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Statistical Sinogram Restoration in Dual-Energy
CT for PET Attenuation Correction
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Abstract—Dual-energy (DE) X-ray computed tomography (CT)
has been found useful in various applications. In medical imaging,
one promising application is using low-dose DECT for attenuation
correction in positron emission tomography (PET). Existing ap-
proaches to sinogram material decomposition ignore noise charac-
teristics and are based on logarithmic transforms, producing noisy
component sinogram estimates for low-dose DECT. In this paper,
we propose two novel sinogram restoration methods based on sta-
tistical models: penalized weighted least square (PWLS) and pe-
nalized likelihood (PL), yielding less noisy component sinogram es-
timates for low-dose DECT than classical methods. The proposed
methods consequently provide more precise attenuation correction
of the PET emission images than do previous methods for sino-
gram material decomposition with DECT. We report simulations
that compare the proposed techniques and existing approaches.

Index Terms—Attenuation correction, dual-energy (DE) X-ray
computed tomography (CT), low radiation dose, positron emission
tomography/computed tomography (PET/CT), sinogram restora-
tion.

I. INTRODUCTION

A. Background

T HE combination of positron emission tomography
(PET) and X-ray computed tomography (CT) in a single

scanner has provided a variety of significant advantages in
nuclear medicine [1]. First, PET/CT provides reasonably ac-
curate alignment of functional and anatomical information. In
oncology imaging, for example, PET/CT improves the identi-
fication and localization of lesions. Second, CT transmission
images can be used for attenuation correction of PET emission
images. CT-based attenuation correction (CTAC) for PET
provides several benefits over the conventional attenuation
correction by PET transmission scans [1]–[3]. For instance, low
noise attenuation correction factors (ACFs) are provided by
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CTAC without lengthy transmission scans, and post-injection
biases are avoided.

For CTAC, since X-ray source spectra for CT transmission
scans typically have a broad range of energies (30 keV
140 keV), one must transform CT values to the linear attenua-
tion coefficients (LACs) evaluated at the PET energy (511 keV).
Various approaches to this transformation have been suggested
in the literature and these can be roughly categorized into two
groups [4]: segmentation based methods and scaling methods.
Segmentation based approaches first separate the CT image
into regions associated with different material types such as
soft tissue and bone and then replace the segmented areas with
proper LACs evaluated at 511 keV based on the material types.
It is difficult to make a clear segmentation of some material
types [5], hampering the acceptance of the segmentation based
methods.

In linear scaling, CT values are multiplied by the ratio of
the LACs of water: at the CT energies and at the PET energy.
However, linear scaling provides poor estimates for the LACs of
bone minerals at 511 keV. Bilinear scaling resolves this problem
by using two different scaling factors for different ranges of
CT values [6]. One scaling factor considers water–air mixtures
whereas the other considers water–bone mixtures. For objects
containing materials with high atomic numbers such as iodine
contrast agents, bilinear scaling can introduce quantitative er-
rors in ACFs and these errors propagate into the reconstructed
PET images [3], [7].

The classical CTAC approaches reviewed above use a single
X-ray source spectrum.1 As alternatives, dual-energy (DE)
CT-based methods, also known as dual-kVp methods, that
use two different X-ray spectra have drawn attention in the
literature. DECT exploits the energy dependence of LACs for
the basis material characterization by collecting two sets of
transmission scans [8]. Requiring no segmentation or scaling,
DECT can eliminate one potential source of errors in CTAC
unlike SECT. For attenuation correction of single photon
emission computed tomography (SPECT), similar ideas were
suggested in [9]–[11]. In DECT based methods, estimates of
separate component images associated with two basis materials
are reconstructed first from sinogram measurements and com-
bined then to form ACFs at 511 keV. We now review previous
methods for DECT imaging and also the use of DECT for
attenuation correction in PET.

B. Literature Review

Early methods for exploiting two different energies in X-ray
CT decomposed the energy dependence of LACs into two com-

1We call the conventional CTACs single-energy computed tomography
(SECT) based methods to distinguish them from DECT based methods.
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ponents corresponding to two types of interactions of photons:
photoelectric absorption and Compton scattering [8], [12]–[14].
For the same decomposition, by singular value decomposition
(SVD), [15] showed that complete energy dependent informa-
tion can be achieved by collecting two sets of measurements
using two different incident source spectra when the scanned
object contains no -edge materials near the effective energies
of the source spectra.

Prior to the 1990s, reconstruction methods based on filtered
backward projection (FBP) were predominant in DECT. In
the early 1990s, a few algebraic iterative algorithms such as
[16]–[18] were proposed for DECT. However, these methods
did not account for noise statistics. Since additional X-ray
scans in DECT introduce higher radiation doses than a single
transmission scan, it is desirable to reduce the radiation dose as
much as possible for clinical purposes. Statistical image recon-
struction methods built on appropriate physical and statistical
models can suppress noise, enabling the use of lower radiation
doses for DECT.

Statistical approaches to reconstructing DECT images have
been explored for monochromatic measurement models. For
instance, [19]–[22] proposed penalized weighted least square
(PWLS) methods in DECT to reconstruct soft tissue and bone
mineral images with constraints in the object domain. These
monochromatic methods did not fully exploit the energy de-
pendence of LACs and required additional beam hardening
corrections. Some maximum likelihood (ML) algorithms for
image reconstruction in DECT were derived from measure-
ment models considering the polychromatic nature of X-ray
spectra in [23]–[25]. For attenuation correction in PET, iterative
reconstruction algorithms based on PWLS approaches from
polychromatic measurement models were developed recently
[3], [7]. CTAC based on statistical image reconstruction in
DECT provides more accurate attenuation corrections for PET
than CTAC by bilinear scaling in SECT and by the FBP image
reconstruction in DECT [7].

Previous DECT based methods for CTAC first reconstruct
component CT images and then estimate ACFs for the PET
emission images by synthesizing the obtained CT images. How-
ever, if the primary purpose of DECT is PET attenuation correc-
tion, then component images are not necessary. A synthesized
sinogram at 511 keV suffices. In addition, since PWLS and PL
methods are derived from proper statistical models, they pro-
vide less noisy component sinogram estimates than the clas-
sical sinogram decomposition, producing more precise ACFs
in low-dose DECT [26]. Our PWLS method in Section III is
straightforward to develop but is based on a simple model of the
statistical properties of measurements in the projection domain,
providing a suboptimal solution in terms of noise reduction for
a given low radiation dose. Thus as an alternative, we also pro-
pose a PL method to estimate component sinograms. Our pro-
posed methods generalize the previous sinogram restoration ap-
proaches developed in [27] for SECT to methods for DECT.

The remainder of this paper is organized as follows. We
first introduce physical model formulations for polychromatic
measurements and the object being scanned in Section II.
We then review conventional approaches to decomposing
component sinograms and propose two statistically motivated

methods: PWLS and PL to estimate component sinograms
from multiple-kVp measurements in Section III. Section IV
discusses the design of regularization penalties for achieving
approximately uniform spatial resolution and for matching
the resolutions of component sinogram estimates. Simulations
to compare the proposed DECT based methods and existing
approaches are provided in Section V. Finally conclusions and
discussions are presented in Section VI. Mathematical details
are given in Appendix I and II.

II. PHYSICAL MODEL FORMULATIONS

A. General Measurement Model

We consider a general measurement model where multiple
sets of polychromatic measurements are collected for dif-
ferent incident spectra and forward projections (line integrals)
are recorded for radius-angle pairs for each incident spec-
trum, forming sinograms.2

For and , let denote the
measurement for the th incident spectrum and the th ray. We
assume that is a random variable whose ensemble mean
is defined by the following underlying physics:

(1)
where denotes the product of the th incident source
spectrum and the detector gain for the th ray, and is the
line integral along the th ray. denotes the LAC of the
object being scanned at the spatial location and the photon en-
ergy . denotes additive background contributions, for ex-
ample room background, dark current, and scatter. We also can
use to model electronic noise in a shifted Poisson approach.
We treat and as known (or separately calibrated)
nonnegative quantities by methods proposed in [28]–[30]. By
modeling the polychromatic source spectra in (1), the sinogram
restoration methods in Section III can correct for beam hard-
ening artifacts. Therefore separate beam hardening correction
steps are not needed [23], [31]. We refer to as the
sinogram measurements for the th incident source spectrum.
The LAC is the property we want to estimate in a CT
scan, but that for PET imaging it is a confounding aspect (albeit
monochromatically at ) that we want to remove
[4].

B. Basis Material Decomposition

Since the number of measurements is finite whereas the LAC
of the scanned object is a continuous function of and , we
parameterize using a basis material decomposition. We
model the LAC using a set of basis functions that are separable
in the space and energy domains [19], [22], [32] as follows:

(2)

2For simplicity, we focus on the 2-D static cases in this paper. The developed
techniques can be extended to the helical and cone-beam cases.
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where denotes mass attenuation coefficient (MAC) and
is the unknown density map of the th material type.

is the number of material types comprising the object being
scanned. In DECT, we usually have , e.g., soft tissues
and bone minerals. Other material decompositions are possible,
e.g., [8], and could be used in our approaches. The goal in DECT
is to estimate from for incident
spectra.

C. Measurement Model Reformulation

Combining the measurement model in (1) and the object
model in (2) yields the following simplified expression for the
ensemble mean of measurements:

(3)

for and , where

(4)

(5)

The nonlinear function characterizes the beam hard-
ening caused by polychromatic source spectra and it can be mea-
sured using calibration phantoms [33], [34]. We define the total
intensity for the th incident spectrum and the th ray, and
the sinogram vector as follows:

(6)

(7)

The nonlinear function is monotonically increasing and
concave. These two properties play key roles in the development
of our sinogram restoration algorithms as shown in Appendix I.

III. COMPONENT SINOGRAM RESTORATION

Usually in DECT, we reconstruct the component density im-
ages, and from the DE sinograms. For the purpose
of PET attenuation correction, however, it is sufficient to have
sinogram-domain estimates of the component material integrals

. Therefore we focus on estimating hereafter.
We discuss methods to recover component sinograms, i.e.,

for material types from noisy measurements, i.e.,
for incident source spectra in this section. We

first review classical material sinogram decomposition, and then
propose two statistically principled approaches, PWLS and PL,
for estimating component sinograms with improved accuracy
and/or precision.

A. Conventional Sinogram Decomposition

Given the noisy measurement , the conventional method
for estimating values of the nonlinear function is to invert
(3) as follows:

(8)

where smoothing in the radial (detector) direction is often ap-
plied to reduce noise [35]. Equating (4) and (8) yields a system
of nonlinear equations and unknowns for the th ray,
where the th unknown variable is . Since we usually have
the same number of source spectra and material types, that is

, solving this nonlinear system of equations produces
the following estimate of component sinograms:

(9)

where . This is called the conventional
sinogram decomposition or sinogram preprocessing approach
in DECT. Note that the measurement noise was ignored in (8)
and (9), yielding noisy estimates of component sinograms and
hampering their acceptance for low-dose DECT.

To reduce the noise in the classical sinogram decomposition,
one could estimate by minimizing the following func-
tion:

(10)

where a possible choice of the weight matrix for the th ray is
. Its approximation can be found by the method

proposed in [36]. The sinogram matrix is obtained
by concatenating along the ray index and is a rough-
ness penalty function for the component sinograms. Although
(10) could reduce the noise somewhat, the main source of noise
amplification is the inverse performed in (9). We present next
two alternative approaches that consider noise characteristics
and avoid the inverse in (9), thus providing better estimates of
component sinograms.

B. Penalized Weighted Least Square

Instead of solving the nonlinear equations, we propose
to estimate component sinograms from the values in (8) by
minimizing a PWLS cost function. Subject to the nonnegativity
constraint on the entries of , we have

(11)

and

(12)

where denotes the sinogram matrix. For

the th ray, is the weight matrix.
If the measurements approximately follow Poisson distribution
and is small, then the above is a reasonable choice since
an approximate variance of is [36], [37]

(13)
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For the roughness penalty function in (12), we use

(14)

where denotes a regularization parameter controlling the
tradeoff between data fidelity and roughness penalty. is a
second-order difference matrix and the column vector de-
notes the th component sinogram, i.e., .
We choose to regularize component sinograms only in the
radial direction [38]; thus .

We use the optimization transfer principle (OTP) [39] to min-
imize . In the framework of OTP, we design a sequence of
separable quadratic surrogates (SQSs) satisfying the surrogate
conditions.3 Nonnegativity constraints on the sinogram matrix

are easily imposed since the surrogates for PWLS data fitting
term and the roughness penalty term are additively separable.
The SQSs allow a simultaneous update of for
and . After applying OTP, we arrive at the fol-
lowing equation for updating an estimate of component sino-
grams in the th step:

(15)

where enforces the nonnegativity constraint
on , and denotes the estimate of in the th iteration.
The curvature is defined in (44) of Appendix I-A. We pre-
compute it before iterating. It can be shown that the associated
surrogate function satisfies the surrogate conditions. Thus the
update provided by (15) decreases the PWLS cost function
every iteration. Appendix I-A gives the detailed derivations.

C. Penalized Likelihood

Although the PWLS approach described in the previous sec-
tion is statistically motivated, it requires the logarithmic trans-
formation in (8) to obtain . Thus the solution provided by
(12) is based on an incomplete model of the data statistics and
can be suboptimal in terms of noise reduction for a given ra-
diation dose [26]. To further improve the estimated component
sinograms, we now propose a PL method that uses the raw mea-
surements, i.e., .

For simplicity, we assume that the measurement obeys a
Poisson distribution with the ensemble mean in (1), i.e.,

(16)

One can easily generalize this to include additive electronic
noise via the shifted Poisson approach [28], [42]. Based on (16),
we define the PL cost function as follows:

(17)

3These are also known as majorization conditions [40], [41].

where denotes the sinogram matrix. The negative log-likeli-
hood is given by

(18)

where constants independent of are ignored and
is a convex function with respect to .

With the same form of the roughness penalty function, ,
as (14), we estimate component sinograms by performing the
following PL minimization:

(19)

subject to the nonnegativity of the entries of . We exploit OTP
to achieve a sequence of SQSs for . Since the PL data fidelity
term and penalty term are additively separable, SQSs can
be derived and the nonnegativity constraint is easily imposed
in the framework of OTP. After applying OTP, we arrive at the
following equation for updating an estimate of component sino-
grams in the th step. For any and , we have

(20)

The curvature is derived in (62) of Appendix I-B.
There is no straightforward way to show that the updates pro-

vided by (20) monotonically decrease the PL cost function
at every iteration because of the approximations used to make
the PL curvature precomputable. However, if the approxi-
mations used are reasonably accurate or if provides a suffi-
ciently large curvature that ensures the surrogate conditions, we
can expect monotonicity of when we implement (20). This
can be empirically checked by evaluating in each iteration
for given data. In Section V, the simulations corresponding to
the PL method exhibited empirical monotonicity with the itera-
tion in (20).

After estimating all component sinograms for material
types, i.e., for , if desired, one can use
the sinogram estimates to reconstruct component images,
e.g., soft tissue and bone mineral in DECT. A straightforward
approach is to apply FBP to each component sinogram for esti-
mating the corresponding basis material image . This ap-
proach usually gives less noisy estimates of component images
than the classical sinogram decomposition combined with FBP
[26]. In addition, it is less computationally expensive than fully
iterative methods for reconstructing component images, e.g.,
[3], [7], [23]. However, in this paper, we focus on using the es-
timated component sinograms to compute ACFs, en-
hancing the quality of the PET emission images.

IV. REGULARIZATION DESIGN

Matching the resolution of ACFs to that of the PET images is
important to avoid artifacts [43] and requires appropriate reg-
ularization parameters in (14). We analyze the local impulse
response (LIR) of the proposed PL component sinogram esti-
mates, showing that the component sinograms do not have spa-
tially uniform resolution, and do not have matched spatial res-
olutions. Therefore, we design modified regularizing penalty
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functions that provide approximate resolution uniformity and
match, extending the ideas in [44] to DECT transmission to-
mography.

A. Local Impulse Response of Component Sinograms

The LIR measures the changes in the estimated component
sinograms induced by the perturbation of a particular element
of a component sinogram. Extending [44] to our PL sinogram
restoration problem for DECT, we define the following LIR,
focusing on :

(21)

where describes the responses that appear on all com-
ponent sinograms when we place an impulse at the th ele-
ment of the th component sinogram and is a lexicographically
ordered vector. denotes a vector
containing lexicographically ordered for ,2 and

. is similarly defined with . and de-
note column gradient operator and row gradient operator with
respect to , respectively. Here, denotes the th component
sinogram and is the th column of the sinogram matrix de-
fined as .

From (14) and (17), it can be shown that (21) reduces to the
following LIR in DECT, when an impulse is placed on the first
component sinogram:

(22)

where denotes a unit vector containing 1 at the po-
sition corresponding to the th element of the first component
sinogram where . By replacing with that is
similarly defined, we can also obtain . The Fisher in-
formation matrix (FIM) in the sinogram domain and the penalty
matrix in (22) have the following forms:

(23)

(24)

where is from (14) and

and for ,2,

For given , denotes a MAC
vector. Appendix II provides the detailed derivation of (22) for
the PL method.

From (22), we conclude that the LIR in (22) is shift variant
since the FIM contains the block matrices and

whose entries vary along the diagonal, i.e., as the
index for rays changes. Therefore, the PL method with conven-
tional quadratic penalty functions in (14) yields nonuniform
spatial resolution. The LIR in (22) also reveals coupling of
the two component sinogram estimates induced by the terms,

in the FIM. Thus, a perturbation of the soft tissue
sinogram affects both the soft tissue and bone estimates. These
interactions are due to the coupling of the two component
sinograms through . The conventional sinogram
decomposition also has similar cross-coupling. We discuss
next a method to mitigate the spatial nonuniformity of the
component sinogram estimates by designing spatially variant
penalty functions.

B. Spatially Variant Penalty Design

We now modify the penalty matrix in (24) into a new spa-
tially variant penalty matrix to make the LIR of the PL method
have approximately uniform resolution and matched spatial res-
olution of the estimated component sinograms, extending [44].
This also simplifies the choice of the regularization parameters,

and .
Assuming that the block matrices in the FIM vary slowly

along the diagonal, we approximate the FIM near the th ele-
ment as follows:

(25)

where, for example, denotes the th diagonal entry of
, is an identity matrix, denotes a

Kronecker product, and the 2 2 matrix is defined as

(26)

Substituting (25) into (22) and simplifying yield

(27)

where denotes a square root factorization of the matrix
defined in (26).

Instead of a more standard penalty matrix whose nonzero
block matrices are Toeplitz in (24), we choose a new penalty
matrix given by

(28)

where and are spatially variant second-order difference
matrices for the first material type (soft tissues) and the second
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Fig. 1. Two component densities of the NCAT phantom used in simulations: (a) the density map of soft tissues and (b) the density map of bone minerals.

material type (bone minerals), respectively. To provide resolu-
tion uniformity of component sinogram estimates, we define
and as follows:

(29)

(30)

By replacing the conventional penalty matrix with the new
penalty matrix , we have a useful approximation4 to obtain

(31)

where the regularizing parameter matrix is defined as

(32)

For small and , substituting (31) into (27) yields the fol-
lowing approximation to the LIR:

(33)

indicating approximately uniform resolution of component
sinogram estimates since is Toeplitz. Using (33), we
are able to tabulate the relationship between the spatial reso-
lution of a component sinogram estimate, usually quantified
by full-width half-maximum (FWHM), and the regularizing
parameter . For a given target FWHM, we can then determine
the corresponding regularizing parameter. The assumption that

and are small values is reasonable since we will use a
hybrid approach combining the penalizing methods with small
regularizing parameters and postsmoothings in Section V as
recommended in [45].

V. SIMULATION STUDIES

We performed several simulations to evaluate the proposed
PWLS and PL component sinogram estimates for attenuation
correction of the PET emission images. First, we compared the
classical DECT sinogram decomposition and the statistically
motivated PWLS and PL using a NCAT phantom consisting

4The off-diagonal blocks are neglected in the approximation used in (31).

Fig. 2. Two incident spectra � ��� against energy � [keV] for � � �,2: 80
kVp (top) and 140 kVp (bottom). The dashed vertical lines indicate the effective
energies, �� and �� , respectively.

of soft tissues and bone minerals [46]. Second, we compared
the classic bilinear scaling with a single-kVp spectrum, and the
PWLS and PL methods with dual-kVp spectra using the same
NCAT phantom but containing iodine contrast agents. In all the
results below, we used the modified regularizer in (28) for the
PWLS and PL methods.

A. DECT Based Attenuation Corrections

Fig. 1 shows two true component densities: soft tissues and
bone minerals of the NCAT phantom used in simulations. This
phantom contains 512 512 pixels and the pixel size is

cm . Fig. 2 shows two source spectra that are incident on
the NCAT phantom having 80 kVp and 140 kVp, where two
dashed vertical lines at and denote
their effective energies in (61), respectively. For simplicity, we
used the same incident spectra for each ray, i.e., ,
which ignores the effects of bow tie filters. Since clinical SECT
scans have in the order of photons per ray [47], [48], to
simulate DECT with low radiation dose, we set the number of
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Fig. 3. True PET emission image and reconstructed PET images by three DECT based attenuation corrections: (a) true PET emission image, (b) reconstructed PET
image with ACF by the conventional DECT sinogram decomposition, (c) reconstructed PET image with ACF by the DECT-PWLS method, and (d) reconstructed
PET image with ACF by the DECT-PL method.

incident photons per ray for and to be
and , respectively. This very low value for helps
contain the extra dose of the lower energy scan. Using the true
component densities in Fig. 1, we synthesized DECT measure-
ments using Poisson random variables whose ensemble means
follow the physical measurement model in (1) in a parallel-beam
geometry. After generating measurements with a high spatial
resolution in the projection domain, we downsampled them to
make a typical resolution in PET/CT sinogram, producing 256
(radial direction) 200 (angular direction) samples with 0.2 cm
radial spacing.

To provide approximately uniform spatial resolution of the
component sinogram estimates, we used the proposed penalty
matrix in (28) with small amount of regularization by
choosing for the PWLS and PL methods. We
then applied a postsmoothing filter to the restored component
sinograms so that the three DECT based methods have matched
spatial resolution [45]. The cost functions of the PWLS and
PL methods were checked at every iteration, verifying that
the algorithms in (15) and (20) monotonically decreased the
corresponding cost functions, respectively. After estimating the
component sinograms, we computed the PET ACFs as follows.
For the th ray

(34)

We applied these ACFs to the PET sinogram and applied FBP
to reconstruct the emission images as shown in Fig. 3. The nor-
malized root mean squared error (NRMSE) of the PET image
with ACF by conventional DECT decomposition was 12%,

whereas the DECT-PWLS and DECT-PL methods yielded a
lower NRMSE of 7.4%. These are global values over the whole
PET image. Fig. 4 shows the component CT sinograms (soft
tissue and bone) restored by DECT-PL and the corresponding
FBP reconstructed component CT images. Further comparisons
of the component CT sinograms and reconstructed images are
reported in [26].

B. Comparison With Bilinear Scaling

To compare the classical bilinear scaling with a single-kVp
spectrum and our PWLS and PL methods with dual-kVp
spectra, we placed a small amount of iodine contrast agents in
three areas of the NCAT phantom. Two of them were added into
regions in the heart and one was placed near the border of the
left lung. Fig. 5(a) shows the resulting true CT density image.
We assumed that the contrast was diluted and one of them, in
the anterior part of the heart, is indistinguishable from the soft
tissues surrounding it in the true PET emission image shown in
Fig. 5(b). To quantify the effects of errors in the estimated ACFs
on the reconstructed PET emission images, we again used the
noiseless PET image. The same regularizing parameters and
spatially variant penalty matrices were applied and the same
postsmoothing filters were used as in the previous section.

In SECT based methods combined with bilinear scaling,
sinograms were first restored by three different approaches: 1)
the standard sinogram preprocessing, 2) PWLS method, and 3)
PL method. CT images were then reconstructed by FBP before
performing bilinear scaling. We call these three approaches
SECT-BS, SECT-PWLS-BS, SECT-PL-BS, respectively. For
the SECT based methods, we used a spectrum with 140 kVp
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Fig. 4. Restored component CT sinograms (top) and the corresponding component CT images (bottom) by DECT-PL: (a) restored soft tissue CT sinogram, (b)
restored bone CT sinogram, (c) reconstructed soft tissue CT image by FBP, and (d) reconstructed bone CT image by FBP.

Fig. 5. True CT density (left) and PET image (right) containing iodine contrast agents in the three regions. Two iodine contrast agents (red arrows) in the center
of the NCAT phantom correspond to heart and the other one (green arrow) in the left side is associated with lung. Note that one of the iodine contrast agents in the
anterior part of the heart is assumed diluted and indistinguishable from the soft tissues surrounding it in the PET emission image. (a) True CT density with iodine
contrast agents; (b) true PET image with iodine contrast agents.

whose shape is the same as . To ensure that we would
not bias the results in favor of the DECT based approaches, we
set the number of incident photons per ray to be for
generating the SECT data, more than twice the total photons in
the DECT scans.

After compensating for attenuation in the PET images by six
competing methods, three of which are based on DECT and the
remaining three are based on SECT and bilinear scaling, FBPs
produce the reconstructed PET emission images shown in Fig. 6
with their NRMSEs given in Table I. The DECT-PWLS and
DECT-PL methods yielded lower NRMSE values than the clas-
sical DECT sinogram decomposition in the attenuation correc-
tion of the PET images when iodine contrast agents are present.
Similarly, the statistically motivated SECT based approaches,
SECT-PWLS-BS and SECT-PL-BS, provide better attenuation
corrections for the PET images than the standard sinogram pre-

processing in SECT. Table I also shows that the DECT methods
have lower NRMSE values than their SECT counterparts.

We also compared the local NRMSEs of four selected local
regions in the reconstructed PET emission images. Fig. 7 shows
these four local areas chosen from the true PET emission image.
Table II shows that the DECT-PWLS and DECT-PL provided
the lowest NRMSEs. Note that Region 2 contains the area where
diluted iodine contrast agent was indistinguishable from local
soft tissues in the true PET emission image and Region 4 con-
tains soft tissues only.

We conducted additional simulations to investigate the bias
and variance of the reconstructed PET images corrected by the
DECT based methods. We synthesized 50 Poisson distributed
realizations of two sets of CT measurements in the projection
domain from the NCAT phantom having iodine contrast. After
correcting attenuation by CTACs and reconstructing the PET
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Fig. 6. Reconstructed PET emission images by six competing attenuation correction methods in the presence of iodine contrast agents: (a) conventional DECT
sinogram decomposition, (b) DECT-PWLS method, (c) DECT-PL method, (d) SECT-BS method, (e) SECT-PWLS-BS method, (f) SECT-PL-BS method.

TABLE I
GLOBAL NRMSES OF THE RECONSTRUCTED PET IMAGES BY SIX

CTACS WHEN IODINE CONTRAST AGENTS ARE PRESENT

emission images by FBPs for all realizations, we evaluated two
quantities: normalized root mean squared bias (NRMSB) and
normalized root mean variance (NRMV) of the reconstructed
PET emission images, summarized in Table III. Recall that the
noiseless PET image was used for the simulations, producing
small NRMVs. Without increasing variances, the PWLS and PL
methods based on DECT yielded PET reconstructions having

Fig. 7. Four selected regions for local NRMSE analysis marked by white boxes.
The region numbers were counted clockwise from Region 1 to 4.

lower biases than did the other competing methods: DECT sino-
gram material decomposition and SECT based approaches.

Since the true CT density in Fig. 5(a) and PET image in
Fig. 5(b) contain three different material types; soft tissues,
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TABLE II
LOCAL NRMSES OF THE RECONSTRUCTED PET IMAGES WHEN

IODINE CONTRAST AGENTS ARE PRESENT

- Four regions are shown in Fig. 7(a).

TABLE III
BIASES AND STANDARD DEVIATIONS OF THE RECONSTRUCTED PET

IMAGES WHEN IODINE CONTRAST AGENTS ARE PRESENT

NRMSB: normalized root mean squared bias.
NRMV: normalized root mean variance.

bone minerals, and iodine whereas the object model for the
DECT based CTACs in (2) assumed two basis materials, there
may exist bias caused by model mismatch. To scrutinize this
effect induced by iodine contrast, we increased the sizes of the
three iodinated regions and repeated the simulations without
Poisson noise. Fig. 8 shows horizontal profiles obtained from
DECT-PL and SECT-PL-BS at two different vertical locations,
one of which corresponds to the iodine contrast agent placed
in the anterior part of phantom’s heart [red arrow in Fig. 8(a)]
and the other is associated with the posterior one of the heart
[red arrow in Fig. 8(b)]. The green arrow in Fig. 8(b) marks the
iodine contrast agent in the left lung. Other two DECT based
CTACs and two SECT based CTACs had very similar results
to those of DECT-PL and SECT-PL-BS, respectively, so are
not shown. Fig. 8(a) and (b) suggest that, although the DECT
based CTACs cause some biases in the reconstructed PET
emission images, they are more robust to model mismatch than
their SECT based counterparts. We will explore image domain
statistical approaches for DECT based CTACs in the future
to mitigate these biases caused by model mismatch around
iodinated contrast agents.

VI. CONCLUSION AND DISCUSSION

Errors in X-ray CT-based attenuation correction of PET emis-
sion data will propagate into the reconstructed PET emission
images. Such errors can arise from several sources, one of which
is the inability of a SECT scan to reliably distinguish mate-
rials of differing densities and effective atomic numbers, e.g.,
bone and iodinated contrast agents. Although these materials
can have the same reconstructed values in a CT image in terms
of Hounsfield units (HU), they will have significantly different
LACs at the annihilation photon energies of 511 keV used for
PET. It has been recognized for some time [8] that two CT scans
acquired with different spectral distributions can be used to es-
timate spatial density patterns of two basis functions or mate-
rial components, albeit at a significant amplification of image
noise. This increase is not surprising given the large overlap of
two spectra. For attenuation correction of PET emission data,
however, the increase in noise in some ways is not as critical
due to the generally larger noise levels in PET relative to CT.
In addition, there is noise reduction for CTAC due to two dif-
ferent forms of signal averaging. First, we do not need the sep-
arate component sinograms (or images), but rather just the sum
of the two components after scaling to 511 keV. Second, while
CT images are typically reconstructed on a 512 512 grid, PET
images use a 128 128 grid for the same field of view (FOV).

With the considerations listed above, it becomes feasible to
use DECT for attenuation correction of PET emission data al-
though noise amplification is still an issue. In addition, an im-
portant consideration in PET/CT imaging is radiation dose to
the patient. Thus methods that further reduce noise in the DECT
scan components are essential for a low radiation dose.

We proposed novel PWLS and PL methods for statistical
sinogram restoration in DECT used for attenuation correction
in PET. The goal is to reduce bias when materials with higher
atomic numbers such as iodine or metallic objects are present
in the patient, which are scaled incorrectly by the standard
SECT bilinear scaling approach. We also designed spatially
variant penalty functions that generate component sinograms
with approximately uniform spatial resolution. These methods
produced more accurate ACFs than conventional approaches,
reducing the overall NRMSE compared to CTAC estimates
using conventional SECT and DECT methods. In addition,
the statistically motivated DECT methods reduced bias when
iodine is present without unduly increasing noise in the final
PET image (Tables II and III). From the simulations, there did
not seem to be a significant difference between the results for
the DECT-PWLS and DECT-PL methods. This may be due to
the level of noise and the relatively simple model used in the
simulations.

In the simulations of Section V, after downsampling, the
two sets of CT rays synthesized in a parallel-beam geometry
matched those of the PET sinogram. To cope with more prac-
tical CT scans, e.g., axial or helical CT scans, the proposed
DECT based CTACs can be modified as follows. First, the
component sinograms are decomposed in the CT projection
domain by the PWLS or PL method, and then the estimated
sinograms are combined to synthesize a monochromatic CT
sinogram at 511 keV. Second, this sinogram is reconstructed
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Fig. 8. Horizontal profiles of the reconstructed PET emission images corrected by DECT-PL and SECT-PL-BS at two different vertical locations: (a) the anterior
part of phantom’s heart and (b) the posterior part of phantom’s heart. The colored arrows correspond to the three areas where iodine contrast agents were placed
as shown in Fig. 5(a).

using conventional axial or helical FBP to form an attenuation
map at 511 keV. Third, this attenuation map is reprojected to
produce ACFs that match any PET geometry. Such backpro-
jection/reprojection steps are routinely used in CTAC for PET.

Several important considerations are not addressed in this
study. One that is well known is the potential for patient motion
between two sets of CT scans, which could lead to significant
artifacts. Using simultaneous or near-simultaneous acquisition
of the two CT data sets, e.g., by fast kVp switching [49], can
mitigate these artifacts. Furthermore, CTAC for PET requires
a lower spatial resolution than diagnostic CT images, so some
effects of small motions might be reduced by downsampling
the CT sinograms to PET resolution. However, such downsam-
pling might not completely suppress these motion-related ar-
tifacts because of the nonlinearities of polychromatic CT, and
it is possible that effects akin to the exponential edge-gradient
[50] might persist. In addition, patient motion between the CT
scans and the PET scan is well known to cause other artifacts
in the reconstructed PET emission images, but this problem oc-
curs even for SECT based CTACs and is beyond the scope of
this work. Another consideration is that knowledge of the X-ray
spectrum for each ray or measurements of the function
in (4) is needed, which may be challenging to determine. Fi-
nally, the cases where improved accuracy in PET/CT imaging
is necessary have to be delineated. There are clinical scenarios
where accurate estimation of tracer uptake is not needed for PET
imaging. Cases where improved estimation of PET tracer up-
take by CTAC with DECT will most likely improve patient out-
comes are with evaluation of responses to therapy where bone is
involved and/or contrast agent is used and reduction of artifacts
from prostheses and other objects.

APPENDIX I
ALGORITHM DERIVATIONS

This appendix derives (15) and (20). To obtain surrogates for
the PWLS cost function and PL cost functions , we
consider the data fidelity terms and penalty terms separately.

We first derive the algorithm for PWLS and then move to the
algorithm for PL.

A. PWLS Algorithm

First, we express the data fidelity term of in (12) as

(35)

where is the LS term for the th
spectrum and th ray. By a Taylor series expansion of
about , we have an inequality

(36)

where is a positive definite matrix satisfying
the condition that for any in the matrix
sense5 and is a Hessian matrix. Let denote the right-
hand side of (36). Since then majorizes , we
define a surrogate function for in the th step, given by

(37)

where the exact form of is determined below.
Second, we consider the additively separable penalty term in

(14). By applying De Pierro’s additive convexity trick [51], we
define a surrogate function for the penalty term as

(38)

5For simplicity, we denote a nonnegative definite matrix� as� � �.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 13, 2009 at 17:43 from IEEE Xplore.  Restrictions apply. 



NOH et al.: STATISTICAL SINOGRAM RESTORATION IN DUAL-ENERGY CT FOR PET ATTENUATION CORRECTION 1699

where denotes the element of at and is given by
if ; if . Then

we have that majorizes .
By adding two surrogate functions and , we

have a SQS for the PWLS cost function defined as follows:

(39)

satisfying the surrogate conditions [41]. It can be checked that
is additively separable with respect to the index and .

Therefore, majorizes . By differentiating
with respect to , equating it to zero, and simplifying, one ar-
rives at the PWLS algorithm in (15).

Finally, we need to determine . From the definition of
, its Hessian is given by

(40)

Since is nonnegative, monotonically increasing, and
concave, we have an inequality

(41)

We define and further simplify the above in-
equality into

(42)
where . For our spectra in
Fig. 2, we found that for any , but we could not
prove that this will always hold. By defining from the
right side of the inequality above, we have the first piece of the
curvature as follows:

(43)

producing

(44)

where and denotes the el-
ement of at . Now we complete the derivation of the
PWLS algorithm in (15).

B. PL Algorithm

First, the data fidelity term of is expressed as

(45)

where is a convex function with respect
to . By combining (1) and (2), we have an expression for the
ensemble mean of measurements

(46)

where

Note that the term inside the square bracket behaves as a prob-
ability density function (PDF) since it is nonnegative and inte-
grates into unity over . By Jensen’s inequality and the con-
vexity of , we have an inequality

(47)
on the basis of De Pierro’s multiplicative convexity trick [52].
Let denote the right-hand side of (47). Since
majorizes , we can define a surrogate function for

in the th step, given by

(48)

However, it is difficult to minimize directly.
Second, we want to seek a quadratic surrogate for by

applying the same idea as (36). To do that, we focus on

(49)

where two variables are defined as and .
By a Taylor series expansion of with respect to ,
we have an inequality,

(50)

where is a positive constant satisfying the condition that
for any . Here and

denote the first- and second-order derivatives of
with respect to , respectively. Let

denote the right-hand side of (50). then majorizes
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. Thus we define a surrogate function for in
the th step, given by

(51)

where the exact form of is discussed below. Since
is quadratic with respect to , we have many algorithms to min-
imize it, for example, the coordinate descent algorithm. An al-
ternative choice is finding a SQS function for to further
simplify the optimization.

Thirdly, we seek a SQS for by applying De Pierro’s
additive convexity trick [51]. In this case, plays a
key role to derive the SQS function. We express in the
following way:

(52)
where the coefficient can be defined as

(53)

Since has a quadratic form with respect to and
acts as a probability mass function (PMF), by Jensen’s

inequality, we have

(54)

Let denote the right-hand side of (54). Since
majorizes , we can define a surrogate function for

in the th step, given by

(55)

Therefore, we have

(56)

and is a SQS for by the construction.
Fourthly, we combine the surrogate function for the data fi-

delity term, and the surrogate function for the penalty

term, in (38). Then we have a SQS for the PL cost func-
tion defined as follows:

(57)

satisfying the surrogate conditions. It can be checked that
is additively separable with respect to the index and

. By differentiating with respect to , equating it to
zero, and simplifying, one arrives at the same form as the PL
algorithm in (20) but having

(58)

Finally, we now discuss how to determine the curvature .
When measurements are Poisson distributed, the optimal
can be found in [53], yielding the fastest convergence. Instead of
the optimal curvature, however, we pursue a precomputable cur-
vature to reduce computational costs per iteration in this paper.
Assuming that the curvature of varies slowly around
minimizer, we have an approximation for the curvature as fol-
lows:

(59)

where a similar idea can be found in [54].
By substituting (59) into (58), the curvature is

(60)

We replace with the effective energy of the th incident spec-
trum at the th ray, defined as an expectation of energy

(61)

This produces an approximate to the curvature as follows:

(62)

Now we have the PL algorithm in (20).
APPENDIX II

DERIVATION OF LOCAL IMPULSE RESPONSE

If we place an impulsive perturbation in the first sinogram,
the LIR from (21) can be expressed as

(63)

First from (3), it can be checked that a first-order partial deriva-
tive of with respect to is given by

(64)
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for any , , and . Given , we have a vector
by stacking these up for ,2 and

(65)
where denotes a unit vector whose th entry is 1.

Second, we consider two matrices and
in an augmented matrix. Extending the trick used in

[44, Sec. III], it can be shown that the augmented
matrix is expressed as follows. For any measurements

(66)

where denotes the PL cost function expressed in
terms of three variables. The Hessians are defined in terms of
these three variables. For example, is the second-order
derivative of with respect to and is the second-
order derivative of with respect to . is the Hessian
of in terms of and . By expressing in terms of the
negative Poisson log-likelihood function and penalty function,
and evaluating (66) at , we now have two necessary
components for the LIR.

Finally, combining these two pieces in (65) and (66) yields
the following expression for :

where denotes the negative Poisson log-likelihood function
expressed in terms of and all Hessians of are eval-
uated at , and . Evaluating all
necessary Hessians of by chain rules allows the LIR in (22).
The following three partial derivatives are useful to obtain this
final expression for the LIR:

(67)

(68)

(69)

where ,2, , and ,2. To obtain
, one can follow the same procedure as above.
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