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Spatial Resolution Properties of Motion-Compensated
Tomographic Image Reconstruction Methods

Se Young Chun*, Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstract—Many motion-compensated image reconstruction
(MCIR) methods have been proposed to correct for subject
motion in medical imaging. MCIR methods incorporate motion
models to improve image quality by reducing motion artifacts
and noise. This paper analyzes the spatial resolution properties
of MCIR methods and shows that nonrigid local motion can lead
to nonuniform and anisotropic spatial resolution for conventional
quadratic regularizers. This undesirable property is akin to the
known effects of interactions between heteroscedastic log-likeli-
hoods (e.g., Poisson likelihood) and quadratic regularizers. This
effect may lead to quantification errors in small or narrow struc-
tures (such as small lesions or rings) of reconstructed images. This
paper proposes novel spatial regularization design methods for
three different MCIR methods that account for known nonrigid
motion. We develop MCIR regularization designs that provide
approximately uniform and isotropic spatial resolution and that
match a user-specified target spatial resolution. Two-dimensional
PET simulations demonstrate the performance and benefits of the
proposed spatial regularization design methods.

Index Terms—Isotropic and uniform spatial resolution,
motion-compensated image reconstruction, nonrigid motion,
quadratic regularization, regularization design.

I. INTRODUCTION

M OTION can degrade image quality in medical imaging.
Often, medical imaging systems cannot capture ideal

quality images due to their innate acquisition speeds and patient
motion. Gating methods have been investigated to reduce mo-
tion artifacts [1], [2], but can suffer from insufficient measure-
ments that result in low signal-to-noise ratio (SNR) images.Mo-
tion-compensated image reconstruction (MCIR) methods have
been studied for various imaging modalities to improve image
quality by using all collected data and motion information so
that high SNR images are reconstructed without motion arti-
facts [3]–[16].
MCIR methods differ in terms of how they incorporate

motion information. We focus here on three common MCIR
methods: post-reconstruction motion correction (PMC) [3]–[5],
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TABLE I
ACRONYMS

motion-compensated temporal regularization (MTR) [6],
[7], and the parametric motion model (PMM) [8]–[16] (see
Table I). These models have also been used in non-medical
super-resolution applications [17]–[20]. These MCIR methods
have shown promising results for reducing noise and motion
artifacts. MCIR methods have great potential for improving
image quality and benefiting the tasks used in medical imaging
(e.g., better quantitative accuracy for PET or lower radiation
dose for CT).
The interactions between heteroscedastic log-likelihood

models (e.g., Poisson measurements) and conventional static
quadratic regularizers lead to nonuniform and anisotropic
spatial resolution [21]. In this paper, we show analytically that
these undesired properties can become worse in regularized
MCIR methods due to local motion, may cause nonuniform and
anisotropic spatial resolution, and produce quantification errors
in small or narrow structures such as small lesions or rings of
reconstructed images. For example, Fig. 1 shows the contours
of local impulse response (LIR) functions of Target (desired
LIR), SGR-S (single gated reconstruction with conventional
spatial regularizer using one frame), and PMC-S (PMC with
conventional static spatial regularizer using four frames) in
a 2-D PET simulation (see Table I for acronyms). Each LIR
was generated by subtracting the reconstructed image of the
noiseless projection data of the original image from the recon-
structed image of the noiseless projection of the original image
with a Kronecker impulse at one point. The Target has isotropic
contours, but SGR-S has a skewed LIR due to the interaction
between the log-likelihood and the quadratic regularizer. This
skewness became worse for the LIR of PMC-S due to affine
motion between image frames.
There have beenmany studies of the spatial resolution proper-

ties of static image reconstruction [21]–[27] and dynamic image
reconstruction [28]. Regularizers that provide nearly uniform
spatial resolution, or “certainty-based” regularizers, have been
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Fig. 1. Contours of LIRs: Target, SGR-S (single gate), PMC-S (four gates with
motion). Incorporatedmotion informationmay introduce additional nonuniform
and anisotropic spatial resolution to the static case.

proposed for quadratic regularization with PET [21], fully 3-D
PET [23], and for nonquadratic regularizers with PET [26]. Reg-
ularizers that achieve approximately uniform and isotropic spa-
tial resolution have been developed for PET [24], [25] and 2-D
fan-beam CT [27]. However, there has been little such research
for regularized MCIR methods.
This paper investigates the spatial resolution properties of

three popular MCIR methods (PMC, PMM, and MTR). Based
on this analysis, we propose quadratic regularizers that can
achieve approximately isotropic and uniform spatial resolution
even in the presence of nonrigid motion and for heteroscedastic
log-likelihoods. For regularizer design, we extend the “analyt-
ical approach” [27], [29] to MCIR methods [30] for the case
of known nonrigid motion. The known motion assumption can
be suitable for some multimodal medical imaging applications
such as PET-CT [9], [10], [12] and PET-MR systems [16].
This paper is organized as follows. Section II presents

measurement and motion/warp models for MCIR methods.
Section III introduces three different MCIR methods and their
LIRs. Section IV investigates how to design spatial regularizers
for MCIR methods that provide approximately uniform and
isotropic spatial resolution for nonrigid motion by extending
analytical approach. Section V illustrates the proposed spatial
regularizers by 2-D PET simulations with nonrigid motion.

II. MCIR MODELS

A. Measurement Model

Most medical imaging systems cannot capture an entire
dataset instantaneously, but rather record a sequence of mea-
surements over some time interval. For example, X-ray CT
scanners acquire about 1000 projection views during a sub-
second rotation around the object. MCIR methods are needed
when the time-varying object has non-negligible motion
during such an acquisition interval. Often one can use gating or
temporal binning to group the measurements into sets, called
“frames” here, such that object motion is negligible within each
frame, and then one can focus on the object motion between
frames. This type of discrete approximation to continuous ob-
ject motion is ubiquitous in MCIR models and we adopt it here
as well. Let denote the vector of measurements associated
with the th frame, e.g., a frame in a gated scan. We assume the
time-varying object is approximately motionless during
the acquisition of each . Let denote the time associated
with the th frame, and let
denote a spatial discretization of the object where
denotes the center of the th voxel for , and de-

notes the number of voxels. We assume that the measurements
are related to the object linearly as follows:

(1)

where denotes the system model for the th frame,
denotes noise, and is the number of gates or frames. We
allow the system model to possibly differ for each frame to
accommodate systems that rotate such as gated SPECT or CT
or that can otherwise change sampling properties dynamically
such as MRI. In some cases, we assume that ,
where is a diagonal matrix (e.g., PET scan, gated MRI scan
with fixed k-space sampling, or a video sequence).

B. Basic Warp Model

For a given spatial transformation , we can
define a warp operator as follows:

(2)

where belongs to an image domain at time and is
usually 2 or 3. We can discretize the warp to define a map
from the image to the image as follows:

(3)

For applications with periodic motion, we can additionally de-
fine and . The matrix

can be implemented with any interpolation method; we
used a B-spline based image warp [31] for our empirical re-
sults. Let denote the determinant of the Jacobian
matrix of a transform for a warp . Throughout,
we assume the warps (or equivalently or ) are
known.

C. Total Activity-Preserving Warp Model

In many medical imaging applications, total activity (or total
mass) is preserved during the scan [32], [33] and this property
has been used in someMCIR methods [34]. To enforce this con-
straint, the operator must not change the total activity of
an image. To preserve total activity (or mass), one can define a
modification of the operator that uses the Jacobian deter-
minant of

(4)

where . To verify that total activity is preserved, note that

(5)

where . Similarly, we can define a discrete-space
warp corresponding to (4) that approximately preserves total
activity

(6)
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where

(7)

and is a diagonal matrix with ele-
ments , and . We use (4)
and (6) for the analyses in this paper, but one can simply let

if a total activity-preserving model is not needed.
The warp operator in (2) acts pointwise, so its dis-

cretized version in (3) also acts approximately pointwise. There-
fore, the diagonal matrix in (7) that is applied to the left-hand
side of can be replaced (approximately) by a closely re-
lated diagonal matrix on the right-hand side of by simply
adjusting the spatial coordinates as follows:

(8)

where by the chain rule.
In some cases, we assume that invertibility, symmetry, and

transitivity properties hold for , i.e.,

(9)

(10)

(11)

These assumptions are reasonable for usual patient motion such
as respiratory or cardiac motion. In practice, one can estimate
motion models that satisfy these conditions [35], [36].

III. LOCAL IMPULSE RESPONSE FOR MCIR

We consider three MCIR methods: PMC [3]–[5], PMM
[8]–[14], [17], [19], and MTR [6], [7], [20], [37]. Here, we treat
the nonrigid motion information as predetermined (known).
In this section, we derive the LIRs for regularized versions of
these MCIR methods.

A. Single Gated Reconstruction (SGR)

Often one can reconstruct each image from the corre-
sponding measurement based on the model (1) and some
prior knowledge (e.g., a smoothness prior). A single gated
(frame) reconstruction (SGR) can be obtained as follows:

(12)

where is a likelihood function derived from (1), is a spatial
regularizer, and is a spatial regularization parameter.
For any single-frame estimator , one can define the

LIR for the th pixel as

(13)

where is the mean of and is a unit vector with one at
the th element. If in (12) is a negative Poisson log-likelihood

function (i.e., ), then one can
show that the LIR in (13) can be approximated [21]

(14)

where is a diagonal matrix,
the Hessian of the regularizer is ,

, denotes matrix transpose, and
the Fisher information matrix is

Equation (14) implies that the LIR of (1) for a Poisson likeli-
hood can be approximated with the LIR of (1) for a penalized
weighted least square (PWLS) likelihood. Thus, the analysis in
the paper also applies to any PWLS model. Sometimes, a reg-
ularizer depends on the noiseless projection , which is
unavailable. However, as shown in [21], a plug-in approach that
replaces by (or smoothed ) works well for the
regularization design since contains a blurring operator. In
the simulation, we will show that this is also the case forMCIRs.

B. Postreconstruction Motion Correction (PMC)

Once the frames are reconstructed individually
from (12) for all , one way to improve the SNR would be to
average all of them. However, the resulting image would be con-
taminated by motion blur due to the mismatch between frames.
Using the motion information to map each image to a single
image’s coordinates can reduce motion artifacts. Without loss of
generality, we chose as our reference image. Using (6) and
(12), a natural definition for the PMC estimator is the following
motion-compensated average:

(15)

Using (14), (10), and (6), one can derive the LIR for the PMC
estimator (15) at the th pixel of the first frame as follows:

(16)

where and . We
used instead of as an impulse for the th frame,
which corresponds to an impulse in the first frame.

C. Parametric Motion Model (PMM)

To derive the LIR of the PMM approach, we first must choose
a reference image frame among . Without loss of
generality, we assume that is our reference image frame.
Then, combining the measurement model (1) with the warp
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(6) yields a new measurement model that depends only on the
image instead of the all images

Stacking up these models yields the overall model

(17)

where the components are each stacked accordingly

(18)

The PMM estimator for the measurement model (17) with a
spatial regularizer is

(19)

where is a negative likelihood function and is a spatial
regularizer.
For the linear measurement model (17) with a negative

Poisson log-likelihood function , similar to (14), one can ap-
proximate the LIR [as defined in (13)] for the PMM estimator
(19) at the th pixel as follows:

(20)

where is a block-
diagonal matrix, is a diagonal matrix,
is the mean of , , and

. Note that

(21)

Using (20) and (21), we can rewrite the LIR of the PMM esti-
mator at the th pixel as

(22)

D. Motion-Compensated Temporal Regularization (MTR)

The MTR method incorporates the motion information that
matches two adjacent images into a temporal regularization
term [6], [7]

(23)

for . This penalty is added to the cost function
in (12) for all to define the MTR cost function.
Equations (12) for all and (23) can be represented in a

simpler vector-matrix notation. First, stack up (1) for all as
follows:

(24)

where and , were defined in (18).
Then, the MTR estimator based on (23), (24), and a spatial reg-
ularizer is

(25)

where is a negative likelihood function from the noise model
of (24), is a spatial regularizer, is a temporal regularization
parameter, and the temporal differencing matrix is

. . .
. . . (26)

We may also modify for periodic (or pseudo-periodic)
image sequences by adding a row corresponding to the term

. Note that unlike the PMM method that esti-
mates one frame, MTR estimates all image frames.
For the MTR estimator (25) with a negative Poisson log-like-

lihood function , one can derive the LIR of the MTR estimator
at the th pixel as follows:

(27)

where , , and
we define an impulse vector for all frames at th voxel of the
first frame as

(28)

which is the same as the impulse for the PMC in (16). We can
interpret the LIR of MTR (27) as follows. For , the LIR
of MTR at the th pixel would be the same as the LIRs of SGR
(14) for all . For , term in (25) encourages
each LIR of the th frame to be the same as one another, which
can result in different spatial resolution for different .

E. Local Impulse Response (LIR) Summary

The main results of this section are the LIR expressions
(16), (22), and (27) for the PMC, PMM, and MTR methods for
MCIR, respectively. Readers familiar with [21] will recognize
that these LIR expressions reflect nonuniform and anisotropic
spatial resolution, both due to heteroscedastic noise and due to
nonrigid motion for standard regularizers. Section IV presents
regularization design methods that can provide approximately
uniform and isotropic spatial resolution.

IV. SPATIAL REGULARIZER DESIGNS FOR MCIR

In this section, we present ways to design spatial regular-
izers of MCIR methods to provide approximately uniform and
isotropic spatial resolution that does not depend on object-spe-
cific measurement statistics and given object-specific nonrigid
motion. We extend the so-called analytical approach for regu-
larizer design [29] to MCIR cases.
For the analysis in this section, we focus on 2-D PET. We

consider an ideal tomography system, i.e., we ignore detector
blur; nevertheless, we conjecture that the regularization designs
are also useful in the presence of detector blur. We assume that

(29)
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where denotes a diagonal matrix for patient-dependent at-
tenuation and detector efficiency for the th frame, and is a
system geometry. We assume known and well-aligned attenua-
tion map (i.e., is given), which can be the case for PET-CT
[38] or PET-MR [39]. We still allow the warp to differ for
each .
For nonrigid motion, we assume that given nonrigid motion

is locally affine [40]. This can be viewed as a first-order Taylor
expansion of general nonrigid motion, which can be a good ap-
proximation locally for smooth motion. We limit our analysis to
2-D cases and focus on using a first-order difference matrix as
a spatial regularizer.

A. Single Gated Reconstruction (SGR)

We first briefly review the “conventional” analytical ap-
proach for designing a regularizer that provides approximately
uniform and isotropic spatial resolution for static image recon-
struction [27], [29]. This SGR method is also suitable when
reconstructing an individual frame, e.g., , from the corre-
sponding measurement . However, the empirical results
in Section V show that this conventional regularizer does not
provide the intended spatial resolution for any of the MCIR
methods described previously, so we provide new regulariza-
tion designs for MCIR methods in subsequent subsections.
We focus on quadratic regularization methods using first-

order finite differences as follows:

(30)

where denotes 2-D convolution, denotes the 2-D
array corresponding to the lexicographically ordered vector
, is the lexicographic index of the pixel at and

(31)

where denote the spatial offsets of the th pixel’s neigh-
bors and denotes the 2-D Kronecker impulse. For our
empirical results, we used the usual 8-pixel 2-D neighborhood
with .
For the single-frame estimator in (12) with (29), one

can rewrite the LIR (14) for SGR as

(32)

where and is a diag-
onal matrix. We would like to design the regularizer [i.e.,
to select in (30)] so that the LIR closely matches some
target point spread function (PSF). A reasonable target for the
th pixel is

(33)

which is the (often shift-invariant) LIR of a penalized un-
weighted least square (PULS) estimator, and denotes the
Hessian of a standard shift-invariant quadratic regularizer. If
we assume slowly varying weights in at the th pixel, then

becomes approximately a locally circulant matrix.
One can show that “ ” approximately reduces to

(34)

Therefore, our regularization design becomes an optimization
problem with respect to (or ) for all and

(35)

where is the function of for all and as given in
(30).
An analytical formulation can simplify (35) by using a

frequency domain representation. For polar coordinates
in frequency space, we write to indicate
that is a locally shift-invariant operator with local fre-
quency response where denotes the frequency
response of a typical radial blur function (e.g., the blur
at the center of a single projection view). For a standard
quadratic penalty function (i.e., ), one can show
that , and the quadratic function (30) becomes

, where . One
can also show by using the Fourier slice theorem and assuming
the local shift invariance of (slowly varying )
that [41]

(36)

where denotes the (local) frequency response of the de-
tector response at angle local to where the th pixel
projects onto the detector at that angle, and the angular-depen-
dent weighting for the th pixel is

(37)

where is the set of rays at the angle , , and
.We simplify (35) to the following cost function

with respect to for each and

(38)

where

(39)

We can solve (38) analytically using Karush–Kuhn–Tucker con-
ditions or iteratively using an iterative nonnegative least squares
method. This summarizes [27], [29] for static 2-D imaging. We
extend these methods to MCIR next.

B. Postreconstruction Motion Correction (PMC)

We would like to design regularizers that can approxi-
mate for all . Equations (16) and (33) show that if
we design a regularizer such that

(40)
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for all where , then we can achieve .
Equivalently, we want to design (or ) such that

(41)

for all . For small , will be approximately
diagonal, so by (7) and (8), we can cancel the diagonal matrices
in and so that (41) becomes

(42)

By assuming the warp is locally affine and is ap-
proximately circulant locally, (42) becomes the following opti-
mization problem for each and :

(43)

We need to determine an analytical form for
and to solve (43) efficiently. With the results of
Appendices A and B (assuming locally affine transforms
and ), one can show the equivalent continuous forms of

and at the th pixel are as follows:

(44)

(45)

where we ignore detector blur (i.e., or )
in (45). Thus, using a procedure similar to Section IV-A, we
perform (43) by minimizing the following cost function with
respect to for each and

(46)

where the angular-dependent weighting for the th pixel is

and is defined in (37). describes the
nonuniformity and anisotropy of the spatial resolution due to the
interaction between the likelihood and the regularizer, which is
also observed in (38) for SGR. is
an additional term to explain the nonuniformity and anisotropy
due to motion. As mentioned in Section IV-A, one can solve
optimization problems of the form (46) analytically or itera-
tively [27], [29].

C. Parametric Motion Model (PMM)

For uniform and isotropic spatial resolution, we would like
to design (which is of the form (30) with ) to satisfy

from (22) and (33). By assuming a locally affine
transform, in (22) will be a locally circulant matrix at the

th voxel, which reduces to the following simpler
optimization problem:

(47)

for all . Ignoring detector blur, one can use Appendix B to show
that the analytical form for is

(48)

where . With a similar proce-
dure as in Section IV-A, one can reduce (47) to minimizing the
following cost function with respect to of :

(49)

for all where was defined in (39) and

The term accounts for displace-
ment of the activity due to motion and the term

accounts for
activity changes due to local volume change. Unlike PMC, for
PMM, the nonuniformity and anisotropy of spatial resolution
due to motion and due to the interaction between likelihood
and regularizer are closely related. Note that the nonuniformity
and anisotropy of the spatial resolution due to motion can be
more severe when the warp is not total activity-preserving
(i.e., ). One can solve the optimization problem (49)
analytically or iteratively [27].

D. Motion-Compensated Temporal Regularization (MTR)

For MTR, we would like to design for all to achieve

(50)

which means that we want to approximately match the LIR of
the “first” frame at the th pixel to and the LIRs of other
frames should satisfy the given motion relationships related to
the first frame.
We can simplify the design problem (50) as follows. For
in (25), (50) is equivalent to (41) for all . In Section IV-B,

we designed the regularizer (46) for each frame to approxi-
mately match the spatial resolution to the PULS estimator (uni-
form and isotropic), i.e., satisfying (41). After we design
for all using (46), then the term in (25) is ap-
proximately zero due to the transitivity (11). Therefore, as we
increase , we can still satisfy (50) with the regularizers
from (46) without affecting the cost function in (25). The tem-
poral regularizer only increases the correlation between image
frames and does not affect the LIR of all frames in MTR
under the assumption (40). Therefore, we can approximately
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match the spatial resolution of MTR with our target spatial res-
olution of PULS estimator using the proposed PMC regularizer
design (46).

V. SIMULATION RESULTS

The general analyses provided in the previous section apply
to nonrigid motions that are approximately locally affine. We
performed two simulations with digital phantoms: one is a
simple phantom with global affine motion between frames and
the other is a XCAT phantom [42] with general nonrigid motion
that is modeled using B-splines [35].

A. Simulation Setting

We used two digital phantoms, each with four frames of
160 160 pixels with 3.4 mm pixel width. We forward-pro-
jected these original images using a PET scanner geometry
with 240 detector samples, 3.4 mm spacing, 220 angular views,
and 3.4 mm strip width. We used 400 K, 200 K, 300 K, 300 K
mean true coincidences for each frame (1.2 M total) with 10%
random coincidences. We used simple uniform attenuation
maps for the first simulation and ignored attenuation for the
second simulation. We scaled the image intensities to preserve
the total activity as described in Section II-C.
We investigated various reconstruction methods as follows.

Target refers to a PULS estimator (33) that shows our target
spatial resolution with . SGR-S refers to a standard
gated (single frame) reconstruction method (12). PMC-S,
PMC-C, and PMC-P refer to PMC estimation results using a
conventional static regularizer, a certainty-based regularizer
[21], and our proposed regularizer designed using (46), re-
spectively. PMM-S, PMM-C, and PMM-P also refer to PMM
reconstructed images using a conventional static regularizer, a
certainty-based spatial regularizer, and our proposed regular-
izer from (49) respectively. Lastly, MTR-S and MTR-P refers
to MTR results using a conventional static regularizer and our
proposed spatial regularizer (46) respectively. PMC and PMM
were reconstructed using a regularized expectation-maximiza-
tion (EM) algorithm with Poisson likelihood [43]. PULS and
MTR were reconstructed by using preconditioned conjugate
gradient with PWLS for simplicity.

B. Simple Phantom With Affine Motion

In this simulation, we used a simple digital phantom with
known affine motion (anisotropic scaling between frame 1 and
2, rotation between frame 2 and 3, and translation between
frame 3 and 4) as shown in Fig. 2.
We put an impulse at (101,61) and generated two noiseless

projections with original and impulse-added images. We ob-
tained LIRs by subtracting a reconstructed original image from
a reconstructed impulse-added image as defined in (13). Figs. 3
and 4 show contour plots of the LIRs of the different MCIR
methods and different regularization schemes. Using static
spatial regularizers usually led to skewed LIRs (for PMC-S,
PMM-S, and MTR-S) due to the spatial-variant noise statistics
and the motion. Certainty-based spatial regularizer designs
did not alleviate the skewness of LIRs for each MCIR method
(PMC-C and PMM-C) and the LIRs of PMC-C and PMM-C
do not match the target well. However, our proposed spatial

Fig. 2. Four true images with anisotropic scale, rotation and translation.

regularization designs of (46) and (49) achieve approximately
uniform and isotropic spatial resolution that matches well with
our target resolution (PULS estimator) for each MCIR method
(PMC-P, PMM-P, and MTR-P with a wide range of ). With
the proposed regularizer designs, PMC, MTR, and PMM can
have approximately the same spatial resolution.
The skewed LIRs for conventional regularizers can cause

nonuniform estimation bias in small or narrow structures such
as small lesions or rings as shown in Fig. 5. These mean im-
ages were obtained from the noiseless projections [22]. Fig. 5(a)
shows profiles of the relative image intensity around the right
ring of the PMC reconstructed images. Our proposed PMC-P
is very close to the target compared to the other regulariza-
tion methods (PMC-S and PMC-C). The profile of Fig. 5(b)
shows that our proposed regularizer obtained approximately the
same quantitative result as that of the target for PMM. Fig. 5(c)
shows that our proposed spatial regularizer (46) approximately
achieved the same spatial resolution regardless of , while the
spatial resolution of MTR-S changes over .
We obtained the LIRs and the mean images of different

MCIR methods by reconstructing images from noiseless
projection data. We also performed 100 noise realizations
(regularizer were obtained from each realization) and showed
that (result not shown in here) the image from one noiseless
projection and the mean image from 100 noise realizations
matched very well. They confirm that we can also use the same
plug-in technique for MCIR method as that for static case [22]
to predict spatial resolution properties.

C. XCAT Phantom With Nonrigid Motion

In this simulation, we used XCAT digital phantom [42] with
respiratory and cardiac motion to generate four volumes with
nonrigid motion and selected one slice per each volume (same
location) for the 2-D simulation. We estimated the motion fields
from frame 1 to 2, from frame 1 to 3, and from frame 1 to 4 (for
PMM) by using B-spline nonrigid motion estimation [35] and
used them as the true motion, leading to the images
shown in Fig. 6. Then, we obtained the other related warps



1420 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 7, JULY 2012

Fig. 3. LIRs (images and contours) at pixel (101, 61) for different MCIR
methods. Our proposed spatial regularization designs can match well with the
uniform and isotropic target LIR. (a) PMC. (b) PMM.

(e.g., motion from frame 4 to 1 for PMC and from 3 to 4 for
MTR) by using (54) and the composition of transformations
(e.g., ). Thus, there is no motion model mis-
match in this experiment, so that we can focus on the spatial
resolution properties.
To measure LIRs, we put nine impulses as indicated in

Fig. 6 marks . Fig. 7 shows the LIRs of PMC at the
nine locations.Fig. 7(a) and (b) shows that conventional and
certainty-based spatial regularizers lead to skewed LIRs as
compared to the Target LIR. However, our proposed regularizer
for PMC yielded a good match to the Target LIR as shown
in Fig. 7(c). Fig. 7(d) and (e) confirms that regularizers that
do not strive for isotropic spatial resolution lead to skewed
LIRs as compared to the Target LIR. However, our proposed
regularizer for PMM shows a good match to the Target LIR as
shown in Fig. 7(f). Fig. 8 shows LIRs of MTR at nine locations.
Fig. 8(a) and (b) shows that conventional regularizer cannot
achieve the matched spatial resolution to the target for any
value, while our proposed regularizer for MTR produced nearly
uniform and isotropic LIRs as in Fig. 8(c) and (d) for a wide
range of values.
Fig. 9 shows absolute difference images between the mean

image for each method and Target. PMC-S differs the most

Fig. 4. LIRs (images and contours) at pixel (101, 61) for MTR. Our proposed
spatial regularization designs can match well with the target LIR regardless of
while LIRs of MTR-S depend strongly on values. (a) MTR-S. (b) MTR-P.

from the Target especially for edges and relatively small
structures (near myocardium in our example) in Fig. 9(a).
PMC-C matches somewhat better due to nearly uniform spatial
resolution as seen in Fig. 9(b). Fig. 9(c) shows that PMC-P
best matches the Target. Fig. 9(d)–(f) shows similar results for
PMM. Similarly, the agreement of PMM from the Target mean
image improves as the spatial regularizer encourages uniform
and isotropic spatial resolution. Likewise, Fig. 10 shows that
our proposed spatial regularizer for MTR yielded the mean
images closest to the Target mean image for a wide range of
values as shown in Fig. 10(c) and (d), as compared to the

results of conventional regularizers in Fig. 10(a) and (b).

VI. DISCUSSION

The analysis in this paper shows that MCIR for nonrigid
(even affine) motion leads to nonuniform and anisotropic
spatial resolution properties when one uses conventional static
regularizers. We proposed quadratic spatial regularizers that
approximately achieve isotropic and uniform spatial resolution
for three different MCIR methods for the case of known non-
rigid motion. Our proposed regularizers (46) and (49) yielded
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Fig. 5. Profiles around the ring on the right of reconstructed images of PMC,
PMM, andMTR (with different values) with different spatial regularizers from
noiseless projection data. Nonuniform and/or anisotropic LIRs lead to nonuni-
form estimation bias in small or narrow structures such as small lesions or rings.
Reconstructed images are shown in supplementary figures. (a) Ring profile of
PMC. (b) Ring profile of PMM. (c) Ring profile of MTR.

LIRs that match well with the Target LIR which is isotropic
and uniform.
The assumption that the motion is locally affine should be

reasonable for any smooth organ motion such as heart and
lungs when the time resolution is sufficient (e.g., see [44] and
[45] for local affine models to approximate cardiac motion).
Mathematically, the Taylor approximation of smooth nonrigid
motion becomes more accurate as the region of interest (ROI)
shrinks. In our analysis, the effective ROI is very small (usually
about 2 pixels in each direction) because we focus on each LIR
individually. Thus, even for nonaffine nonrigid motion, our
proposed methods still produced LIRs that match fairly well

Fig. 6. Four XCAT phantom images with nonrigid motion.

with the Target LIR. However, this assumption may break for
sliding motion such as the motion near the interface between
diaphragm and rib cage. For lower resolution modalities like
PET or SPECT, this type of motion can still be approximated
by smooth motion. For high resolution imaging modalities,
treating this sharp sliding motion should be further investigated
along with nonquadratic spatial regularizers.
Our analysis assumed “known true motion”, but obtaining

exact motion from multimodal imaging systems is challenging
due to misregistration between two imaging modalities (e.g.,
PET and CT) and the nonlinear, nonconvex nature of image reg-
istration problem. We investigated the effect of motion error in
our reconstructed images.We reconstructed the simple phantom
in Section V-B again, but with 1.7 mm (a half pixel) and 3.4 mm
(1 pixel) motion errors in the x-direction deformation. Addition-
ally, we reconstructed PULS image with motion errors by mini-
mizing with respect to where
is a first-order finite difference matrix for a standard shift-in-

variant quadratic regularizer. When the motion estimation error
was small (1.7 mm), the maximum absolute errors between the
reconstructed image and the target image for PULS, PMC-S,
and PMC-P were 0.7, 1.9, and 1.1. In this case, the nonunifor-
mity and anisotropy of the bias due to the interaction between
Poisson likelihood and regularizers was still significant. How-
ever, when the motion estimation error was large (3.4 mm), the
maximum absolute errors for PULS, PMC-S, and PMC-P were
1.4, 2.2, and 1.7. The nonuniformity anisotropy of the bias due
to the motion error started to become a dominating factor for
large motion error. PMM also showed similar tendency. For
small motion errors, our proposed regularizers can still reduce
the nonuniformity and anisotropy of the bias as expected be-
cause is slowly varying and we assumed local affine motion
(i.e., smooth motion). For large motion errors, MCIR itself may
fail to yield images with good quantification accuracy for any
regularization method. There is much effort on improving the
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Fig. 7. Contours of LIRs for PMC and PMM. Our proposed PMC-P and
PMM-P approaches approximately match with target spatial resolution for
general nonrigid motion. (a) PMC-S. (b) PMC-C. (c) PMC-P. (d) PMM-S.
(e) PMM-C. (f) PMM-P.

accuracy of motion estimation by using simultaneous acquisi-
tion such as PET-MR, or by using joint estimation of image and
motion. The issue of the nonuniform and anisotropic spatial res-
olution will become increasingly important as the accuracy of
the motion estimation in MCIR models continues to improve.
The spatial resolution analysis and regularizer designs in

this paper can provide the basis for interesting future work
such as analyzing the noise properties of MCIR methods [46]
and extending regularization design to 3-D PET/CT and to
nonquadratic regularizers. It is straightforward to extend this
work to 3-D cylindrical PET with 6-voxel 3-D regularizer
[47], which is relevant for 3-D PET rebinning methods [48].
Extending this analysis to fully 3-D PET or fan-beam CT will
be more challenging, just as [23], [27] extended [21], [29],

Fig. 8. Contours of LIRs for MTR. Our proposed MTR-P approximately
matches with target despite general nonrigid motion and different . (a) MTR-S
with . (b) MTR-S with . (c) MTR-P with . (d) MTR-P
with .

respectively. This analysis can also provide insights into the
methods of joint image reconstruction and motion estimation
(unknown motion) [7], [8], [11], [13]–[15]. One may use the
proposed regularizers in the joint estimation framework by
using currently estimated motion instead of using true motion.
However, the effect of the proposed regularizer in this case
should be further analyzed.

APPENDIX A
ADJOINT OPERATOR OF A WARP

This appendix analyzes the properties of the transpose warp
matrix by considering its continuous space analog. Let

denote a spatial transformation with positive
Jacobian determinant. Let denote the space of
(square integrable) images over and define the warp operator

by if and only if for ,
and all . This appendix determines the adjoint of

, defined as the operator that satisfies
for all , , where denotes the usual inner product on

By a simple change of variable , we have

(51)
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Fig. 9. Absolute difference images between PMC/PMM and target.
PMC-S/PMM-S show severe nonuniform bias near edges or relatively small
structures. PMC-C/PMM-C alleviate this bias using nearly uniform spatial res-
olution and PMC-P/PMM-P performed best by nearly uniform/isotropic
spatial resolution. (a) (b)
(c) (d) (e)
(f) .

where denotes the determinant of Jacobian of . We
define an operator such that

iff

Then, by (51), the adjoint operator is given by

(52)

Therefore, in continuous space, the adjoint of an invertible non-
rigid warp is the product of the inverse of the warp with a di-
agonal operator based on the local Jacobian determinant of the
warp. The discrete approximation that matches (52) is

(53)

Fig. 10. Absolute difference images between MTR and Target. MTR-S with
any values show significant nonuniform bias in small or narrow structures
such as small lesions or rings, but MTR-P reduces this bias for a wide range of
values. (a) , . (b) , .

(c) , . (d) , .

Now we use the result (53) and (8) to approximate the trans-
pose of the discrete space matrices in (6) as follows:

(54)

APPENDIX B
EQUIVALENT FREQUENCY FORM
FOR AFFINE TRANSFORMATION

This appendix analyzes the behavior of a gram matrix or a
quadratic regularizer that is sandwiched in between the trans-
pose and forward affine transformation operators such as
and in (16). We consider the continuous-space analogue as
follows:

(55)

where denotes the frequency response with frequency do-
main variables , is a Fourier transform operator, and cor-
responds to the total activity-preserving affine transform oper-
ator that is associated with the affine transform

(56)

Here, is a invertible matrix, is a translation
vector, and is spatial domain coordinates in . If
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has Fourier transform , then the Fourier transform of
is

After multiplying by and matching a change
of variables, the inverse Fourier operator will result in the
following continuous function:

Lastly, by Appendix A, an operator will change into
and multiply by . Therefore, (55) simplifies to

(57)

Note that the translation does not affect the equivalent fre-
quency response (57). For example, if in
the polar frequency coordinate , the frequency response
of will be .
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I. SIMULATION RESULTS

A. Simple phantom with affine motion

Fig. 1 (a) and (b) show that the image intensities around the rings ade nonuniform due to the anisotropic and/or
non-uniform spatial resolutions of PMC-S and PMC-C. Fig. 1 (c) shows our proposed PMC-P, which approximately
achieved the same spatial resolution as the target image in Fig. 1 (d) with isotropic and uniform spatial resolution.
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Fig. 1. Reconstructed images of PMC with different spatial regularizers from the noiseless projection data. Nonuniform and/or anisotropic
LIRs lead to non-uniform estimation bias in small or narrow structures such as small lesions or rings.
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Fig. 2. Reconstructed images of PMM with different spatial regularizers from the noiseless projection data. Nonuniform and/or anisotropic
LIRs lead to non-uniform estimation bias in small or narrow structures such as small lesions or rings.

Fig. 2 also shows similar results: PMM-S and PMM-C caused non-uniform estimation bias due to the spatial-
variant data statistics and the motion, but PMM-P achieved approximately the same isotropic and uniform spatial
resolution as those of the target PULS estimator.

Fig. 3 shows that our proposed spatial regularization method for MTR, denoted MTR-P, approximately achieved
the same spatial resolution regardless ofζ, whereas the spatial resolution of MTR-S changes withζ.
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Fig. 3. Reconstructed images of MTR-S, MTR-P with differentζ values from the noiseless projection data. Nonuniform and/or anisotropic
LIRs lead to non-uniform estimation bias in small or narrow structures such as small lesions or rings.


