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A simple regularizer for B-spline nonrigid image
registration that encourages local invertibility
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Abstract—Nonrigid image registration is an important task
for many medical imaging applications. In particular, for r a-
diation oncology it is desirable to track respiratory motion
for thoracic cancer treatment. B-splines are convenient for
modeling nonrigid deformations, but ensuring invertibili ty can
be a challenge. This paper describes sufficient conditions for
local invertibility of deformations based on B-spline bases. These
sufficient conditions can be used with constrained optimization
to enforce local invertibility. We also incorporate these conditions
into nonrigid image registration methods based on a simple
penalty approach that encourages diffeomorphic deformations.
Traditional Jacobian penalty methods penalize negative Jacobian
determinant values only at grid points. In contrast, our new
method enforces a sufficient condition for invertibility directly
on the deformation coefficients to encourage invertibilityglobally
over a 3D continuous domain. The proposed penalty approach
requires substantially less compute time than Jacobian penalties
per iteration.

Index Terms—B-splines, nonrigid image registration, penalty
method, local invertibility sufficient conditions, thorax CT images

I. I NTRODUCTION

I MAGE registration is a core tool in many medical imaging
applications, including fusion of structural and functional

images. Several image reconstruction schemes for MR, PET
and CT incorporate motion correction or joint estimation
of motion into the reconstruction process to improve image
quality [1], [2], [3], [4], [5], [6]. Radiation treatments may
be able to target cancer cells more accurately through motion
correction [7]. Rigid or affine transformations can providefast
image registration. However, most of the human body does
not conform to rigid or affine approximations [8]. Lamareet
al. [3] used affine image registration for respiratory motion
correction, but reported that it was sufficient only for a single
organ and associated lesions. Effective motion correctionusu-
ally requires nonrigid image registration, which enables more
flexible matching of local details between two images than
rigid registration.

There are many methods for nonrigid image registration [8],
[9]. B-spline bases are used frequently for nonrigid image reg-
istration [10] because locally supported basis function expan-
sions are convenient computationally and B-splines have the
properties of smoothness, compact support, fast interpolation
schemes and hierarchical structure for multi-resolution [9],
[11], [12]. However deformations with high degrees of free-
dom can lead to unrealistic transformation results such as
folding in the absence of appropriate constraints [8].
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There have been some efforts to regularize nonrigid image
registration based on B-splines by making certain reason-
able assumptions. Rueckertet al. [13] penalized the bending
energy of the deformation directly, assuming that the local
deformation of tissues should be smooth. Sorzanoet al. [14]
proposed a regularizer based on the gradients of the divergence
and the curl of the displacement field. Rohlfinget al. [15]
used an incompressibility constraint: the Jacobian determinant
of a transformation should be unity, assuming that local
deformations are volume preserving. They applied this method
after making an initial affine transformation. See [9] for other
methods for constraining the transformation.

Another reasonable constraint is to impose local invertibility
of the nonrigid transformation to ensure that image registration
is topology-preserving or diffeomorphic.

One way to ensure local invertibility is to require the
Jacobian determinant of the transformation to be positive
everywhere, either as a hard constraint or by a penalty
method [16]. However most such approaches constrain the
Jacobian determinant of a transformation only at each discrete
voxel grid point, so local invertibility is not strictly guaranteed
on the whole continuous domain. Recently, Sdika [17] de-
scribed a condition involving thegradientof the Jacobian de-
terminant that encourages the local invertibility to be achieved
everywhere even though that condition is invoked only at
each discrete grid point. However, compared to unregularized
image registration, calculating the Jacobian determinantor
its gradient significantly increases computation time due to
additional B-spline interpolations of the partial derivatives of
a deformation.

Ensuring invertibility is somewhat easier when using1st-
order B-spline bases for deformations. Musseet al. [18]
derived elegant linear constraints that provide necessaryand
sufficient conditions to ensure that the Jacobian determinant
values of such transformations are positive everywhere. How-
ever, that 2D approach was restricted to1st-order B-spline
deformations. Karacaliet al. [19] proposed a method to
regularize 2D and 3D deformations to ensure that1st-order B-
splines are topology-preserving. Nobletet al. [20] generalized
[18] for 3D B-spline deformations and illustrated their method
with 1st-order B-splines, but enforcing the constraints requires
much higher computation than regularization based on bending
energy.

Lastly, one can ensure local invertibility by imposing suffi-
cient conditions that are simpler than the necessary conditions.
Choi et al. [21] suggested box constraints for cubic B-spline
deformation coefficients that ensure invertibility, but those
sufficient conditions preclude large deformations. Rueckert et
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al. [22] concatenated many transformations based on those box
constraints to achieve large deformations. Rohdeet al. [23]
suggested a sufficient condition for local invertibility, derived
using Neuman series for a transformation model that uses
a sum of deformations. Motivated by [23], Kimet al. [24],
[25], [26] suggested similar sufficient conditions for 3D
transformations based on cubic B-splines and implemented
a constrained minimization algorithm using Dykstra’s cyclic
projection method. We recently extended Kim’s sufficient
conditions for local invertibility of deformations so thatwe
can usenth-order B-spline bases and so we can also assign the
upper bound on the Jacobian determinant value independently
from the lower bound choice. We implemented it with a simple
and fast quadratic-like penalty function [27].

This paper elaborates on the method in [27] and com-
pares it empirically with methods based on other sufficient
conditions as well as with the traditional Jacobian penalty
method that uses a discrete grid [16], [25]. This paper is
organized as follows. Section II reviews some related work.
Section III proposes a new simple sufficient condition for the
local invertibility of transformations based on B-splinesand
compares it with the box constraint [21], [22] empirically.
Section IV proposes a new simple regularizer based on the
local invertibility sufficient condition and presents 2D and 3D
results.

II. BACKGROUND

A. Mathematical model for nonrigid transformation

A 3D nonrigid transformationT : R3 → R
3 can be written

T (r) = r + d(r), (1)

where r = (x, y, z) and d(r) is the deformation. We model
the 3D deformationd = (dx, dy, dz) using a tensor product of
nth-order B-splines as follows:

dq(r) =
∑

ijk

cq
ijkβ
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β
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β
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, (2)

whereq ∈ {x, y, z}, mq is knot spacing inq direction andβ
is a nth-order B-spline basis.

The goal in image registration is to estimate the deformation
coefficientsc = {cq

i,j,k} by maximizing a similarity metricΨ:

ĉ = argmax
c

Ψ[g(·), f(T (·; c))] (3)

whereg(r) andf(r) denote two 3D images.
To help stabilize the estimation, and to have physically

plausible deformations, often we would like to ensure that
the estimated coefficientŝc correspond to a diffeomorphic
transformationT . The methods in this paper are applicable to
any similarity metric; for a survey of such metrics, see [28].
Section IV focuses on thel2 similarity metric for registering
thorax CT images at different inhalations for the purpose of
radiation therapy planning and monitoring.

B. Invertibility and diffeomorphic transformations

Invertibility of a nonrigid transformationT is a necessary
condition for it to be diffeomorphic.T is diffeomorphic if
both T and T−1 are continuously differentiable. If we use
a B-spline basis withn ≥ 2 in (1), thenT is continuously
differentiable. ( Musseet al. [18] addressed the case where
n = 1. ) By the implicit function theorem, if the Jacobian
matrix of T , denoted∇T , is invertible everywhere, then near
every point there exists a unique continuously differentiable
local inverse. The determinant of the Jacobian forT , denoted
|∇T |, must be non-zero for diffeomorphic nonrigid image
registration. Also forT to be orientation preserving, we want
|∇T | > 0.

Unfortunately, the condition|∇T | > 0 everywhere does
not by itself ensure thatT is globally one-to-one. One way
to ensure thatT is invertible globally is to ensure that trans-
formation maps the boundary of the domain onto itself [18],
[20]. However, we do not enforce such boundary conditions
in this paper because the field of view for thorax inhale and
exhale CT images does not contain the whole body and there
is usually missing anatomy in the superior-inferior directions.

C. Related work

The goal of diffeomorphic nonrigid image registration with
the parametric representation of deformation (2) is to maxi-
mize the similarity metric (3) subject to the constraint

c ∈ C0 , {c : |∇T (r; c)| > 0, ∀r ∈ R
3}. (4)

In general this is an impractical constraint except when using
linear deformation models [18], [19], [20] becauser ∈ R

3 so
there are uncountably many conditions. One way to simplify
(4) is to replace the “∀r” requirement with a set of voxel grid
points [16], [17]:

C1 , {c : |∇T (r; c)| > 0, r ∈ grid points}. (5)

However, becauseC0 ⊂ C1, this does not guarantee local in-
vertibility betweengrid points. Nevertheless the smoothness of
B-spline bases helps regularizeC1 so using the constraintC1

often provides fairly good results [16]. However, computing
|∇T (r; c)| at all the grid points is computationally expensive.

Simplifying the condition|∇T (r; c)| > 0 over R3 always
involves smaller sets thanC0. Choi et al. [21] found box
constraints for cubic B-spline deformation coefficients that
ensure invertibility:

C2 , {c : |cq
i,j,k| < mq/K, ∀i, j, k}, (6)

where K ≈ 2.05 in 2D and K ≈ 2.48 in 3D. The setC2

provides a sufficient condition for local invertibility because
C2 ⊂ C0. However,C2 is a very restrictive constraint set that
allows only very small deformations. To achieve large defor-
mations, Rueckertet al. [22] composed several transformations
that each satisfied this condition.

Kim et al. [24], [25], [26] suggested a sufficient condition
for ensuring invertibility of cubic B-spline deformationsthat
allows a larger family of deformations. Instead of restricting
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the absolute values of the coefficients as in (6), this condition
limits the differencesof adjacent B-spline coefficients:

C3 ,
⋂

q∈{x,y,z}

{c : |cq
i+1,j,k − cq

i,j,k| < mqkq,

|cq
i,j+1,k − cq

i,j,k| < mqkq,

|cq
i,j,k+1 − cq

i,j,k| < mqkq, ∀i, j, k}, (7)

wherekx + ky + kz < 1. Although C3 ⊂ C0, this sufficient
condition only allows large deformations with fairly small
Jacobian determinant values. In particular, one can show that
1− (kx +ky +kz) ≤ |∇T (r; c)| ≤ (1+kx)(1+ky)(1+kz)+
(1+kx)kykz+kx(1+ky)kz+kxky(1+kz) ∀c ∈ C3 [24], [25],
[26]. This means thatC3 does not allow acute volume changes
locally. This is because the upper bound on the Jacobian
determinant is determined by the lower bound design. For
example, if we choosekq = 1/3 so that the lower bound for
the Jacobian determinant|J| is 0, then the upper bound for the
Jacobian determinant value would be automatically determined
to 76/27 ≈ 2.8148 which is fairly small [25]. The next section
provides new broader sets of sufficient conditions.

III. L OCAL INVERTIBILITY CONDITION

A. Lemmas

We first extend Kim’s sufficient conditions for local invert-
ibility to overcome two limitations [27]. Firstly, anth-order
B-spline basis (n ≥ 1) can be used instead of cubic B-spline
basis for deformation modeling. Secondly, the upper bound of
Jacobian determinant can be designed independently from the
lower bound of Jacobian determinant.

Lemma 1. For concise notation, denote the JacobianJ = ∇T
of a 3D transformation as

J = I +





x1 x2 x3

x4 x5 x6

x7 x8 x9



 .

Then the corresponding determinant is given by

|J|=(1 + x1)(1 + x5)(1 + x9) + x2x6x7

+ x3x4x8 − (1 + x1)x6x8

− (1 + x5)x3x7 − (1 + x9)x2x4. (8)

Suppose that the elements of the 3D Jacobian determinant sat-
isfy xi ∈ Ii, i = 1, . . . , 9 whereIi ⊂ R are compact intervals.
Then |J| achieves its global maximum and minimum values
overI = I1×· · ·×I9 and those maximum and minimum values
are achieved for a pointx∗

i for which x∗
i ∈ {max Ii, min Ii}

for ∀i = 1, . . . , 9.

The Appendices have the proofs of these Lemmas. This
Lemma implies that we can determine the global minimum
and maximum of|J| over the compact setI “simply” by
calculating the29 possible values of|J| at the vertices ofI.
(It is trivial to apply this Lemma to 2D cases.)

Kim et al. provided a specific formula for the ‘possible’
maximum and minimum of|J| for given ranges of eachxi

value using Karush-Kuhn-Tucker conditions [25]. We suggest
next a generalization using Lemma 1.

Lemma 2. Suppose that|xi| ≤ kqi
< 1

2 whereqi = x for i =
2, 3, qi = y for i = 4, 6 and qi = z for i = 7, 8. Also suppose
that −kpi

≤ xi ≤ Kpi
wherepi = x for i = 1, pi = y for

i = 5 andpi = z for i = 9. Thenmin |J| = 1−(kx +ky +kz)
andmax |J| = (1+Kx)(1+Ky)(1+Kz)+ (1+Kx)kykz +
kx(1 + Ky)kz + kxky(1 + Kz). In other words,

1 − (kx + ky + kz) ≤ |J| ≤ (1 + Kx)(1 + Ky)

·(1 + Kz) + (1 + Kx)kykz + kx(1 + Ky)kz

+kxky(1 + Kz). (9)

Kim’s proposition was restricted to the case whereKx =
kx, Ky = ky, and Kz = kz . To ensure local invertibility,
kx + ky + kz should be less than1, where eachkq is positive,
so that the lower bound in (9) is positive.

Kim et al. showed a second proposition about the relation-
ship between the first partial derivative of deformation and
adjacent deformation coefficients for the cubic B-spline basis
case [25]. We show next that this relation is also valid for
generalnth-order B-spline bases (n ≥ 1). We also generalize
the bounds used by Kimet al. with Lemma 2 [27].

Lemma 3. If bm ≤ cq
i+1,j,k − cq

i,j,k ≤ bM for ∀i, j, k, then
bm

mx
≤ ∂

∂x
dq(r) ≤ bM

mx
for ∀r whereq ∈ {x, y, z} Similarly, if

bm ≤ cq
i,j+1,k−cq

i,j,k ≤ bM for ∀i, j, k, then bm

my
≤ ∂

∂y
dq(r) ≤

bM

my
and if bm ≤ cq

i,j,k+1 − cq
i,j,k ≤ bM for ∀i, j, k, then bm

mz
≤

∂
∂z

dq(r) ≤ bM

mz
for ∀r respectively.

This Lemma limits the range of values of the first derivative
of d(r) over R

3 by restricting the differences of adjacent
deformation coefficients. Combined, Lemmas 2 and 3 show
that one can obtain a transformationT that is everywhere
locally invertible by maximizing a similarity metric subject to
constraints on thedifferencesbetween adjacent deformation
coefficients, as summarized in the following Theorem.

Theorem 1. Suppose0 ≤ kq < 1
2 for q ∈ {x, y, z}. Define:

C4 , {c :− mxkx ≤ cx
i+1,j,k − cx

i,j,k ≤ mxKx,

− myky ≤ cy
i,j+1,k − cy

i,j,k ≤ myKy,

− mzkz ≤ cz
i,j,k+1 − cz

i,j,k ≤ mzKz,

|cq
i+1,j,k − cq

i,j,k| ≤ mqkq for q = y, z,

|cq
i,j+1,k − cq

i,j,k| ≤ mqkq for q = x, z,

|cq
i,j,k+1 − cq

i,j,k| ≤ mqkq for q = x, y, ∀i, j, k}.

In (2), if c ∈ C4 then |J| satisfies the bounds in (9)∀r ∈ R
3.

Moreover, ifkx + ky + kz < 1, then the transformation (2) is
locally invertible everywhere.

This theorem applies to deformations based on anynth-
order B-spline basis. We set the lower and upper bounds for
|J| by setting appropriatekq andKq values forq ∈ {x, y, z}.

B. Restrictions

Theorem 1 establishes thatc ∈ C4 is a simple sufficient
condition for local invertibility. However,C4 does not allow
all possible locally invertible deformations,i.e., C4 ⊂ C0.
Then one can ask how restrictive this sufficient condition is.
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Although C4 allows for acute volume expansion, it pre-
cludes acute volume shrinkage. Fig. 1 illustrates this limi-
tation for a 1D transformation. The desired transformation
maps [0.0 0.6] to [0.3 0.6], i.e., T (x) = x + d(x) where
d(x) = 0.3−x/2 (acute volume shrinkage). This deformation
belongs toC0 because−1 < ∂d(x)

∂x
< ∞. However if

we impose the sufficient condition−0.33 < ∂d(x)
∂x

, then
Fig. 1 shows that acute volume shrinkage is precluded because
the minimum derivative of the transformation is0.67. The
constrained transformation maps[0 0.6] to [0.3 0.7] instead
of [0.3 0.6]. More generally, when we choosekx, ky andkz

subject tokx +ky +kz < 1 to ensure invertibility,C4 imposes
restrictions for acute volume changes in each direction.

The 2D case illustrates the solution space ofC4 in terms of
Lemma 2. Lemma 2 is trivial for a 2D Jacobian determinant

|J| = (1+a)(1+d)−bc whereJ =

(

a b
c d

)

. A deformation

having a positive Jacobian determinant must satisfy(1+a)(1+
d) > bc. We can introduce a free parameterk such that|J|
is always positive if(1 + a)(1 + d) > k and bc < k for
any k. Fig. 2 visualizes the solution space for 2D invertible
deformations in terms ofa, b, c, d, and k. For fixed k, any
values of (a, d) that lie above the upper line or below the
lower line yield a positive Jacobian determinant if (b, c) lies
between these lines. Lines vary ask varies. To allow acute
volume shrinkage, we needk to be close to0 as observed in
Fig. 1. However smallerk values imply more restrictive sets
for (b, c).

Lemma 2 corresponds to fixingk = kxky such that
kx + ky < 1 andkx ≥ 0, ky ≥ 0. This yields the rectangular
areas fora, b, c, d shown in Fig. 3 (forkx = ky = 1/2 and
k = 1/4). Thus Theorem 1 not only uses a fixed value fork,
but also imposes restrictive box constraints on the deformation
derivatives. However it still has a larger solution space than
traditional box constraints on the B-spline coefficients such
as [21]. Becausek is fairly small, relaxing this sufficient
condition may allow larger volume shrinkage [27].

C. Concatenating transformations

SinceC4 is a restrictive sufficient condition, it may not con-
tain all real deformations of interest. To allow larger deforma-
tions, we can concatenate multiple elemental transformations
that belong toC4, i.e., let T (r) = TN (· · · (T 2(T 1(r)))) where
eachT k satisfiesC4. Since eachT k is diffeomorphic,T is also
diffeomorphic.

Rueckert et al. [22] used a box constraintC2 [21] to
guarantee that each elemental transformation is diffeomorphic.
We useC4 for our elemental transformations. This should
require fewer elemental transformations becauseC4 allows a
larger solution space thanC2, as illustrated in the next section.

D. 2D simulation: warping a disk to a “C” shape

We applied several constrained nonrigid image registration
methods to the challenging registration problem shown in
Fig. 4. We placed deformation knot points every 4th pixel,
i.e., mx = my = 4. The data fit term used sum of squared
differences. For optimization we used augmented Lagrangian
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Fig. 1. Illustration of limitation ofC4. The constrained transformation maps
[0 0.6] to [0.3 0.7] instead of[0.3 0.6].
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Fig. 2. Solution space for 2D positive Jacobian determinant. Smallerk values
admit smallera, d values but preclude more values ofb, c.
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Fig. 3. Local invertibility sufficient condition space in 2D, for k = 1/4,
kx = ky = 1/2 and Kx = Ky = ∞. C4 corresponds to using a fixedk
value. (a)a > −1/2 andd > −1/2. (b) |b| < 1/2 and |c| < 1/2.
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Source

(a) 2D source image

Target

(b) 2D target image

Fig. 4. Images for illustrating 2D nonrigid registration.

multipliers [17] with the conjugate gradient method. Line
search step size was determined by one step of Newton’s
method. We used fast B-spline interpolation [29], [30], [31]
with a 4-level multiresolution scheme [32].

Fig. 5 shows the unconstrained registration and results of us-
ing C1, C2 andC4. The unconstrained result in Fig. 5(a) shows
some unrealistic warping such as folding. Fig. 5(b) shows the
regularized deformed images with a Jacobian penalty based on
C1. This shows a more regular warp than Fig. 5(a). However,
C1 allows a larger solution space than the ideal solution space
C0.

Fig. 5(c) and (d) show the limitation of using a single warp
based onC2 andC4 respectively. The sufficient conditionsC2

and C4 do not contain the complicated diffeomorphic trans-
formation needed to map the source image to the target image
in Fig. 4. However, this warp can be achieved satisfactorilyby
composing just 3 warps that each belong toC4, as shown in
Fig. 6(b). In contrast, to achieve a satisfactory warp by com-
posing transformations that lie in the box constraintC2 [21],
[22] required about 30 concatenations, as shown in Fig. 6(a).
For larger and more complicated deformations, our proposed
constraintC4 can be used as a simple elemental transformation
to provide diffeomorphic composite transformations.

IV. SIMPLE REGULARIZER BASED ON LOCAL

INVERTIBILITY CONDITION

A. Proposed simple regularizer

If we want to strictly ensure local invertibility, then we
maximize a similarity metric subject to the linear constraints
c ∈ C4. However, to simplify the computation, we can relax
the invertibility condition by using a penalty method [16],[27].
In a penalty method we maximize an objective function that is
the similarity metric minus a penalty function that encourages
the invertibility condition, but does not enforce it strictly.

We propose to construct a penalty function based on the
following piecewise quadratic function:

p(t; ζ1, ζ2) =











1
2 (t − ζ1)

2, t < ζ1

0, ζ1 ≤ t ≤ ζ2

1
2 (t − ζ2)

2, ζ2 < t,

which is illustrated in Fig 7. The argumentt denotes a
difference between two adjacent deformation coefficients.This
function does not strictly constrain such differences, butits

No constraint No constraint

(a) No constraint.
Jacobian constraint Jacobian penalty

(b) Jacobian constraintC1.
Box constraint Box constraint

(c) Box constraintC2.
Proposed constraint Proposed constraint

(d) Proposed constraintC4.

Fig. 5. Deformed images (left) and their warped grids (right)

first and second derivatives are simple and convenient for use
in optimization algorithms such as conjugate gradient. The
final new penalty function is

R(c) =
∑

q∈{x,y,z}

∑

i,j,k
[

p(cq
i+1,j,k − cq

i,j,k; ζq,x
1 , ζq,x

2 )

+ p(cq
i,j+1,k − cq

i,j,k; ζq,y
1 , ζq,y

2 )

+ p(cq
i,j,k+1 − cq

i,j,k; ζq,z
1 , ζq,z

2 )
]

, (10)

whereζq,r
1 = −mqkq for ∀r ∈ {x, y, z} , ζq,r

2 = mqkq for
r 6= q and ζq,r

2 = mqKq for r = q. Note that choosingζ1 =
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Box constraint Box constraint Box constraint Box constraint

(a) 10, 20, 30 compositions of box constraintC2

and a warped grid of 30 compositions.
Proposed constraint Proposed constraint Proposed constraint Proposed constraint

(b) 1, 2, 3 compositions of proposed constraintC4

and a warped grid of 3 compositions.

Fig. 6. Proposed constraint requires much less transformations to achieve a
satisfiable deformation than the box constraint.
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Fig. 7. A variant of quadratic penalty function (solid) and real constraints
(dashed) used with constraint setC4.

ζ2 = 0 would correspond to a quadratic roughness penalty
over B-spline coefficients, which is akin to encouraging the
volume preserving condition|J| = 1, ∀r.

Being based on the somewhat restrictive solution spaceC4,
the new penalty method can encourage the local invertibility
on the whole continuous domain with a fast and memory effi-
cient implementation. This implementation is possible because
C4 does not require additional B-spline interpolations beyond
the interpolations needed for the data fitting term. It also
encourages the smoothness of deformations inherently because
it constrains the differences between adjacent deformation co-
efficients. In contrast, usingC0 or C1 is much more expensive
for one transformation.

B. Incorporating a priori knowledge of motions

For diffeomorphic transformations using Theorem 1, the
usual choice would bekx = ky = kz = 1/3 − ǫ for some
small ǫ. However, if we havea priori knowledge about the
deformation, then we can assign eachkq accordingly. For
instance, for registering thorax inhale and exhale images,we
can assignkx = ky = 1/4 − ǫ and kz = 1/2 − ǫ because
the deformation in thez direction is larger due to diaphragm
motion, whereas the deformations in thex andy directions are

smaller. With this design,C4 allows50% local shrinkage along
z and75% local shrinkage alongx andy instead of allowing
67% shrinkage in each direction. We can use this sufficient
condition for the proposed simple regularizer to encourage
local invertibility of the deformation.

C. 2D simulation: expansion and shrinkage

We applied nonrigid image registration to the256 × 256
images in Fig. 8 using no constraint, a Jacobian penalty
based onC1, a quadratic roughness penalty [7], a regularizer
based on Kim’s constraintC3, and our proposed penalty
method based onC4. Fig. 8 has an expanding circle and a
shrinking ellipse to illustrate the difference betweenC3 and
C4. Since we havea priori knowledge about vertical motion,
we investigated two sets of parameters inC4: a symmetric way
with kx = ky = 1/2 − 0.01 × 1/2 as well as an asymmetric
way with kx = 0.35−0.01×0.35 < ky = 0.65−0.65×0.01.

We placed deformation knot points every 4th pixel. The data
fit term used sum of squared differences. For optimization we
used the conjugate gradient method. Line search step size was
determined by one step of Newton’s method. We used fast B-
spline interpolation and the 4-level multiresolution scheme as
in III-D. We ran 200 iterations for each level or ran until the
l0 norm of the gradient is less than the machine accuracy.
We checked the local invertibility by computing Jacobian
determinant values on a grid 10 times finer than the image
resolution.

Fig. 9 quantifies the tradeoff between image similarity and
local invertibility for the 5 different registration methods for
a range of regularization parameters. The horizontal axis is
the root mean square (RMS) difference between the deformed
image and the target image (log scale) and the vertical axis
is the number of the finer (10 times) voxel grid points having
a non-positive Jacobian determinant (log scale). We took a
log after adding1 for the number of non-positive Jacobian
determinant since the lowest number of it is0.

For the unconstrained case, the RMS difference was0.0109
and the number of negative Jacobian determinants was497644.
As the regularization parameters decrease, the RMS differ-
ences and the number of negative Jacobian determinants of
all other methods approached closely to these values. This is
expected because the unconstrained case is the same as any
other penalty method with regularization parameter0.

As we increased the regularization parameters, the num-
ber of negative Jacobian determinants “generally” decreases,
eventually towards zero, although not always monotonically.
The RMS differences also “generally” increase as the reg-
ularization parameters increase for most methods except Ja-
cobian penalty. This is because the Jacobian constraintC1

contains the original constraintC0 and it does not restrict the
deformation so that it can achieve low RMS difference for
strong penalty parameters. For properly chosen regularization
parameters, symmetric/asymmetric proposed simple penalties
show fairly good performance compared to Kim’s or quadratic
penalty methods based on more restrictive sufficient conditions
(Kim’s: Kx = kx, Ky = ky and quadratic:Kx = kx = 0,
Ky = ky = 0).
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Fig. 8. Images for illustrating expansion and shrinkage.
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Fig. 9. RMS error and negative Jacobian determinant trade-off for different
regularization parameters. (log scale)

TABLE I
THE BESTRMS ERROR FOR EACH METHOD WITH ZERO NEGATIVE

JABOCIAN DETERMINANT IN 2D SIMULATION .

Jacobian New (asym) New (sym) Kim Quadratic
0.0373 0.0360 0.0454 0.2026 0.6091

Table I shows the best RMS difference of image for each
method with zero non-positive Jabocian determinant values
over the 10 times finer grid. The proposed simple penalty
with a priori motion information performed well compared
to Jacobian penalty. However, as the regularization method
depends on more restrictive condition, the RMS difference is
larger. It clearly shows that a quadratic penalty oversmoothes
the deformations.

Our proposed asymmetric penalty performed a little better
than Jacobian penalty in these experiments. However, our
proposed penalty may not always perform better. It depends on
the convergence, regularization parameter, image structure and
so on. Since the data fitting term is non-convex, local minima
may affect the result, too. However, for simpler cases like in
Fig. 8 our proposed regularization method may perform close
to the Jacobian penalty method. In the next section, we apply

both methods to the 3D real CT images of a patient.

D. 3D real CT images

We applied our proposed regularization method (10) to the
problem of registering 3D breath-hold X-ray CT images of a
real oncology patient scanned at inhale and at exhale. These
images are useful for radiation treatment planning. The image
size was396 × 256 × 128 as shown in Fig 10. We chose
kx = ky = 1/4 − 0.01 × 1/4 and kz = 1/2 − 0.01 × 1/2
because we expect the deformation in thez direction to be
larger than the deformations in thex andy directions due to
diaphragm motion.

We used the same methods as in Section IV-C except for the
multiresolution scheme. For the first 3 levels of multiresolu-
tion, the knot spacing was every 8 pixels for downsampled
images, and for the last level of multiresolution the knot
spacing was every 4 pixels. We ran120 iterations at each
level to see the convergence properties. The regularization
parameter that multiplies (10) was chosen experimentally to
achieve the minimum value of data fitting term such that all
Jacobian values on the image grid were positive.

Fig. 11 shows the difference images between the target
image and the deformed images. As expected, the difference
image for unconstrained registration in Fig. 11(a) has smaller
values than the constrained difference images in Fig. 11(b)
and (c). The RMS difference for unconstrained registration
was the smallest, which was19.9 HU. The RMS errors of
the Jacobian penalty (25.9 HU) and the proposed penalty
(29.2 HU) were somewhat higher. However, Fig. 12(a) shows
that unconstrained registration yields an unrealistic warped
grid. The number of negative Jacobian determinant voxels
was 316914 out of 12582912 voxels. Fig. 12(c) shows a
smoother warp than Fig. 12(b) because our proposed penalty
method is based onC4 which is a smaller set thanC1. Our
proposed method has smoothness property implicitly because
it restricts the range of the differences between adjacent B-
spline coefficients.

The proposed penalty method was much faster and more
memory efficient than the traditional Jacobian penalty method
per iteration. If one uses the sum of squared error as the
data fitting term and penalizes negative Jacobian determinant
values on each image grid point in 3D with cubic B-splines,
then the interpolations needed to compute the gradients of the
direct Jacobian penalty function require about 1.8 times more
operations than the interpolations needed for the gradientof
the data fitting term. Table II shows the computational cost
for one iteration at the last (finest) level of the multiresolution
procedure. Our proposed method requires only slightly more
time per iteration than unconstrained registration, and much
less time than using a Jacobian penalty. Furthermore, in this
simulation, the traditional Jacobian penalty method required
about twice as much memory as our proposed method because
it must store the interpolation results for the Jacobian gradient.
Fig. 13 shows the convergence of each method.

We could compose a coarse resolution warp based on (10)
with one full sequence of coarse-to-fine warp based on (10)
to reduce RMS differences further with only slight increasein
computation.
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Source: Coronal Source: Sagittal

Source: Axial

(a) 3D Source image

Target: Coronal Target: Sagittal

Target: Axial

(b) 3D Target image

Fig. 10. 3D source (exhale) and target (inhale) X-ray CT images.

TABLE II
COMPUTATIONAL COST AT THE FINEST LEVEL

Method CPU time per iteration (sec)
Unconstrained 25.7

Jacobian penalty 81.1
Proposed method 27.4
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Fig. 11. Differences between 3D target and deformed images.

V. D ISCUSSION

We proposed a new condition Theorem 1 that is sufficient to
ensure the local invertibility of transformations based onB-
splines. Its limitation can be overcome by using composite
transformations. This proposed sufficient condition can be
used with constrained optimization such as augmented La-
grangian multiplier method [17] or Dykstra’s cyclic projection
method [25].

We showed that the proposed sufficient condition is more
general than other simple sufficient conditions that ensurelocal
invertibility everywhere such as box constraint [21]. When
used in composite transformations, it requires many fewer
transformations to achieve comparable deformations [22].

We also relaxed our local invertibility condition by a simple
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No constraint: Coronal No constraint: Sagittal

(a) No constraint

Jacobian penalty: Coronal Jacobian penalty: Sagittal

(b) Jacobian penalty

Proposed method: Coronal Proposed method: Sagittal

(c) Proposed penalty

Fig. 12. Warped grids for 3D inhale-exhale registration.

quadratic-like penalty. This approach achieves more flexible
image matching compared to other penalty methods based on
more restrictive local invertibility conditions. For practical use
in a thorax image registration, we used a single transformation
with a simple quadratic-like penalty that encouragesc ∈ C4.
This gave a fairly good deformation with no negative Jacobian
determinant values on image voxel grid points. This approach
is much simpler and faster than the traditional Jacobian
determinant penalty and is more memory efficient.

Some application areas require not only local invertibility,
but also require computing the inverse transformation. One
approach is to estimate both forward and backward image reg-
istration parameters with consistency regularizer [33]. Using
both consistency regularizer and our proposed regularizercan
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Fig. 13. Convergence of each method.

be interesting future work.
In the 3D thorax registration example, we observed some

bone warping in each of the deformed images; a natural
direction for further research would be to use a rigidity penalty
term [34], [35].

APPENDIX A
PROOF OFLEMMA 1

Proof: The global maximum and minimum values exist
since|J| is continuous on the compact setI1×· · ·×I9. Suppose
that (x1, · · · , x9) achieves the global minimum value of|J|
andmin Ik < xk < max Ik for somek. Fix all xi exceptxk,
|J| is an affine function with respect toxk so |J| can achieve
equal or better global minimum value on eitherxk = min Ik

or xk = max Ik. The same argument can be applied for all
xi such thatmin Ii < xi < max Ii and thus it generates a
contradiction. The same argument can be applied to the global
maximum case.

APPENDIX B
PROOF OFLEMMA 2

Proof: By Lemma 1, we need to evaluate|J| only on
x1 ∈ {−kx, Kx}, x4 ∈ {−ky, Ky}, x9 ∈ {−kz, Kz} and
xi ∈ {−kqi

, kqi
} where qi = x for i = 2, 3, qi = y for

i = 4, 6 and qi = z for i = 7, 8. For fixed xi exceptx1,
|J(x1)| = (1 + x1){(1 + x5)(1 + x9) − x6x8} + c wherec
is a constant forx1 and (1 + x5)(1 + x9) − x6x8 is always
positive under given conditions. Sox1 = Kx for max |J| and
x1 = −kx for min |J|. Similarly we determinex5 andx9. For
fixedxi exceptx2, |J(x2)| = x2{x6x7−(1+x9)x4}+c where
c is a constant forx2. Formin |J|, x2 = −kx if x4 = −ky and
x2 = kx if x4 = ky. In other words,x2x4 = kxky for min |J|.
Similarly, x2x4 = −kxky for max |J|. In this fashion,x6x8

and x3x7 will be determined formax |J| and min |J|. From
these results, one can induce thatx2x6x7 + x3x4x8 = 0 for
max |J| andx2x6x7 = x3x4x8 = −kxkykz for min |J|.



10 JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, TO APPEAR.

APPENDIX C
PROOF OFLEMMA 3

Proof: For d(x) =
∑

i ciβ
n(x/mx − i), by using

∂
∂x

βn(x) = βn−1(x + 1/2)− βn−1(x − 1/2) in [30]

∂

∂x
d(x) =

∑

i

ci

∂

∂x
βn(x/mx − i)

=
∑

i

(ci − ci−1)β
n−1(x/mx − i + 1/2)/mx.

Using the constraintsbm ≤ cq
i+1,j,k − cq

i,j,k ≤ bM and the
property

∑

i βn(x/mx − i) = 1, we have the bounds

∂

∂x
dq(r) =

∑

i,j,k

(cq
i,j,k − cq

i−1,j,k)βn−1(x/mx − i + 1/2)

βn(y/my − j)βn(z/mz − k)/mx

≤ bM/mx

∑

i

βn−1(x/mx − i + 1/2)

·
∑

j

βn(y/my − j)
∑

k

βn(z/mz − k)

≤ bM/mx.

Similarly, ∂
∂x

dq(r) ≥ bm/mx. The other directionsy, z can
be proved similarly.
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