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A simple regularizer for B-spline nonrigid image
registration that encourages local invertibility

Se Young ChunStudent Member, IEEEBNd Jeffrey A. FessleFellow, IEEE

Abstract—Nonrigid image registration is an important task There have been some efforts to regularize nonrigid image
for many medical imaging applications. In particular, for ra- registration based on B-splines by making certain reason-
diation oncology it is desirable to track respiratory motion able assumptions. Ruecket al. [13] penalized the bending
for thoracic cancer treatment. B-splines are convenient fo . . .
modeling nonrigid deformations, but ensuring invertibility can energy O_f the d_eformatlon directly, assuming that the local
be a challenge. This paper describes sufficient conditionsof deformation of tissues should be smooth. Sorzenal. [14]
local invertibility of deformations based on B-spline bass. These proposed a regularizer based on the gradients of the dineege
sufficient conditions can be used with constrained optimizgon gnd the curl of the displacement field. Rohlfieg al. [15]
to enforce local invertibility. We also incorporate these onditions used an incompressibility constraint; the Jacobian detemt

into nonrigid image registration methods based on a simple f ¢ f fi hould b it . that | |
penalty approach that encourages diffeomorphic deformapns. ©' @ transiormation should be unity, assuming that loca

Traditional Jacobian penalty methods penalize negative Jeobian ~deformations are volume preserving. They applied this oeth
determinant values only at grid points. In contrast, our new after making an initial affine transformation. See [9] fohet
method enforces a sufficient condition for invertibility directly methods for constraining the transformation.
on the deformat_lon coefﬁ(:len_ts to encourage invertibilityglobally Another reasonable constraint is to impose local invéitybi
over a 3D continuous domain. The proposed penalty approach e . - .

of the nonrigid transformation to ensure that image regigin

requires substantially less compute time than Jacobian peities | s - )
per iteration. is topology-preserving or diffeomorphic.

| . . S One way to ensure local invertibility is to require the
ndex Terms—B-splines, nonrigid image registration, penalty . . . "
method, local invertibility sufficient conditions, thorax CT images Jacobian determinant of the transformation to be positive
everywhere, either as a hard constraint or by a penalty
method [16]. However most such approaches constrain the
|. INTRODUCTION Jacobian determinant of a transformation only at each eliscr
MAGE registration is a core tool in many medical imagingyoxel grid point, so local invertibility is not strictly guanteed
applications, including fusion of structural and functébn on the whole continuous domain. Recently, Sdika [17] de-
images. Several image reconstruction schemes for MR, PEdribed a condition involving thgradientof the Jacobian de-
and CT incorporate motion correction or joint estimatioterminant that encourages the local invertibility to beiaced
of motion into the reconstruction process to improve imagverywhere even though that condition is invoked only at
quality [1], [2], [3], [4], [5], [6]. Radiation treatments ay e€ach discrete grid point. However, compared to unreguedriz
be able to target cancer cells more accurately through motignage registration, calculating the Jacobian determirant
correction [7]. Rigid or affine transformations can provfdst its gradient significantly increases computation time doe t
image registration. However, most of the human body do&gditional B-spline interpolations of the partial derivas of
not conform to rigid or affine approximations [8]. Lamase & deformation.
al. [3] used affine image registration for respiratory motion Ensuring invertibility is somewhat easier when usingj-
correction, but reported that it was sufficient only for agsén order B-spline bases for deformations. Musse al. [18]
organ and associated lesions. Effective motion correatian  derived elegant linear constraints that provide necesaady
ally requires nonrigid image registration, which enablesren sufficient conditions to ensure that the Jacobian detemina
flexible matching of local details between two images thatglues of such transformations are positive everywherev-Ho
rigid registration. ever, that 2D approach was restricted ltst-order B-spline
There are many methods for nonrigid image registration [8]eformations. Karacalet al. [19] proposed a method to
[9]. B-spline bases are used frequently for nonrigid imagge r regularize 2D and 3D deformations to ensure ttsitorder B-
istration [10] because locally supported basis functiopagx splines are topology-preserving. Nobégtal. [20] generalized
sions are convenient computationally and B-splines haee ti.8] for 3D B-spline deformations and illustrated their imed
properties of smoothness, compact support, fast inteipala with 1st-order B-splines, but enforcing the constraints require
schemes and hierarchical structure for multi-resoluti®h [ much higher computation than regularization based on endi
[11], [12]. However deformations with high degrees of freeenergy.
dom can lead to unrealistic transformation results such asLastly, one can ensure local invertibility by imposing suffi
folding in the absence of appropriate constraints [8]. cient conditions that are simpler than the necessary dondit
_ o Choi et al. [21] suggested box constraints for cubic B-spline
S. Chun and J. Fessler are with the Department of Electricgiirieering . - . -
and Computer Science, University of Michigan, Ann Arbor,,M8109 USA. deformation coefficients that ensure |nvert|b|l|ty, butosie
This work was supported in part by NIH/NCI grant 1P01 CA87634 sufficient conditions preclude large deformations. Ruecke
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al. [22] concatenated many transformations based on those xInvertibility and diffeomorphic transformations
constraints to achieve large deformations. Roktial. [23]

.- - _ ok Invertibility of a nonrigid transformatiorY” is a necessar
suggested a sufficient condition for local invertibilityerized y J a3 y

condition for it to be diffeomorphicT is diffeomorphic if

using Neuman series for a transformation model that USESth 7 and 7! are continuously differentiable. If we use
a sum of deformations. Motivated by [23], Kiet al. [24], a B-spline basis with > 2 in (1), thenT is continuously

[25], [26] suggested similar sufficient conditions for 3Ddi(gferentiable. ( Musseet al. [18] addressed the case where
transformations based on cubic B-splines and implemented

ined minimizati lqorith g Dvkstra’s i In = 1. ) By the implicit function theorem, if the Jacobian
a constrained minimization algorithm using Dykstra’s ayc matrix of T, denotedVT, is invertible everywhere, then near

di for local i ibility of def . h Ingery point there exists a unique continuously differdriga
conditions for local invertibility of deformations so thale .-, 'in erse. The determinant of the Jacobianfordenoted

can usesth-order B-spline t_>ases and S0 We can a_lso assign |, must be non-zero for diffeomorphic nonrigid image
upper bound on the Jacobian determinant value indepefde (I:Ig_istration. Also forT” to be orientation preserving, we want
from the lower bound choice. We implemented it with a SimplFVT| ~0 -

and fast quadratic-like penalty function [27]_' Unfortunately, the conditionVZI| > 0 everywhere does
This paper elaborates on the method in [27] and COfRgy by itself ensure thal” is globally one-to-one. One way
pares it empirically with methods based on other sufficieR ensyre that is invertible globally is to ensure that trans-
conditions as well as ywth the t_radltlonal Jacobl_an pe”al%rmation maps the boundary of the domain onto itself [18],
method that uses a discrete grid [16], [25]. This paper {541 However, we do not enforce such boundary conditions
organized as follows. Section Il reviews some related wor this paper because the field of view for thorax inhale and

Section Il proposes a new simple sufficient condition f# theyhaje T images does not contain the whole body and there
local invertibility of transformations based on B-splinasd g usually missing anatomy in the superior-inferior difens.
compares it with the box constraint [21], [22] empirically.

Section IV proposes a new simple regularizer based on the
local invertibility sufficient condition and presents 2DdaBD C. Related work

results. The goal of diffeomorphic nonrigid image registration with

the parametric representation of deformation (2) is to maxi

mize the similarity metric (3) subject to the constraint
Il. BACKGROUND

. . . ceCo 2 {c:|VL(r;c)| >0, Vr € R*}. (4)
A. Mathematical model for nonrigid transformation
In general this is an impractical constraint except whemgisi
linear deformation models [18], [19], [20] because R3 so
there are uncountably many conditions. One way to simplify
(4) is to replace theVr” requirement with a set of voxel grid
points [16], [17]:

A 3D nonrigid transformatio” : R3 — R3 can be written
I(r)=r+d(r), 1)

wherer = (z,y,2) andd(r) is the deformation. We model
the 3D deformationl = (d*, d¥, d*) using a tensor product of C1 2 {c:|VT(r;c)| >0, r € grid points. (5)

nth-order B-splines as follows:
However, becaus€, C (1, this does not guarantee local in-
di(r) = Z ngkﬁ(i — z)ﬁ(i —3)B( k), (2 vertibility betweergrid points. Nevertheless the smoothness of
iik My my me B-spline bases helps regularizg so using the constrain;
often provides fairly good results [16]. However, compgtin
whereq € {z,y, z}, mq is knot spacing iny direction ands |VZ(r;¢)| at all the grid points is computationally expensive.
is anth-order B-spline basis. Simplifying the condition|VZ (r;c)| > 0 over R® always
The goal in image registration is to estimate the defornmatiénvolves smaller sets thaf’y. Choi et al. [21] found box
coefficientsc = {c/ ; ,} by maximizing a similarity metrick: ~ constraints for cubic B-spline deformation coefficientstth
ensure invertibility:

z

&= argmax U[g(), f(L(-:0))] ®3) G2 (e et | < maf K, i g b}, ©
whereg(r) and f(r) denote two 3D images. where K ~ 2.05 in 2D and K =~ 2.48 in 3D. The setC,

To help stabilize the estimation, and to have physicallyrovides a sufficient condition for local invertibility bagse
plausible deformations, often we would like to ensure th&t, C Cy. However,Cs is a very restrictive constraint set that
the estimated coefficientg correspond to a diffeomorphic allows only very small deformations. To achieve large defor
transformatiori’. The methods in this paper are applicable tohations, Rueckest al.[22] composed several transformations
any similarity metric; for a survey of such metrics, see [28}hat each satisfied this condition.

Section IV focuses on thg similarity metric for registering  Kim et al. [24], [25], [26] suggested a sufficient condition
thorax CT images at different inhalations for the purpose &r ensuring invertibility of cubic B-spline deformatiornkat
radiation therapy planning and monitoring. allows a larger family of deformations. Instead of restnigt
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the absolute values of the coefficients as in (6), this camdit Lemma 2. Suppose thatr;| < kg, < % wheregq; = z for i =

limits the differencesof adjacent B-spline coefficients: 2,3,qi=yfori=4,6andgq; = z for i = 7,8. Also suppose
that -k, < x; < K,, wherep; = x for i = 1, p; = y for
S R, q pi — L1 = Dip; i i
Cs = ﬂ {e: |l je = i jul < makq, i=>5andp; =z fori = 9. Thenmin |J| = 1— (k, +k, +k-)
a€{z.y,z} andmax |J| = (1+ K,)(1+ K,)(1+ K.) + (1+ K,k k. +
|Cg,j+1.,k - Cg,j,k| < mgkg, ke(1 4+ Ky)k, + kzky(1 4+ K). In other words,
q _a o
i nr — €Lyl <make, Vigi kY (7) 1 (ko + ky + ko) < 3] < (14 K)(1+ K,
wherek, + k, + k. < 1. Although C3 C Cy, this sufficient (T+ K, + (14 Kp)kyk, + ke (1 + Kk,
condition only allows large deformations with fairly small thgky (14 K. 9)

Jacobian determinant values. In particular, one can shaiv th

1= (ks +ky+k:) < |VL(r;o)| < (1+ke)(1+ky)(1+k2)+ Kim’s proposition was restricted to the case whéfg =
(I4-ka)kyk.+ko(14ky k2 +koky(1+k2) Ve € C3 [24], [25],  k,, K, = k,, and K, = k.. To ensure local invertibility,
[26]. This means thaf’; does not allow acute volume change% + k, + k. should be less thanh, where eachk, is positive,
locally. This is because the upper bound on the Jacobig® that the lower bound in (9) is positive.

determinant is determined by the lower bound design. Forkim et al. showed a second proposition about the relation-
example, if we choosé, = 1/3 so that the lower bound for ship petween the first partial derivative of deformation and
the Jacobian determinajd| is 0, then the upper bound for theadjacent deformation coefficients for the cubic B-splinsiba
JaCObian determinantvalue W0u|d be automatica”y demd“ case [25] We show next that this relation is also valid for
to 76/27 ~ 2.8148 which is fa|r|y small [25] The next section genera'nth_order B_Sp"ne baseg—b(z 1) We also genera"ze
provides new broader sets of sufficient conditions. the bounds used by Kirat al. with Lemma 2 [27].

Lemma 3. If by, < ¢y, — ¢, < b for Vi, j, k, then
bn < B qi(r) < D for vr whereq € {z,y, 2} Similarly, if
A. Lemmas e 4 PR o b 9
] ) o N ) bn <€} i1 k=G < b fOr Vi, gk, then e < 2d?(r) <
We first extend Kim’s sufficient conditions for local invert-,, i a q oY Yo
L . ALand ifby, < ¢ g — ¢ < ba for Vi, g, k, then e <
ibility to overcome two limitations [27]. Firstly, ath-order v . bur ¢ ) 2> | ma
B-spline basis# > 1) can be used instead of cubic B-splingpz4"(r) < 7= for Vr respectively.
basis for deformation modeling. Secondly, the upper bound 0 This Lemma limits the range of values of the first derivative
Jacobian determmant_can be deslgned independently frem g d(r) over R3 by restricting the differences of adjacent
lower bound of Jacobian determinant. deformation coefficients. Combined, Lemmas 2 and 3 show
that one can obtain a transformatidn that is everywhere
locally invertible by maximizing a similarity metric sulgeto
constraints on thalifferencesbetween adjacent deformation
T1 T2 T3 coefficients, as summarized in the following Theorem.
J=1+ T4 Ty Tg
Tr Ty Ty

I1l. L OCAL INVERTIBILITY CONDITION

Lemma 1. For concise notation, denote the Jacobiha- VT'
of a 3D transformation as

Theorem 1. Supposé < k, < % for g € {x,y, z}. Define:

. . . . A
Then the corresponding determinant is given by Ci=A{c:i—mgky < iy i —Cijp < maKy,
) )
Ltk Ciga S Tk,

A Z
—Mzky <G — Cyp S maKG,

13| =(1 + 1) (1 + 25)(1 + 20) + Tozsr —myky < c

+ xsvaws — (1 + x1)x62s
q q _

— (14 z5)z327 — (14 o) 224, (8) |Civrgk = Cijkl < makq forg =y, z,

. . e —c? | <mgk, for g =z, 2,
Suppose that the elements of the 3D Jacobian determinant sat Ce1e = €l S maky Tor g

isfyxz; € I;,i = 1,...,9 wherel; C R are compact intervals. €51 Cigel < Mok for g = .y, i, j k.
Then |J| achieves its global maximum and minimum valugs (2), if ¢ € O, then |J| satisfies the bounds in () € R?.

overl = I; x.--xIy and those maximum and minimum value§oreover, ik, + k, + k. < 1, then the transformation (2) is
are achieved for a point} for which 2} € {max I;, min I;} locally invertible everywhere

forvi=1,...,9.
. . This theorem applies to deformations based on atty
The Appendices have the proofs of these Lemmas. Thj§yer B_gpline basis. We set the lower and upper bounds for

Lemma implies that we can determine the global minimurpjl by setting appropriaté, and i, values forg € {z, y, z}.
and maximum of|J| over the compact sef “simply” by a ?

calculating the2 possible values ofJ| at the vertices off. o
(It is trivial to apply this Lemma to 2D cases.) B. Restrictions

Kim et al. provided a specific formula for the ‘possible’ Theorem 1 establishes thate C, is a simple sufficient
maximum and minimum ofJ| for given ranges of eack; condition for local invertibility. However(; does not allow
value using Karush-Kuhn-Tucker conditions [25]. We suggesll possible locally invertible deformationse., Cy C Cj.
next a generalization using Lemma 1. Then one can ask how restrictive this sufficient condition is



Although C, allows for acute volume expansion, it pre-
cludes acute volume shrinkage. Fig. 1 illustrates this -limi
tation for a 1D transformation. The desired transformatio
maps [0.0 0.6] to [0.3 0.6], i.e, T(z) = z + d(z) where
d(z) = 0.3 —z/2 (acute volume shrinkage). This deformatior
belongs toCy because—1 < a‘é(f) < oo. However if
we impose the sufficient conditior-0.33 < 9d(z) ' then
Fig. 1 shows that acute volume shrinkage is precluded becat
the minimum derivative of the transformation @s67. The
constrained transformation mag® 0.6] to [0.3 0.7] instead
of [0.3 0.6]. More generally, when we choodg, &, andk,
subject tok, + k, + k. < 1 to ensure invertibilityCy imposes
restrictions for acute volume changes in each direction.

The 2D case illustrates the solution space’gfin terms of
Lemma 2. Lemma 2 is trivial for a 2D Jacobian determinar

1J| = (1+a)(1+d)—bcwhereJ = ( ¢ ;|- Adeformation
having a positive Jacobian determinant must safisfya)(1+

d) > bc. We can introduce a free parametersuch that|J|
is always positive if(1 + a)(1 +d) > k andbc < k for

Fig. 1.
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any k. Fig. 2 visualizes the solution space for 2D invertible

deformations in terms ofi, b, c,d, and k. For fixed &, any
values of @,d) that lie above the upper line or below th
lower line yield a positive Jacobian determinant of ) lies
between these lines. Lines vary asvaries. To allow acute
volume shrinkage, we neédto be close td) as observed in
Fig. 1. However smallek values imply more restrictive set:
for (b, ¢).

Lemma 2 corresponds to fixing = k.k, such that
ke +ky <1 andk, >0, k, > 0. This yields the rectangulal
areas fora, b, ¢,d shown in Fig. 3 (fork, = k, = 1/2 and
k = 1/4). Thus Theorem 1 not only uses a fixed value for
but also imposes restrictive box constraints on the deftona
derivatives. However it still has a larger solution spacanth
traditional box constraints on the B-spline coefficientshsu
as [21]. Because: is fairly small, relaxing this sufficient
condition may allow larger volume shrinkage [27].

C. Concatenating transformations

SinceC} is a restrictive sufficient condition, it may not con-
tain all real deformations of interest. To allow larger dafia-
tions, we can concatenate multiple elemental transfoomati
that belong ta’y, i.e, letT(r) = T (- - - (L5(T;(r)))) where
eachl’, satisfied”y. Since eacll’, is diffeomorphicT is also
diffeomorphic.

Rueckertet al. [22] used a box constrain€C, [21] to °
guarantee that each elemental transformation is diffeptrior
We use(C, for our elemental transformations. This shou
require fewer elemental transformations beca(seallows a
larger solution space thath, as illustrated in the next sectior

D. 2D simulation: warping a disk to a “C” shape

k]

2

0.4
X

0.6 0.8

lllustration of limitation ofCy. The constrained transformation maps
[0 0.6] to [0.3 0.7] instead of[0.3 0.6].

— (1+a)(L+d)=12
(1+a)(L+d)=1/4
(1+a)(1+d)=1/9

-1

@ (1+a)1+d) =k

Fig. 2. Solution space for 2D positive Jacobian determin@ntallerk values
admit smallera, d values but preclude more values fc.
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We applied several constrained nonrigid image registnatio

methods to the challenging registration problem shown [g. 3.

Fig. 4. We placed deformation knot points every 4th pixe\f;w = ky = 1/2 and K = K, = oo. Uy corresponds to using a fixeld

i.e, my = my, = 4. The data fit term used sum of squared

differences. For optimization we used augmented Lagrangia

0
b

(b)

Local invertibility sufficient condition space in 2Bor & = 1/4,

alue. (a)a > —1/2 andd > —1/2. (b) [b] < 1/2 and|c| < 1/2.
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Source Target No constraint No constraint

(a) 2D source image (b) 2D target image (a) No constraint.

Jacobian constraint Jacobian penalty
|

Fig. 4. Images for illustrating 2D nonrigid registration.

multipliers [17] with the conjugate gradient method. Lir
search step size was determined by one step of Newt
method. We used fast B-spline interpolation [29], [30],][3
with a 4-level multiresolution scheme [32].

Fig. 5 shows the unconstrained registration and results-of
ing C1, Cy andCy. The unconstrained result in Fig. 5(a) shows ) )
some unrealistic warping such as folding. Fig. 5(b) shoves th (b) Jacobian constrairt; .
regularized deformed images with a Jacobian penalty base Box constraint
C1. This shows a more regular warp than Fig. 5(a). Howey
C1 allows a larger solution space than the ideal solution sp
Co.

Fig. 5(c) and (d) show the limitation of using a single wa
based orC; andC, respectively. The sufficient conditionds,
and C, do not contain the complicated diffeomorphic tran
formation needed to map the source image to the target ir
in Fig. 4. However, this warp can be achieved satisfactdyly
composing just 3 warps that each belongitg as shown in
Fig. 6(b). In contrast, to achieve a satisfactory warp by com
posing transformations that lie in the box constraiht[21],
[22] required about 30 concatenations, as shown in Fig.. 6
For larger and more complicated deformations, our propo
constraintCy can be used as a simple elemental transformat
to provide diffeomorphic composite transformations.

(c) Box constraint’s.

Proposed constraint

IV. SIMPLE REGULARIZER BASED ON LOCAL
INVERTIBILITY CONDITION

A. Proposed simple regularizer

If we want to strictly ensure local invertibility, then we
maximize a similarity metric subject to the linear consitai
c € C4. However, to simplify the computation, we can relax
the invertibility condition by using a penalty method [1B}7].

In a penalty method we maximize an objective function that
the similarity metric minus a penalty function that encages
the invertibility condition, but does not enforce it sthct

We propose to construct a penalty function based on t

(d) Proposed constrairty.

ig. 5. Deformed images (left) and their warped grids (right

fitst and second derivatives are simple and convenient fer us
in optimization algorithms such as conjugate gradient. The
ﬂgal new penalty function is

following piecewise quadratic function: Re) = > >
e{z,y,z} 1,5,k
s(t—C)% t<G a {Idy #}ind ¢ e e
p(t;¢1,¢2) = 40, GQ<t<G [p(clin i — el 67627
! 2 +o(cf i — el 6Y)
§(t - CQ) 3 <2 < t, 1,+1, 2,9,

e ; : q. R B e 10
which is illustrated in Fig 7. The argumert denotes a (e — e TG (A0)
difference between two adjacent deformation coefficiefitss where (" = —mgyk, for Vr € {z,y,2} , (" = mgk, for
function does not strictly constrain such differences, st » # ¢ and¢(3" = m,K, for r = ¢. Note that choosing; =
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smaller. With this desigr(; allows50% local shrinkage along

z and75% local shrinkage along andy instead of allowing
67% shrinkage in each direction. We can use this sufficient
condition for the proposed simple regularizer to encourage
local invertibility of the deformation.

(a) 10, 20, 30 compositions of box constradrit
and a warped grid of 30 compositions. C. 2D simulation: expansion and shrinkage

Proposed constraint Proposed constraint Proposed constraint

i i We applied nonrigid image registration to tR66 x 256
# images in Fig. 8 using no constraint, a Jacobian penalty
i based onC}, a quadratic roughness penalty [7], a regularizer
based on Kim's constrainCs;, and our proposed penalty
simssEmesll  method based od. Fig. 8 has an expanding circle and a
(b) 1, 2, 3 compositions of proposed constraift

shrinking ellipse to illustrate the difference betwe€f and
and a warped grid of 3 compositions.

Cj,. Since we have priori knowledge about vertical motion,
we investigated two sets of parameter€in a symmetric way
Fig. 6. Proposed constraint requires much less transfionsto achieve a with kg_“ = ky =1/2 =001 x1/2 as well as an asymmetric
satisfiable deformation than the box constraint. way with k, = 0.35—0.01 x 0.35 < k;, = 0.65—0.65 x 0.01.

We placed deformation knot points every 4th pixel. The data
fit term used sum of squared differences. For optimization we
used the conjugate gradient method. Line search step size wa
determined by one step of Newton’s method. We used fast B-
spline interpolation and the 4-level multiresolution stigeas
in 111-D. We ran 200 iterations for each level or ran until the
lo norm of the gradient is less than the machine accuracy.
We checked the local invertibility by computing Jacobian

0.04

0.03

penalty value
o
o
N

0.01 determinant values on a grid 10 times finer than the image
resolution.
0 Fig. 9 quantifies the tradeoff between image similarity and
-0.5 0 0.5 : - . . ;
difference of adjacent coefficients local invertibility for the 5 different registration metds for

. ‘ _ ‘ ‘ ~arange of regularization parameters. The horizontal axis i
Fig. 7. A variant of quadratic penalty function (solid) arehlr constraints the root mean square (RMS) difference between the deformed
(dashed) used with constraint €4 . . ) . .

image and the target image (log scale) and the vertical axis
is the number of the finer (10 times) voxel grid points having

¢ = 0 would correspond to a quadratic roughness penaﬁ&,non-positive Jacobian determinant (log scale). We took a

over B-spline coefficients, which is akin to encouraging th@9 after addingl for the number of non-positive Jacobian
volume preserving conditiofd| = 1, Vr. determinant since the lowest number of it0is

Being based on the somewnhat restrictive solution sgage  FOF the unconstrained case, the RMS difference Was)9
the new penalty method can encourage the local invergibilignd the number of negative Jacobian determinantsiasi4.
on the whole continuous domain with a fast and memory efftS the regularization parameters decrease, the RMS differ-
cient implementation. This implementation is possibleshse ©NCeS and the number of negative Jacobian determmant_s _of
4 does not require additional B-spline interpolations begorfill 0ther methods approached closely to these values. $his i
the interpolations needed for the data fitting term. It alsg<Pected because the unconstrained case is the same as any
encourages the smoothness of deformations inherentlyibeca?ther penalty method with regularization parameter
it constrains the differences between adjacent deformatie ~ AS We increased the regularization parameters, the num-

efficients. In contrast, using, or C; is much more expensive ber of negative Jacobian determinants “generally” demaas
for one transformation. eventually towards zero, although not always monotonycall

The RMS differences also “generally” increase as the reg-
) o ) ularization parameters increase for most methods except Ja
B. Incorporating a priori knowledge of motions cobian penalty. This is because the Jacobian constfaint
For diffeomorphic transformations using Theorem 1, theontains the original constraii, and it does not restrict the
usual choice would bé, = k, = k., = 1/3 — ¢ for some deformation so that it can achieve low RMS difference for
small e. However, if we havea priori knowledge about the strong penalty parameters. For properly chosen regulisiza
deformation, then we can assign eakh accordingly. For parameters, symmetric/asymmetric proposed simple pgesalt
instance, for registering thorax inhale and exhale images, show fairly good performance compared to Kim’'s or quadratic
can assigrk, = k, = 1/4 — e andk. = 1/2 — ¢ because penalty methods based on more restrictive sufficient cardit
the deformation in the direction is larger due to diaphragm(Kim's: K, = k., K, = k, and quadraticK, = k, = 0,
motion, whereas the deformations in th@ndy directions are K, = k, = 0).
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Source
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(a) 2D source image

Fig. 8.
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Images for illustrating expansion and shrinkage.
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(b) 2D target image
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both methods to the 3D real CT images of a patient.

D. 3D real CT images

We applied our proposed regularization method (10) to the
problem of registering 3D breath-hold X-ray CT images of a
real oncology patient scanned at inhale and at exhale. These
images are useful for radiation treatment planning. Thegena
size was396 x 256 x 128 as shown in Fig 10. We chose
ky =k, = 1/4—0.01 x 1/4 andk, = 1/2 — 0.01 x 1/2
because we expect the deformation in thelirection to be
larger than the deformations in theandy directions due to
diaphragm motion.

We used the same methods as in Section IV-C except for the
multiresolution scheme. For the first 3 levels of multiresol
tion, the knot spacing was every 8 pixels for downsampled
images, and for the last level of multiresolution the knot
spacing was every 4 pixels. We rar20 iterations at each
level to see the convergence properties. The regularizatio
parameter that multiplies (10) was chosen experimentally t
achieve the minimum value of data fitting term such that all

< Jacobian values on the image grid were positive.

] Fig. 11 shows the difference images between the target
| image and the deformed images. As expected, the difference
i ] image for unconstrained registration in Fig. 11(a) has Emal

] values than the constrained difference images in Fig. 11(b)
! and (c). The RMS difference for unconstrained registration
2t ! ] was the smallest, which wa®).9 HU. The RMS errors of

the Jacobian penalty2§.9 HU) and the proposed penalty
(29.2 HU) were somewhat higher. However, Fig. 12(a) shows
that unconstrained registration yields an unrealistic pedr
grid. The number of negative Jacobian determinant voxels
was 316914 out of 12582912 voxels. Fig. 12(c) shows a
smoother warp than Fig. 12(b) because our proposed penalty
method is based o6, which is a smaller set tha@';. Our
proposed method has smoothness property implicitly becaus
it restricts the range of the differences between adjacent B
spline coefficients.

The proposed penalty method was much faster and more
memory efficient than the traditional Jacobian penalty méth
per iteration. If one uses the sum of squared error as the
data fitting term and penalizes negative Jacobian deterhina
values on each image grid point in 3D with cubic B-splines,

Table I shows the best RMS difference of image for eaghen the interpolations needed to compute the gradientseof t
method with zero non-positive Jabocian determinant valugiect Jacobian penalty function require about 1.8 timesemo
over the 10 times finer grid. The proposed simple penalgperations than the interpolations needed for the gradiént
with a priori motion information performed well comparedihe data fitting term. Table Il shows the computational cost
to Jacobian penalty. However, as the regularization methfist one iteration at the last (finest) level of the multiragin
depends on more restrictive condition, the RMS differersce r_i)rocedure. Our proposed method requires only slightly more
larger. It clearly shows that a quadratic penalty oversmest time per iteration than unconstrained registration, andhmu
the deformations. less time than using a Jacobian penalty. Furthermore, & thi

Our proposed asymmetric penalty performed a little bettsimulation, the traditional Jacobian penalty method nexgui
than Jacobian penalty in these experiments. However, @lrout twice as much memory as our proposed method because
proposed penalty may not always perform better. It dependsidomust store the interpolation results for the Jacobiaralignat.
the convergence, regularization parameter, image steietod Fig. 13 shows the convergence of each method.
so on. Since the data fitting term is non-convex, local minima We could compose a coarse resolution warp based on (10)
may affect the result, too. However, for simpler cases like with one full sequence of coarse-to-fine warp based on (10)
Fig. 8 our proposed regularization method may perform close reduce RMS differences further with only slight increase
to the Jacobian penalty method. In the next section, we apglymputation.

00
T

of & B P P G

log of (1 + # of negative Jacobian determinants) (finer scale)

-4 -3 -2 -1 0 1
log of RMS error of deformed image

Fig. 9. RMS error and negative Jacobian determinant tréidfsodifferent
regularization parameters. (log scale)

TABLE |
THE BESTRMSERROR FOR EACH METHOD WITH ZERO NEGATIVE
JABOCIAN DETERMINANT IN 2D SIMULATION.

Kim
0.2026

Quadratic
0.6091

Jacobian
0.0373

New (asym)
0.0360

New (sym)
0.0454
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(a) No constraint

Source: Axial Jacobian penalty: Coronal Jacobian penalty: Sagittal

-

(a) 3D Source image

Target: Coronal Target: Sagittal

(b) Jacobian penalty

Proposed method: Coronal Proposed method: Sagittal

300
200
100
-100 —-100
-200 -200

-300 -300

-400 —-400

-500 -500

Target: Axial

(c) Proposed penalty
Fig. 11. Differences between 3D target and deformed images.
RY e

V. DISCUSSION

We proposed a new condition Theorem 1 that is sufficient to
ensure the local invertibility of transformations based Bn

(b) 3D Target image splines. Its limitation can be overcome by using composite
transformations. This proposed sufficient condition can be
Fig. 10. 3D source (exhale) and target (inhale) X-ray CT iesag used with constrained optimization such as augmented La-
TABLE Il grangian multiplier method [17] or Dykstra’s cyclic profem
COMPUTATIONAL COST AT THE FINEST LEVEL method [25].
S CPU e par Tleraion (569) We showed that the proposed sufficient condition is more
Unconsiraned p25_7 'gener.al' Fhan other simple sufficient conditions 'that enmoal
Jacobian penalty 81.1 invertibility everywhere such as box constraint [21]. When
Proposed method 274 used in composite transformations, it requires many fewer

transformations to achieve comparable deformations [22].
We also relaxed our local invertibility condition by a sirapl
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Fig. 13. Convergence of each method.

be interesting future work.

In the 3D thorax registration example, we observed some
bone warping in each of the deformed images; a natural
direction for further research would be to use a rigidity gy
term [34], [35].

APPENDIXA
PROOF OFLEMMA 1

Proof: The global maximum and minimum values exist
since|J| is continuous on the compact detx - - - x Iy. Suppose
that (x1,--- ,x9) achieves the global minimum value f|
andmin [ < x < max I for somek. Fix all z; exceptay,
|J| is an affine function with respect tg, so|J| can achieve
equal or better global minimum value on eithgr = min I,
or x; = max I,. The same argument can be applied for all
x; such thatmin I; < x; < maxI; and thus it generates a
contradiction. The same argument can be applied to the globa
maximum case. [ |

(c) Proposed penalty

APPENDIXB

Fig. 12. Warped grids for 3D inhale-exhale registration. PROOF OFL EMMA 2

Proof: By Lemma 1, we need to evaluat| only on
quadratic-like penalty. This approach achieves more flexibr, € {—k,, K.}, z4 € {—ky,,K,}, 29 € {—k., K.} and
image matching compared to other penalty methods basedgne {—k,,, k,,} whereq; = x for i = 2,3, ¢; = y for
more restrictive local invertibility conditions. For prizal use = 4,6 and¢; = 2 for i = 7,8. For fixed z; exceptz,
in a thorax image registration, we used a single transfdomat |J(z;)| = (1 + 21){(1 + 25)(1 + z9) — zexs} + ¢ wWherec
with a simple quadratic-like penalty that encourages C,. is a constant for; and (1 + x5)(1 + x9) — z¢7s is always
This gave a fairly good deformation with no negative Jacobigositive under given conditions. S@ = K, for max|J| and
determinant values on image voxel grid points. This apgtoag, = —k, for min |J|. Similarly we determiners andxg. For
is much simpler and faster than the traditional Jacobidixedz; exceptrs, |J(x2)| = zo{zez7— (14+29)74}+Cc Where
determinant penalty and is more memory efficient. cis a constant for,. Formin |J|, o = —k, if x4 = —k, and

Some application areas require not only local invertifailit zo = k, if x4 = k. In other wordsaz4 = k&, for min |J|.
but also require computing the inverse transformation. O milarly, zoz4 = —kgk, for max|J|. In this fashion,z¢zs
approach is to estimate both forward and backward image remd x32; will be determined formax |J| and min |J|. From
istration parameters with consistency regularizer [33}irld these results, one can induce thatcgzy + x3zyzs = 0 for
both consistency regularizer and our proposed reguladaer max |J| andzozerr = r3x40s = —kgkyk, for min|J|. ®



APPENDIXC
PROOF OFLEMMA 3
Proof: For d(z) = >, ¢;0"(x/my — i), by using
50" (@) = "Mz +1/2) = 7z — 1/2) in [30]

0 9 ,
%d(x) = ;cia—xﬁ (x/mg — 1)
= > (ci—cii)B  (@/me — i+ 1/2)/me.
Using the constraints,,, < ¢f,, ., — ¢}, < by and the

propertyy . 3" (x/m, — i) = 1, we have the bounds

0
%dq(f) = Z(Cg,j,k -

4,4,k
B (y/my — §)B" (z/mz — k) /ma
< b]\ff/m125nil($/mw -1+ 1/2)

cgflyj_’k)ﬂnfl(:c/mm —i+1/2)

j k
S b]u/mw.

Similarly, 2d%(r) > b,,/m,. The other directiong;, z can
be proved similarly. ]
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