma (MIL) [11, Eq. (5)–(7)].
The MIL separates the two terms in the RHS of (7) and
involves inverting the circulant part (i.e., A′A with the reg-
ularization term) and a low-dimensional matrix involving the
auxiliary matrix a. The circulant component is inverted using
FFTs and inversion of the low dimensional component can be
performed with an iterative algorithm (e.g., CG).

In this work, similarly to [11], [12], we consider a more
realistic non-circulant model, that is shift-invariant within
the region of interest, but avoids the assumption of periodic
end conditions. However, instead of using the manipulation
in (7), we introduce a masking operator that eliminates the
wraparound artifacts at the boundaries caused by periodic
convolution. With our proposed model the data fidelity term
becomes

J(x) , ‖y −TAx‖22 , (8)

where T is an (M × N ) masking matrix that truncates the
circular wraparound at the boundaries, A is an (N × N )
circulant matrix, and x is an (N×1) vector as in (4) and (6)2.
The matrix T is a truncated identity matrix resulting from the
removal of rows corresponding to boundary pixels, and thus,
T′T is an (N × N ) diagonal matrix with 0s and 1s. Even
though the model in (8) is shift-invariant within the image,
the masking operator makes the overall system model TA
shift-variant. To efficiently handle this shift-variant model, we
propose to use a variable splitting scheme that decouples T
and A and in turn allows the use of FFT-based computations
as described in §III-B.

B. Regularizer

The algorithms discussed in this paper can tackle a general
class of convex regularizers Φ(·) in (1), but we will focus on

2For the overall system model we have TA = Ã and it corresponds
to a non-circular convolution operator with extended end conditions. For a
blurring kernel h of size Nh ×Nh we have y = h ∗ ∗x and the size of x
is N = (Ny +Nh − 1) × (Ny +Nh − 1), which corresponds to the size
of the unknown image that contributes to the observed Ny ×Ny image.
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edge-preserving and sparsity promoting regularizers like Total
Variation (TV) and analysis l1 regularization, respectively, for
brevity.

1) l1 regularization or discrete anisotropic total-variation:

Φ(Rx) = ‖Rx‖1 , (9)

where R = W is a wavelet frame, typically excluding
the approximation level, or R = C , [C′1 C′2]′ is a
matrix of horizontal and vertical finite differences.

2) Discrete isotropic total-variation

Φ(Cx) =
N∑

n=1

√∣∣[C1x]n
∣∣2 +

∣∣[C2x]n
∣∣2. (10)

To reduce computational complexity and allow FFT-based
non-iterative solving of linear systems, the sparsifying matrix
R (wavelet frame or finite differences) is assumed to have
periodic end conditions such that R′R is circulant.

III. PROPOSED MODEL-BASED RESTORATION

In this work, our goal is to estimate the image x by
minimizing the following cost function that we call problem
P1:

x̂ = argmin
x

{
Ψ(x) , 1

2
‖y −TAx‖22 + λΦ(Rx)

}
. (11)

Minimizing (11) is a non-trivial optimization problem.
Existing methods include non-linear conjugate gradient
(NCG) [15], iterative shrinkage/thresholding (ISTA) [4], [16],
(M)FISTA [8], [17], and variable splitting/ADMM (Alternat-
ing Direction Method of Multipliers) algorithms [6], [10],
[18]–[20]. Some of these methods, e.g., (M)FISTA, SALSA
[6], Split-Bregman (SB) [20], and FTVd [18] are compu-
tationally efficient when used with the data model in (2)
since they exploit the circulant nature of A in (2). However,
a straightforward application of these methods to the non-
circulant model in (8) may increase their computation time
since the inner sub-probems of these algorithms may no longer
admit explicit closed-form updates. We discuss this in detail
in §III-A and also provide experimental evidence in §IV-B. To
handle the non-circulant model in (8) we propose a specific
variable splitting strategy [6], [21] presented in §III-B. We
then use the AL framework and alternating minimization to
obtain an iterative algorithm that exploits the structures of T
and A and thereby, converges faster.

A. Existing Restoration Algorithms

1) Non-linear Conjugate Gradient (NCG): Using NCG to
solve P1 requires computing the gradient of Ψ(x). This is
problematic for TV or l1 norm regularizers that use the non-
smooth absolute value function. To alleviate this problem
the common approach is to use a rounding parameter to
approximate the absolute value function as

|x| ≈
√
|x|2 + ε, (12)

where ε is the rounding parameter. NCG also needs a line
search method for which we can use the technique proposed
in [15, Sec. IV].

The disadvantages of NCG are slow convergence, and
perhaps, the fact that it does not converge to a solution of
P1, due to the approximation in (12).

2) (MF)ISTA: ISTA was first introduced for restoration
problems with synthesis-type priors [4], [16] and it was later
generalized to analysis-type priors [8], [17]. (M)FISTA is an
improvement on ISTA that converges faster to a solution of
P1. The general methodology of both ISTA and (M)FISTA is
to convert the original problem P1 into a denoising problem
that can be solved non-iteratively for l1-synthesis priors or
iteratively for analysis priors. The difference between ISTA
and (M)FISTA is the use of a specific two-step update in
(M)FISTA [8, Eq. (4.1)–(4.3)] that accelerates convergence
[8, Thm. 4.4]. For analysis regularizers, the denoising step
cannot be performed in a single-step, in which case one can
use a Chambolle-type algorithm as in [7, Eq. (5)–(7)].

Even though MFISTA converges faster than the simpler
ISTA, variable-splitting/ADMM algorithms [6], [10], [21]
have been developed that exhibit faster convergence.

3) Variable-Splitting/ADMM Algorithms [6], [18], [20]:
The main idea of these algorithms is to break down the original
problem P1 into smaller tasks by introducing appropriate
auxiliary constraint variables. The resulting minimization sub-
problems are decoupled and easier to solve compared to the
original minimization problem P1. There are several different
ways to choose the splitting variables that lead to a variety of
such variable-splitting based algorithms [6], [10], [21]. These
algorithms have been shown to converge faster than MFISTA
[6]. The algorithm we developed for the non-circulant image
restoration problem is based on the variable-splitting ADMM
framework presented in [10], [21], [22].

a) SALSA [6]: One approach for solving P1 is to split
the regularization term by introducing an auxiliary variable
u = x. The constrained problem is formulated as:

min
x,u

{
Ψ(x,u) , 1

2
‖y −TAx‖22 + λΦ(Ru)

}
s.t. u = x,

(13)

and the associated AL function is

L(x,u, µ,η) = Ψ(x,u) +
µ

2
‖u− x− η‖22 , (14)

where η is linearly related to the Lagrange multiplier for the
constraint in (13) and µ > 0 is an AL penalty parameter [6],
[10], [21], [22].

This formulation leads to SALSA [6], where (13) is solved
with the following alternating minimization scheme:

x(k+1) = argmin
x

{
1
2 ‖y −TAx‖22
+µ

2

∥∥u(k) − x− η(k)
∥∥2
2

}
(15)

u(k+1) = argmin
u

{
λΦ(Ru) +

µ

2

∥∥∥u− x(k+1) − η(k)
∥∥∥
2

2

}

(16)

η(k+1) = η(k) − u(k+1) + x(k+1). (17)

Since the cost function (15) is quadratic, the minimization
with respect to x can be expressed in closed form as:

x(k+1) = H−1µ,1
[
A′T′y + µ

(
u(k+1) − η

(k)
1

)]
, (18)
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where

Hµ,1 , A′T′TA + µI. (19)

For the purely circulant model in (2), T = I and one can invert
Hµ,1 using FFTs. However, for the more realistic model in (8),
the Hessian Hµ,1 has no exploitable structure and finding a
minimizer non-iteratively can be computationally intensive for
large N . Instead, one can apply a few PCG iterations using
the circulant preconditioner M1 ,

(
A′A + µI

)−1
along with

warm starting to find an approximate solution.
The minimization with respect to u in (16) can be imple-

mented non-iteratively for certain synthesis-type regularizers.
However, for analysis-type regularizers (e.g., involving finite
differences or wavelet frames), it has to be performed itera-
tively. Following the implementation of SALSA [6], we used
the Chambolle-type algorithm [7, Eq. (6)–(7)] for the update
of u. Despite the approximate update steps, SALSA can be
shown to converge to a solution of P1 [6], [23].

b) Split-Bregman Algorithm [20]: An alternative ap-
proach is to split the regularization term by introducing the
auxiliary variable v = Rx. In this case the constrained
problem is formulated as

min
x,v

{
Ψ(x,v) , 1

2
‖y −TAx‖22 + λΦ(v)

}
s.t. v = Rx,

(20)

and the associated AL function is

L(x,v, µ,η) = Ψ(x,v) +
µ

2
‖v −Rx− η‖22 , (21)

where η is related to the Lagrange multiplier for the constraint
in (20).

The splitting in (20) is similar to that in the SB [20]
and FTVd [18] algorithms, and the problem is again solved
using the AL framework and by performing the following
minimizations alternatively:

x(k+1) = argmin
x

{
1
2 ‖y −TAx‖22
+µ

2

∥∥v(k) −Rx− η(k)
∥∥2
2

}
(22)

v(k+1) = argmin
v

{
λΦ(v) +

µ

2

∥∥∥v −Rx(k+1) − η(k)
∥∥∥
2

2

}

(23)

η(k+1) = η(k) − v(k+1) + Rx(k+1). (24)

As in SALSA, the minimization with respect to x in (22)
has a closed-form solution since the associated cost function
is quadratic:

x(k+1) = H−1µ,2
[
A′T′y + µR′

(
v(k+1) − η(k)

)]
, (25)

where

Hµ,2 , A′T′TA + µR′R. (26)

Again in this case, for the model in (8), the Hessian matrix
Hµ,2 has no exploitable structure and solving (25) can be
computationally intensive for large N . As in SALSA, one can
apply a few PCG iterations with warm starting and a circulant
preconditioner M2 ,

(
A′A + µR′R

)−1
.

The minimization with respect to v in (23) can be per-
formed non-iteratively for several synthesis- and analysis-type
regularizers, including TV and l1 norm of wavelet coefficients,
using a soft thresholding/shrinkage rule:

v(k+1) = shrink

{
Rx(k) + η(k),

λ

µ

}
. (27)

For the bilateral TV and l1 regularization the shrinkage
operator is element-wise, whereas for isotropic TV a vector
shrinkage rule can be used, as in [18, §2.1].

A reviewer suggested a variation of the SB algorithm,
formulated by using the method in [11] for the updates of
x in (22). Although it is more complicated than applying CG
to (25), this formulation has the benefit of solving a much
smaller problem using CG iterations only for the boundaries
and updates the rest of the image with the use of FFTs.
The method is explained in detail in [11] and also in the
alternating minimization scheme of [12]. For this method one
could apply CG iterations for the boundaries only at the first
few outer iterations of the algorithm to reduce computation
time. Such a scheme would not lead to a solution of P1 in
(11), but can yield images with improved quality compared
to any pre-processing method. Depending on the noise level
and type of blur the restored image could even be practically
indistinguishable from the actual solution of P1. However,
there is no way to know in advance for how many steps should
the CG sub-iterations be applied to achieve restoration with
sufficiently reduced artifacts. For the purpose of convergence
speed comparisons we will refer to this variation as the
Split-Bregman-MIL (SB-MIL) algorithm. This name was
used since the method uses the Matrix Inversion Lemma
(MIL) to decouple the circulant part from the boundaries and
efficiently perform the update for x.

Compared to SALSA, the benefit of SB and SB-MIL is
the single-step update for v that avoids the inner iterations
of the Chambolle-type [7, Eq. (6)–(7)] algorithm required in
SALSA.

B. Proposed Algorithm: ADMM-P2
Even though both SALSA and SB-based algorithms (e.g.,

SB [20] and SB-MIL studied here) decouple the regularization
term, their main caveat is the need for (P)CG iterations to
obtain the update of x ((18) and (25)) or a low-dimension
vector corresponding to the boundaries in SB-MIL. These
inner iterations can increase convergence time. Our method
alleviates this problem by introducing a second auxiliary
variable u0 = Ax. This additional splitting is similar to those
used in [21, Sec. IV-B] for MRI, [22, Sec. III] for CT, and [10]
for image restoration, although in [10] the goal is to separate
the entire data-fidelity term from the data model, whereas in
our case the additional splitting u0 separates the blur and the
masking operator inside the data-fidelity term in (11). The
resulting constrained problem P2 is given by:

min
x,u0,u1

{
Ψ(u0,u1) , 1

2
‖y −Tu0‖22 + λΦ(u1)

}
(28)

s.t. u0 = Ax and u1 = Rx.
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where A is the N ×N circulant blurring matrix and R is an
R×N sparsifying transform matrix. We can now rewrite P2
in a more concise form as follows:

min
x,w

Ψ(w) s.t. w = Dx (29)

where

x ,
[

u0

u1

]
, D ,

[
A

R

]
. (30)

From this formulation it is evident that the constraint matrix
D is full column rank provided that the null spaces of
A′A and R′R intersect only trivially, which is usually true
in image restoration problems (low-pass nature of A and
high-pass nature of R). This requirement does not impose
serious restrictions on R for deblurring problems, i.e., it is
not necessary for R to be full column rank, which can be
the case with commonly used sparsifying transforms, e.g., fi-
nite differences, wavelets (excluding the approximation level).
The importance of D being full column rank relates to the
hypothesis of a theorem due to Eckstein and Bertsekas [23,
Thm. 8], summarized below, that guarantees convergence of
ADMM type algorithms.

To solve the problem P2 with the method of multipliers we
construct the Augmented Lagrangian (AL) function, which can
be expressed as:

L(x,w,γ) = Ψ(w) +
µ

2
‖w −Dx− η‖2Λ , (31)

where µ is the AL penalty parameter, the parameter η relates to
the Lagrange multiplier, and Λ is a symmetric positive definite
weighting matrix defined as

Λ ,
[

IN 0

0 νIR

]
, (32)

where ν > 0.
To solve P1 in (28) we apply an alternating minimization

scheme, which at the kth iteration, leads to the following
updates

x(k+1) = argmin
x

∥∥∥w(k) −Dx− η(k)
∥∥∥
2

Λ
(33)

w(k+1) = argmin
w

Ψ(w) +
µ

2

∥∥∥w −Dx(k+1) − η(k)
∥∥∥
2

Λ

(34)

η(k+1) = η(k) −w(k+1) + Dx(k+1). (35)

Although the theorem [23, Thm. 8] allows for inexact updates,
i.e., εkx ,

∥∥∥x(k) − x
(k)
∗
∥∥∥
2
> 0 and εkw ,

∥∥∥w(k) −w
(k)
∗
∥∥∥
2
>

0 where
(
x
(k)
∗ and w

(k)
∗
)

are solutions of (33) and (34)
respectively, our formulation leads to closed-form updates
for (33)–(34), that can be implemented non-iteratively, i.e.,
εkx = εkw = 0 (up to numerical round-off errors). We review
below the theorem of Eckstein and Bertsekas [23, Thm. 8]
that is useful for analyzing the convergence of (33)–(35).

Theorem 1: Consider (28) where Ψ(·) is closed, proper and
convex and D has full column rank. Let η(0) ∈ RN+R, µ >
0,
∑
k ε

k
x < ∞, and

∑
k ε

k
w < ∞. If (28) has a solution

(x∗,w∗) then the sequence of updates
{(

x(k),w(k)
)}
k

gener-
ated by (33)–(35) converges to(x∗,w∗). If (28) has no solution
then at least one of the sequences

{(
x(k),w(k)

)}
k

or
{
η(k)

}
k

diverges.
Even though the theorem of Eckstein and Bertsekas [23,

Thm. 8] uses an AL function with Λ = I, we can still apply
the theorem to (31) through a simple variable transformation
[22, Footnote 3].

Using the structure of Ψ(w) and D, we can reformulate the
AL function from (31) as

L(x,u, µ, ν,η) = Ψ(u0,u1) +
µ

2
‖u0 −Ax− η0‖22 (36)

+
µν

2
‖u1 −Rx− η1‖22 ,

where η0 and η1 are related to the Lagrange multipliers for
the constraints in (28). Using this form of the AL function,
the alternating minimization scheme at the kth step can be
expressed as:

u
(k+1)
0 = argmin

u0





1
2 ‖y −Tu0‖22
+µ

2

∥∥∥u0 −Ax(k) − η
(k)
0

∥∥∥
2

2



 (37)

u
(k+1)
1 = argmin

u1

{
λΦ(u1) +

µν

2

∥∥∥u1 −Rx(k) − η
(k)
1

∥∥∥
2

2

}

(38)

x(k+1) = argmin
x





µ
2

∥∥∥u(k+1)
0 −Ax− η

(k)
0

∥∥∥
2

2

+µν
2

∥∥∥u(k+1)
1 −Rx− η

(k)
1

∥∥∥
2

2





(39)

η
(k+1)
0 = η

(k)
0 − u

(k+1)
0 + Ax(k+1) (40)

η
(k+1)
1 = η

(k)
1 − u

(k+1)
1 + Rx(k+1). (41)

The minimization with respect to u0 in (37) is straightfor-
ward since the corresponding cost function is quadratic. The
closed-form solution is expressed as

u
(k+1)
0 =

(
T′T + µIN

)−1[
T′y + µ

(
Ax(k) + η

(k)
0

)]
, (42)

and can be easily computed in a single-step update since it
only requires inversion of the diagonal matrix

(
T′T + µIN

)
.

The minimization with respect to u1 in (38) can be
performed non-iteratively using a (vector) soft threshold-
ing/shrinkage rule similar to (27), using a threshold value λ

µν

instead of λ
µ used in (27).

Finally the minimization with respect to x in (39) is
also straightforward due to the corresponding quadratic cost
function. The closed form of the update is

x(k+1) = H−1ν
[
A′
(
u
(k+1)
0 − η

(k)
0

)
+ νR′

(
u
(k+1)
1 − η

(k)
1

)]
,

(43)

where

Hν , A′A + νR′R. (44)

We perform multiplication by H−1ν in (43) efficiently using
FFTs since the blurring matrix A is circulant and the spar-
sifying operator R (frame or differencing matrix) consists
of circulant blocks (periodic end conditions) such that R′R



6

is circulant. Thus, the update of x can be computed non-
iteratively.

Combining the above expressions for the updates, we now
summarize the proposed AL algorithm for solving P2.

ADMM-P2: AL algorithm for P2.

1: Select x(0), ν > 0, and µ > 0
2: Precompute T′y
3: Set η(0)

0 = 0, η(0)
1 = 0 and k = 0

4: repeat
5: Obtain u

(k+1)
0 using (42)

6: Obtain u
(k+1)
1 using (27)

7: Obtain x(k+1) using (43)
8: η

(k+1)
0 = η

(k)
0 −

(
u
(k+1)
0 −Ax(k+1)

)

9: η
(k+1)
1 = η

(k)
1 −

(
u
(k+1)
1 −Rx(k+1)

)

10: k = k + 1
11: until stop criterion is met

Unlike SB-based algorithms (including SB-MIL) and
SALSA for solving (11), all the steps of ADMM-P2 are
single-step updates due to the extra splitting that decouples the
circulant blur operator A from the masking operator T. The
experiments in §IV-B show that the non-iterative updates of
ADMM-P2 help achieve convergence in less time than other
methods.

C. AL Parameter Selection

SALSA and ADMM-P2 belong to the general class of
ADMM algorithms. Thus, the ADMM convergence theorem
of Eckstein and Bertsekas [23, Thm. 8] applies in these cases
and the algorithms are guaranteed to converge to a solution
of the original problem P1, even when the inner minimization
steps are not performed exactly. The SB-based algorithms are
also convergent, although the convergence theory is different
from that of ADMM [19], [20].

SALSA, ADMM-P2, SB, and SB-MIL are guaranteed to
converge regardless of the choice of AL parameters µ and
ν [23]. However, the choice of AL parameters affects the
convergence speed of these algorithms. We found experimen-
tally that the best AL parameters for fast convergence depend
on the regularization parameter λ and the maximum intensity
(xmax) of the blurred image, similarly to the choice proposed
in [9]. The best parameters can also depend on the spread of
eigenvalues of A′A and R′R

For SALSA we found that a choice of µ = 27λ/xmax works
well for several different choices of regularization parameter
λ.

For SB and SB-MIL, we found experimentally that the
choice of the AL parameter µ also depends on µmin ,
argminµ κ

(
A′A + µR′R

)
, where κ(·) is the condition num-

ber. As a rule of thumb we choose the AL parameter as
µ = 28λµmin/xmax.

For ADMM-P2, we found experimentally that the
best product µν depends on λ, xmax and νmin ,
argminν κ

(
A′A + νR′R

)
. Thus, for fast convergence we

choose the AL parameters to achieve µν = 28λνmin/xmax.

Also, we found that we can fix the parameter µ to a value µ0 =
2−4 and then choose the parameter ν as: ν = 28λνmin/µ0xmax.

The above rules for the parameter selection work well when
the blurring system matrix A is scaled such that the maximum
eigenvalue of A′A is equal to 1.

IV. EXPERIMENTS

The first part of the experiments compares the quality
of the reconstructed images obtained using the proposed
non-circulant (8) and the purely circulant (2) reconstruction
models. The second part compares the convergence speed of
the proposed ADMM-P2 algorithm to that of NCG, ISTA,
MFISTA, SALSA, SB, and SB-MIL for restoration using the
proposed non-circulant model.

A. Non-Circulant Versus Circulant Restoration

For all our experiments we used the 256× 256 cameraman
image as the true, noise-free image, and following the experi-
mental setting in [8] we scaled it to the range [0, 1] (Figure 1a).
For the blurring kernel we used a uniform 9×9 blur, a uniform
15×15 blur and a 15 pixel straight motion blur at a 30◦ angle.
For this image and blur sizes the valid part of the convolution
is the 248×248 (for 9×9 blur) or 242×242 (for 15×15 blur)
central region and the data simulated with Matlab’s conv2
function using the ‘valid’ option are of this size.

To assess the quality of our proposed non-circulant recon-
struction method we compared it to reconstructions from
• a purely circulant model (2) without data pre-processing,
• a purely circulant model (2) where we used data pre-

processing with boundary replication combined with edge
tapering,

• and reflexive end conditions and DCT (5).
When using the non-circulant model in (8) or the purely circu-
lant model with data pre-processing in (4), the reconstructed
images have original 256×256 size and then they are truncated
to match the data size. When reconstructing with the purely
circulant model without pre-processing in (2) or with the DCT
method in (5), the reconstructed image has the same size as
the data, so no truncation is necessary.

For our experiments, we used three types of regularizers,
namely isotropic and anisotropic Total Variation, and l1 norm
of the coefficients of the undecimated 2-level Haar wavelet
transform, excluding the approximation level.

We performed three sets of experiments with differ-
ent levels of Blurred Signal-to-Noise Ratio (BSNR ,
10 log10

(
var(Ax) /σ2

)
) [3] and we chose the regularization

parameter λ to achieve low Normalized Root Mean Square
(NRMS) error for a given BSNR level. The experimental setup
is as follows

1) 20 dB BSNR (σ2 = 5.03× 10−4) with λ = 2−10,
2) 30 dB BSNR (σ2 = 5.03× 10−5) with λ = 2−12,
3) 40 dB BSNR (σ2 = 5.03× 10−6) with λ = 2−15,
4) 50 dB BSNR (σ2 = 5.03× 10−7) with λ = 2−17,

where σ2 is the Gaussian noise variance. We quantified the re-
construction quality by computing the Improvement in Signal-
to-Noise Ratio (ISNR) between the restored image x̂ and the
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true image xtrue. The ISNR was measured in the 248 × 248
or 242× 242 (depending on the blur size) central region that
corresponds to the valid part of the convolution, since this was
the actual size of the input data vector y. Any extrapolated
values (when reconstructing with the non-circulant model) are
not used in the ISNR calculations and not shown in any of the
figures.

Figure 1 shows the restored images from experiment 4
(50dB BSNR) with uniform 15× 15 blur using isotropic TV
regularization. Fig. 1c shows that the restored image using the
purely circulant model in (2) exhibits severe ringing artifacts,
similar to those in the results of [11], that are not confined
to the boundaries of the image. When data pre-processing is
used, the ringing artifacts are significantly reduced, but not
completely removed (Fig. 1d). These artifacts can be more
severe and lead to more degradation when the strength of
the regularizer decreases as seen in the quantitative results
in Table I. When reflexive boundary conditions and the DCT
are used, the artifacts are again significantly reduced but
clearly visible in high BSNR cases. Finally, we see that the
reconstructed images from the proposed non-circulant model
in (8) are free of any ringing artifacts and the reconstructed
image closely resembles the true noise-free image (Fig. 1f).

Figure 2 shows the restored images from experiment 2
(30dB BSNR) with 15 pixel straight motion blur using
isotropic TV regularization. Fig. 2c shows that the restored
image using the purely circulant model in (2) exhibits severe
ringing artifacts, similar to those in Fig. 1c. When data pre-
processing is used (Fig. 2d) the ringing artifacts are reduced
and are less obvious compared to Fig. 1d because of the
high regularization parameter for low BSNR. When reflexive
boundary conditions and the DCT are used (Fig. 1e) the
method fails to produce accurate results since the PSF is non-
symmetric [11], [14]. Finally, we see that the reconstructed
images from the proposed non-circulant model in (8) are free
of any ringing artifacts and the reconstructed image closely
resembles the true noise-free image (Fig. 2f).

Figure 3 shows the restored images from experiment 1
(20dB BSNR) with with uniform 9×9 blur using isotropic TV
regularization. The restored image using the purely circulant
model (Fig. 3c) exhibits severe ringing artifacts as in the
previous cases. However, the reconstructed images using data
pre-processing (Fig. 3d) and using reflexive boundary condi-
tions and DCT (Fig. 3e) look very similar to the reconstructed
images from the non-circulant model (Fig. 3f). This happens
because the strong regularizer used to suppress noise over-
smooths the image and thus the reconstruction artifacts are
smoothed out as well making the images look almost identical.

Table I gives the quantitative results in terms ISNR for
all experiments. In all cases, the ISNR of reconstructions
based on the non-circulant model are higher than that of the
reconstructions based on the purely circulant model without
data pre-processing. In the case of reconstruction with the
circulant model and data preprocessing or with reflexive
boundary conditions and DCT, we can see that for lower
SNR, where stronger regularization is required, the smoothing
of the regularizer can suppress the ringing artifacts leading

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Experiment 4 using 15× 15 uniform blur: Restoration results using
isotropic TV regularization. (a) Cameraman true image (242 × 242), scaled
to the range [0, 1]. (b) Blurred and noisy image from Matlab’s ‘valid’ conv2
operation. (c) Restored image from purely circulant model (2). (d) Restored
image from purely circulant model with data pre-processing (4). (e) Restored
image using reflexive boundary conditions and DCT (5). (f) Restored image
from proposed non-circulant model (8).

to reconstruction ISNR comparable to that of the proposed
non-circulant model reconstruction. However, in higher SNR
regimes, where less smoothing is required, the artifacts from
the circulant model reconstruction become more prominent
and the non-circulant reconstruction shows significantly im-
proved reconstruction quality.

B. Convergence Speed Comparison

For the convergence speed experiments we used the setting
from Experiment 3 (i.e., 40 dB BSNR, σ2 = 5.03 × 10−6

with λ = 2−15) with 9 × 9 uniform blur. We compared the
convergence speed of the following algorithms that were all
implemented in Matlab.
• NCG-L with L line-search sub-iterations [15];
• ISTA [7];
• MFISTA-M with M sub-iterations of the Chambolle-

type algorithm [7, Eq. (6)–(7)];
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TABLE I
ISNR IN DB FOR ALL EXPERIMENTS. THE * DENOTES RECONSTRUCTION USING THE PURELY CIRCULANT MODEL WITH DATA PRE-PROCESSING (4). FOR

THE CASE OF MOTION BLUR THE RESULTS FOR REFLEXIVE END CONDITIONS ARE NOT PRESENTED SINCE THE METHOD IS NOT APPROPRIATE FOR NON
SYMMETRIC PSF.

Blur Type 9× 9 Unif. 15× 15 Unif. 15 Pix. Mot.

Reg. Type Non-Circ. Circ. Circ.* Refl. Non-Circ. Circ. Circ.* Refl. Non-Circ. Circ. Circ.* Refl.

Experiment 1: BSNR = 20 dB
Wavelet l1 3.7 -0.9 3.6 3.6 3.4 -2.7 3.3 3.4 4.1 -1.3 4.1 N/A

TVANISO 3.5 -1.2 3.4 3.4 3.7 -2.9 3.6 3.7 4.3 -1.5 4.3 N/A

TVISO 3.6 -1.4 3.6 3.4 4.0 -3.1 3.9 3.7 4.5 -1.7 4.4 N/A

Experiment 2: BSNR = 30 dB
Wavelet l1 5.7 -3.3 5.6 5.7 4.9 -5.3 4.7 4.8 7.1 -4.4 6.7 N/A

TVANISO 5.4 -3.5 5.4 5.4 5.1 -5.6 4.8 5.1 7.1 -4.6 6.7 N/A

TVISO 5.8 -3.7 5.7 5.4 5.4 -5.8 5.1 5.1 7.4 -4.8 6.8 N/A

Experiment 3: BSNR = 40 dB
Wavelet l1 8.6 -8.1 7.9 8.2 7.2 -12.8 6.4 7.1 11.6 -9.2 8.8 N/A

TVANISO 8.4 -8.4 7.5 7.9 7.2 -13.5 6.2 6.9 11.4 -10.2 8.1 N/A

TVISO 8.3 -8.6 7.3 7.9 7.4 -13.8 6.3 6.9 11.4 -10.6 7.7 N/A

Experiment 4: BSNR = 50 dB
Wavelet l1 11.8 -10.5 9.0 10.6 9.8 -15.0 6.4 9.3 15.7 -13.2 8.1 N/A

TVANISO 11.5 -10.4 8.3 10.1 9.7 -15.2 3.1 9.3 15.0 -13.5 6.6 N/A

TVISO 11.6 -10.6 8.2 10.1 9.9 -15.3 2.4 9.3 14.7 -13.8 5.8 N/A

• SALSA-N -M with N CG sub-iterations and M sub-
iterations of [7, Eq. (6)–(7)];

• SB-N with N CG sub-iterations;
• SB-MIL-N with N CG sub-iterations;
• ADMM-P2 (proposed).

For these experiments we focused on algorithms that solve P1
in (11). Thus, methods that use approximations in the data-
fit term, i.e., circulant reconstruction (with or without data
pre-processing (2) and (4)) and reflexive end conditions with
DCT (5), were not included, since they would obviously not
converge to a solution of (11). NCG is an exception since the
approximation affects the regularization and not the data-fit
term.

For NCG we chose the rounding parameter to be ε =
10−6, which yielded good convergence speed without com-
promising too much the resulting solution. We also used
L = 2, and 5 line-search iterations. For MFISTA, we used
M = 1, 4, 10, and 20 iterations of [7, Eq. (6)–(7)]. For
SALSA we used N = 1, 4, and 10 CG iterations and M =
1, 4, 10, and 15 iterations of [7, Eq. (6)–(7)]. Finally, for SB
and SB-MIL we used N = 1, 4, and 10 CG iterations. The
CG-solvers inside SALSA and SB were terminated when
‖x(k+1)‖22/α(k)‖d(k)‖22 < δ, where x(k+1) is the new update,
d(k) is the search direction vector, α(k) is the step size after
the kth iteration, and δ is a threshold chosen as δ = 10−6.
For all AL-based algorithms we chose the parameters µ and ν
using the rules described in §III-C, with λ = 2−15, xmax = 1,
and µ0 = 2−4.

All the experiments were conducted on a PC with a dual
quad-core 2.6GHz Intel Xeon processor. Table II shows the
per-iteration time of each algorithm measured in milliseconds.

Since the goal of the restoration problem is to find a solution
to the original problem P1, we quantified the speed of conver-

TABLE II
OUTER ITERATION TIME OF COMPETING ALGORITHMS MEASURED IN

MILLISECONDS. L IS THE NUMBER OF LINE-SEARCH ITERATIONS, M IS
THE NUMBER OF CHAMBOLLE-TYPE ITERATIONS AND N IS THE NUMBER

OF CG ITERATIONS.

TV Wavelet l1 norm

NCG 36 + 7L 95 + 15L

ISTA 34 159

MFISTA 17 + 19M 57 + 135M

SALSA 20+19M +23N 22+135M+24N

SB 39 + 31N 100 + 30N

SB-MIL 40 + 13N 102 + 14N

ADMM-P2 38 90

gence as the normalized l2 distance between the estimate at
iteration k (x(k)), and the limit x(∞) (that represents a solution
of P1) given by

ξ(k) = 10 log10

(∥∥x(k) − x(∞)
∥∥2
2∥∥x(∞)

∥∥2
2

)
.

The limit x(∞) was obtained by running 105 iterations of
MFISTA-20, since MFISTA converges to a solution of P1
and also it would not give an unfair advantage to the proposed
ADMM algorithm. Since the computational load per-iteration
of each algorithm varies, we evaluated ξ(k) as a function
of both iteration number and algorithm run-time. For all
algorithms we used x(0) = A′T′y as the initial guess.
Table III shows the time and iteration number required from
each algorithm to reach a -50dB error ξ(k). The threshold of
-50dB was chosen as a benchmark since below this point there
are practically no visual differences between the reconstructed
image x(k) and the converged image x(∞).

Figure 4 shows the convergence rate ξ(k) in terms of iter-
ation and run-time for experiments involving TV and wavelet
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(a) Convergence speed comparison for TV regularization measured in terms
of iteration number
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(b) Convergence speed comparison for TV regularization measured in terms
of run-time

0 500 1000 1500
100

90

80

70

60

50

40

30

20

10

0

Iteration

20
 lo

g 10
(||

x 
 x

||/
||x

||)

Analysis form convergence speed comparison for Wavelet regularization

 

 
NCG 5
ISTA
MFISTA 1
MFISTA 4
MFISTA 10
SALSA 4 1
SALSA 4 4
SALSA 4 10
BREG 4
SB MIL 4
ADMM P2

(c) Convergence speed comparison for wavelet l1 norm regularization
measured in terms of iteration number
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(d) Convergence speed comparison for wavelet l1 norm regularization
measured in terms of run-time

Fig. 4. Experiment 3: Algorithm convergence speed results with convergence measured in terms of drop in NRMSE in dB, ξ(k), between the estimated image
x̂ and the converged image x(∞). Left column (a,c) is convergence per iteration, and right column (b,d) is convergence in run-time. First row (a,b) is from
TV regularizer, and second row (c,d) is from wavelet l1 norm regularizer.

TABLE III
TIME AND ITERATION NUMBER REQUIRED FOR EVERY ALGORITHM TO
REACH -50DB ERROR COMPARED TO THE CONVERGED IMAGE x(∞) .

TV Wavelet l1
Time Iter. # Time Iter. #

NCG-5 56.1 298 155.6 1897

ISTA 559.1 15000 885.0 8000

MFISTA-1 18.1 355 46.8 323

MFISTA-4 44.1 407 161.8 367

SALSA-4-1 11.7 88 15.4 71

SALSA-4-4 13.6 71 29.6 60

SALSA-4-10 24.3 74 66.2 61

SB-4 12.5 82 21.9 103

SB-MIL-4 4.9 80 10.7 100

ADMM-P2 2.8 107 5.8 109

l1 norm regularizers. The AL based algorithms (SALSA, SB,
SB-MIL and ADMM-P2) converge significantly faster than
the rest for all cases.

In terms of convergence rate per iteration, SALSA has a
slight advantage over SB, SB-MIL and ADMM-P2 when
we use enough inner Chambolle-type iterations. However,
since the inner iterations can be computationally expensive,
especially for the analysis l1 regularization with a wavelet
frame, its run-time is significantly higher. In terms of run-time,
ADMM-P2 is the fastest algorithm with a speed-up of about 2
times compared to the Split-Bregman-MIL algorithm, which
is the closest competitor.

V. DISCUSSION

As seen in Figure 1, image restoration with a circulant
model can lead to severe image distortion, when applied to
data with realistic boundaries. The ringing artifacts due to
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Experiment 3 using 15 pixel motion blur: Restoration results using
isotropic TV regularization. (a) Cameraman true image (242 × 242), scaled
to the range [0, 1]. (b) Blurred and noisy image from Matlab’s ‘valid’ conv2
operation. (c) Restored image from purely circulant model (2). (d) Restored
image from purely circulant model with data pre-processing (4). (e) Restored
image using reflexive boundary conditions and DCT (5). For this case, the
results are inaccurate since this method is not applicable for non-symmetric
PSF [11], [14]. Also the image had to be scaled to fit the dynamic range
of the rest of the reconstructed images. (f) Restored image from proposed
non-circulant model (8).

the discontinuity at the boundaries are not localized and even
existing methods for data-preprocessing [11] either cannot
fully suppress these artifacts and/or may be applicably only
in specific cases like symmetric PSFs.

Our proposed method showed significant improvement of
the restored images compared to the standard method (that
uses an unrealistic, purely circulant blur model), when applied
to data with more realistic boundaries. Our results reinforce
the importance of using reconstruction models that do not
make any specific assumptions about boundary extension in
the data, and also show that the effects of model mismatch at
the boundaries (although often ignored) can be severe in terms
of image quality degradation. In the case of reflexive boundary
conditions the artifacts can be significantly reduced, but the
applicability of this method is only limited to symmetric

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Experiment 1 using 9 × 9 uniform blur: Restoration results using
isotropic TV regularization. (a) Cameraman true image (248 × 248), scaled
to the range [0, 1]. (b) Blurred and noisy image from Matlab’s ‘valid’ conv2
operation. (c) Restored image from purely circulant model (2). (d) Restored
image from purely circulant model with data pre-processing (4). (e) Restored
image using reflexive boundary conditions and DCT (5). (f) Restored image
from proposed non-circulant model (8).

PSFs [11], [14], whereas our more general model based
approach can handle efficiently any type of PSF. In addition,
the formulation of our model, even though similar to the one
used in [11], [12], leads to a more elegant approach of the
non-circulant reconstruction problem that does not require any
data pre-processing and estimation of the extrapolated image
boundaries.

Our proposed ADMM-P2 algorithm, using an additional
splitting variable, can efficiently handle the additional com-
plexity introduced by the masking operator without the need
for costly CG iterations for the inner sub-problems. The fact
that our algorithm uses only non-iterative updates enhances
its efficiency even when compared to more sophisticated
approaches like SB-MIL. In addition the formulation is more
straightforward compared to SB-MIL and allows for easier
implementation. The caveat of tuning one additional AL
parameter can be easily alleviated by using an empirical
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method like the one presented in §III-C. Our ADMM-P2
algorithm, being specifically designed for non-circulant de-
blurring problems, exhibits improved performance compared
to existing state-of-the-art methods [6], [17], [20]. Finally,
our ADMM-P2 algorithm can be easily extended to three-
dimensional problems, where it could be potentially useful
in 3D microscopy deconvolution [24], and also accommodate
different likelihood models (e.g., Poisson noise) [9].

After finalizing our work, we became aware of a related
recent arXiv submission [25].
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Supplementary Material for
Accelerated Edge-Preserving Image Restoration

Without Boundary Artifacts∗

A. Matakos, S. Ramani, and J. A. Fessler

1 SB-MIL Considerations
Here we present some results from investigating different variations of the SB-MIL algorithm
(§III.A.3.b in manuscript). We perform inner CG iterations for the boundaries only in the initial
1–3 outer iterations and compare the results to the converged image1 x(∞) in terms of image quality
and then we compare the convergence speed against the SB-MIL algorithm where the boundaries
are always updated with CG iterations and our proposed ADMM-P2 algorithm. We performed
experiments for 2 levels of BSNR (40 and 50 dB) and 3 types of PSF (9 × 9 uniform, 15 × 15
uniform, and 15 pixel motion blur).

1.1 BSNR 40dB, Uniform 9× 9 blur
In Fig. 1 we see the resulting restored images and how they compare to x(∞). In this case, when
we apply inner CG iterations for the first 2 or 3 outer iterations the resulting images are practically
identical to x(∞) and there are no visible artifacts.

In Fig. 2 we see the convergence speed compared to x(∞). As we would expect applying
inner CG iteration only for the first few steps of SB-MIL would lead to convergence to a different
image. In Fig. 3 we see the convergence speed compared to the true image xtrue. In this case all
variations come really close and after applying inner CG iterations for only 2 outer iterations we
practically achieve the same NRMS error as ADMM-P2 and SB-MIL without stopping the inner
CG iterations.
∗A. Matakos, S. Ramani, and J. A. Fessler, “Accelerated edge-preserving image restoration without boundary

artifacts,” IEEE Trans. Im. Proc., 2012, Submitted as TIP-09110-2012.
1The converged image denoted as x(∞) is a solution of P1 (eq (11) in manuscript) obtained with SB-MIL when

inner CG iterations are applied for every outer iteration. The same results could have been achieved using ADMM-P2
as well.
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(a) Converged image x(∞).
NRMSE = -23.5dB, ISNR
= 8.4dB

(b) SB-MIL with CG
on first outer iteration.
NRMSE = -23.2dB, ISNR
= 8.1dB. Some artifacts
are visible on the top left.

(c) SB-MIL with CG on
first 2 outer iterations.
NRMSE = -23.4dB, ISNR
= 8.3dB

(d) SB-MIL with CG on
first 3 outer iterations.
NRMSE = -23.5dB, ISNR
= 8.4dB

Figure 1: Restored images from 40dB BSNR with uniform 9 × 9 blur. SB-MIL is applied with 4
inner CG iterations.
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Figure 2: Experiment 1: BSNR = 40dB, Uniform 9 × 9 blur. Convergence speed of ADMM-P2
and variations of SB-MIL with 4 inner CG iterations compared to the solution of P1 x(∞) (eq
(11) in manuscript). The number in SB-MIL-X denotes the number of outer iterations that CG is
applied. SB-MIL denotes the version of the algorithm where CG is applied in all outer iterations.
The previous convention is followed in all subsequent figures.

1.2 BSNR 50dB, Uniform 15× 15 blur
In Fig. 4 we see the resulting restored images and how they compare to x(∞) when we apply 4 (sub-
figures b, c, and d) and 10 (sub-figures e, f, and g) inner CG iterations in SB-MIL. For 4 inner CG
iterations (sub-figures b, c, and d), there are visible artifacts when we apply CG sub-iterations for
the first 1 or 2 outer iterations, but for 3 outer iterations the resulting image is practically identical
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Figure 3: Experiment 1: BSNR = 40dB, Uniform 9 × 9 blur. Convergence speed of ADMM-P2
and variations of SB-MIL with 4 inner CG iterations compared to the true image xtrue.

to the converged image and there are no visible artifacts. For 10 inner CG iterations (sub-figures e,
f, and g), there are slightly visible artifacts when we apply inner CG iterations for the first iteration,
but for 2 or 3 outer iterations the resulting images are practically identical to the converged image
and there are no visible artifacts.

In Fig. 5 we see the convergence speed compared to the true image xtrue for the case of 4 and 10
inner CG iterations. For 4 inner CG iterations (sub-figures a, and b), apart from SB-MIL-1, all other
variations come really close and after applying inner CG iterations for only 2 outer iterations we
practically achieve the same NRMS error as ADMM-P2 and SB-MIL without stopping the inner
CG iterations. For 10 inner CG iterations (sub-figures c, and d), all variations come really close
and we practically achieve the same NRMS error as ADMM-P2 and SB-MIL without stopping the
inner CG iterations.

1.3 BSNR 50dB, 15 pixel motion blur
In Fig. 6 we see the resulting restored images and how they compare to x(∞) when we apply 4
(sub-figures b, c, and d) and 10 (sub-figures e, f, and g) inner CG iterations in SB-MIL. In all
SB-MIL variations there are visible artifacts compared to the converged image. However, in the
case of 10 inner CG iterations the artifacts are significantly reduced.

In Fig. 7 we see the convergence speed compared to the true image xtrue for the case of 4 and 10
inner CG iterations. In both cases case all variations do not approach x(∞) achieved by ADMM-P2
and SB-MIL with CG in all outer iterations. This also explains the visual artifacts seen in Fig. 6.
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(a) Converged image x(∞).
NRMSE = -23.1dB, ISNR
= 9.7dB

(b) SB-MIL with CG
on first outer iteration.
NRMSE = -22.6dB, ISNR
= 9.2dB. Artifacts visible
on top left and bottom
right.

(c) SB-MIL with CG
on first 2 outer iteration.
NRMSE = -22.9dB, ISNR
= 9.5dB. Slightly visible
artifacts on top left.

(d) SB-MIL with CG
on first 3 outer iteration.
NRMSE = -23.0dB, ISNR
= 9.6dB

(e) SB-MIL with CG
on first outer iteration.
NRMSE = -22.8dB, ISNR
= 9.4dB. Slightly visible
artifacts on top left.

(f) SB-MIL with CG on
first 2 outer iteration.
NRMSE = -22.9dB, ISNR
= 9.5dB

(g) SB-MIL with CG
on first 3 outer iteration.
NRMSE = -23.0dB, ISNR
= 9.6dB

Figure 4: Restored images from 50dB BSNR with uniform 15× 15 blur. SB-MIL is applied with
4 (b, c, d) and 10 (e, f, g) inner CG iterations.

1.4 Discussion
As we see from the results presented above, the performance of the SB-MIL variations depends
strongly on the noise level and the type of PSF. Thus, tuning the SB-MIL variants to reduce artifacts
in the restored image would need to be done on a case-by-case basis. In contrast, the ADMM-P2
algorithm converges as fast as, or faster than the SB-MIL variants and it is guaranteed to converge
to a solution of P1 that is setup to globally address the issue of boundaries and to include non-
smooth regularization for preserving edges.
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Figure 5: Experiment 2: BSNR = 50dB, Uniform 15× 15 blur. Convergence speed of ADMM-P2
and variations of SB-MIL with 4 (a, b) and 10 (c, d) inner CG iterations compared to the true image
xtrue.
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(a) Converged image x(∞).
NRMSE = -30.9dB, ISNR
= 15.7dB

(b) SB-MIL with CG
on first outer iteration.
NRMSE = -26.5dB, ISNR
= 11.3dB

(c) SB-MIL with CG
on first 2 outer iteration.
NRMSE = -27.8dB, ISNR
= 12.6dB

(d) SB-MIL with CG
on first 3 outer iteration.
NRMSE = -28.8dB, ISNR
= 13.6dB

(e) SB-MIL with CG
on first outer iteration.
NRMSE = -28.2dB, ISNR
= 13.0dB

(f) SB-MIL with CG on
first 2 outer iteration.
NRMSE = -29.2dB, ISNR
= 14.0dB

(g) SB-MIL with CG
on first 3 outer iteration.
NRMSE = -29.7dB, ISNR
= 14.5dB

Figure 6: Restored images from 50dB BSNR with 15 pixel motion blur. SB-MIL is applied with 4
(b, c, d) and 10 (e, f, g) inner CG iterations.
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Figure 7: Experiment 3: BSNR = 50dB, 15 pixel motion blur. Convergence speed of ADMM-P2
and variations of SB-MIL with 4 (a, b) and 10 (c, d) inner CG iterations compared to the true image
xtrue.
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