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Abstract
A penalized-likelihood (PL) SPECT reconstruction method using a modified
regularizer that accounts for anatomical boundary side information was
implemented to achieve accurate estimates of both the total target activity and
the activity distribution within targets. In both simulations and experimental
I-131 phantom studies, reconstructions from (1) penalized likelihood
employing CT-side information-based regularization (PL-CT), (2) penalized
likelihood with edge preserving regularization (no CT) and (3) penalized
likelihood with conventional spatially invariant quadratic regularization (no
CT) were compared with (4) ordered subset expectation maximization (OSEM),
which is the iterative algorithm conventionally used in clinics for quantitative
SPECT. Evaluations included phantom studies with perfect and imperfect side
information and studies with uniform and non-uniform activity distributions in
the target. For targets with uniform activity, the PL-CT images and profiles
were closest to the ‘truth’, avoided the edge offshoots evident with OSEM and
minimized the blurring across boundaries evident with regularization without
CT information. Apart from visual comparison, reconstruction accuracy was
evaluated using the bias and standard deviation (STD) of the total target activity
estimate and the root mean square error (RMSE) of the activity distribution
within the target. PL-CT reconstruction reduced both bias and RMSE
compared with regularization without side information. When compared
with unregularized OSEM, PL-CT reduced RMSE and STD while bias was
comparable. For targets with non-uniform activity, these improvements with
PL-CT were observed only when the change in activity was matched by a
change in the anatomical image and the corresponding inner boundary was also
used to control the regularization. In summary, the present work demonstrates
the potential of using CT side information to obtain improved estimates of the
activity distribution in targets without sacrificing the accuracy of total target
activity estimation. The method is best suited for data acquired on hybrid
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systems where SPECT-CT misregistration is minimized. To demonstrate
clinical application, the PL reconstruction with CT-based regularization was
applied to data from a patient who underwent SPECT/CT imaging for tumor
dosimetry following I-131 radioimmunotherapy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is much interest in accurate quantitative single photon emission computed
tomography (SPECT) imaging for dosimetry in internal emitter therapies such as I-131
radioimmunotherapy (RIT) and radioiodine therapy. It has been hypothesized that the efficacy
of such therapies is determined not primarily by the mean radiation absorbed dose to the tumor,
but rather by other measures that represent the 3D distribution of absorbed dose. Hence, in
recent dose–response studies, in addition to the mean dose, there has been much interest in
evaluating other summary measures including the dose–volume histogram and the equivalent
uniform dose, which reflects the biologic effect of a non-uniform distribution of absorbed
dose (Prideaux et al 2007, Amro et al 2010). For such evaluations it is important to achieve
accurate estimates of both the total target activity and the activity distribution within the target.

Hybrid SPECT/CT systems where patient anatomy and radionuclide distribution can
be imaged in a single session have the potential to significantly improve SPECT activity
quantification and 3D patient-specific dosimetry. The CT data can be used to obtain the
density map for patient-specific dose estimation, to define the tumor volume of interest and
also to correct for factors that degrade SPECT quantification such as attenuation, scatter and
partial volume effects due to the finite resolution of the imaging system. In commercial
SPECT reconstruction software available with hybrid systems, the CT information is used
only for attenuation correction. In addition to attenuation correction there have been a few
recent research studies evaluating quantitative SPECT/CT imaging with CT-based corrections
for scatter and partial volume effects. However, the focus of these studies was on determining
total target activity and not on target activity distribution (Shcherbinin et al 2008, Willowson
et al 2008).

Currently, the conventional iterative reconstruction algorithm for SPECT is unregularized
3D ordered-subset expectation maximization (OSEM), often followed by post-reconstruction
filtering to reduce image noise. Indiscriminate smoothing including across region boundaries
degrades recovery of activity. However, images produced by iterative reconstruction without
filtering have been observed to have edge artifacts that worsen as the iterations proceed (Snyder
et al 1987, Tsui et al 1994, Koral et al 2007a). These artifacts are caused by the unstable
‘deconvolution’ of the collimator–detector response when one tries to compensate for that
response to improve activity recovery. At large iteration numbers there can be a tendency
for over-compensation of collimator–detector response. Tsui et al demonstrate this in their
simulation study of objects with sharp edges. When detector response was included in the
simulation, no edge artifacts were observed in the reconstructed images due to blurring of
the edges, but with detector response compensation the artifacts reappear. In previous I-131
studies, our group has achieved reasonably good target activity quantification accuracy using
3D OSEM with detector response compensation and no filtering (Dewaraja et al 2005, Koral
et al 2007b), but the problems with edge artifacts and the resulting distortion of the activity
distribution were not addressed. To achieve accurate estimates of the activity distribution
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within the target, free of edge artifacts, we evaluated a penalized-likelihood approach to
SPECT reconstruction using a modified regularizer that accounts for anatomical (CT) boundary
information in the present work.

Previously, in positron emission tomography (PET), reconstruction accuracy has been
improved by using anatomical side information during the emission tomography reconstruction
(Fessler et al 1992, Comtat et al 2002, Nuyts et al 2005). In SPECT, most past studies have
focused on using anatomical boundary information in a post-reconstruction step (Du et al 2005,
Boening et al 2006, Dewaraja et al 2006). However, it has been shown that incorporating the
boundary information during the reconstruction is superior to a post-processing approach
(Nuyts et al 2005). In addition, the intra-reconstruction approach does not require an
assumption of uniform uptake within the target, inherent to the post-processing approach.
There has also been some interest in joint estimation in SPECT combining anatomical and
functional information (Gindi et al 1993, Bowsher et al 1996). Although joint estimation can
potentially compensate for large alignment error, it is computationally intensive and currently
not suitable for clinical processing of 3D data. In the present work, for hybrid systems
where SPECT-CT misregistration is minimized, we investigate the simpler method where
anatomical boundary information is used during the penalized-likelihood reconstruction. The
side information controls the regularization by allowing smoothing in uniform regions, but
preventing the smoothing across region boundaries to avoid activity spillover between distinct
regions. To incorporate side information, a quadratic regularizer is modified following the
previous implementations in PET reconstruction (Fessler et al 1992, Comtat et al 2002). For
the first time, the method is applied to SPECT data in the present study. In the present SPECT
implementation we also account for the fact that region masks that control the regularization
are non-binary in practice, because they are typically defined on CT space and must be
re-sampled to SPECT space. In phantom studies the proposed reconstruction method is
compared with penalized likelihood methods that regularize without CT information and
also with unregularized OSEM. Our goal was to achieve improved estimates of the activity
distribution within the target, without sacrificing the total target activity quantification accuracy
that can be achieved with unregularized 3D OSEM.

2. Methods

2.1. Measurement model and iterative algorithm

We used the standard Poisson statistical model for emission tomography, where each raw
measured SPECT projection value has a mean that is related linearly to the unknown voxelized
activity distribution via one row of a system matrix A. For the forward and backprojector we
used the rotate-sum method (Zeng and Gullberg 1992) using bilinear interpolation for rotating
the current estimate of the activity distribution and the attenuation map.

The negative log-likelihood for the Poisson model for emission tomography is

L(f ) =
∑

i

hi([Af ]i ), hi(l) = (l + si) − yi log(l + si), [Af ]i =
∑

j

aij fj , (1)

where f = (f1,. . ., fN) denotes the unknown activity image, yi denotes the projection data,
si denotes the additive scatter contribution and aij denotes the system matrix elements. The
function hi(l) denotes the negative log-likelihood for the ith measurement. For penalized-
likelihood image reconstruction we minimize a cost function that is the sum of the negative
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log-likelihood for Poisson data and a regularization term, i.e., we minimize L(f ) + R(f ). We
consider regularizers of the general form

R(f ) =
∑

k

wkϕ([Cf ]k), (2)

where the matrix C is typically a matrix that evaluates the finite differences between
neighboring voxel values and the convex potential function ϕ has bounded curvature
ϕ′(t)/t � 1, where ϕ′ denotes the derivative of ϕ.

For the regularized case, we used an ordered-subsets iterative algorithm based on a
paraboloidal surrogates method described in Fessler and Erdogan (1998). The use of ordered
subsets with the paraboloidal surrogate curvatures was described in Erdogan and Fessler (1999)
for transmission tomography and the extension to emission tomography is straightforward.
The one-subset version of the algorithm has the following diagonally preconditioned gradient
descent form:

f n+1
j =

[
f n

j − 1

dj

(∑
i

aijh
′
i ([Af n]i ) +

∑
k

ckjwkϕ
′([Cf ]k)

)]
+

, (3)

where [x]+ = max(x, 0) enforces the non-negativity constraint. The denominator dj is
precomputed prior to iteration as given by Fessler and Erdogan (1998)

dj =
∑

aijηi

∑
m

aim +
∑

k

|ckj |wk

∑
m

|ckm|, (4)

where ckm denotes the elements of C and where the ‘precomputed’ log-likelihood curvatures
are

ηi(l) =
{

1/yi, yi > 0
0, otherwise

. (5)

See Jacobson and Fessler (2007) for a general discussion of the convergence properties
of this type of algorithm. To accelerate convergence of the algorithm, we used the 6-subset
version in this investigation, where we replace the summations over i above with a summation
over the measurements in a subset of the projection views, scaled by the number of subsets.
This algorithm requires one forward projection and one backprojection per iteration, unlike the
method in Fessler and Erdogan (1998) that needs two backprojections per iteration. Software
for this method is available (Fessler 2004).

2.2. Regularizing penalty function

For simplicity we describe the regularizers in 1D; the extension to 3D is straightforward but
notationally cumbersome. In 1D the conventional quadratic regularizer (Fessler 1994) for an
object with N voxels with values fj is

R(f ) = β

N∑
j=2

(fj − fj−1)
2, (6)

where the regularization or the smoothness parameter β controls the strength of the
regularization. This regularizer will control noise but also blur the activity across image
boundaries between different regions.

To reduce this blur, we also investigated edge-preserving regularization using the convex,
nonquadratic, Huber function ψ (Huber 1981)

R(f ) = β

N∑
j=2

ψ(fj − fj−1). (7)
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The Huber function can be written as ψ(t) = min(t2/2, δ|t | − δ2/2), where δ is a parameter
that controls the contrast level at which edges begin to be conserved. If δ is too large, then the
Huber function is approximately quadratic and edges are not preserved. If δ is too small, then
even small variations due to noise can be ‘preserved’ and the reconstructed image can be too
noisy or exhibit blocky textures. For the simulations we selected δ to be 10% of the difference
between the target voxel values and the background voxel values. This choice helps ensure
that the boundaries can be preserved while still smoothing noise in uniform regions. For
measured data, we used the initial OSEM reconstruction to determine target and background
concentrations and then set δ to be 10% of the difference. These values may be suboptimal but
they were chosen by this simple and practical procedure without further manual refinement.

Neither of the preceding regularizers uses any anatomical side information. To incorporate
side information, we follow previous work in PET reconstruction (Fessler et al 1992, Comtat
et al 2002) and modify the quadratic regularizer as follows:

R(f ) = β

N∑
j=2

wj(fj − fj−1)
2, (8)

where the regularization weights wj control the strength of regularization between neighboring
voxel values fj and fj−1. Ideally we would like wj = 1 within uniform regions and wj = 0
when voxels j and j − 1 correspond to regions with different activity levels, to avoid blur or
spillover between those distinct regions.

In the present implementation we accounted for the non-binary nature of the region masks
that determine regularization weights. In practice there are not distinct boundaries between
different regions because of the finite voxel size, particularly in SPECT. Suppose that the CT
image is segmented into K different regions, and let ljk denote the ‘labels’ that indicate whether
voxel j belongs to region k. Ideally these region masks would be binary, with each voxel
belonging to one and only one region. In our application however, tumors are outlined on CT
space (typically 512 × 512) and must be re-sampled to SPECT space (typically 128 × 128).
Due to the finite size of the SPECT voxels relative to the CT voxels, our region masks take
values in the interval [0, 1], with

∑K
k=1 ljk = 1. In the interior of a region the values of ljk are

0 or 1, but there are intermediate values around the boundaries of each region. The presence
of these intermediate values leads to an open question of how to choose the corresponding
regularization weights wj . In the present implementation we used the following approach.
First we formed a ‘label’ image lj = ∑K

k=1 kljk . Most voxels in this label image take discrete
values in the set {1, 2, . . . , K} but there are intermediate values near region boundaries. Then
we defined the regularization weights using thresholded differences of the label image:

wj =
{

1, |lj − lj−1| � ε

0, otherwise
. (9)

We chose the threshold ε = 0.1; using this small value ‘disables’ the regularization at all
region edges to avoid blur or spill-over. If the region masks were binary then the label image
would be discrete and for any value of ε ∈ (0,1) this approach would provide ideal binary
regularization weights in the absence of mismatch between CT and SPECT.

We also investigated the ‘blurred label’ method (Comtat et al 2002) for defining the
regularization weights to account for the uncertainty associated with mismatched anatomical
information. Labels were smoothed with a Gaussian kernel of FWHM 4.0 and 5.0 mm. As
discussed in section 3, the ‘blurred labels’ did not work as well as the above approach for the
non-binary region masks of the present application. Optimizing regularization weights wj for
non-binary masks remains an open problem for future work.
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We chose the regularization parameter β to obtain a desired resolution of the reconstructed
image as previously proposed (Fessler and Rogers 1996). When β is too small the reconstructed
image will be very noisy, while if β is too large the image will be very smooth, hence
resulting in a loss of useful information. We took the practical approach of choosing β by
looking at the point spread function (away from region boundaries) to get a target FWHM of
∼1 cm (2 pixels). This corresponded to a β value of 2−5 in the x- and y-directions and 2−9 in
the z-direction (we needed to adjust the regularization strength separately in x, y and in z to
make the reconstructed resolution approximately isotropic). All regularized reconstructions
presented in section 3 were evaluated at this same choice of β (initially, phantom profiles
were investigated at other values of β and it was evident that at smaller values there was
insufficient regularization to get rid of the edge artifacts and the solution approached that of
OSEM).

2.3. Phantom and patient studies

Both simulated and experimental I-131 phantom studies were performed to evaluate the
reconstructions. The camera modeled/used was a Siemens Symbia TruePoint SPECT/CT
with a high-energy parallel-hole collimator, a 5/8′′ NaI crystal and the following acquisition
parameters for the experimental measurements: 180◦ and 30 stops per head; body contouring;
20% photopeak at 364 keV; two adjacent 6% scatter correction windows and a 128 × 128
matrix with a pixel size of 4.8 mm. The collimator parameters were as follows: septa, 2 mm;
hole diameter, 4 mm; and hole length, 59.7 mm. The CT component of acquisition used full
circle rotation, 130 kV, 35 mAs and 5 mm slices. The CT data were reconstructed with a
512 × 512 × 196 matrix and 0.98 mm × 0.98 mm × 2 mm voxel size using commercial
ESOFT (Siemens) software. The SPECT data were reconstructed using the OSEM and PL
algorithms developed at the University of Michigan.

The SPECT camera evaluated here uses a contouring orbit, so the depth-dependent
detector/collimator response was adjusted for each projection view based on the corresponding
distance of the collimator to the isocenter. Our implementation uses a backprojector that is
exactly matched to the transpose (adjoint) of the forward projector. The detector/collimator
response model was based on a combination of a 2D Gaussian function for the central
core and exponential tails to model penetration, important for I-131. The parameters of
this approximate analytical model were determined by least-squares fitting to point spread
function measurements at several distances from the collimator. No modeling of the fine-
grained collimator hole pattern was used. To account for collimator scatter, the measured
point source data were first corrected using a triple energy window (TEW) scatter estimate,
prior to the least-squares fitting. For object scatter, a TEW-based scatter estimate was included
in the statistical model as a known additive term as appropriate for Poisson statistics. We have
previously implemented 3D OSEM with this system model for I-131 SPECT (Koral et al
2007b).

2.3.1. Simulations. Targets with uniform activity. The simulated phantom geometry
consisted of six (95 mL, 61 mL, 17 mL, 11 mL, 8 mL and 4 mL) hot spheres in a warm
elliptical tank with dimensions 23 cm × 32 cm × 21 cm (figure 1). Activity within the
spheres was uniformly distributed; however, when synthesizing the phantom we accounted
for partial filling at the edges of the sphere by setting the activity at the boundary voxels
to an intermediate value depending on the fraction of the voxel occupied. All spheres had
the same contrast; the sphere to background activity concentration ratio was 6:1, which is
a realistic distribution for tumor imaging following I-131 RIT (Dewaraja et al 2005). The
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Figure 1. Images and profiles for a single noisy realization of the simulation with uniform activity
spheres. (a) True activity, (b) regularization weights in the vertical direction, (c) OSEM, (d) PL-CT,
(e) PL-Q, (f) PL-EP and (g) profiles across the center of the image.

SPECT projection data for this digital phantom were generated using an analytical projector,
which included non-uniform attenuation and the measured depth-dependent detector response
of the SPECT camera. Projections were scaled to 50 million total counts before the addition
of Poisson distributed noise to obtain ten noisy realizations. This represents a typical noise
level for patient imaging in I-131 RIT.

The true boundaries of the simulated object were used when defining the label image.
The label image was non-binary with intermediate values near region boundaries as will
be the case with clinical data. Simulation studies were performed for two conditions (1)
with accurate alignment of the SPECT data and the target boundaries, representing perfect
side information and (2) with the SPECT data translated by 5 mm with respect to the target
boundaries, mimicking imperfect side information due to SPECT-CT misregistration.

Targets with non-uniform activity. In patient imaging the activity distribution within tumors
can be non-uniform. Hence, the target activities of the three largest spheres of the previous
simulation were changed to add some degree of non-uniformity within the target. These
spheres had an inner core and an outer shell, with an activity concentration ratio of 6:4:1
for core to shell to background (figure 2). All other aspects of the phantom geometry,
including target volumes, were kept the same. Multiple noisy realizations were generated as
before.

The label image for the non-uniform targets was defined in two ways: (1) using boundaries
of both the inner core and the outer shell and (2) using only the outer boundary of the target.
The first represents the case where the non-uniformity in the target uptake visible on SPECT
is matched by a corresponding anatomical change visible on CT. The second case represents
the situation where there is a mismatch between the inhomogeneity seen on SPECT and that
visible on CT.
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(b)(a)

(d)(c)
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PL-CT

PL-CT (no
inner boundary)

Figure 2. Images and profiles for a single noisy realization of simulation with non-uniform activity
spheres. (a) True activity, (b) OSEM, (c) PL-CT with inner and outer boundaries, (d) PL-CT with
only outer boundary and (e) profiles across the center of the image.

2.3.2. Experimental measurements. Targets with uniform activity. The phantom geometry
for the experimental measurement consisting of six hot spheres in an elliptical tank was similar
to that of the simulation. Here the I-131 activities were chosen not only to obtain a realistic
tumor to background contrast but also to consider radiation safety regulations and the limits
of the dose calibrator, which is certified to ±5% down to 30 μCi. The background activity
in the elliptical tank was 4.8 mCi and the sphere activities were 210 μCi, 133 μCi, 39 μCi,
32 μCi, 31 μCi and 32 μCi going from the largest to the smallest sphere. Thus the sphere
to background activity concentration ratio ranged from 5:1 for the larger spheres to 18:1 for
the smallest sphere. Multiple (eight) 30 min sequential acquisitions were performed under
identical conditions. To form the label image the sphere outlines were defined slice-by-slice
on CT and were re-sampled to SPECT space. This mimics the situation in patient studies
where tumor outlines are defined on CT.

Targets with non-uniform activity. Two spherical shells (Data Spectrum, Inc.) with an inner
core and an outer shell fillable with different activity concentrations were positioned on either
side of a uniform sphere in the elliptical tank (figure 3). The uniform sphere was 95 mL
and was filled with 207 mCi while the background activity in the elliptical tank was 5.2 mCi
(center sphere to background activity concentration ratio of 4:1). In the larger spherical shell
the inner core was 31 mL and was left ‘cold’ (representing a tumor with a necrotic center)
while the outer shell was 84 mL and was filled with 135 μCi (outer shell to background
activity concentration ratio of 3:1). In the smaller spherical shell the inner core was 5.5 mL
and was filled with 43 μCi while the outer shell was 21 mL and was filled with 50 μCi (core to
shell to background activity concentration ratio of 13:4:1). As with the previous experiment,
eight 30 min acquisitions were performed. Target boundaries (including inner core) were
drawn in CT space and were re-sampled to SPECT space to define the label image (1) using
both inner core and outer shell boundaries and (2) using only the outer boundaries of the
targets.

2.3.3. Patient study. To demonstrate clinical application, the penalized-likelihood
reconstruction with CT-side information-based regularization was applied to SPECT/CT
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Figure 3. Images and profiles for measurement with non-uniform activity spheres. (a) CT image,
(b) true activity, (c) OSEM, (d) PL-CT, (e) PL-Q, (f) PL-EP and (g) profiles across the center of
the image.

imaging data from a patient imaged at our clinic 2 days after a 2.8 GBq (76 mCi) administration
of I-131 Tositumomab therapy for non-Hodgkin’s lymphoma (NHL). In NHL, typically the
tumors are well defined on CT and are relatively large (Dewaraja et al 2009). Previously
as part of an ongoing research study, SPECT data had been reconstructed with 3D OSEM
and tumors in the inguinal region had been defined on 512 × 512 CT to determine tumor
absorbed dose. For the present work, these tumor outlines were interpolated to SPECT space
to determine the weights for the PL-CT regularization.

2.4. Evaluation

For both simulated and measured phantom data, we compared reconstructions from (1)
unregularized OSEM with no post-filtering; (2) penalized likelihood employing CT-side
information-based regularization (PL-CT); (3) penalized likelihood with edge preserving
regularization (PL-EP) (no CT) and (4) penalized likelihood with conventional spatially
invariant quadratic regularization (PL-Q) (no CT). The OSEM reconstruction was used as
the initial estimate for the regularized reconstructions. To determine the number of iterations,
we considered convergence, noise, the edge artifacts and the computation time. Initial phantom
studies showed that convergence is not achieved for the smallest spheres even after 70 iterations.
However as the numbers of OSEM iterations increase, the noise and the severity of the edge
artifacts (evident in figure 1(c)) also increase. Based on these observations we chose to use
40 OSEM iterations (6 subsets) for the initial estimate followed by 30 iterations (6 subsets)
with the regularized algorithm. The computation time for the OSEM reconstruction and that
for the PL-CT reconstruction were similar; 185 s for ten OSEM iterations compared with
200 s for ten PL-CT iterations on a 3 GHz dual processor Mac Pro.
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In addition to visual comparison of images and profiles, quantitative evaluation of the
different SPECT reconstructions was carried out for each target based on the mean estimated
bias, STD and RMSE in counts (simulation) or activity (experiments). In the case of
experimental measurement, the conversion from SPECT counts to activity was carried out
using the camera calibration factor (counts per second per MBq) determined from experimental
measurement with a known amount of activity distributed in an elliptical phantom. The bias
as defined below is a measure of how close the estimated total target activity is to the true
total target activity, while the RMSE as defined below is a measure of how close the activity
distribution within the target is to the true target activity distribution. The VOI for the target was
the true object in the case of simulation and the CT-defined object in the case of experimental
measurement. In addition, evaluations were also performed for VOIs with a radius 5 mm
larger than the object radius.

For object i, if Ci is the mean VOI counts (or activity) from the N realizations/acquisitions,
then the mean estimated bias is given by

Biasi = CT
i − Ci

CT
i

, (10)

where CT
i is the true VOI counts (or activity) for the object i.

The standard deviation for object i is given by

STDi =
√√√√ 1

N − 1

N∑
j=1

(Ci − Cij )2, (11)

where Cij is the VOI counts (or activity) for realization j for the object i.
The RMSE of object i with voxels ni is given by

RMSEi =
√√√√ 1

N

1

ni

N∑
j=1

ni∑
k=1

(xj,k − tk)2, (12)

where xj,k is the estimated count (or activity) value of voxel k for realization j and tk is the true
value.

3. Results

3.1. Simulation studies

Targets with uniform activity. Figure 1 compares different reconstructions of a single noisy
realization of the phantom with uniform activity targets. Reconstructions were compared at
the same number of iterations (70 OSEM or 40 OSEM followed by 30 with the regularized
algorithm). Visually, the PL-CT reconstruction (using the regularization weights shown in
figure 1(b)) is closer to the true image than the other reconstructions. As evident from
the images and profiles, unregularized OSEM with no post-filtering is noisy and produces
significant edge overshoots, which result in a ‘cavity’ at the center of the larger spheres. This
artifact is not evident in the PL-CT reconstruction. The images and profiles corresponding to
regularization without side information are less noisy, but there is considerable blurring across
boundaries, which is minimized with PL-CT.

We verified the source of the edge artifacts by carrying out the OSEM reconstruction
without collimator–detector response compensation. In this case, in agreement with previous
observations (Tsui et al 1994), the artifacts were not evident in the images and profiles even
after 70 iterations, but recovery of sphere counts was significantly worse than 3D OSEM with
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Table 1. %Bias, %STD and %RMSE in VOI counts for the simulation of uniform activity spheres
with perfect SPECT-CT registration (figure 1).

Sphere OSEM PL-CT PL-Q PL-EP

(mL) Bias STD RMSE Bias STD RMSE Bias STD RMSE Bias STD RMSE

95 5 0.2 17 5 0.2 13 19 0.1 23 9 0.2 17
61 6 0.4 18 6 0.3 14 23 0.2 26 11 0.3 19
17 12 1.4 25 12 1.2 19 37 0.9 34 20 1.4 27
11 11 1.3 23 12 1.1 18 39 0.6 36 20 1.2 26

8 14 1.9 23 16 1.8 21 45 1.4 39 26 2.0 26
4 24 3.4 26 28 2.8 27 54 1.7 47 39 3.3 36

Table 2. %Bias, %STD and %RMSE in VOI counts for the simulation of uniform activity spheres
with SPECT-CT misregistration of 5 mm.

Sphere OSEM PL-CT PL-Q PL-EP

(mL) Bias STD RMSE Bias STD RMSE Bias STD RMSE Bias STD RMSE

95 8 0.3 24 8 0.3 19 21 0.2 26 12 0.3 23
61 10 0.2 26 9 0.2 21 24 0.1 28 14 0.2 26
17 17 0.9 33 17 0.8 26 39 0.6 37 24 0.8 34
11 18 0.9 34 18 0.8 27 42 0.5 39 26 0.9 35

8 21 1.3 34 23 1.2 29 47 0.8 41 31 1.2 35
4 32 2.2 38 35 2.1 36 56 1.4 49 44 2.4 42

collimator–detector response compensation. Since our goal was to improve estimation of
activity distribution within the target without sacrificing total target quantification accuracy,
OSEM without collimator–detector response compensation was not an option and was not
evaluated further.

The bias, STD and RMSE in SPECT counts with the different reconstructions are
compared in table 1 for the case where there is no SPECT-CT mis-alignment and in table 2
for the case where the SPECT and CT data are mis-aligned by 5 mm. The mis-alignment
affects the results for all of the reconstructions because the CT-based target outline was used
not only to determine the regularization weights for PL-CT, but also to determine the VOI
for the bias, STD and RMSE calculations. For all the targets, the PL-CT reconstruction is
superior to OSEM in terms of RMSE and STD and is superior to the regularization without
side information in terms of RMSE and bias. The bias with PL-CT is almost the same as with
unregularized OSEM for the larger spheres, but is slightly worse for the two smallest spheres.
The spatially invariant regularization results in the lowest STD, which is to be expected.

The PL-CT results with the ‘blurred labels’ approach (Comtat et al 2002) are not presented
in tables 1 and 2, but the bias and RMSE with blurred labels were inferior to the present
implementation with no blurring for both the perfectly aligned data set and for the data set
with misregistration. For example, for the misregistered data set, the bias values ranged from
15% to 48% and RMSE values ranged from 21% to 42% when labels smoothed with a kernel
of 4 mm FWHM were used. These values were slightly worse for labels smoothed with a
kernel of 5 mm FWHM. The STD was either unchanged or slightly superior with blurred
labels compared with no blurring. For the rest of the evaluations presented below, labels with
no blurring were used.
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Table 3. %Bias, %STD and %RMSE in VOI counts for the simulation of non-uniform activity
spheres (figure 2). The values in parentheses for PL-CT correspond to the case where only the
outer boundary was used for the regularization.

Sphere OSEM PL-CT PL-Q PL-EP

(mL) Bias STD RMSE Bias STD RMSE Bias STD RMSE Bias STD RMSE

95 4 0.3 15 3 0.3 12 (17) 14 0.2 17 8 0.3 15
61 5 0.4 15 4 0.4 12 (18) 17 0.3 20 10 0.4 15
17 7 0.9 15 8 0.7 14 (18) 31 0.4 31 17 0.8 19

Targets with non-uniform activity. Figure 2 compares images and profiles of a single noisy
realization of the phantom with non-uniform activity targets. The OSEM reconstruction is
compared with the two PL-CT reconstructions (with and without using the inner boundaries
when determining regularization weights). Although the OSEM reconstruction is still noisy,
the significant edge artifacts evident in the case of uniform activity targets are greatly reduced
here (the ‘cavity’ evident in the OSEM reconstruction of figure 1 is not evident in figure 2).
The PL-CT reconstruction using both inner and outer boundaries (figure 2(c)) is closer to the
true activity distribution than both OSEM and the PL-CT reconstruction using only the outer
boundary. When the inner boundary is not used to control the regularization, there will be
blurring across this boundary leading to loss of useful information as evident in figure 2(d)
and the corresponding profile. The PL-Q and PL-EP reconstructions are not shown in figure 2,
but as before these reconstructions resulted in too much blurring across boundaries.

The results shown in table 3 follow the same trends as seen for the uniform activity targets
(PL-CT consistently gives lower RMSE values and comparable or lower bias). There was
no significant difference in the bias and STD for PL-CT with and without using the inner
boundaries because these measures use the total counts within the VOIs defined by the outer
boundaries. However, when the inner boundary is not used to control the regularization, the
RMSE, which is a measure of the inaccuracy of the count distribution, increases due to the
blurring across the inner boundary. In this case, the RMSE for PL-CT (given in parentheses)
is no longer superior to OSEM or the regularization without side information.

The results given in tables 1–3 were calculated for a VOI corresponding to the physical
size of the object. When a VOI larger than the true size was used the results followed the same
trends as shown in these tables. However, with a larger VOI the bias values for the smaller
spheres were significantly improved in all the reconstructions.

3.2. Experimental studies

Targets with uniform activity. Table 4 compares bias, STD and RMSE in the SPECT
measured activity. These results follow the same trends demonstrated for the simulation
with uniform activity targets. The PL-CT results are superior to OSEM in terms of RMSE and
STD while the bias is comparable. The PL-CT results are superior to regularization without
side information in terms of RMSE and bias, while the spatially invariant regularization gives
the lowest STD.

Targets with non-uniform activity. Images and profiles from the experimental phantom
study, which included non-uniform activity spheres, are compared in figure 3. Figure 3(a)
is the CT image used to define the region boundaries, which were then re-sampled to
SPECT space to determine the weights for the PL-CT regularization. The images and
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Table 4. %Bias, %STD and %RMSE in SPECT measured activity for the experimental phantom
with uniform activity spheres.

Sphere OSEM PL-CT PL-Q PL-EP

(mL) Bias STD RMSE Bias STD RMSE Bias STD RMSE Bias STD RMSE

95 −2 1.0 30 −1 0.8 20 5 0.7 23 2 0.8 26
61 8 1.5 24 8 1.5 17 15 1.4 21 12 1.4 21
17 17 2.5 28 20 2.4 22 30 2.1 26 25 2.4 25
11 14 5.4 35 17 4.9 24 31 4.2 26 23 5.1 29

8 17 2.5 31 23 2.3 22 40 1.9 29 29 2.4 26
4 31 3.7 25 37 3.4 23 56 2.8 36 41 3.6 26

Table 5. %Bias, %STD and %RMSE in SPECT measured activity for the experimental phantom
with two non-uniform activity spheres (figure 3). The value in parentheses for PL-CT corresponds
to the case where only the outer boundary was used for the regularization.

OSEM PL-CT PL-Q PL-EP

Sphere Bias STD RMSE Bias STD RMSE Bias STD RMSE Bias STD RMSE

Uniform 2 0.8 42 1 0.8 26 12 0.7 31 5 0.7 40
Small −2 0.8 39 −3 0.7 18(49) 13 0.7 42 0 0.7 35
non-uniform
Large 14 1.4 42 15 1.4 41(49) 22 1.3 53 18 1.4 47
non-uniform

profiles show that in general the activity distribution from PL-CT (using both inner and outer
boundaries) is closer to the true distribution than OSEM and the regularizations without CT
information.

Table 5 compares bias, STD and RMSE for the uniform center sphere and the two non-
uniform spherical shells. PL-CT (using both the inner and outer boundaries) is superior to
regularization without side information in terms of RMSE and bias and is superior to OSEM
in terms of RMSE and STD while the bias is comparable. As in the simulation, when the
inner core boundary information is not used in the PL-CT reconstruction, the bias and STD
are not significantly affected, but the RMSE (given in parentheses) increases due to blurring
across this boundary.

3.3. Patient study

As in the phantom studies the patient data were reconstructed with 40 OSEM iterations
(6 subsets) for the initial estimate followed by 30 iterations (6 subsets) with the regularized
algorithm. A slice of the PL-CT reconstruction superimposed on CT is shown in figure 4(a).
The profile compares the PL-CT reconstruction with OSEM, PL-Q and PL-EP. The true
distribution is not known in this case, but the differences in the profiles for the different
reconstructions can be observed. Note that CT boundaries were used to control the
regularization for the tumors only and normal organs such as the bladder, which also show
significant uptake, were not outlined.
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Figure 4. (a) Patient PL-CT SPECT reconstruction superimposed on CT with tumor outlines and
(b) profiles across the tumor for the different reconstructions.

4. Discussion

A penalized likelihood reconstruction method employing CT side information-based
regularization was implemented and compared with regularization without side information
and with unregularized OSEM. We chose to compare the PL reconstructions to 3D OSEM
with no post-filtering because currently we use this algorithm to quantify tumor activity for
I-131 radioimmunotherapy dosimetry studies (Dewaraja et al 2009).

In both simulation and experimental phantom studies with uniform activity targets, the PL-
CT reconstruction was clearly superior to OSEM and regularization without CT information
in terms of visual evaluation. The large distortions near the target edges with OSEM become
more severe as iterations proceed and have been reported previously in EM reconstructions of
objects with sharp edges (Snyder et al 1987, Tsui et al 1994, Koral et al 2007a, Shcherbinin
and Celler 2008). PL-CT images and profiles did not display the significant edge overshoots
or the blurring across region boundaries evident in the methods where CT information was
not used in the regularizer. Comparison of RMSE values also confirms that the PL-CT
reconstruction resulted in the most accurate determination of target activity distribution. The
improvement in estimation of activity distribution with PL-CT comes without sacrificing the
accuracy of total target activity estimation as evident from the bias results. This is because
the anatomical information controls the regularization, allowing smoothing within the target
but avoiding smoothing across boundaries. For quantification of total target activity, PL-CT
was superior to regularization without side information and in general was comparable to
unregularized OSEM. In both simulation and experimental measurement, the bias in activity
estimate with PL-CT and OSEM was better than 10% for sphere sizes down to 61 mL, better
than 20% for sphere sizes down to 17 mL but was up to 37% for the smallest 4 mL sphere.
These relatively high bias values result from incomplete count recovery due to partial volume
effects, although in the experimental studies some of the error may be associated with the dose
calibrator measurement and/or the definition of target boundaries on CT. Incomplete count
recovery is particularly significant when imaging higher energy emitters such as I-131 due to
the poor spatial resolution.

In phantom studies with non-uniform activity targets, superior results with PL-CT were
achieved only when the regularizer used anatomical boundary information that matched the
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activity non-uniformity. In phantom studies using a spherical shell with an inner core and
an outer shell filled with different activity concentrations, PL-CT images, profiles and RMSE
values were superior to OSEM and regularization without side information only when both
inner and outer boundaries were used to determine the regularization weights. When the inner
boundary was not used, the blur across this boundary resulted in the loss of useful information.
In practice, the inner boundaries will not always be available since the non-uniformity may
not be present in the anatomical image, or may not be visible on CT scans that are typically
acquired with low-dose modes in hybrid systems.

The improvements with PL-CT were achieved even with misregistered side information.
The 5 mm translation simulated here is well within the capabilities of integrated SPECT-
CT imaging (by inspection of overlaid SPECT and CT point source images, the SPECT-
CT alignment was estimated to be accurate to within 2 mm). In patient imaging larger
mis-alignment due to breathing or movement between the sequential scans is possible.
Blurring the weights of the penalty function with a kernel whose width corresponds to
the uncertainty of the side information as proposed previously (Comtat et al 2002) was
investigated here to account for SPECT-CT misregistration. However, no improvement
in bias or RMSE was demonstrated compared with the approach of the present study of
defining binary weights using thresholded differences of the label image, which was non-
binary due to the finite size of the SPECT voxels relative to CT voxels. Further investigation is
needed on optimizing regularization weights for non-binary masks. Past studies in PET
reconstruction using smoothed weights or smoothed labels to account for misregistered
side information also did not demonstrate clear improvement (Fessler et al 1992) or only
showed moderate improvement (Comtat et al 2002) over using the side information without
smoothing. In the study of Fessler et al the blurred weights approach was shown to be
superior to the approach of using ideal weights in a 1D simulation, but was inferior for the 2D
case.

Of the two regularization methods that did not use CT side information, the edge preserving
regularization consistently gave lower RMSE and bias. However, the spatially invariant
regularization gave the lowest noise of all the methods compared. Note that noise is not
a major concern in high-count rate imaging following the therapy administration in internal
emitter therapies, but is a consideration in tracer studies for treatment planning, which typically
use <10% of the activity administered for the therapy.

The clinical example with SPECT/CT data demonstrated the feasibility of using PL-CT in
patient studies. The method is particularly well suited for applications such as tumor dosimetry
in non-Hodgkin’s lymphoma, since in this case the tumors are typically well defined on CT.
The computation time for PL-CT is comparable to OSEM and the CT-side information is
readily available if target VOIs are already defined for tumor dosimetry. In our patient study,
the only additional step involved re-sampling of the tumor outlines from CT space to SPECT
space.

5. Conclusion

A penalized-likelihood SPECT reconstruction using a modified regularizer that accounts
for CT-side information was implemented and compared to regularization without side
information and to unregularized OSEM. Phantom evaluations demonstrated the potential
of PL-CT to provide improved estimates of the activity distribution within targets, without
sacrificing total target activity quantification accuracy, when there is a good match between
the SPECT and the CT information.
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