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Abstract: We investigate two approaches to improving the resolution of 

time-reversal based THz imaging systems. First, we show that a substantial 

improvement in the reconstruction of time-reversed THz fields is achieved 

by increasing the system’s numerical aperture via a waveguide technique 

adapted from ultrasound imaging. Second, a model-based reconstruction 

algorithm is developed as an alternative to time-reversal THz imaging and 

its performance is demonstrated for cases with and without a waveguide. 
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1. Introduction 

There are several ways of approaching THz imaging including raster scanning and 

tomographic reconstruction [1]. However, such techniques are limited by data acquisition 

speed. A more promising imaging technique is time-reversal imaging which has successfully 

demonstrated fast reconstruction of one-, two-, and even three-dimensional objects [2,3]. 

Time-reversal imaging is a coherent technique in which the time reversal symmetry of 

Maxwell’s wave equations is exploited to reconstruct an object from the scattered fields. One 

measures the scattered fields from an object at multiple detector positions and the object is 

reconstructed by numerically back-propagating the scattered fields. More specifically, an 

image point is reconstructed by first computing the time delays for a THz pulse to propagate 

from that point to every detector position. The received signal samples are then summed 

together in order to produce the amplitude of the image point. Each image point requires a 

different set of time delays and hence a different summation of the scattered signals. This 

method of time-reversing the scattered data is based on the “delay-sum” algorithm, commonly 

used in ultrasound imaging, and is nearly equivalent to back propagating the scattered fields 

using the time-reversed Huygens-Fresnel diffraction integral but requires less computation 

[3]. 
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As is well-known, real-time imaging in ultrasound using delay-sum or similar algorithms 

is enabled through the use of multiple parallel emitters and detectors. The main objective of 

this work is to improve on the THz time-reversal technique in two ways. We first adapt a 

waveguide approach previously pioneered in ultrasound to increase the effective numerical 

aperture of the system without decreasing the data acquisition speed of the THz system [4]. 

Secondly, we implemented a model-based reconstruction technique that uses the actual 

impulse response of the THz system and is therefore better suited for reconstructing the object 

and eliminating spurious signals than the a priori time-reversal algorithm [5]. We demonstrate 

these methods for improved time-reversal imaging using a single emitter and a scanning 

single detector (i.e. in a form of synthetic-aperture imaging); however, the extension of these 

methods to multiple emitter and detector implementations is expected to be straightforward, 

and indicates a promising route to real-time THz imaging. 

2. Experimental System 

The experimental setup, as given in Fig. 1, is a typical electro-optic THz sampling system [6] 

with an additional stage in the pump arm to compensate for the horizontal translation of one 

of the imaging parabolas. A femtosecond laser pulse is split into a pump and probe pulse by a 

beam splitter. The delayed pump pulse illuminates a large-area photoconductive emitter 

(TeraSED, GigaOptics GmbH) to generate a nearly single cycle THz pulse. The THz beam is 

then collimated by a polyethylene lens with a focal length of 7.6 cm. The collimated THz 

beam is used to illuminate an object, which in this experiment consists of two metal slits with 

dimensions of 1 mm x 8 mm and a spacing of 2.0 mm. The slits are bounded by two 12 inch 

flat mirrors which act as a planar waveguide redirecting the THz scattered at large angles and 

therefore delivering higher spatial frequencies into the detection region of the imaging 

parabolas. The focal plane of parabola A is imaged onto the electro-optic (EO) crystal by 

scanning parabola A across the exit face of the waveguide [7]. A pellicle reflects the probe 

pulse to propagate collinearly with the THz pulse in the EO crystal at the focus of parabola B. 

The EO crystal is a (1 1 0) cut ZnTe crystal which velocity matches the THz pulse and near IR 

probe pulse to enable coherent detection of the THz pulse. The THz pulse induces a 

birefringence in the crystal through the linear electro-optic effect (Pockels effect), which is 

probed by the linearly polarized sampling pulse. The induced phase modulation of the probe 

pulse is converted into an intensity modulation and detected by a differential photodiode [6]. 

 

Fig. 1. Experimental setup 

3. Waveguide-enhanced time-reversal imaging 

The resolution of an imaging system is limited by its numerical aperture (NA). A higher NA 

can be obtained by collecting data at larger angles which requires scanning the detector over 

more spatial positions and hence leads to a longer acquisition time. However the waveguide 

technique can effectively increase the numerical aperture of the imaging setup without 
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increasing the number of spatial scan positions. The waveguide technique described here was 

adapted from an ultrasound experiment conducted in a water channel bounded by two plane 

interfaces [4]. The ultrasound experiment showed an improvement in both the spatial and 

temporal compression of the time-reversed fields by simply time reversing the direct path 

signal and the set of multipath signals corresponding to multiple reflections of the incident 

wave on the interfaces. Similarly, we can intentionally introduce multipath into our THz 

imaging setup by bounding our object with two planar mirrors and time reversing both the 

direct signal and the multipath signals. We can then invoke the principle of mirror images to 

explain how bounding our object with the planar mirrors can effectively increase the 

numerical aperture of our imaging system. Each reflected pulse that is detected corresponds to 

a virtual detector position [4]. Hence, we can effectively double our numerical aperture with 

virtual detector positions by simply capturing the first set of reflections off the mirrors and 

accounting for their proper time delays in the time-reversal algorithm [2,4]. Furthermore, the 

reflected pulses which diffracted at larger angles than the direct path signals have a higher 

spatial frequency content and thus by using a waveguide to redirect them we can improve the 

resolution of our system. Thus, sampling more spatial points translates to simply scanning 

longer in time. 

 

Fig. 2. Measured THz wavefield plots without a waveguide and with a symmetric and 

asymmetric placed waveguide and the corresponding reconstructed images based on time-

reversal. 

In our experimental demonstration, we illuminated a double slit and measured the 

scattered THz radiation in the far field. The THz wavefield plots shown in Fig. 2(a) & 2(c) 

were obtained by scanning parabola A horizontally in increments of one millimeter over a 

range of 52 mm and a range of 59 mm respectively. At each position, the time domain THz 

waveform was measured by scanning the delay between pump and probe pulses over a 40 s 

acquisition time. Hence, the y-axis represents time delay and the x-axis represents effective 

detector position at the exit of the waveguide. We then carried out the same experiment with 

the waveguide symmetrically and asymmetrically placed about the object as shown in Fig. 

2(e) and Fig. 2(g). The THz wavefield plots in the waveguide cases show, in addition to the 

direct path signals, pulses arriving at a later time corresponding to a single reflection from the 

waveguide mirrors. By the principle of mirror images, each reflected pulse that is detected 

corresponds to a virtual detector position. Hence, the first set of reflected signals should 

effectively double the numerical aperture of the THz system. In practice, as the angle of an 

image point increases corresponding to the arrival of reflected pulses later in time, the signal 

strength decreases due to the limited acceptance angle of the imaging parabola. Thus only the 
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first set of reflections is captured in our system and it is not possible to achieve a full doubling 

of the numerical aperture of the system. In ultrasound, the acoustic detectors are isotropic, 

enabling more reflections to be captured; the use of a shorter focal length parabola and a 

waveguide with a smaller aspect ratio should yield more reflections and thus enable a larger 

numerical aperture for the THz imaging system. 

The reconstructed images in Fig. 2(b), 2(d), 2(f) and 2(h) were obtained by numerically 

back-propagating the corresponding experimental wavefield plots using the delay-sum 

algorithm. By accounting for the proper time delays of the reflected signals, we were able to 

achieve better spatio-temporal compression of the time-reversed fields with the waveguide in 

place regardless of its symmetry about the object. We can quantify the temporal and spatial 

improvement as a result of using a waveguide by taking a horizontal slice through the 

reconstructed images. Figure 3(a) & 3(c) show an intensity enhancement for the symmetric 

and asymmetric waveguides of 2.6 and 1.9 respectively. These values were computed by 

taking the ratio of the peaks of the waveguide curve (red) to the non-waveguide curve (blue). 

The increase in intensity for the waveguide cases is attributed to an enhancement of the fields. 

This enhancement is the result of the coherent addition upon back-propagation of the pulses 

reflected from the waveguide walls to the direct pulses, resulting in a larger constructive 

interference of their maxima as well as a larger destructive interference of side lobes [4]. This 

is in contrast to the case without the waveguide, in which only the direct pulses are available 

for back-propagation and coherent addition. Figure 3(b) & 3(d) also shows that the waveguide 

in both the symmetric and asymmetric cases has led to better spatial focusing of the time-

reversed fields [4]. From the resolution plot for the symmetric waveguide case, Fig. 3(b), we 

computed a full width half maximum (FWHM) value of 1.08 mm for the first peak of the red 

curve and a FWHM of 1.64 mm for the respective peak of the blue curve. The slits that we 

imaged, as mentioned earlier, have widths of 1 mm. 

 

Fig. 3. Intensity plots for symmetric (a) and asymmetric (c) waveguide configurations. 

Resolution plots for symmetric (b) and asymmetric (d) waveguide configurations. 

Likewise, for the asymmetric waveguide case, Fig. 3(d), we computed a FWHM of 1.16 

mm for the first peak of the red curve and a FWHM of 1.36 mm for the respective blue curve. 

In both waveguide cases, the time-reversal reconstruction of the two slits yielded a 

reconstructed object with dimensions much closer to the true dimensions of the two slits. 

However, in the asymmetric case the blue curve of Fig. 3(d) has a smaller FWHM than the 

blue curve in the symmetric case of Fig. 3(b) and this is consistent with the fact that in the 

asymmetric case we scanned more positions and hence we should have achieved better 

reconstruction. However, the FWHM of the red curve in the asymmetric case, Fig. 3(d), did 

not match the FWHM of the red curve of the symmetric case, Fig. 3(b), even though we 

sampled more detector positions. The reason for this discrepancy is evident in the wave field 
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plot for the asymmetric case, Fig. 2(g). One side of the waveguide was much closer to the 

object than the other side. Hence we have more reflected pulses coming from the farther side 

than the closer side which will significantly contribute to a sharper rise on that side of the 

reconstructed object. Furthermore, the few reflected pulses from the closer side that are 

present in the wave field plot contribute very little to the reconstruction of the object because 

their amplitudes are small because they correspond to an image point with a large angle. 

Hence the right part of the red curve in the asymmetric case is overlapped with the 

corresponding part of the blue curve. As mentioned previously, achieving a larger angular 

acceptance in the THz detection will enable a higher effective NA and would alleviate this 

problem. In our experimental demonstration, we were still far from the ultimate diffraction 

limit of our system which has a λpeak = 429 µm and a λmean = 119 µm [2]. 

4. Model-based image reconstruction 

Ideally the time-reversal algorithm enables the realization of an optimal spatio-temporal filter 

as a result of the reciprocity theorem, which states that the position of a source and receiver 

can be interchanged without altering the resulting field [4]. We have shown that the 

introduction of a waveguide has effectively increased the NA of our setup and thus we have 

achieved a better spatio-temporal compression of our time-reversed fields than without the 

waveguide. However, the performance of the time-reversal algorithm is nonetheless degraded 

by the presence of temporal ringing on the THz pulse. Ringing arises in the system due to 

reflections in the THz emitter and detector, atmospheric absorption lines, and the non-ideal 

response of the ZnTe electro-optic crystal. Although our THz pulse is far from being a clean 

single cycle pulse, we can mitigate the effect of the ringing in our reconstruction algorithm by 

taking into account the measured impulse response of our THz imaging system. That is, we 

can approach image reconstruction from scattered fields as a model-based inverse problem in 

which we try to recover some underlying function that describes the object from the collected 

data in a “best fit” manner without overly fitting the noise [5]. Hence we have investigated 

replacing the time-reversal reconstruction algorithm with a more general statistical algorithm 

that estimates what the object is from the data collected [5]. 

At every detector position, the received signal is just a superposition of THz pulses from 

every point in the object plane with an appropriate delay parameter. That is the observed 

signal at the mth detector position can be expressed as 

 
1

( ) ( )
N

m nm n
n

S t h t τ θ
=

= −∑  (1) 

where θn denotes the unknown value of the object’s transmissivity at the nth sample position 

in the object plane, and h(t) is a THz pulse that is delayed by a known parameter τnm. By 

concatenating our observed signals into one vector, we can recast the above equation as: 
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 (2) 

or more succinctly as: 

 = ΘY A  (3) 

where Y is a vector consisting of observed signals, A is a known system matrix and θ is a 

vector of unknown parameters. We could find an estimate for θ from Y by minimizing the 

following least-squares criterion: 
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θ θ
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However, since our goal is not only to obtain an estimate of θ but also to reduce the presence 

of artifacts in our reconstructed images, we minimize instead the following regularized least-

squares (RLS) cost function: 

 2

1
2

2
arg min ( )

N

n n
n

Y A
θ

θ θ β θ θ
∧

−
=

= − + −∑  (5) 

The additional term is a regularizing penalty term and its effect is to discourage disparities in 

neighboring pixel values while the effect of the first term is to encourage a best fit of the 

measured data [5]. Since these two effects are conflicting the adjustable parameter β controls 

the tradeoff between the two and controls the balance between spatial resolution and noise in 

the final estimate [5]. 

We implemented a one-dimensional reconstruction algorithm based on the RLS criterion 

given in Eq. (5) and compared its performance to the performance of the time-reversal 

algorithm in the case without a waveguide and in the case with an asymmetrically placed 

waveguide. The algorithm for both experiments took on average 5 iterations to converge. In 

the case without the waveguide, the RLS algorithm achieves a better reconstruction of the 

object than the time-reversal algorithm as evident by the 4.5 x improvement in intensity as 

shown in Fig. 4(a) and we have also calculated a peak SNR ratio improvement of 2.2. The 

RLS algorithm has also improved the resolution of the system. The FWHM for the red curve 

is 1.03 mm and the FWHM for blue curve is 1.36 mm. Furthermore, the accuracy of our 

system model can be determined by how well the simulated wavefield data, which can be 

obtained by multiplying the reconstructed object from the RLS algorithm by the system 

matrix A, matches the measured wavefield data. The measured wavefield data of Fig. 4(c) and 

the simulated wavefield data in Fig. 4(d) are well matched, and the presence of spurious 

signals due to imperfections in the imaging optics have been removed from the measured data. 

Furthermore, we can better show the accuracy of our system model by taking any arbitrary 

vertical time slice from wavefield plots of Fig. 4(c) & 4(d) and determining how well the 

measured THz and the simulated THz pulses match at a particular detector position. Figure 

4(e) shows a comparison between the measured and the forward-propagated RLS-

reconstructed THz pulse at detector position 10. The simulated pulse shows strong agreement 

with the measured direct path THz pulse at −25 ps, while showing strong suppression of 

spurious signals, most notably the one present at approximately −15 ps. 

 

Fig. 4. Absolute (a) and normalized intensity (b) obtained by the RLS algorithm (red curve) 

versus the time-reversal algorithm (blue curve). Figure 4(c) & (d) show the similarity of the 
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measured and simulated fields. Figure 4(e) shows the measured and forward-propagated RLS-

reconstructed THz waveform. 

The model-based reconstruction algorithm works well in reconstructing the scattering 

object from the measured data. However in the waveguide case, the algorithm did not yield a 

substantial improvement over the time-reversal algorithm as seen in the intensity and the 

resolution plots of Fig. 5(a) & 5(b) respectively. We computed a peak SNR improvement of 

1.47 for model-based algorithm over the time-reversal algorithm for the case with the 

waveguide. The lack of a substantial improvement in the waveguide case can be attributed to 

a combination of two factors. The first factor is the sensitivity of the RLS approach to 

modeling errors in the system matrix A. If there is a phase shift that we are not accounting for 

in the waveguide case, the impulse function used to create the A matrix will not be able to 

completely model the waveguide system, particularly the reflections off the mirrors. We can 

see in Fig. 5(c) & 5(d) that there is a discrepancy between the measured and simulated 

wavefield data indicating the presence of an unknown phase shift. Figure 5(e) further shows 

that although we modeled the direct part of the signal accurately as evident by the strong 

agreement between the direct parts of the measured and simulated signals, there is a mismatch 

between the reflected parts. The other factor preventing a substantial improvement in 

reconstruction for the waveguide case is the diffraction limit of the system. The presence of 

the waveguide has improved the NA of the system beyond the acceptance angle of the 

imaging parabolas and hence the RLS algorithm has very little to improve upon as it 

asymptotically approaches the diffraction limit of the system. Nonetheless, the model-based 

algorithm in conjugation with the waveguide performs better than the time-reversal algorithm 

with the waveguide and we anticipate better performance provided we can generate the 

correct system matrix. 

 

Fig. 5. Absolute (a) and normalized intensity (b) obtained by the RLS algorithm (red curve) 

versus time-reversal with waveguide (blue curve). Both plots show the peak intensity relative 

to the time-reversal algorithm without the waveguide. Figure 5(c) & (d) show the slight 

discrepancy between the measured and simulated wavefield data. Figure 5(e) shows the 

measured and simulated THz signals at detector position 10. 

5. Conclusion 

In conclusion we have presented two methods for improving the time-reversal imaging 

technique. We first used a waveguide to increase the effective numerical aperture of the 

system. The waveguide technique not only yields an improvement in the numerical aperture 

of the system, but more generally illustrates how techniques used in ultrasound may be 

fruitfully adapted to THz imaging technology. Secondly, we implemented a model-based 

reconstruction technique that uses the actual impulse response of the experimental THz 

system and is therefore better suited for reconstructing the object and eliminating spurious 
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signals than the simple time-reversal algorithm. We have demonstrated the model-based 

algorithm for a THz system operating in transmission mode; however, we can easily extend 

this algorithm for systems operating in reflection mode provided that the impulse response for 

the system is known in advance in order to construct the system matrix. 
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