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Accelerated Nonrigid Intensity-Based Image
Registration Using Importance Sampling
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Abstract—Nonrigid image registration methods using intensity-
based similarity metrics are becoming increasingly common tools
to estimate many types of deformations. Nonrigid warps can be
very flexible with a large number of parameters and gradient op-
timization schemes are widely used to estimate them. However, for
large datasets, the computation of the gradient of the similarity
metric with respect to these many parameters becomes very time
consuming. Using a small random subset of image voxels to ap-
proximate the gradient can reduce computation time. This work
focuses on the use of importance sampling to reduce the variance
of this gradient approximation. The proposed importance sam-
pling framework is based on an edge-dependent adaptive sampling
distribution designed for use with intensity-based registration al-
gorithms. We compare the performance of registration based on
stochastic approximations with and without importance sampling
to that using deterministic gradient descent. Empirical results, on
simulated magnetic resonance brain data and real computed to-
mography inhale–exhale lung data from eight subjects, show that a
combination of stochastic approximation methods and importance
sampling accelerates the registration process while preserving ac-
curacy.

Index Terms—Gradient optimization, importance sampling, in-
tensity-based registration, stochastic approximation.

I. INTRODUCTION

N ONRIGID registration algorithms estimate a warp
or deformation with many [ 12 (3-D affine)] de-

grees-of-freedom that appropriately maps one image onto
another. The estimated warp models can be either parametric
[1]–[4] or nonparametric [5], [6]. In this paper, we focus on
intensity-based image registration methods that estimate pa-
rameterized warp models by solving an optimization problem
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where is the similarity metric and is the estimate of the
dimensional vector of warp parameters.

In registration scenarios that use differentiable inten-
sity-based similarity metrics and gradient optimization
methods, it is possible to derive an analytical expression
for the gradient of the similarity metric . However,
for large image datasets, the large number of warp parameters
in most nonrigid registration methods makes the gradient
calculation time consuming. A simple strategy to reduce this
computation time is to use a small random subset of image
voxels to approximate the gradient [7].

Since this randomization of the gradient in effect makes the
search direction a random variable, these techniques cannot be
used with algorithms like conjugate gradients that endeavor to
maintain the conjugacy of successive search directions. Further-
more, while it is possible to approximate the Hessian, because
the random sample-size is small, its accuracy is suspect. Hence,
step-sizes based on the inverse of the Hessian, as in the Lev-
enberg–Marquardt scheme, may not be reliable. It was reported
in [7] that an analytical gradient-based optimizer [2], [3], using
a random subsampling technique to approximate the gradient,
performed better than that using gradient approximations based
on finite differences [8] and simultaneous perturbation [9].

The speed and accuracy of such registration algorithms de-
pend on the quality of the gradient approximation obtained via
random sampling. The subset of random voxel locations is typ-
ically drawn using uniform sampling (US). Here, we present an
alternative data-driven, nonuniform sampling strategy that can
be used efficiently to improve these gradient approximations.
We argue that image edges strongly influence intensity-based
registration estimates. Consequently, we propose the use
of importance sampling (IS) based on a sampling distribu-
tion that emphasizes image edges to improve the gradient
approximations.

Section II-A casts image registration in a stochastic ap-
proximation framework. Importance sampling is described
in Section II-B. A nonuniform sampling distribution for in-
tensity-based registration is developed in Section II-C. An
efficient implementation strategy is outlined in Section II-E.
Section III uses simulated 3-D magnetic resonance imaging
(MRI) volumes to compare the performance of multimodal
image registration using both IS and US with that using a
deterministic gradient descent optimizer. Lastly, we demon-
strate the application of IS to register real inhale–exhale lung
computed tomography (CT) data using deformable B-spline
warps. The quality of the registration for CT data is quantified
using expert identified landmarks. These results suggest that
IS based on the sampling distribution designed in this work
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can accelerate intensity-based nonrigid registration algorithms
while preserving accuracy.

II. THEORY

A. Stochastic Approximation

Image registration based on random sampling becomes a sto-
chastic approximation technique with the following updates:

(2)

where is the warp parameter estimate at the th iteration,
is an approximation of the gradient at and

is the step-size. The iterative updates given by (2) require only
an approximation of the gradient ; the similarity metric

itself does not need to be computed. Stochastic approxima-
tion (SA) is used to find the zeros of a function (here )
when only noisy function evaluations are available [8], [10].
SA methods aim to find the unknown zeros by successively re-
ducing the inaccuracy in their estimates. They have been applied
successfully to numerous applications in the fields of statistical
modeling and controls. In gradient-based image registration, SA
techniques can be used to estimate warp parameters that maxi-
mize the similarity metric by steadily reducing the imprecision
introduced in successive gradient approximations.

A now common SA approach was first introduced by Rob-
bins and Monro [11]. This method aims to reduce the inaccu-
racy in its estimates by gradually reducing the step-size of the
iterations; for brevity we call this technique Step-SA. Step-SA
requires that the number of points (image voxels) used to ap-
proximate the gradient, i.e., the sample-size, remains fixed over
iterations. The step-size sequence, designed to guarantee con-
vergence of the optimizer, is a nonincreasing nonzero sequence

, such that and .
Clearly there are numerous sequences that describe a valid step-
size progression. In practice the step-size sequence is chosen
heuristically for a given application.

Unlike Step-SA, sample-size controlled SA (Samp-SA) [12]
keeps the step-size constant. Errors in parameter estimates are
reduced by progressively increasing the sample-size used to ap-
proximate the gradient. The slowest sample-size growth rate that
ensures convergence is proportional to where is the it-
eration number [12]. Using a slow growth rate should reduce
computation time. Both techniques effectively average out the
approximation error as the iterations progress, yielding conver-
gence.

Irrespective of the SA scheme used, the efficiency of these
methods for image registration applications depends on the bias
and variance properties of the underlying gradient approxima-
tion based on a small random subset of image voxels. This work
focuses on the use of importance sampling to enhance the per-
formance of registration algorithms by reducing the variance
of such gradient approximations without introducing any bias.
Since we use SA iterations given by (2), we restrict our attention
to the bias and variance properties of the gradient approximation

alone. The similarity metric need not be computed or
approximated. In the following section we briefly review im-
portance sampling and identify image regions that strongly in-

fluence intensity-based registration. Subsequently we describe
an appropriate adaptive sampling distribution that emphasizes
samples from these regions. Further, a simple strategy to effi-
ciently implement the sampling distribution is discussed.

B. Importance Sampling

IS is a variance reduction technique capable of incorporating
knowledge of the quantity being approximated into the sam-
pling process. IS recognizes that certain types of random sam-
ples can affect the approximation more than others and utilizes a
sampling distribution that emphasizes these important samples.
Such a biased distribution would produce a biased estimator;
however by weighting the samples appropriately this bias can
be preempted. For completeness we briefly summarize IS along
the lines of [13]. To study the variance reduction afforded by
IS, consider estimating a computationally intractable integral

. This integral can be expressed as the expecta-
tion of a (nonlinear) function of a uniformly distributed random
vector such that

(3)

where is the uniform distribution over given by

else.

Alternatively, the intractable integral can also be written as
the expectation of a function of a nonuniform random variable

, given by

(4)

where the nonuniform distribution is given by

else.

To gain any advantage by using over , the function
should be chosen carefully.

In practice, the expectations above are approximated by their
sample means using independent and identically distributed
(i.i.d.) samples of random vectors and .
Ignoring the proportionality constant , consider the following
estimates of the integral in (3)

where corresponds to the US case and is the esti-
mate obtained by IS. Both and are unbiased with ex-
pectations proportional to the original integral in (3). Since the
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random samples are i.i.d., the variances of the two estimates are
given by

IS based on the sampling distribution is beneficial only if
is chosen to ensure that

. This is possible if and only if the function
has lower variance than alone. Thus the weights and
correspondingly the sampling distribution should be chosen
to be similar in shape to the original integrand , ensuring
that the function is approximately constant.

C. Sampling Distributions for Image Registration

To design a meaningful sampling distribution for gradient-
based image registration, we first identify image regions that
contribute significantly to the gradient of the similarity metric.
Consider registration between a pair of intensity images, namely
the reference image with voxels and the homologous image
with voxels. These images are assumed to be sets of sam-
ples , , and ,

, of continuous intensity functions and ,
respectively. These continuous functions are sampled at coor-
dinates and , respectively.

Most nonrigid registration algorithms assume that image co-
ordinates are related by a warp . The vector of
unknown warp parameters is estimated iteratively by
the algorithm. At each iteration, the current estimate
is used to find intensities at coordinates in
the homologous image corresponding to each reference voxel
location. These transformed coordinates rarely lie on the sam-
pling grid points and hence their corresponding intensity values

are not known. Intensity-based similarity metrics
commonly approximate these unknown intensities by modeling
the continuous intensity function using an appropriate in-
terpolation kernel. Specifically, we use

(5)

where is a cubic B-spline and are the corresponding
spline coefficients. To ensure exact interpolation, the B-spline
coefficients are obtained by appropriately prefiltering the orig-
inal image using techniques described in [14]. Similarity
metrics employing this model can be written as

(6)

Assuming differentiability and using the chain rule, the gradient
of is given by

(7)

where denotes the gradient
operator. To accelerate the gradient computation, a random
subset of image voxels is typically drawn from a uniform
sampling distribution [3], [7]. Thus any voxel pair is equally

likely to be used to approximate the gradient, ensuring that the
resulting approximation is unbiased.

Reducing the variance of this approximation (without intro-
ducing any bias) will not only improve the convergence of the
SA optimizer but may also facilitate the use of smaller sample-
sizes. This may be possible by using IS to encourage denser
sampling from image regions that strongly influence the gra-
dient given by (7). These “important” image regions can be iden-
tified by differentiating (5)

(8)

where , is the 1 3 vector gradient
of the B-spline kernel. The term in the braces contains the di-
rectional gradients or edges of the homologous intensity image
along the three coordinate axes. Recalling (7), only voxel inten-
sities that lie on an edge in the homologous image will
contribute significantly to .

To see the importance of edges in the reference image we
consider registration by swapping the two images, i.e., treating

as the reference image and as the homologous image.
This corresponds to finding an “inverse” warp. In this case, the
continuous function will be modeled using an interpolation
kernel. Repeating the above analysis, we see that edges in the
swapped reference image will now be vital in the gradient
calculation. This suggests that our importance sampling scheme
should follow a distribution that emphasizes edges in both the
reference and the homologous images.

At the th SA iteration with parameter guess , we
base the design of our -dependent sampling distribution on
the edge magnitudes of the two intensity images. We choose the
probability that a voxel pair with coordinates is selected
as follows:

(9)

where

if

else.

In the above equation and are approximate
edge magnitudes of the reference and interpolated homologous
images, respectively. is a user-defined edge threshold and

.
The minimum probability that a voxel is used in the gradient

approximation is given by the parameter . We choose to be a
positive nonzero constant, so that in the limit of a large number
of IS draws, all voxel-pairs will contribute to the SA optimiza-
tion scheme. The threshold may be tailored to remove spu-
rious noise induced edges from the sampling distribution. If the
normalized edge magnitudes in both images were all smaller
than , then the sampling distribution would become uniform
with each voxel pair having an equal chance of being selected.
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Let ; where , be coordi-
nates of voxel pairs belonging to the small random subset ,
chosen according to . Then the approximate gradient used
in (2) is given by

(10)

where and is the warp parameter
guess at the th SA iteration. The voxel pairs in random subset
follow the nonuniform sampling distribution given by (9). Such
nonuniform samples may yield a biased gradient estimate. How-
ever, by using the weights to appropriately weight each
voxel pair, we can ensure that the resulting gradient approxima-
tion in (10) is unbiased. This approximate gradient uses only

voxel pairs; hence the time consuming sum in (7) is
evaluated only at these sample points.

Interestingly, Sabuncu et al. [15] recently developed an edge-
dependent sampling scheme to reduce the approximation error
in their Euclidean minimum spanning trees (EMST) based reg-
istration. However, results were demonstrated only for rigid reg-
istration of 2-D brain images. Further, they did not study the
variance-bias properties of their approximation and assigned the
same weight to all samples.

D. Optimization Scheme

As discussed previously both Step-SA and Samp-SA can be
used to estimate the unknown warp parameters. Our previous
empirical results [16] comparing registration of simulated brain
data indicated that under identical conditions Samp-SA has
faster initial convergence than Step-SA; however, Step-SA
appeared to be more stable at later iterations. Two schemes
combining the advantages of these SA methods resulted in
faster nonrigid registration: 1) an “Hybrid-SA” scheme that
started with Samp-SA for a fixed number of iterations and
then switched to Step-SA and 2) a “Pyramid-SA” scheme that
employed a variable combination of step and sample-sizes
using a multiresolution pyramid approach. Because of the
prevalence of pyramid optimization schemes and their empiri-
cally demonstrated robustness to local minima [2], [3], we used
Pyramid-SA for all experiments in this paper.

In our experiments all levels of Pyramid-SA used cubic
B-spline representations of both images. Lower levels of the
pyramid used coarse image approximations with small amounts
of data to obtain initial warp estimates. These warp estimates
were then refined at higher levels of the pyramid using more
precise image representations by including more intensity data.
Since coarse image approximations are accompanied by a
loss of detail, low level warp estimates capture gross global
alignment and are explained using fewer parameters. As image
detail increases with pyramid levels, the warps become more
elaborate and depend on a larger number of parameters. Thus
successive levels of the pyramid use an increasing number of
intensity pairs to estimate the similarity metric. In an SA frame-
work, this corresponds to implicitly increasing the sample-size
between each level of the pyramid. “Optimal” warp parameters
within each pyramid level were estimated using Step-SA. For
simplicity we call this optimization scheme “Pyramid-SA.” In

lieu of a gradient-dependant stopping criterion, we used a fixed
number of SA iterations at each level of the pyramid. The exact
number of Step-SA iterations at each level of our Pyramid-SA
scheme was chosen heuristically.

When the number of unknown warp parameters is very small,
it may be sufficient to empirically identify a single step-size
value for Step-SA algorithms. However for large-dimensional
vector valued parameters, the optimal step-size for each vector
component may vary widely. To remedy this, we adopted an
adaptive step-size estimation technique proposed in [17]. Let
be the estimate of warp parameters at iteration , with elements

, . The adaptive step-size strategy assumes that
for a stationary point of the similarity measure, rapid changes
in the sign of indicate
that is closer to its optima. Similarly, fewer sign changes are
indicative of a greater distance from . Thus the step-size asso-
ciated with the th warp parameter component is kept inversely
proportional to the number of sign changes of . Our
implementation estimates the step-size for the th component
as follows: , where is the number of sign
changes in , and . and
are positive nonzero constants. Such step-size sequences were
shown to be convergent in [17]. While many choices of and
values are valid in theory, using a larger may boost SA per-
formance by yielding larger step-sizes at later iterations [18].
However a larger may also result in instabilities at earlier
iterations. It was observed in [18] that incorporating “stability
constant” number of SA iterations could avoid
such fluctuations in earlier SA iterations, allowing the use of
larger values. For all experiments in Section III, we found
that Pyramid-SA with two pyramid levels worked well, with

and less than 400 Step-SA iterations at each level of
the pyramid.

E. Implementation Issues

For IS to be advantageous in an image registration applica-
tion, it is crucial to design a meaningful sampling distribution
that requires minimal computational effort. The sampling distri-
bution depends on the changing warp parameter estimates
through , so it has to be recomputed with significant
variations in the SA estimates of . Thus it is important to use
a fast and simple approximation of the edge maps. Since the
reference image does not change throughout the registration,
we precompute its (fixed) edge map . However the ho-
mologous image geometry changes with updates in and cor-
responding edge magnitude values need to be recomputed. For
large homologous images, edge maps based on higher order ker-
nels such as the cubic spline in (5) can be computationally ex-
pensive. Hence we approximate edge magnitudes using fast first
order finite central differences of the intensity images along each
image dimension.

The sampling distribution (9) gives equal importance to the
normalized edge magnitude maps of both the reference and
the homologous image. In the early stages of the registration
scheme, the reference and homologous images may be strongly
misaligned. Hence it is important to frequently update the
homologous image’s edge map during initial iterations, so
as to accurately emphasize all the “important” misaligned
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Fig. 1. Comparison of samples obtained using the sampling distribution given by (9) versus samples obtained by uniform sampling. Images were created when
the algorithm was not near registration. (a) Example sampling distribution. (b) Importance sampling. (c) Uniform sampling.

regions in both images. However, towards the final stages of
the registration algorithm, we can expect both images to be
better aligned. That is, many of the homologous image edges
will now coincide with those of the reference image. Thus, it
may be computationally advantageous to update the homol-
ogous image edge map sparingly at later iterations. Further,
the coarse-to-fine framework of the Pyramid-SA scheme in
Section II-D inherently results in coarse scale changes in the
warp estimate at lower levels of the pyramid, while finer warp
adjustments occur at higher pyramid levels. At each iteration,
coarse scale warp changes are more likely to significantly affect
the edge map than finer refinements. Hence, we update the
sampling distribution frequently at lower Pyramid-SA levels
and increase the number of iterations between updates as
the optimizer switches to higher levels. SA algorithms are
characterized by small steps along random search directions.
Thus the sampling distribution is updated every iterations
to reflect the average change in these warp estimates. At
pyramid level we used .

Lastly, at every update, the approximate homologous image
edge map need be recomputed only at locations where the effec-
tive deformation is large enough to significantly change the edge
magnitude. That is, we incrementally update our finite central
difference based edge estimate only at geometric coordinates
that move more than the dimensions of a voxel in any direction
on average. These measures ensure that the overhead required
to compute and update the sampling distribution is reasonably
small. Further, this fractional overhead reduces steadily with in-
creasing sample-sizes. Fig. 1 shows the sampling distribution
and corresponding samples obtained using importance sampling
for registration of simulated brain datasets.

III. RESULTS

We demonstrate the use of IS for image registration using
both simulated and real data. Results include pair-wise
monomodality and multimodality registration using two
common intensity-based similarity metrics. All registration
results using IS-based Pyramid-SA (IS-SA) and US-based
Pyramid-SA (US-SA) described here employed the opti-
mization framework detailed in Section II. For comparison,
registration was also performed using deterministic gradient
descent (GD) in the same multiresolution pyramid framework.
GD used all image voxels to compute the analytical gradient at

each iteration. All three methods utilized multiresolution rep-
resentations of both images using cubic splines and estimated
deformable warps based on B-splines.

A. Behavior of IS-SA With Variations in Step-Size

A limitation of SA approaches is their sensitivity to tuning
parameters such as step-sizes. If the sampling distribution
designed in (9) reduces the variance of , IS-SA can be ex-
pected to have an increased tolerance to variations in step-sizes.
Simulated datasets were used to compare the behavior of mul-
timodal registration using IS-SA and US-SA with various step-
sizes.

Mutual information (MI) based registration was performed
between T1 and PD-weighted simulated MR
volumes with mm voxels, obtained from ICBM [19].
A plug-in MI estimate between the two images, given by

(11)

was used as the similarity metric. is the approxi-
mate probability that a homologous intensity voxel

; and are defined similarly over intensity levels
and . These sets of

intensity levels and are chosen to span the dy-
namic intensity range of the reference and homologous images
respectively. Our use of gradient-based optimizers requires that
we approximate these pdfs using differentiable kernel density
estimates [20].

All results using IS-SA optimization schemes in this sec-
tion used the sampling distribution given by (9). We applied a
known synthetic warp derived using radial blobs of varying
severity to the T1 volume, yielding ground truth coordinates

, . This warped volume was treated as the
reference, while the unchanged PD volume was the homologous
image. B-spline warps were estimated by mapping the ho-
mologous volume onto the reference volume. Independent re-
alizations of Gaussian noise were added to both im-
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Fig. 2. Comparison of the performance of IS-SA (red/notched) versus US-SA (blue/plain) with variations in step-sizes. Figures show rms error statistics for 10
nonrigid multimodality registration runs at seven step-sizes and four (0.25%, 0.5%, 1%, and 2%) sample-sizes. The line at the center of each boxplot shows the
median rms error value and top and bottom edges are the 75% and 25% quantile rms errors. “Outliers” are shown by (o) for IS and by ��� for US. IS does
significantly better than US at all four sample-sizes. Specifically, IS results in lower variance values and shows better tolerance to variations in step-sizes. Trends
in the four plots indicate that the performance of both sampling strategies will become comparable with an increase in sample-size. (a) Each pyramid level used
0.25% of all available voxels. (b) Each pyramid level used 0.5% of all available voxels. (c) Each pyramid level used 1% of all available voxels. (d) Each pyramid
level used 2% of all available voxels.

ages prior to the registration runs. Quality of the estimated warp
was evaluated using the root mean square (rms)

error between the warp estimate and ground-truth

(12)

A two-level Pyramid-SA scheme was used to register the two
datasets. Level one used 64 histogram bins, a B-spline control
point spacing of voxels and both images were down-
sampled by a factor of two in all dimensions. The second level
had 128 histogram bins, an voxels B-spline control
point spacing and no down-sampling. Both levels implemented

150 and 250 iterations of Step-SA, respectively, and used only
a fixed percentage of all available voxel pairs at that level.

The step-size , corresponding to component of the warp
parameters’ estimate at iteration , was ,

. Where, was the number of sign changes in
, . The parameter in the step-size

sequence remains to be chosen. To study the effect of varying
step-size parameter , warp estimates from 10 registration runs
were obtained using IS and US, for systematically increasing
values of from 1000 up to 25 000 in increments of 3000. This
process was repeated for four different sample sizes of 0.25%,
0.5%, 1%, and 2%, respectively. Fig. 2 compares statistics of the
final rms errors obtained using the two sampling strategies for
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Fig. 3. Comparison of the speed and accuracy of IS-SA (red/notched) and US-SA (blue/plain) for registration of CT Lung data. The optimal step-size parameter
� was empirically chosen to consistently produce warp estimates closest to the pseudo ground-truth warp in an RMSE sense. Fig. 3(a) shows that � � �
was the best value for both methods. The line at the center of each box-plot is the median rms error, while top and bottom edges are 75% and 25% quantiles.
Outliers are represented by ��� for IS-SA and ��� for US-SA. Fig. 3(b) shows how the speed and accuracy of the best IS-SA and US-SA schemes (� � � and
sample-size � ��) compare with those using GD �sample-size � ����� on average. Dotted lines are �1 standard deviation plots. (a) Step-size parameter �� �
estimation. (b) Speed and accuracy comparison of IS-SA, US-SA, and GD.

a fixed CPU time. As hypothesized, IS-SA yields lower errors
than US-SA over the entire range of step-sizes.

Empirically, IS-SA was significantly less sensitive to step-
size variations, while consistently giving more accurate warp es-
timates. Further, US-SA required larger sample sizes to achieve
accuracies comparable to those using IS. As sample-sizes in-
crease both IS and US will capture similar levels of image com-
plexity making their performance comparable. The minimum
sample-size beyond which both sampling methods give similar
results will depend on the complexity of the datasets. In general,
US will be effective at smaller sample-sizes when image edge
features are roughly uniformly dispersed.

B. Application to Human Data

Encouraged by the observations made in the previous section,
we used IS to register human datasets. Intensity-based registra-
tion using B-spline warps was applied to align CT inhale and
exhale lung datasets from eight subjects. These CT scan pairs
were obtained using a helical CT scanner (CT/I, General Elec-
tric, Milwaukee, WI) with voxels. Each
scan pair was acquired during coached voluntary breath-hold
periods of 18–35 s; the first scan at normal exhale followed by
one at normal inhale. A more detailed description of the data
can be found in [21].

Monomodality registration was performed using the negative
of sum of squared differences (SSD) as a similarity metric. In
this case, both the reference and homologous images are as-
sumed to be noisy realizations drawn from the same continuous
function. Let the reference image be given by a set of noisy sam-
ples . Then the negative SSD similarity metric is

(13)

where the interpolated homologous image is given
by (5). Differentiating the above expression shows that image

edges are important to the gradient of . To ensure that
was not affected by inherent differences in the scale of

intensities of the two images, both images were normalized to
have the same intensity ranges prior to registration.

Step-Size Training: Effective use of US-SA or IS-SA to reg-
ister a population of real datasets requires an efficient strategy
to estimate the step-size parameter . Here we outline a simple
procedure to estimate this value using a single randomly
chosen dataset from the target CT population. In the absence of
known ground truth, B-spline warp estimates obtained using de-
terministic GD optimization were treated as the pseudo ground-
truth. This is a reasonable assumption since the goal of our SA
algorithms is to use only a small subset of strategically selected
image voxels to attain registration accuracy comparable to that
using GD with all image voxels. To mitigate local minima, reg-
istration estimates from multiple runs of a GD algorithm were
used. Each run was initialized using a small randomly generated
warp. The final registration estimate corresponding to the largest
similarity metric value was treated as the best attainable warp.
For a given sample-size, optimal values using both IS-SA
and US-SA were chosen to consistently find warp estimates that
yielded the smallest rms error values with respect to this pseudo
ground-truth warp.

For training purposes, we employed a two-level pyramid reg-
istration scheme. Level 1 downsampled the images by a factor
of 2, estimated B-spline warps with a voxels con-
trol point spacing and used as the step-size parameter. The
second level used no downsampling, a B-spline con-
trol point spacing and the step-size parameter was . Each
level used 1% of the total available voxels at that level. Ten wrap
estimates were obtained using both IS-SA and US-SA for a set
of five different values. Each registration run was terminated
after 10 min and at every iteration we recorded rms errors of the
estimated B-spline warp with respect to the pseudo ground-truth
warp. Step-size parameter value was found to yield the
best results for both SA methods. Fig. 3(a) shows statistics of
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Fig. 4. Comparison of the accuracy and variation in trained IS-SA
(red/notched) versus US-SA (blue/plain) registration using expert identi-
fied feature points for CT inhale–exhale lung data. The line at the center of each
box-plot is the median error metric, while top and bottom edges are 75% and
25% quantiles. Outliers are represented by ��� for IS-SA and ��� for US-SA.
Dataset 5 was used in the training step.

rms error values for all 10 IS-SA and US-SA registration runs
at all five values. Fig. 3(b) shows speed and accuracy com-
parisons of GD, IS-SA, and US-SA (both using ) with re-
spect to the pseudo ground-truth warp. All subsequent SA based
registrations were performed using this trained pyramid scheme
with .

Validation: To gauge the performance of IS-SA and US-SA
based on the trained pyramid scheme described above, we ap-
plied both methods to register all eight CT inhale–exhale lung
scan pairs. To quantify registration accuracy, six expert identi-
fied feature points were used per scan pair. These features in-
cluded both bronchial and vascular bifurcations. For each sub-
ject, registration was performed by treating the exhale scan as
the reference and the inhale scan as the homologous dataset.
Following registration, the estimated B-spline warp was used to
transform the six exhale feature point coordinates to obtain pre-
dicted inhale feature point coordinates. The average of the Eu-
clidean distance between the coordinates of each predicted and
expert identified inhale feature point was used as an error metric
to quantify registration accuracy for each dataset.

Since in reality we wish to replace a single GD registration
run by a single SA registration run it is important that the method
of choice give consistently good warp estimates with as little
variance as possible. To empirically demonstrate the estimate
variance associated with both SA methods, each CT dataset reg-
istration was repeated ten times. For comparison each dataset
was also registered using GD. Each of the ten GD repetitions
was initialized with a small random independently generated
warp. Each SA registration run was completed in approximately
5–8 min on a moderate PC running C++ code; in contrast, each
successful GD registration required about 30–90 min. Fig. 4
summarizes statistics of the resulting feature point error metric
for all ten registration warp estimates using IS-SA and US-SA
for all eight datasets. In general IS-SA resulted in better accu-
racy than US-SA and showed a reduction in estimate variance.

TABLE I
COMPARISON OF THE AVERAGE EUCLIDIAN DISTANCE ERROR FOR INHALE

FEATURE POINTS PREDICTED USING US-SA, IS-SA, AND GD

The average Euclidian distance between the expert identified
exhale and inhale feature points can be used as some measure of
the severity of the initial deformation. Table I indicates that for
datasets with larger deformations (datasets 1, 2, and 3) IS-SA
showed a marked improvement in accuracy over US-SA. For
datasets with smaller deformations (datasets 6, 7, and 8) both
methods performed comparably with IS-SA doing only slightly
better than US-SA. The datasets are presented in order of de-
creasing initial deformation for ease of comparison. For most
datasets IS-SA showed accuracy comparable to that using GD.
Empirically, for datasets with larger deformations, SA methods
appeared to be less susceptible to local minima than GD. For
datasets 1, 2, and 3 most repeated GD registration trials got stuck
in local minima and terminated after 5–7 min. These GD reg-
istrations resulted in poor inhale feature point predictions and
were discarded as unsuccessful. In particular no GD registra-
tion run was successful for datasets 2 and 3, while only one run
managed to escape local minima for dataset 1.

IV. DISCUSSION AND CONCLUSION

We have developed and validated an importance sampling
based stochastic approximation (IS-SA) approach to accelerate
nonrigid image registration. We leveraged the significant influ-
ence of image edges on gradients of intensity-based similarity
metrics to design an adaptive nonuniform sampling distribution
that encourages sampling from these regions. Results for both
synthetic simulations and real lung CT data show that registra-
tion using IS-SA can yield better speed and accuracy than SA
schemes that use uniform sampling (i.e., US-SA). In particular,
Fig. 2 shows that the number of samples required to attain a
particular registration accuracy was halved by using IS-SA. For
a fixed sample-size in Fig. 3(b) IS-SA was more than 2 times
faster than US-SA on average. In contrast to approaches that re-
place or modify existing similarity metrics by explicitly incor-
porating image gradient-based terms [22], [23], our IS-based SA
strategy can improve the speed and accuracy of a wider range
of existing intensity-based registration methods without altering
their similarity metrics (such as SSD, MI).

Correspondences between six expert identified bronchial
and vascular bifurcations from each inhale–exhale CT scan
pair were used in the validation procedure in Section III-B.
While the selection of these bifurcations may have depended on
edges, most of the voxels drawn in each IS-SA iteration using
the sampling distribution (9) would not be near any bifurcation.
Hence, we expect any bias toward IS-SA in the validation
criterion to be small.
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The use of SA methods in practical applications can be hin-
dered by their dependence on the step-size parameter. To ef-
fectively apply these methods to populations of real data, we
introduced a training strategy to empirically estimate a reason-
able value for this step-size parameter in the absence of ground-
truth. The training method uses only a single randomly chosen
dataset from the target population and its corresponding “suc-
cessful” deterministic GD registration warp estimate. This ap-
proach should be practical when several scans from the same
protocol need to be registered. Finding automatic parameter se-
lection methods for a single image pair is a challenging open
problem.

Though we have demonstrated the efficacy of IS-SA only
with B-spline warps, our framework is applicable to most other
parametric nonrigid warp models. Specifically for more global
warps (such as thin-plate splines) where each warp parameter
depends on a larger number of image voxels, we expect to see
more marked improvements in registration performance using
IS-SA.

The data used here to demonstrate improvements in registra-
tion using IS-SA had few or sparse edges. As the percentage of
edges increases it may be beneficial to use a more stringent crite-
rion to retain fewer edges in the sampling distribution. More em-
pirical experiments will be needed to quantify the approximate
percentage of edges that need to be retained in such cases. In
our implementation, the small random subset of samples fol-
lowing the sampling distribution in (9) was drawn using the “in-
verse pdf transform” sampling method. Alternatively, the sam-
ples in may be drawn using a rejection sampling-like ap-
proach; especially when the datasets have a large percentage
of edges. Further, an edge-based sampling strategy may not be
the best choice for registration when one image has significant
strongly demarcated structures absent from the other image(s).

The edge-based sampling distribution in (9) is not necessarily
optimal. Since the gradient in (7) depends on both
and ; , it may be possible to design
alternative sampling distributions that emphasize image regions
where both these terms are large. Finally, we note that a class of
low discrepancy sequences, namely highly uniform point-sets
(HUPS), were used in [24] to improve the performance of uni-
form sampling based registration. A similar strategy, i.e., trans-
forming such HUPS to obtain samples that follow the target
sampling distribution in (9), may further augment the perfor-
mance of importance sampling based registration.
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