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Abstract— Regularized iterative reconstruction algorithms for
imaging inverse problems require selection of appropriate regu-
larization parameter values. We focus on the challenging problem
of tuning regularization parameters for nonlinear algorithms for
the case of additive (possibly complex) Gaussian noise. Gen-
eralized cross-validation (GCV) and (weighted) mean-squared
error (MSE) approaches [based on Stein’s unbiased risk estimate
(SURE)] need the Jacobian matrix of the nonlinear reconstruc-
tion operator (representative of the iterative algorithm) with
respect to the data. We derive the desired Jacobian matrix
for two types of nonlinear iterative algorithms: a fast variant
of the standard iterative reweighted least-squares method and
the contemporary split-Bregman algorithm, both of which can
accommodate a wide variety of analysis- and synthesis-type
regularizers. The proposed approach iteratively computes two
weighted SURE-type measures: predicted-SURE and projected-
SURE (which require knowledge of noise variance σ 2), and
GCV (which does not need σ 2) for these algorithms. We apply
the methods to image restoration and to magnetic resonance
image (MRI) reconstruction using total variation and an analysis-
type �1-regularization. We demonstrate through simulations and
experiments with real data that minimizing predicted-SURE and
projected-SURE consistently lead to near-MSE-optimal recon-
structions. We also observe that minimizing GCV yields recon-
struction results that are near-MSE-optimal for image restoration
and slightly suboptimal for MRI. Theoretical derivations in this
paper related to Jacobian matrix evaluations can be extended,
in principle, to other types of regularizers and reconstruction
algorithms.

Index Terms— Generalized cross-validation (GCV), image
restoration, magnetic resonance image (MRI) reconstruction,
regularization parameter, Stein’s unbiased risk estimate (SURE).

I. INTRODUCTION

INVERSE problems in imaging invariably need image
reconstruction algorithms to recover an underlying
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unknown object of interest x from the measured data y. Recon-
struction algorithms typically depend on a set of parameters
that need to be adjusted properly for obtaining good image
quality. Choosing suitable parameter values is a nontrivial
application-dependent task and has motivated research on
automated parameter selection based on quantitative measures
[1]–[31]. Quantitative parameter optimization methods can be
broadly classified as those based on the discrepancy principle
[1], the L-curve method [2]–[5], generalized cross-validation
(GCV) [6]–[17], and estimation of (weighted) mean-squared
error (MSE) [18]–[30]. Recently, a new measure of image
quality (different from GCV and MSE) was introduced in [31]
but its applicability has been demonstrated only for denoising
applications [31].

In inverse problems, typically, image reconstruction is per-
formed by minimizing a cost function composed of a data-
fidelity term and (one or more) regularization terms. Image
quality in such cases is governed by regularization parameters
that control the bias–variance tradeoff (or equivalently, the
balance between image smoothing and amplification of noise)
in the reconstruction. The use of discrepancy principle requires
minimizing the difference between the data-fidelity term and
the noise variance [1] and can lead to oversmoothing [22]. In
the L-curve method, parameters are chosen so as to maximize
the curvature of a (L-shaped) parametric curve (constructed
from the components of the cost function) [2]–[4]. This
method can be computationally expensive and sensitive to
curvature evaluation [5], [25]. GCV is a popular criterion
used for parameter selection in a variety of inverse problems,
especially for linear reconstruction algorithms [7]–[16]. The
advantage of GCV is that it does not require knowledge of
noise variance and is known to yield regularization parameters
for linear algorithms that asymptotically minimize the true
MSE [7]. Some extensions of GCV are also available for
nonlinear algorithms [15]–[17] but they are computationally
more involved (see Section III-A) than for linear algorithms.

MSE-estimation-based methods can be attractive alterna-
tives to GCV since image quality is often quantified in terms
of MSE in image reconstruction problems. For Gaussian
noise, Stein’s unbiased risk estimate (SURE) [18] provides
a practical means of unbiasedly assessing MSE for denoising
problems. Unlike GCV, SURE requires knowledge of noise
statistics but is optimal even in the nonasymptotic regime.
SURE has been successfully employed for optimally adjusting
parameters of a variety of denoising algorithms [32]–[36].
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For ill-posed inverse problems, it is not possible to estimate
MSE (except in some special instances [22]–[25]) since y may
only contain partial information about x [24, Sec. IV]. In such
cases, the principles underlying SURE may be extended to
estimate weighted variants of MSE (e.g., by evaluating the
error only on components of x that are accessible from y)
[19], [25], [26]. Several weighted SURE-type approaches have
been proposed and employed for (near) optimal parameter
tuning in ill-posed inverse problems, e.g., linear restoration
[19], nonlinear noniterative restoration [26], image recon-
struction using sparse priors [29], [30], noniterative parallel
magnetic resonance image (MRI) reconstruction [27], non-
linear restoration [25], [28], and nonlinear image upsampling
[25] using iterative shrinkage-thresholding type algorithms that
specifically apply to synthesis formulations [25], [28], [37],
[38] of image reconstruction problems. Synthesis formulations
preclude popular regularization criteria such as total variation
(TV) and smooth edge-preserving regularizers (e.g., Huber
[39], smoothed-Laplacian [40]) that belong to the class of
analysis formulations. Bayesian methods [41]–[45] have been
employed for parameter tuning in image restoration problems
involving analysis-type quadratic regularizers [41], [42], and
TV [43]–[45].

This paper focuses on computing the nonlinear version of
GCV (denoted by NGCV) [16], [17] and weighted SURE-
type measures [20], [24] for nonlinear iterative reconstruction
algorithms that can tackle a variety of nonquadratic regular-
ization criteria including synthesis- and analysis-type (e.g.,
TV) regularizers. Both NGCV and weighted SURE-measures
require the Jacobian matrix of the reconstruction operator (rep-
resentative of the iterative algorithm) evaluated with respect to
the data [16], [17], [24] (see Section III). We derive the desired
Jacobian matrix for two types of computationally efficient
algorithms: the contemporary split-Bregman (SB) algorithm
[46] and IRLS-MIL [47], [48] that uses the matrix inversion
lemma (MIL) to accelerate standard iterative reweighted least
squares (IRLS) [47], [48]. This paper can be interpreted as
an extension to previous research [25]–[30] that focused on
applying weighted SURE-type measures to inverse problems
with noniterative algorithms [26], [27] and to iterative image
reconstruction based on sparsity priors [29], [30] and synthesis
formulations [25], [28].

In this paper, we compute predicted-SURE (PDSURE) [20],
[21], projected-SURE (PJSURE) [24], and NGCV [16], [17]
for nonlinear image restoration and MRI reconstruction (from
partially sampled Cartesian k-space data) using TV and an
analysis-type �1-regularization. We also illustrate using sim-
ulations (for image restoration and MRI reconstruction) and
experiments with real data (for MRI reconstruction) that both
PDSURE and PJSURE provide near-MSE-optimal selection
of regularization parameters in these applications. We also
observe that NGCV yields near-MSE-optimal selections for
image restoration and slightly suboptimal parameter values for
MRI reconstruction.

The paper is organized as follows. Section II describes
the problem mathematically and presents our notation
and mathematical requisites essential for theoretical deriva-
tions. Section III briefly reviews (N)GCV and weighted

SURE-type measures. Section IV describes in detail the
derivation of Jacobian matrices for the considered algorithms.
We present experimental results for image restoration and MRI
reconstruction in Section V and discuss reconstruction quality
and memory/computational requirements of the considered
algorithms in Section VI. Finally, we draw conclusions in
Section VII.

II. NOTATION AND PROBLEM DESCRIPTION

We use the linear data model

y = Ax + ξ (1)

which is appropriate for many imaging inverse problems
including image restoration and MRI reconstruction from
partially sampled Cartesian k-space data. In (1), y ∈ �M

is the observed data, A ∈ �M×N is a known (rectangular)
matrix (typically M ≤ N), and � is either R or C depending
on the application. We assume x ∈ �N is an unknown
deterministic quantity. For image restoration, � = R, M = N ,
and we assume that A is circulant, while for MRI with partial
Cartesian k-space sampling1 � = C and A = MQ, where
Q ∈ CN×N is the orthonormal DFT matrix, M is the M × N
downsampling matrix that satisfies MM� = IM , and IM is the
identity matrix of size M .

Throughout this paper, (·)� denotes the transpose of a real
vector or matrix, (·)� denotes the complex conjugate, (·)H is
the Hermitian transpose, and (·)R and (·)I indicate the real and
imaginary parts, respectively, of a complex vector or matrix.
The mth element of any vector y is denoted by ym and the
mnth element of any matrix A is written as [A]mn .

For simplicity, we model ξ ∈ �M as an i.i.d. zero-
mean Gaussian random vector with covariance matrix ��� =
σ 2IM and probability density g�(ξ ). For � = R, gR(ξ) =
(2πσ 2)−(M/2) exp(−ξ�ξ/2σ 2), while for � = C we assume
ξ is an i.i.d. complex Gaussian random vector (which is
a reasonable model for MRI applications), so gC(ξ) =
(πσ 2)−M exp(−ξHξ/σ 2). SURE-type methods discussed in
this paper (see Section III-B) can be readily extended to more
general cases (such as ξ with nonzero mean and covariance
��� �= σ 2IM ) using the generalized SURE (GSURE) method-
ology developed in [24].

Given data y, we obtain an estimate of the unknown image
x by minimizing a cost function based on (1) composed of
a data-fidelity term and some regularization that is designed
using “smoothness” penalties or prior information about x

uθθθ (y)
�= arg min

u

{
J (u)

�= 1

2
‖y − Au‖2

2 + 	(u)

}
(2)

where ‖ · ‖2 represents the Euclidean norm, 	 represents
a suitable regularizer that is (possibly nonsmooth, i.e., not
differentiable everywhere) convex and uθθθ : �M → �N may be
interpreted as a (possibly nonlinear) mapping or an algorithm,
representative of the minimization in (2), that acts on y to
yield the estimate uθθθ (y). In practice, the mapping uθθθ depends

1Partial k-space sampling on Cartesian grids is relevant for accelerating 3-D
MR acquisition in practice, where undersampling is typically applied in the
phase-encode plane [49].
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on one or more parameters θθθ that need to be set appropriately
to obtain a meaningful estimate uθθθ (y). In problems such
as (2), typically, θθθ = λ is a scalar known as the regularization
parameter which plays a crucial role in balancing the data-
fidelity and regularization terms: small λ values can lead to
noisy estimates whereas a large λ results in oversmoothing and
loss of details. Quantitative criteria such as GCV [6], [16], [17]
and (weighted) SURE-type measures [24], [25] can be used
for tuning θθθ of a nonlinear uθθθ , but they require the evaluation
of the Jacobian matrix [16], [17], [24], J(uθθθ , y) ∈ �N×M for
� = R, C (see Sections III-A and III-B), consisting of partial
derivatives of the elements {uθθθ,n(y)}N

n=1 of uθθθ (y) with respect
to {ym}M

m=1.
Definition 1: Let uθθθ : RM → RN be differentiable (in the

weak sense of distributions [50, Ch. 6]). The Jacobian matrix
J(uθθθ , y) ∈ RN×M evaluated at y ∈ RM is specified using its
elements as

[J(uθθθ , y)]nm
�= ∂uθθθ,n(z)

∂zm

∣∣∣∣
z=y

. (3)

Definition 2: Let uθθθ : CM → �N (with � = R or C)
be individually analytic [51] with respect to yR and yI (in
the weak sense of distributions [50, Ch. 6]). The Jacobian
matrices J(uθθθ , y), J(uθθθ , y�) ∈ CN×M are specified using their
respective elements as [51, Eq. 13], [52]

[J(uθθθ , y)]nm
�= 1

2

(
∂uθθθ,n(z)
∂zRm

− ı
∂uθθθ,n(z)
∂zIm

)∣∣∣∣
z=y

(4)

[J(uθθθ , y�)]nm
�= 1

2

(
∂uθθθ,n(z)
∂zRm

+ ı
∂uθθθ,n(z)
∂zIm

)∣∣∣∣
z=y

. (5)

Remark 1: When uθθθ : CM → �N is prescribed in terms
of y and y�, J(uθθθ , y) is evaluated treating y as a variable and
y� as a constant [52], [53]. Similarly, J(uθθθ , y�) is evaluated
treating y as constant [52], [53].

For common (and some popular) instances of J in (2),
uθθθ satisfies the hypotheses in Definitions 1 and 2 and in
turn allows the computation of GCV and weighted SURE-
type measures for reliable tuning of θθθ as illustrated in our
experiments.

III. GCV AND WEIGHTED SURE-TYPE MEASURES

A. GCV

GCV is based on the “leave-one-out” principle [7], which
leads to a simple expression in the case of linear algorithms.
For a generic linear mapping uθθθ (y) = Fθθθy, the GCV measure
(denoted by LGCV) is given by [7]

LGCV(θθθ)
�= M−1‖(IM − A Fθθθ )y‖2

2

(1 − M−1tr{A Fθθθ }})2 . (6)

For nonlinear estimators uθθθ (y), we consider the following
GCV measure (denoted by NGCV):

NGCV(θθθ)
�= M−1‖y − A uθθθ (y)‖2

2

(1 − M−1R{tr{A J(uθθθ , y)}})2 (7)

which was adapted from [17, Sec. 3] and was originally
derived using the standard “leave-one-out” principle for non-
linear algorithms [16]. We take the real part R{·} in the
denominator of (7) specifically for the case of � = C to

avoid spurious complex entries while evaluating NGCV(θθθ)
numerically.

LGCV has been more widely used [7]–[11], [13], [14]
(for linear algorithms) than NGCV (for nonlinear algorithms),
perhaps because the latter is computationally more involved
than the former. Recently, Liao et al. proposed GCV-based
automatic nonlinear restoration methods using alternating
minimization in [54] and [55]. Although their methods are
nonlinear overall, they rely on linear subproblems arising out
of alternating minimization and employ LGCV for parameter
tuning. In contrast, we propose to tackle NGCV (7) directly
and demonstrate its use in nonlinear image restoration and
MRI reconstruction.

B. Weighted SURE-Type Measures

In the context of image reconstruction, the MSE (risk)
measure

MSE(θθθ)
�= N−1‖x − uθθθ (y)‖2

2 (8)

is often used to assess image quality and is an attractive option
for optimizing θθθ . However, MSE(θθθ) cannot be directly com-
puted since the cross-term xHuθθθ (y) depends on the unknown
x (‖x‖2

2 is an irrelevant constant independent of θθθ) and needs
to be estimated in practice. For denoising applications, i.e.,
A = IN in (1), the desired cross-term can be manipulated as
xHuθθθ (y) = (y − ξ )Huθθθ (y) and the statistics of ξ may then
be used to estimate ξHuθθθ (y). In the Gaussian setting, ξ ∼
N (0, σ 2IN ), Stein’s result [18] (for � = R) can be used for
this purpose and leads to Eξ {ξ�uθθθ (y)} = σ 2Eξ {tr{J(uθθθ , y)}},
where Eξ {·} represents expectation with respect to ξ . Replac-
ing ξ�uθθθ (y) in MSE(θθθ) with σ 2 tr{J(uθθθ , y)} thus yields the
so-called SURE [18], SURE(θθθ)

�= N−1‖y − uθθθ (y)‖2
2 −

σ 2 + 2σ 2 N−1tr{J(uθθθ , y)}, which is an unbiased estimator of
MSE(θθθ), i.e., Eξ {MSE(θθθ)} = Eξ {SURE(θθθ)}. The accuracy of
SURE(θθθ) generally increases with N (law of large numbers),
so it is appealing for image-processing applications (where
N is large, typically N ≥ 2562) [36]. Using SURE(θθθ) as a
practical alternative to MSE(θθθ) requires (in addition to σ 2) the
evaluation of tr{J(uθθθ , y)} that can be performed analytically
for some special types of denoising algorithms [32]–[35] or
numerically using the Monte Carlo method in [36, Th. 2] for
a general (iterative/noniterative) denoising algorithm uθθθ .

For inverse problems modeled by (1), xHuθθθ (y) can be
manipulated in terms of y (and ξ and thus allows the esti-
mation of MSE(θθθ) using statistics of ξ ) only in some special
instances, e.g., when uθθθ (y) ∈ R{AH}, the range space of AH

[24, Sec. IV],2 or when A has full column rank [25, Sec.
4].2 In many applications, A has a nontrivial null-space N{A}:
information about x contained in N{A} is not accessible from
y (and statistics of ξ ) and it is impossible to estimate MSE(θθθ)
[24] in such cases. An alternative is to compute the error
using only the components of x that lie in the orthogonal
complement of N(A): N(A)⊥ = R{AH} [24], [25], these
components are in turn accessible from y (and ξ ). Such an

2If uθθθ ∈ R{AH}, we can write uθθθ = AHgθθθ for some operator gθθθ , so that
xHuθθθ (y) = (y − ξ)Hgθθθ (y) [23, Sec. 3.1]. Alternatively, if A has full column
rank, then xHuθθθ (y) = (y − ξ)HA(AHA)−1uθθθ (y).
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error measure corresponds to projecting3 the error (x −uθθθ (y))
on to R{AH} and is given by [24] and [25]

Projected-MSE(θθθ)
�= M−1‖P(x − uθθθ (y))‖2

2 (9)

where P = AH(AAH)†A is the projection operator and (·)†

represents the pseudo-inverse.
Another quadratic error measure for inverse problems that

is amenable to estimation (using statistics of ξ )3 is PDMSE
[20], [21], which corresponds to computing the error in the
data domain

Predicted-MSE(θθθ)
�= M−1‖A(x − uθθθ (y))‖2

2. (10)

Both (9) and (10) can be interpreted as particular instances of
the following general weighted form:

WMSE(θθθ)
�= M−1‖A(x − uθθθ (y))‖2

W (11)

where ‖x‖2
W

�= xHWx, and W is a Hermitian-symmetric,
W = WH, positive definite, W � 0, weighting matrix. For
(10), W = IM and the overall weighting is provided by
the eigenvalues of AHA, while for (9) it is easy to see that
W = Winv

�= (AAH)† since PHP = P. For image restoration
with circulant A, Winv can be easily implemented using fast
Fourier transforms (FFTs). For MRI with partial Cartesian k-
space sampling, A = MQ (see Section II) leads to Winv =
(MQQHMH)† = IM , so Projected-MSE and Predicted-MSE
are equivalent and correspond to evaluating squared-error at
the sample locations in k-space.

Similar to SURE(θθθ), an estimator for WMSE(θθθ) can be
derived under the Gaussian assumption as summarized in the
following results.

Lemma 1: Let uθθθ : �M → �N be differentiable (for � =
R) or individually analytic (for � = C with respect to real
and imaginary parts of its argument), respectively, in the weak
sense of distributions [50, Ch. 6]. Then, for any deterministic
T ∈ �M×N satisfying Eξ {|[T uθθθ (y)]m|} < ∞, m = 1 . . . M ,
we have Eξ {ξHTuθθθ (y)} = σ 2Eξ {tr{T J(uθθθ , y)}}.

The proof is very similar to those in [34, Lemma 1]
[24, Th. 1] for � = R, while it constitutes a straightforward
extension of [24, Th. 1] for � = C and is presented as
supplementary material (due to page limits).4

Theorem 1: Let uθθθ and T = WA satisfy the hypotheses in
Lemma 1 for A ∈ �M×N in (1) and for a Hermitian-symmetric
positive definite matrix W ∈ �M×M . Then for � = R or C,
the random variable

WSURE(θθθ)
�= M−1‖y − Auθθθ (y)‖2

W − σ 2

M
tr{W}

+2σ 2

M
R{tr{W A J(uθθθ , y)}} (12)

is an unbiased estimator of WMSE(θθθ) in (11), i.e.,
Eξ {WMSE(θθθ)} = Eξ {WSURE(θθθ)}.

The proof is straightforward and uses Lemma 1 to estimate
ξHWAuθθθ (y) in WMSE(θθθ). Similar to SURE(θθθ), WSURE(θθθ)

3Since PHP = P, the cross-term xHPHPuθθθ (y) in Projected-MSE(θθθ)
(9) is nothing but xHAH(AAH)†Auθθθ (y) = (y − ξ)H(AAH)†Auθθθ (y). For
Predicted-MSE(θθθ) (10), we have that xHAHAuθθθ (y) = (y − ξ)HAuθθθ (y).

4Supplementary material containing a proof of Lemma 1 and additional
illustrations for experimental results is available at: http://tinyurl.com/supmat.

is independent of x and depends purely on the noise variance
σ 2, the data, and the reconstruction algorithm. The Monte
Carlo scheme [36, Th. 2] that uses numerical differentiation
for a general nonlinear uθθθ may be adapted to iteratively
estimate tr{WAJ(uθθθ , y)} in (12) for the case of � = R by
considering WAuθθθ instead of uθθθ in [36, Eq. 14]. In this paper,
we propose to evaluate J(uθθθ , y) analytically for � = R and
C. This process depends on the choice of the estimator uθθθ ,
the regularization 	 in (2), and the nature of application (e.g.,
� = R for restoration and � = C for MRI), and therefore
needs to be accomplished on a case-by-case basis.

IV. EVALUATION OF THE JACOBIAN MATRIX J(uθθθ , y)

For nonquadratic regularizers, there is no closed-form
expression for the estimator uθθθ in (2), so it is not possible
to evaluate J(uθθθ , y) in (12) directly. In this section, we show
how to compute J(uθθθ , y) recursively for two types of iterative
algorithms used for minimizing J in (2). Henceforth, we leave
implicit the dependence of uθθθ (y) on y and drop the subscript θθθ
when necessary, so that u represents either the estimator or the
iteratively-reconstructed estimate depending on the context.

We focus on IRLS-MIL [47], [48], which is a fast variant of
the standard IRLS, and the SB algorithm [46], which is based
on variable splitting. Both algorithms are computationally
efficient,5 and can be employed for image restoration and
MRI reconstruction [46]–[48], [56]. Furthermore, they can
accommodate a general class of regularization criteria of the
form

	(Ru) = λ

L∑
l=1

�l

⎛
⎝ P∑

p=1

∣∣[Rp u]l
∣∣q

⎞
⎠ (13)

where λ > 0 is the regularization parameter, �l are potential
functions, R ∈ RR×N with R

�= [R�
1 , . . . , R�

P ]�, Rp ∈ RL×N

are regularization operators (e.g., finite differences, frames,
etc.), and R = P L. We consider the following convex
instances of (13) that are popularly used for image restoration
and MRI reconstruction.

1) Analysis �1-regularization (�l(x) = x , q = 1)

	�1(Ru)
�= λ‖R u‖1 = λ

P∑
p=1

L∑
l=1

∣∣[Rp u]l
∣∣. (14)

2) Total variation (TV) (�l(x) = √
x , q = 2)

	TV(Ru)
�= λ

L∑
l=1

√√√√ P∑
p=1

∣∣[Rp u]l
∣∣2

. (15)

We derive J(uθθθ , y) for image restoration with the IRLS-MIL
algorithm (see Sections IV-A–IV-B) and MRI reconstruction
with the SB algorithm (see Sections IV-C–IV-D). Derivations
of J(uθθθ , y) for other combinations (i.e., image restoration with
the SB algorithm and MRI reconstruction with the IRLS-MIL

5IRLS-MIL has been demonstrated to converge faster than conventional
methods (e.g., nonlinear conjugate gradient) [47], [48], while SB is more
versatile and computationally efficient than fixed-point continuation and
graph-cuts-based solvers [46].
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algorithm) can be accomplished in a similar manner and are
not considered for brevity.

The derivations in Sections IV-A–IV-D can also be
extended, in principle, to other instances of (13) such as
smooth convex edge-preserving regularizers for q = 1, e.g.,
Huber [39] and fair or smoothed-Laplacian [48] and synthesis
forms, e.g., by considering a variable w to be estimated such
that x = Sw and ASw in (1) and �(w) in (13), for some poten-
tial function � and synthesis operator S [25], [28], [37], [38].

A. Image Restoration With IRLS-MIL Algorithm

IRLS-MIL uses matrix splitting [57, pp. 46–50] and the
matrix inversion lemma (MIL) for efficient preconditioning
and fast solving of iteration-dependent linear systems arising
in the standard IRLS scheme [47], [48]. We summarize the
IRLS-MIL iterations below (detailed derivation of IRLS-MIL
can be found in [47] and [48]) for image restoration ([� = R
in (1)]). For any invertible matrix C such that C � A�A

z�(C − A�A) z > 0, ∀ z ∈ RN (16)

at outer i -iteration of IRLS-MIL, we perform inner j -iterations
involving the following two steps:

u(i+1, j+1) = b(i+1, j ) − C−1 R� v(i+1, j ) (17)

solve{G(i)v(i+1, j ) = R b(i+1, j )} for v(i+1, j ) (18)

where

b(i+1, j ) �= C−1A�y + (IN − C−1A�A)u(i+1, j ) (19)

G(i) �= (i) + R C−1R� and (i) �= diag{γγγ (i)} is a
diagonal matrix constructed from γγγ (i) ∈ RR with γγγ (i) �=
[γγγ (i)�

1 , . . . ,γγγ
(i)�
P ]�. The l-th element of γγγ

(i)
p ∈ RL for (13) is

given by

γ
(i)
pl =

∣∣∣[Rp u(i+1,0)]l

∣∣∣2−q
[
qλ�′

l

(
P∑

s=1

∣∣∣[Rs u(i+1,0)]l

∣∣∣q
)]−1

(20)

where �′ denotes the first derivative of �. For instance

γ
(i)
pl = λ−1|[Rp u(i+1,0)]l | (21)

for the �1-regularization in (14), while for TV
regularization (15)

γγγ (i) = 1P ⊗ γ̆γγ (i) (22)

where 1P = [1 · · · 1]� is a P × 1 vector, ⊗ denotes the
Kronecker product, and the lth element of γ̆γγ (i) ∈ RL is given

by γ̆
(i)
l = λ−1

√∑P
s=1

∣∣[Rs u(i+1,0)]l
∣∣2

.
When R is composed of sparsifying operators (e.g., finite

differences, wavelets, frames, etc.), Rpu(i,0) tends to become
sparse for sufficiently large i , so for practically appealing
instances of 	 (e.g., when 1 ≤ q < 2 and � is an edge-
preserving potential function or for nonsmooth instances such
as those based on the �1-norm or TV), (i) will become sparse,
too. So, in the standard IRLS scheme (which utilizes [(i)]−1

rather than (i) [47, Eqs. 3–6]), a small positive additive
constant is included in (i) for maintaining numerical stability

of [(i)]−1—this is often referred to as corner-rounding [47].
However no such corner-rounding is required for the IRLS-
MIL scheme [47], [48], as it only utilizes (i).

To solve (18), we apply a matrix-splitting strategy (similar
to [47, Eq. 7]) to G(i) which leads to an iterative scheme for
(18) (with iteration index k) with the following update step:

v(i+1, j,k+1) = D−1
(i) (R b(i+1, j ) + Hρv(i+1, j,k)) (23)

where D(i)
�= (i) + ρIR is an invertible diagonal matrix,

Hρ
�= ρIR − R C−1R� and

ρ > max eigval{R C−1R�} (24)

depends only on A (via C), and R and can therefore be
precomputed. In practice, we perform K iterations of (23)
and apply the final update v(i+1, j,K ) in place of v(i+1, j ) in
(17). We prefer (23) over a PCG-type solver for (18), as (23)
is linear in both b(·) and v(·) and decouples the shift-variant
component (i) from the rest of terms in G(i): these features
simplify the analytical derivation of J(uθθθ , y) for IRLS-MIL as
demonstrated next.

B. Jacobian Matrix Derivation for IRLS-MIL Algorithm

Since b(·) and v(·) are functions of y (via u(·)), using
linearity of (3), at the end of K iterations of (23) we get
the Jacobian matrix update corresponding to u(i+1, j+1) from
(17) as

J(u(i+1, j+1), y) = J(b(i+1, j ), y) − C−1R� J(v(i+1, j,K ), y).

(25)

From (19), we get J(b(i+1, j ), y) = C−1A� + (IN −
C−1A�A) J(u(i+1, j ), y). To obtain J(v(i+1, j,K ), y), we derive
a recursive update for J(v(i+1, j,k+1), y) from (23) using a
straightforward application of product rule for Jacobian matri-
ces and the fact that (23) involves only a diagonal matrix D−1

(i)

J(v(i+1, j,k+1), y)= D−1
(i)

(
RJ(b(i+1, j ), y)+Hρ J(v(i+1, j,k), y)

)
−D−2

(i) Dv J(γγγ (i), y) (26)

where Dv
�= diag{R b(i+1, j ) + Hρv(i+1, j,k)}. Using the chain

rule for Jacobian matrices [52], we have

J(γγγ (i), y) = J(γγγ (i), u(i+1,0)) J(u(i+1,0), y) (27)

where J(γγγ (i), u(i+1,0)) ∈ RR×N constitutes derivatives of
{γ (i)

l }R
l=1 with respect to {un}N

n=1, evaluated at u(i+1,0), and can
be computed readily analytically for the general regularizer in
(13) using (20). For the �1-regularization6 	�1 in (14)

J(γγγ (i), u(i+1,0)) = λ−1diag{τττ (i)}R (28)

where the elements of τττ (i) ∈ RR are τ
(i)
l

�= sign([Ru(i+1,0)]l).
For TV regularization 	TV in (15), we get (using tedious,

but elementary calculus)

J(γγγ (i), u(i+1,0)) = 1P ⊗
⎛
⎝λ−1

P∑
p=1

diag{ωωω(i)
p }Rp

⎞
⎠ (29)

6The derivatives are interpreted in the weak sense of distributions [50, Ch. 6]
whenever conventional differentiation does not apply.
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where the elements of ωωω
(i)
p ∈ RL are given by

ω
(i)
pl

�= [Rpu(i+1,0)]l√∑P
s=1 |[Rsu(i+1,0)]l |2

= [Rpu(i+1,0)]l

λγ̆
(i)
l

(30)

with the assumption that ω
(i)
pl = 0 whenever [Rpu(i+1,0)]l = 0,

p = 1, . . . , P .
Thus, in addition to running (17), (23) for obtaining u(i, j ),

we propose to run the sequence of iterations (25)–(26) using
(27)–(30) for iteratively evaluating J(u(i, j ), y), [and thus,
NGCV(θθθ) and WSURE(θθθ)] at any stage of IRLS-MIL.

C. MRI Reconstruction With Split-Bregman Algorithm

The SB algorithm [46] for solving (2) is based on a variable
splitting strategy [46], [49], [56], where an auxiliary variable
v ∈ CR is used to artificially introduce the constraint v = Ru
and separate Ru from 	 leading to

min
u,v

1

2
‖y − Au‖2

2 + 	(v) subject to v = Ru (31)

which is equivalent to (2). The above constrained problem
is then solved using the so-called Bregman iterations [46,
Eqs. (2.9) and (2.10)] which consist of alternating between
the minimization of an augmented Lagrangian (AL) function7

L(u, v)
�= (1/2)‖y−Au‖2

2+	(v)+(μ/2)‖v−Ru−ηηη‖2
2, jointly

with respect to (u, v) [46, Eq. (3.7)] and a simple update step
[46, Eq. (3.8)] for a Lagrange-multiplier-like vector ηηη ∈ CR

for the constraint in (31). The penalty parameter μ > 0
does not influence the final solution of (31) and (2), but
governs the convergence speed of the Bregman iterations [46].
In practice, the joint minimization step is often replaced by
alternating minimization [46, Sec. 3.1], i.e., L is minimized
with respect to u and v one at a time, which decouples the
minimization step and simplifies optimization. We summarize
the SB algorithm below for solving (31) [and equivalently (2)]
for MRI reconstruction

u(i+1) = B−1
μ

[
AHy + μR�(v(i) − ηηη(i))

]
(32)

v(i+1)= d	(���(i))
�= arg min

v

{
	(v) + μ

2
‖v − ���(i)‖2

2

}
(33)

ηηη(i+1)=���(i) − v(i+1) (34)

where Bμ
�= AHA + μR�R. Step (33) corresponds to a

denoising problem to which we associate a denoising operator
d	 : CR → CR that acts on

���(i) �= Ru(i+1) + ηηη(i) (35)

to yield v(i+1). For a general 	 such as (13), (33) can be solved
iteratively, in which case d	 is representative of the iterative
scheme used for (33). However, for several special instances
of 	 [58, Sec. 4] including (14) and (15), one can solve (33)
exactly and d	 admits an analytical closed-form expression.
Specifically for (14) and (15), it can be shown that (33) further
decouples in terms of the elements {vr }R

r=1 of v, i.e., d	 is a
pointwise operator such that v

(i+1)
r = d	(�

(i)
r ), r = 1, . . . , R.

7For (31), L is equivalent to the sum of the Bregman distance [46] and a
quadratic penalty term for the constraint in (31) up to irrelevant constants.

Before proceeding, it is helpful to introduce βββ(i) �= 1P ⊗
β̆ββ

(i)
, where the lth element of β̆ββ

(i) ∈ RL is given by β̆
(i)
l

�=√∑P
p=1 |�(i)

(p−1)L+l|2. Then d	 for (14)–(15) can be obtained
as [46], [49]

d�1(ρ
(i)
r ) = �(i)

r

(
1 − λ |μ �(i)

r |−1
)
1

(
|�(i)

r | >
λ

μ

)
(36)

dTV(ρ(i)
r ) = �(i)

r

(
1 − λ (μ β(i)

r )−1
)
1

(
β(i)

r >
λ

μ

)
(37)

where 1(·) is an indicator function that takes the value 1 when
the condition in its argument is satisfied and is 0 otherwise.

D. Jacobian Matrix Derivation for Split-Bregman Algorithm

We note that u(·), v(·), ηηη(·), and ���(·) are implicit functions
of y and y�. Therefore, we evaluate8 J(u(i), y) using (32) and
the linearity of (4) to get

J(u(i+1), y) = B−1
μ

[
AH + μR� (

J(v(i), y) − J(ηηη(i), y)
)]

.

(38)

For the complex-valued case (� = C), we also need to
evaluate J(u(i+1), y�) as explained next. For J(u(i+1), y�), we
treat y as a constant in (32) (see Remark 1) so that

J(u(i+1), y�) = μB−1
μ R� (

J(v(i), y�) − J(ηηη(i), y�)
)

. (39)

For brevity, henceforth we use z to represent either y or y� as
required. From (33)–(34), we have

J(v(i+1), z) = J(d	(���(i)), z) (40)

J(ηηη(i+1), z) = J(���(i), z) − J(v(i+1), z). (41)

Using the chain rule for J(d	(���(i)), z) [53, Th. 1], we get

J(d	(���(i)), z) = J(d	,���(i)) J(���(i), z)

+J(d	,���(i)�) (J(���(i), z�))� (42)

where J(���(i), z) = R J(u(i+1), z) − J(ηηη(i), z) from (35). Thus,
due to (42), both J(u(·), y) and J(u(·), y�) are required, as
mentioned earlier.

For the case of �1-regularization (14), d�1 in (36) depends
only on �

(i)
r and �

(i)�
r , so J(d�1,���

(i)) and J(d�1,���
(i)�) become

diagonal matrices

J(d�1,���
(i)) = D1,���(i)

(
IR − λ

2μ
D−1

|���(i) |

)
(43)

J(d�1,���
(i)�) = λ

2μ
D1,���(i) D2

���(i) D
−3
|���(i) | (44)

where

D1,���(i)
�= diag

{{
1(|�(i)

r | > λ/μ)
}R

r=1

}

D���(i)
�= diag{���(i)}

D|���(i) |
�= diag

{{
|�(i)

r |
}R

r=1

}
.

8The derivatives are interpreted in the weak sense of distributions [50, Ch. 6]
whenever conventional differentiation does not apply.
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For the case of TV regularization (15), we apply the
(tedious, but elementary) product rule to obtain

J(dTV,���(i)) = D1,βββ(i)

[
IR − λ

μ
D−1

βββ(i) + λ

μ
D���(i) D−2

βββ(i)

×
(

1P ⊗ J(β̆ββ
(i)

,���(i))
)]

(45)

J(dTV,���(i)�) = λ

μ
D1,βββ(i) D���(i) D−2

βββ(i)

×
(

1P ⊗
(

J(β̆ββ
(i)

,���(i))
)�)

(46)

where

J(β̆ββ
(i)

,���(i)) = 1

2
(1�P ⊗ D−1

β̆ββ
(i) ) D�

���(i)

Dβββ(i)
�= diag{βββ(i)}

D1,βββ(i)
�= diag

{{
1(β(i)

r > λ/μ)
}R

r=1

}

D
β̆ββ

(i)
�= diag

{
β̆ββ

(i)
}

.

Thus, similar to the case of IRLS-MIL, we propose to run
(32)–(34) for obtaining u(i) and (38)–(46) for iteratively eval-
uating J(u(i), y) (and thus, NGCV(θθθ) and WSURE(θθθ)) at any
stage of the SB algorithm.

E. Monte Carlo Trace Estimation

The Jacobian matrices J(·, ·) in Sections IV-B and IV-D
have enormous sizes for typical reconstruction settings and
cannot be stored and manipulated directly to compute the
desired traces tr{AJ(uθθθ , y)} in (7) and tr{WAJ(uθθθ , y)} in (12).
So we use a Monte Carlo method to estimate tr{AJ(uθθθ , y)}
and tr{WAJ(uθθθ , y)}, which is based on the following well-
established identity [12], [59]–[61].

Proposition 1: Let n ∈ RM be an i.i.d. zero-mean random
vector with unit variance and T ∈ �M×M (for � = R or C)
be deterministic with respect to n. Then

En{n� T n} = tr{T}. (47)
For practical applications, En{·} in (47) can be replaced
by sample mean, 1/Nr

∑Nr
i=1 n�

i T ni , with Nr independent
realizations {ni }Nr

i=1. In image processing applications, where,
typically, M is large and T has a sparse off-diagonal structure,
t̂T

�= n� T n (corresponding to Nr = 1) provides a reliable
estimate of tr{T} [11], [12], [25], [28]. To use this type of
stochastic estimation for tr{AJ(uθθθ , y)} and tr{WAJ(uθθθ , y)},
we adopt the procedure applied in [28] and [25]: we take
products with n in (25)–(27) and (38)–(42) and store and
update vectors of the form J(u(·), ·)n, J(v(·), ·)n, J(ηηη(·), ·)n
in IRLS-MIL and SB algorithms, respectively. At any point
during the course of the algorithms, the desired traces in (7)
and (12) are stochastically approximated, respectively, as

tr{AJ(uθθθ , y)} ≈ t̂NGCV
�= n�A J(u(·), y)n (48)

tr{WAJ(uθθθ , y)} ≈ t̂WSURE
�= n�W A J(u(·), y)n. (49)

To improve accuracy of (48)–(49), n can be designed to
decrease the variance of t̂NGCV and t̂WSURE. It has been shown
[59], [61] that variance of a Monte Carlo trace estimate (such
as t̂NGCV or t̂WSURE) is lower for a binary random vector n±1

whose elements are either +1 or −1 with probability 0.5 than
for a Gaussian random vector n ∼ N (0, IM ) employed in [28]
and [25]. So in our experiments, we used one realization of
n±1 in (48) and (49). Figs. 1 and 2 present the outlines for
implementing IRLS-MIL and SB algorithms with recursions
for updating J(·, ·)n±1 to compute and monitor NGCV(θθθ) and
WSURE(θθθ) as these algorithms evolve.

F. Implementation of IRLS-MIL and Split-Bregman Algorithms

The convergence speed of IRLS-MIL (17), (23) depends
primarily on the “proximity” of C to A�A while ensuring
(16) [47], [48]. Ideally, we would like to choose the circulant
matrix Copt = QHdiag{αααopt}Q, where Q is the DFT matrix

and αααopt
�= arg mindiag{ααα}�QA�AQH |||diag{ααα}−QA�AQH||| for

some matrix norm ||| · |||, e.g., the Frobenius norm. However,
αααopt can be both challenging and computationally expensive
to obtain for a general A. For image restoration, typically,
A�A ∈ RN×N is circulant, so αααopt are simply the eigenvalues

of A�A. In our experiments, we used C = Cν
�= A�A + νIN

and implemented C−1
ν using FFTs. The parameter ν > 0

was chosen to achieve a prescribed condition number of Cν ,
κ(Cν), which can be easily computed as a function of ν. In
general, setting κ(Cν) to a large value can lead to numerical
instabilities in C−1

ν and IRLS-MIL, while a small κ(Cν)
reduces the convergence speed of IRLS-MIL [47], [48]. In
our experiments, we found that ν leading to κ(Cν) ∈ [20, 100]
yielded good convergence speeds for a fixed number of outer
(i.e., index by i ) iterations of IRLS-MIL, so we simply set ν
such that κ(Cν) = 100.

For MRI reconstruction from partially sampled Cartesian
k-space data, AHA ∈ CN×N is circulant [49]. We chose
{Rp}P

p=1 in (14) and (15) to be shift-invariant with periodic
boundary extensions so that R�R, and thus Bμ in (32), are
circulant as well. Then we implemented B−1

μ in (32) using
FFTs. One way to select the penalty parameter μ for the
SB algorithm is to minimize the condition number κ(Bμ)

of Bμ: μ = μmin
�= arg minμ κ(Bμ) [46]. We found in our

experiments that the empirical selection μ = μmin × μfactor
with μfactor ∈ [10−5, 10−2] yielded favorable convergence
speeds of the SB algorithm for a fixed number of iterations
compared to using μmin, and so we set μfactor = 10−4

throughout.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In all our experiments, we focused on tuning the regulariza-
tion parameter λ (14) and (15) for a fixed number of (outer)
iterations for both IRLS-MIL and SB algorithms, although, in
principle, we could apply the greedy method9 of Giryes et al.
[25, Sec. 5.2] to minimize WSURE and NGCV as functions
of both the number of iterations and λ. For IRLS-MIL, we
used J = K = 1 (J iterations of (17)–(23) and K iterations

9The Jacobian matrix J(u(·), y) is updated at every (outer) iteration of IRLS-
MIL and SB algorithms (see Figs. 1 and 2), so (48) and (49) can be used
to monitor NGCV(θθθ) and WSURE(θθθ), respectively, during the course of the
algorithms as elucidated in Figs. 1 and 2.
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1) Initialization: u(0,0) = A y, J(u(0,0),y)n = A n, i = 0
2) Repeat Steps 3-12 until Stop Criterion is met
3) If i = 0

u(i+1,0) = u(i,0), v(i+1,0,0) = Ru(i,0), J(u(i+1,0),y)n = J(u(i,0),y)n, J(v(i+1,0,0) ,y)n = RJ(u(i,0),y)n
Else

u(i+1,0) = u(i,J), v(i+1,0,0) = v(i,J−1,K) , J(u(i+1,0) ,y)n = J(u(i,J),y)n, J(v(i+1,0,0),y)n = J(v(i,J−1,K),y)n
4) Compute ΓΓΓ(i) using (20); set j = 0
5) Run J iterations of Steps 6-10
6) Compute b(i+1,j) (19) and J(b(i+1,j),y)n

7) If j > 0 set v(i+1,j,0) = v(i+1,j−1,K) and J(v(i+1,j,0),y)n = J(v(i+1,j−1,K) ,y)n
8) Run K iterations of (23) and (26) to get v(i+1,j,K) and J(v(i+1,j,K),y)n
9) Compute u(i+1,j+1) (17) and J(u(i+1,j+1),y)n (25)
10) Set j = j+1 and return to Step 5
11) Compute NGCV(θθθ) and / or WSURE(θθθ) at iteration i using (48)-(49), (7) and (12), respectively
12) Set i = i + 1 and return to Step 2

Fig. 1. Iterative computation of WSURE(θθθ) and NGCV(θθθ) for image deblurring using IRLS-MIL algorithm [with J iterations of (17)–(23) and K iterations
of (23)]. We use a pregenerated binary random vector n = n±1 for Monte Carlo computation (48)–(49) of the required traces in (7) and (12), respectively.
Vectors of the form J(·, ·)n are stored and manipulated in place of actual matrices J(·, ·)n.

1) Initialization: u(0) = AHy, v(0) = Ru(0) , ηηη(0) = 0, i = 0

J(u(0),y)n = AHn, J(v(0),y)n = RAHn, J(ηηη(0),y)n = 0, J(u(0),y )n = 0, J(v(0),y )n = 0, J(ηηη(0),y )n = 0,
2) Repeat Steps 3-7 until Stop Criterion is met
3) Compute u(i+1) , J(u(i+1),y)n, J(u(i+1),y )n, respectively, using (32), (38), (39)
4) Compute v(i+1) using (33), (36)-(37) and J(v(i+1),y)n, J(v(i+1),y )n, respectively, using (40), (42)-(46)
5) Compute ηηη(i+1) , J(ηηη(i+1),y)n, J(ηηη(i+1),y )n, respectively, using (34) and (41)
6) Compute NGCV(θθθ) and / or WSURE(θθθ) at iteration i using (48)-(49), (7) and (12), respectively
7) Set i = i + 1 and return to Step 2

Fig. 2. Iterative computation of WSURE(θθθ) and NGCV(θθθ) for MRI reconstruction with the split-Bregman algorithm. We use a pregenerated binary random
vector n = n±1 for Monte Carlo computation (48)–(49) of the required traces in (7) and (12), respectively. Vectors of the form J(·, ·)n are stored and
manipulated in place of actual matrices J(·, ·)n.

of (23), see Fig. 1) and set the maximum number of iterations
(indexed by i ) to 100 for both algorithms. We used two levels
of the undecimated Haar wavelet transform (excluding the
approximation level) for R in 	�1 (14) and horizontal and
vertical finite differences for {Rp}2

p=1 in 	TV (15), all with
periodic boundary extensions.

Both NGCV (7) and WSURE (12) require the evaluation
of J(uθθθ , y), therefore their computation costs are similar for
a given reconstruction algorithm. We evaluated NGCV(λ) in
(7) for image restoration and MRI reconstruction and the
(oracle) MSE using (8). We assumed that σ 2 (the variance
of noise in y) was known10 in all simulations to compute
the following WSURE-based measures: Predicted-SURE(λ)
with W = IM in (12) and Projected-SURE(λ) with W =
(AAH)† in (12), which correspond to Predicted-MSE(λ) (10)
and Projected-MSE(λ) (9), respectively. For image restoration,
we computed W = (AAH)† for PJSURE using FFTs.11 For
MRI reconstruction from partially sampled Cartesian k-space
data, PDSURE and PJSURE are equivalent (since W = IM ,
see Section III-B) and correspond to evaluating the error at
sample locations in the k-space.

B. Results for Image Restoration

We performed three sets of experiments with simulated
data corresponding to the setups (with standard blur ker-
nels [37]) summarized in Table I. In each simulation,
data was generated corresponding to a blur kernel and a

10In practice, σ can be estimated fairly reliably using, e.g., the techniques
proposed in [22, Sec. V].

11We set the eigenvalues of AAH below a threshold of 10−5 to zero for
numerical stability of (AAH)†.

TABLE I

SETUP FOR IMAGE RESTORATION (IR) EXPERIMENTS

Experiment Test image
(256 × 256)

Blur Regularization

IR-A Cameraman Uniform 9 × 9 	TV
IR-B House (1 + x1 + x2)−1,

−7 ≤ x1, x2 ≤ 7
	�1

IR-C Cameraman Uniform (with
varying sizes)

	TV

TABLE II

ISNR† (IN dB) OF DEBLURRED IMAGES FOR EXPERIMENT

IR-A AND VARYING BSNRS

BSNR σ 2 MSE
(oracle) PJSURE PDSURE NGCV RLGCV

in (50)
20 3.08e+01 3.85 3.73 3.84 3.84 2.45
30 3.08e+00 5.85 5.84 5.85 5.85 2.40
40 3.08e−01 8.50 8.50 8.49 8.49 2.41
50 3.08e−02 11.02 10.97 11.00 11.01 2.38

prescribed BSNR (SNR of blurred and noisy data) [43].
IRLS-MIL was then applied for varying λ, and the qual-
ity of the deblurred images was assessed by computing
Projected-SURE(λ), Predicted-SURE(λ) and NGCV(λ). We
also included the following GCV measure adapted from
[25, Eq. 11] in our tests:

RLGCV(λ)
�= M−1‖(y − Auλ(y)‖2

2

(1 − M−1n�±Auλ(n±))2
(50)

where n± is the binary random vector specified in
Section IV-E. RLGCV in (50) is a randomized version of
LGCV in (6), which applies to linear algorithms but has been
suggested for use with nonlinear algorithms as well in [25].
We minimized these measures over λ using the golden-section
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TABLE III

ISNR† (IN dB) OF DEBLURRED IMAGES FOR EXPERIMENT

IR-B AND VARYING BSNR

BSNR σ 2 MSE
(oracle)

PJSURE PDSURE NGCV RLGCV
in (50)

20 1.65e+01 5.85 5.80 5.83 5.72 3.48
30 1.65e+00 8.49 8.49 8.49 8.49 2.94
40 1.65e−01 11.68 11.68 11.67 11.63 2.85
50 1.65e−02 16.00 15.76 15.76 15.76 2.85

TABLE IV

ISNR† (IN dB) OF DEBLURRED IMAGES FOR EXPERIMENT IR-C:

UNIFORM BLUR OF VARYING SIZES AND BSNR = 40 dB

Blur
size σ 2 MSE

(oracle) PJSURE PDSURE NGCV RLGCV
in (50)

5×5 3.36e−01 9.82 9.82 9.74 9.74 2.67
9×9 3.08e−01 8.50 8.50 8.48 8.48 2.41
15×
15 2.78e−01 7.42 7.38 7.42 7.42 2.22

21×
21 2.57e−01 6.86 6.78 6.82 6.82 2.33

† ISNR values within 0.1 dB of the oracle are indicated in bold in
Tables II–IV.
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Fig. 3. Plot of ISNR(λ) as a function of regularization parameter λ. (a)
Experiment IR-A corresponding to the third row of Table II. (b) Experiment
IR-B corresponding to third row of Table III. The plots indicate that λs that
minimize PJSURE, PDSURE, NGCV, and the (oracle) MSE are very close to
each other. RLGCV-based selection (50) is far away from oracle MSE-based
selection and leads to oversmoothing and loss of details, see Fig. 4(g).

search and calculated the improvement in SNR (ISNR) [43]
of the corresponding deblurred images (after minimizing the
various measures).

Tables II and III summarize the ISNR results for Exper-
iments IR-A and IR-B, respectively, for varying BSNR.
Minimization of Projected-SURE(λ) yields deblurred images
with ISNR (reasonably) close to the corresponding minimum-

TABLE V

SETUP FOR EXPERIMENTS WITH SIMULATED AND REAL MR DATA

Experiment Test image/
Real MR data
(256 × 256)

Retrospective
(Cartesian)
undersampling

Regularization

MRI-A Shepp–Logan
phantom

Radial (30 lines,
89% undersampling)

	TV

MRI-B Noisefree
T2-weighted
MR image

Random (60%
undersampling)

	�1

MRI-C Real GE
phantom
dataset

Radial (with varying
number of lines)

	TV

TABLE VI

PSNR† (IN dB) OF MRI RECONSTRUCTIONS FOR EXPERIMENT

MRI-A AND VARYING DATA SNR

Data SNR (in dB) σ 2 MSE (oracle) PDSURE NGCV
30 2.69e+01 13.69 13.66 12.72
40 2.69e+00 22.28 22.21 21.68
50 2.69e−01 31.90 31.86 30.74
60 2.69e−02 42.33 42.33 42.12

MSE (oracle) result in all cases. Surprisingly, data-domain
predicted-type measures PDSURE and NGCV, which are
known to undersmooth linear deblurring algorithms [22], [24],
also consistently yield ISNRs that are remarkably near the cor-
responding oracle ISNRs. These observations are also substan-
tiated by Fig. 3, where we plot ISNR(λ) versus λ for specific
instances of Experiments IR-A and IR-B. ISNRs correspond-
ing to the optima of Projected-SURE(λ), Predicted-SURE(λ),
and NGCV(λ) are close to the oracle ISNR. Accordingly, the
deblurred images (corresponding to an instance of Experiment
IR-A) obtained by minimizing Projected-SURE(λ) [Fig. 4(d)],
Predicted-SURE(λ) [Fig. 4(e)], and NGCV(λ) [Fig. 4(f)]
closely resemble the corresponding minimum-MSE result
[Fig. 4(c)] in terms of visual appearance. We present additional
illustrations (for Experiments IR-A and IR-B) that corroborate
these inferences as supplementary material.4

To further investigate the potential of PDSURE and NGCV,
we generated y corresponding to uniform blur of varying sizes
(for a fixed BSNR of 40 dB: Experiment IR-C) and minimized
the various measures (using the golden-section search) in each
case. The ISNR-results summarized in Table IV for this exper-
iment indicate that minimization of Predicted-SURE(λ) and
NGCV(λ) (and also Projected-SURE(λ)) leads to deblurred
images with ISNRs close to that of the corresponding MSE-
optimal ones. We obtained similar promising results at varying
(BSNR = 20, 30 dB) levels of noise (results not shown).
These observations suggest that PDSURE and NGCV may be
reasonable alternatives to PJSURE for tuning λ for nonlinear
restoration.

In all image restoration experiments, the RLGCV mea-
sure (50) yielded λ values that were larger (by at least an
order of magnitude, see Fig. 3) than corresponding oracle-
optimum λ, leading to oversmoothing and loss of details [see
Fig. 4(g)], and thus reduced ISNR (see the RLGCV column in
Tables II–IV). These results are perhaps due to the fact that
RLGCV [based on LGCV in (6)] is primarily designed for
linear algorithms and is therefore unable to cope with nonlin-
earity of (2) for the strongly nonquadratic regularizers in (14)
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(a) (b) (c) (d) (e)

(f) (g)

Fig. 4. Experiment IR-A corresponding to the third row of Table II. Zoomed images of (a) noisefree Cameraman, (b) blurred and noisy data and TV-deblurred
images with regularization parameter λ selected to minimize, (c) (oracle) MSE (8.50 dB), (d) PJSURE (8.50 dB), (e) PDSURE (8.49 dB), (f) NGCV (8.49 dB),
and (g) RLGCV in (50) (2.41 dB). PJSURE-, PDSURE-, and NGCV-based results (d)–(f) visually resemble the oracle MSE-based result (c) very closely,
while the RLGCV-based (50) result is considerably oversmoothed.

TABLE VII

PSNR† (IN dB) OF MRI

RECONSTRUCTIONS FOR EXPERIMENT MRI-B AND VARYING DATA SNR

Data SNR
(in dB) σ 2 MSE (oracle) PDSURE NGCV

30 1.33e+01 7.77 7.33 7.33
40 1.33e+00 10.58 10.53 10.38
50 1.33e−01 11.62 11.62 11.58
60 1.33e−02 11.83 11.81 11.83

TABLE VIII

PSNR† (IN dB) OF MRI RECONSTRUCTIONS FOR EXPERIMENT

MRI-C AND VARYING UNDERSAMPLING RATES

Number of
radial lines

%
undersampling MSE (oracle) PDSURE NGCV

20 93 26.19 26.16 25.82
30 89 30.08 30.06 29.42
40 85 31.71 31.69 31.09
50 82 33.03 33.03 32.16
60 78 33.65 33.56 32.85

†PSNR values within 0.1 dB of the oracle are indicated in bold in
Tables VI–VIII.

and (15). On the contrary, NGCV (7), which is specifically
designed to handle nonlinear algorithms [16], [17], provides a
reliable means of selecting λ for nonlinear restoration. We do
not show results for RLGCV hereafter.

C. Results for MRI Reconstruction

We conducted experiments with both synthetic and real MR
data (setups summarized in Table V) for MRI reconstruction.
In the synthetic case, we considered two test images (of size
256 × 256): the Shepp-Logan phantom (Experiments MRI-A)
and a noisefree T2-weighted MR image (Experiment MRI-B,
see Fig. 6(a) from the Brainweb database [62]. Partial sam-
pling of k-space was simulated by applying a sampling mask
(confined to a Cartesian grid)12 on the Fourier transform of
test images. We considered two types of masks corresponding
to a near-uniform (less than Nyquist rate) but random sampling

12Cartesian undersampling is more appropriate for 3-D MRI in practice and
is applied here retrospectively for 2-D MRI for illustration purposes.

of k-space with a 8 × 8 fully sampled13 central portion [see
Fig. 6(b)] and radial patterns that densely sample the center13

but sparsely sample the outer k-space [see Fig. 7(b)]. Complex
(i.i.d., zero-mean) Gaussian noise of appropriate variance was
added at sample locations to simulate noisy data of prescribed
SNR in Experiments MRI-A and MRI-B.

For experiments with real MR data, we acquired 10 inde-
pendent sets of fully sampled 2-D data (256 × 256) of a
GE phantom using a GE 3T scanner (gradient-echo sequence
with flip angle = 35°, repetition time = 200 ms, echo time
= 7 ms, field of view (FOV) = 15 cm, and voxel size =
0.6 × 0.6 mm2). These fully sampled datasets were used
to reconstruct (using iFFT) 2-D images, which were then
averaged to obtain a reference image that served as the true
“unknown” x [see Fig. 7(a)] for computing the oracle MSE (8).
We separately acquired 2-D data from a dummy scan (with the
same scan setting) where no RF field was applied. We used
this dummy data to estimate σ 2 by the empirical variance.
We retrospectively undersampled data from one of the 10 sets
by applying radial sampling patterns (confined to a Carte-
sian grid)13 with varying numbers of spokes in Experiment
MRI-C.

We ran the SB algorithm and minimized Predicted-
SURE(λ) and NGCV(λ) using the golden-section search
for each instance of Experiments MRI-A, MRI-B, and
MRI-C, respectively. Tables VI–VIII present PSNR (com-
puted as 20 log10(

√
N max{x}/‖x − uλ(y)‖2) of reconstruc-

tions obtained after minimization of Predicted-SURE(λ) and
NGCV(λ). In almost all experiments, NGCV-based selec-
tions resulted in worse PSNRs than those corresponding to
PDSURE selections. This is also corroborated by Fig. 5, where
we plot PSNR(λ) as a function of λ for specific instances
of Experiment MRI-B and MRI-C. NGCV-based selections
are away (approximately, by an order of magnitude) from
both PDSURE and oracle selections. As the PSNR profile

13Partial k-space sampling schemes typically involve dense sampling of the
central portion (as that contains most of the signal energy) and undersampling
of outer portions of k-space [49], respectively.
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Fig. 5. Plot of PSNR(λ) as a function of the regularization parameter λ.
(a) Experiment MRI-B corresponding to second row of Table VII. (b) Exper-
iment MRI-C corresponding to fourth row of Table VIII. The plots indicate
that λs that minimize PDSURE and the (oracle) MSE are very close to each
other and lead to almost identical PSNRs. NGCV-based selection is away
from the MSE-based selection in both plots: in case of (a), it still yields a
reconstruction Fig. 6(f), which is agreeably close to the oracle in terms of
PSNR and visual quality Fig. 6(d), but in (b) it leads to a slight reduction in
PSNR and correspondingly the reconstruction Fig. 7(f) exhibits slightly more
artifacts at the center and around the object.

in Fig. 5(a) exhibits a plateau14 over a large range of λ
values, NGCV-based reconstruction in Fig. 6(d) is visually
similar to the corresponding minimum-MSE reconstruction in
Fig. 6(f). However, this is not the case with Fig. 5(b), and,
correspondingly, the NGCV-based reconstruction in Fig. 7(f)
exhibits slightly more artifacts at the center and around the
object’s periphery compared to PDSURE-based [Fig. 7(e)]
and minimum-MSE [Fig. 7(d)] reconstructions. These results
indicate that NGCV may not be as consistently robust for MRI
reconstruction from partially sampled Cartesian data (which
is a severely ill-posed problem where AHA has many zero
eigenvalues) as for image restoration (where only fewer eigen-
values of AHA are zero, especially for the blurs considered in
Section V-B).

On the other hand, PDSURE-based tuning consistently
yields PSNRs close to the corresponding (minimum-MSE)
oracle PSNRs as seen from Tables VII–VIII and Fig. 5.
PDSURE also leads to reconstructions [see Figs. 6(e) and
7(e)] that are visually similar to the respective minimum-
MSE reconstructions [see Figs. 6(d) and 7(d)]. These results

14This is perhaps because the problem is less ill-posed in Experiment
MRI-B as the k-space is sampled in a nearly uniform (but random) fashion
[see Fig. 6(b)] compared to other setups, i.e., MRI-A and MRI-C, respectively,
which use radial sampling [see Fig. 7(b)] where the corners of k-space are
sparsely sampled.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Simulations corresponding to Experiment MRI-B and the second
row of Table VII. (a) Noisefree T2-weighted MR test image. (b) Retrospective
random undersampling (black dots indicate sample locations on a Cartesian
grid, 60% undersampling). (c) Magnitude of zero-filled iFFT reconstruction
from undersampled data (–2.88 dB). Magnitude of reconstructions obtained
(using analysis �1-regularization with two levels of undecimated Haar wavelet)
with regularization parameter λ selected to minimize. (d) (oracle) MSE
(10.58 dB). (e) PDSURE (10.53 dB). (f) NGCV (10.38 dB). Regularized
reconstructions (d)–(f) have reduced noise and artifacts compared to the zero-
filled iFFT reconstruction (c). Both PDSURE-based and NGCV-based results
(e) and (f) closely resemble the oracle MSE-based result (d) in this experiment.

demonstrate the potential of PDSURE for the selection of λ
for MRI reconstruction.

VI. DISCUSSION

A. Reconstruction Quality

Reconstruction quality in inverse problems of the form
(1) and (2) is mainly governed by: a) the cost criterion J in (2)
and b) the choice of associated regularization parameter(s). In
this paper, we have only addressed the latter aspect, i.e., b), for
specific (but popular) regularizers such as TV and those based
on the �1-norm. As we achieve near-MSE-optimal tuning of
the regularization parameter for these regularizers, our TV-
based image restoration results are comparable to those in
[43], [45], and [54]. It should be noted that this optimality
(achieved by considering b) alone), however, is only over the
set of solutions prescribed by the minimization problem in (2)
for a given regularizer. It is possible to further improve quality
by considering more sophisticated regularizers, e.g., higher-
degree total variation [63], Hessian-based [64] and nonlocal
regularization [65]. Extending the applicability of our current
parameter selection techniques to these advanced regularizers
requires more investigation and is a possible direction for
future research.

B. IRLS-MIL and Split-Bregman Algorithms

Both IRLS-MIL and SB algorithms can tackle general
minimization problems of the form (2) with arbitrary convex
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Experiment MRI-C with real MR GE-phantom data (corresponding
to fourth row of Table VIII). (a) Magnitude of reference image reconstructed
(using iFFT) and averaged over 10 fully sampled acquisitions. (b) Retro-
spective sampling along radial lines (50 lines on a Cartesian grid with
82% undersampling, black lines indicate sample locations). (c) Magnitude
of zero-filled iFFT reconstruction from undersampled data (22.51 dB) and
magnitude of TV-regularized reconstructions with regularization parameter λ
selected to minimize. (d) (oracle) MSE (33.03 dB). (e) PDSURE (33.03 dB).
(f) NGCV (32.30 dB). Regularized reconstructions (d)–(f) have reduced
artifacts compared to the zero-filled iFFT reconstruction (c). PDSURE-based
result (e) closely resembles the oracle MSE-based result (d), while NGCV-
based result (f) exhibits slightly more artifacts at the center and around the
object’s periphery.

regularizers. However, the inner steps of the SB algorithm (32)
and (33) may not admit exact updates for a general A and/or
general regularizer 	 such as (13) or those in [63] and [64]. In
such cases, iterative schemes may be needed for the updates
in (32) and (33), and, correspondingly, evaluation of J(u(·), y)
has to be performed on a case-by-case basis depending on
the type of iterative schemes used for (32) and (33). In this
respect, IRLS-MIL is slightly more general. As it is based on
the standard gradient-descent IRLS scheme [47], [48], it may
be more amenable to tackling sophisticated regularizers [63],
[64] and/or a data model involving a more general15 A.

C. Memory and Computation Requirements

Evaluating reconstruction quality through quantitative
measures generally involves additional memory and
computational requirements [31]. In our case, it is
clear from (25)–(30) that storing and manipulating
J(u(·), y)n, J(v(·), y)n, J(γγγ (·), y)n and evaluating NGCV(λ),
Predicted-SURE(λ), and Projected-SURE(λ) for one instance
of λ demand similar memory and computational load
as the IRLS-MIL iterations (17), (23) themselves. These
requirements are also comparable to those of the iterative
risk estimation techniques in [28] and [25] and the Monte

15The matrix C needs to be chosen in accordance with (16), but since it
depends only on A (and AH), it can be predetermined for a given problem.

Carlo divergence estimator in [36, Th. 2] (which needs two
algorithm evaluations for one instance of λ). The complex-
valued case (� = C) demands even more memory and
computations (compared to the real-valued case � = R), as
one has to tackle Jacobian matrices evaluated with respect to
y and y�. This additional requirement is purely a consequence
of complex calculus. In general, the exact amount of storage
and computation necessary for evaluating NGCV and WSURE
depends on how the reconstruction algorithm is implemented.

Furthermore, in our experiments, we optimize NGCV(λ),
Predicted-SURE(λ), and Projected-SURE(λ) using the
golden-section search that necessitates multiple evaluations
of these performance measures for several instances of λ.
To save computation time, it is desirable to optimize λ
simultaneously during reconstruction. Designing such a
scheme is not straightforward when the reconstruction
problem is posed as (2), since intermittently changing λ
affects the cost function J and alters the original problem (2).

To avoid this difficulty, image reconstruction can be for-
mulated as a penalty problem using variable splitting and
penalty techniques [66]. Alternating minimization can then
be employed to decouple the original penalty problem into
simpler linear and nonlinear subproblems [66]. The advantage
of this approach is that it provides the option for optimizing
parameters based on the subproblems, which can be achieved
relatively easily. Liao et al. [54], [55] demonstrated the prac-
ticability of this approach for TV-based image restoration,
but they optimized regularization parameters only based on
linear subproblems (using LGCV) and used continuation tech-
niques to adjust other parameters associated with nonlinear
subproblems. Since the techniques developed in this paper can
handle nonlinear algorithms, they may be adapted to optimize
parameters (e.g., using NGCV) associated with the nonlinear
subproblems in the penalty formulation. As part of future
work, we plan to investigate the penalty approach for bio-
medical image reconstruction with simultaneous optimization
of penalty parameters.

VII. CONCLUSION

Proper selection of the regularization parameter (λ) is an
important part of regularized methods for inverse problems.
GCV and (weighted) MSE estimation based on the principle of
SURE [18] (in the Gaussian setting) can be used for selecting
λ, but they require the trace of a linear transformation of
the Jacobian matrix J(uθθθ , y) associated with the nonlinear
(possibly iterative) reconstruction algorithm represented by the
mapping uθθθ . We derived recursions for J(uθθθ , y) for two types
of nonlinear iterative algorithms: the IRLS-MIL [47] and the
variable splitting-based SB algorithm [46], both of which are
capable of handling (synthesis-type and) a variety of analysis-
type regularizers.

We estimated the desired trace for nonlinear image restora-
tion and MRI reconstruction (from partially sampled Carte-
sian k-space data) by applying a Monte Carlo proce-
dure similar to that in [28] and [25]. We implemented
IRLS-MIL and SB along with computation of NGCV(λ),
Predicted-SURE(λ), and Projected-SURE(λ) for total varia-
tion and analysis �1-regularization. Through simulations, we



RAMANI et al.: REGULARIZATION PARAMETER SELECTION FOR NONLINEAR ITERATIVE IMAGE RESTORATION 3671

showed for image restoration that selecting λ by minimiz-
ing NGCV(λ), Predicted-SURE(λ), and Projected-SURE(λ)
consistently yielded reconstructions that were close to cor-
responding minimum-MSE reconstructions both in terms of
visual quality and SNR improvement. For MRI (with partial
Cartesian k-space sampling), we conducted experiments with
both synthetic and real phantom data and found that NGCV-
based reconstructions were slightly suboptimal in terms of
SNR improvement, while minimizing Predicted-SURE(λ)
(equivalent to Projected-SURE(λ) in this case) consistently
yielded near-MSE-optimal reconstructions both in terms of
SNR improvement and visual quality. These results indicate
the feasibility of applying GCV- and weighted SURE-based
selection of λ for iterative nonlinear reconstruction using
analysis-type regularizers. The philosophy underlying theoret-
ical developments in this paper can also be extended, in prin-
ciple, to handle other regularizers, reconstruction algorithms,
and inverse problems involving Gaussian noise.
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We present a proof for Lemma 1 and show additional illustrations that we could not accommodate

in the paper due to space constraints. References to equations, figures, etc. are within this material only

unless specified otherwise.

I. L EMMA 1 IN THE PAPER

Lemma 1: Let fλλλ : ΩM → ΩN be differentiable (forΩ = R) or individually analytic (forΩ = C

with respect to real and imaginary parts of its argument), respectively, in the weak sense. Then, for any

deterministicT ∈ ΩM×N satisfyingEξξξ{|[Tfλλλ(y)]m|} < ∞, m = 1 . . .M , we have forΩ = R or C that

Eξξξ{ξξξHTfλλλ(y)} = σ2Eξξξ{tr{TJΩ
fλλλ(y)}}. � (1)

Proof: The proof forΩ = R is very similar to those in [1, Th. 1], [2, Lemma 1], so we focuson

the case ofΩ = C. The density functiongC(ξξξ) = (πσ2)−M exp(−ξξξHξξξ/σ2) is analytic with respect toξξξ

andξξξ⋆ individually and satisfies the identity

ξξξHgC(ξξξ) = −σ2

2
[∇ξξξ

R
− ι∇ξξξI

]gC(ξξξ), (2)

where ∇ξξξ
R

and ∇ξξξI
denote1 × M gradient operators consisting partial derivatives with respect to
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Fig. 1. Plot of Predicted-MSE(λ), Predicted-SURE(λ), Projected-MSE(λ) and Projected-SURE(λ) as functions of regularization
parameterλ. Left: Experiment IR-A corresponding to third row of Table II in the paper; Right: Experiment IR-B corresponding
to third row of Table III in the paper. The plots indicate thatthe SURE-curves closely capture the trends of the respective
MSE-curves and their minima (indicated by ’*’) are close to that of the (oracle) MSE indicated by the solid vertical line.

{ξRm}Mm=1, {ξIm}Mm=1. Expanding the LHS of (1) and using (2), we get that

Eξξξ{ξξξHTfλλλ(y)} =

∫
gC(ξξξ)ξξξ

HTfλλλ(y) dξξξRdξξξI = −σ2

2

∫ [(
∇ξξξ

R
− ι∇ξξξI

)
gC(ξξξ)

]
Tfλλλ(y) dξξξRdξξξI . (3)

Integrating-by-parts the term involving∇ξξξ
R

in (3) and using the fact that lim
|ξRm|→∞

gΩ(ξξξ) [Tfλλλ(y)]m = 0,

whenEξξξ{|[Tfλλλ(y)]m|} < +∞ [1], [2], we get that

∫
∇ξξξ

R
gC(ξξξ)Tfλλλ(y) dξξξR

dξξξI =

M∑

m=1

N∑

n=1

∫
∂gC(ξξξ)

∂ξRm
Tmnfλλλ,n(y) dξξξR

dξξξI

= −
M∑

m=1

N∑

n=1

∫
gC(ξξξ)Tmn

∂fλλλ,n(y)

∂ξRm
dξξξRdξξξI

= −
M∑

m=1

N∑

n=1

∫
gC(ξξξ)Tmn

∂fλλλ,n(y)

∂yRm
dξξξRdξξξI , (4)

where we have set∂/∂ξRm = ∂/∂yRm sinceAx (Eq. (1) in the paper) is a deterministic constant.

Going through a similar derivation for the integral involving −ι∇ξξξI
and using∂/∂ξIm = ∂/∂yIm, we

get that

− ι

∫
∇ξξξI

gC(ξξξ)Tfλλλ(y) dξξξRdξξξI = ι

M∑

m=1

N∑

n=1

∫
gC(ξξξ)Tmn

∂fλλλ,n(y)

∂yIm
dξξξRdξξξI . (5)

Combining (3)-(5) with the definition ofJΩ
fλλλ
(y) (Eq. (4) in the paper) yields the desired result (1).
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(a) (b) (c)

(d) (e) (f)

(g) Fig. 2. Experiment IR-B corresponding to third row of Table III in the
paper: Zoomed images of (a) Noisefree House; (b) Blurred andnoisy data;
and deblurred images obtained (using analysisℓ1-regularization with 2 levels
of undecimated Haar wavelet) with regularization parameter λ selected to
minimize (c) (oracle) MSE (11.68 dB); (d) Projected-SURE (11.68 dB); (e)
Predicted-SURE (11.63 dB); (f) NGCV (11.63 dB); (g) LGCV (2.87 dB).
Projected-SURE-, Predicted-SURE- and NGCV-based results(d)-(f) visually
resemble the oracle MSE-based result (c) very closely, while the LGCV-based
result is considerably over-smoothed.

II. A DDITIONAL ILLUSTRATIONS FORIMAGE RESTORATION

Fig. 1 plots Projected-MSE(λ), Projected-SURE(λ), Predicted-MSE(λ) and Predicted-SURE(λ) versus

λ for specific instances of Experiments IR-A and IR-B (corresponding to Cameraman and House test

images, respectively, see Table I in the paper). Projected-SURE- and Predicted-SURE-curves are accurate

in capturing the trends of Projected-MSE- and Predicted-MSE-curves and also exhibit minima (indicated

by *) close to that of MSE (solid vertical line). The deblurred images (corresponding to an instance of

Experiment IR-B) obtained by minimizing Projected-SURE(λ) (Fig. 2d), Predicted-SURE(λ) (Fig. 2e)

and NGCV(λ) (Fig. 2f) closely resemble the corresponding minimum-MSE result (Fig. 2c) in terms of
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Fig. 3. Experiment MRI-A with (Shepp-Logan phantom) corresponding to second row of Table VI in the paper: (a) Plot of
Predicted-MSE and Predicted-SURE as functions of regularization parameterλ indicates that Predicted-SURE closely captures
the trend of Predicted-MSE and their minima (indicated by ’*’) are close to that of the (oracle) MSE indicated by the solid
vertical line; (b) Plot of PSNR(λ) versusλ indicate thatλ’s that minimize Predicted-SURE and the (oracle) MSE are very close
to each other and lead to almost identical PSNRs and reconstructions (see Fig. 5). NGCV-based selection is away from the
MSE-based selection but it still yields a reconstruction Fig. 5f that is agreeably close to the oracle Fig. 5d in terms of visual
quality in this instance of Experiment MRI-A.
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Fig. 4. Plot of Predicted-MSE and Predicted-SURE as functions of regularization parameterλ: (a) Experiment MRI-B with
synthetic data corresponding to second row of Table VII in the paper; (b) Experiment MRI-C with real MR data corresponding
to fourth row of Table VIII in the paper. The plots indicate that Predicted-SURE closely captures the trend of Predicted-MSE
and their minima (indicated by ’*’) are close to that of the (oracle) MSE indicated by the solid vertical line.

visual appearance, while that obtained by minimizing LGCV(λ) is over-smoothed (see Fig. 2g). These

results are also consistent with what is reported in the paper (e.g., see Figs. 3 and 4 in the paper).

III. A DDITIONAL ILLUSTRATIONS FORMRI RECONSTRUCTION

We evaluated Predicted-MSE(λ), Predicted-SURE(λ) as functions ofλ and plotted them in Figs. 3a and

4 for specific instances of Experiments MRI-A (with synthetic data corresponding to noisefree Shepp-

Logan phantom), MRI-B (with synthetic data corresponding to a noisefreeT2-weighted MR image)
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Experiment MRI-A with Shepp-Logan phantom (corresponding to second row of Table VI: (a) Noisefree Shepp-Logan
(256×256) phantom; (b) Retrospective sampling along radial lines (30 lines on a Cartesian grid with 89% undersampling, black
lines indicate sample locations); (c) Magnitude of zero-filled iFFT reconstruction from undersampled data; and magnitude
of TV-regularized reconstructions with regularization parameterλ selected to minimize (d) (oracle) MSE (22.28 dB); (e)
Predicted-SURE (22.21 dB); (f) NGCV (21.68 dB). Regularized reconstructions (d)-(f) have reduced artifacts comparedto
the zero-filled iFFT reconstruction (c). Predicted-SURE-based and NGCV-based results (e), (f), respectively, closely resemble
the oracle MSE-based result (d) in this experiment.

and MRI-C (with real GE phantom data) in the paper. Predicted-SURE not only captures the trend of

Predicted-MSE in Figs. 3a and 4, but also exhibits minima (indicated by *) close to that of MSE (solid

vertical line).

We also plot PSNR(λ) versusλ in Fig. 3b and present reconstructions in Fig. 5 for the instance of

Experiment MRI-A considered in Figs. 3a: Although NGCV-selection is slightly away from the (oracle)

MSE-selection in Fig. 3b, the corresponding reconstruction Fig. 5f is visually similar to the MSE-based

one in Fig. 5d in this case. Predicted-SURE-selection is close to the (oracle) MSE-selection in Fig. 3b

and therefore naturally leads a reconstruction Fig. 5e thatresembles the MSE-based one in Fig. 5d.

These illustrations point to (the sub-optimality of NGCV and) the accuracy of Predicted-SURE(λ) for

MRI reconstruction from partially sampled Cartesiank-space data and are consistent with our results

portrayed in the paper.
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