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Accelerated Nonrigid Intensity-Based Image

Registration Using Importance Sampling
Roshni Bhagalia, Jeffrey A. Fessler,Fellow, IEEE, and Boklye Kim

Abstract

Nonrigid image registration methods using intensity-based similarity metrics are becoming increasingly common

tools to estimate many types of deformations. Nonrigid warps can be very flexible with a large number of parameters

and gradient optimization schemes are widely used to estimate them. However for large datasets, the computation of the

gradient of the similarity metric with respect to these many parameters becomes very time consuming. Using a small

random subset of image voxels to approximate the gradient can reducecomputation time. This work focuses on the

use of importance sampling to reduce the variance of this gradient approximation. The proposed importance sampling

framework is based on an edge-dependent adaptive sampling distribution designed for use with intensity-based

registration algorithms. We compare the performance of registration based on stochastic approximations with and

without importance sampling to that using deterministic gradient descent. Empirical results, on simulated MR brain

data and real CT inhale-exhale lung data from 8 subjects, show that a combination of stochastic approximation

methods and importance sampling accelerates the registration process while preserving accuracy.
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Accelerated Nonrigid Intensity-Based Image

Registration Using Importance Sampling

I. I NTRODUCTION

NONRIGID registration algorithms estimate a warp or deformation with many (≫ 12 (3D affine) ) degrees

of freedom that appropriately maps one image onto another. The estimated warp models can be either parametric

[1]–[4] or non-parametric [5], [6]. In this paper, we focus on intensity-based image registration methods that estimate

parameterized warp models by solving an optimization problem:

θ̂ = arg maxθΨ(θ); (1)

whereΨ is the similarity metric and̂θ is the estimate of thep dimensional vector of warp parameters.

In registration scenarios that use differentiable intensity-based similarity metrics and gradient optimization methods,

it is possible to derive an analytical expression for the gradient of the similarity metric∇θΨ(θ). However for large

image datasets, the large number of warp parameters in most nonrigid registration methods makes the gradient

calculation time consuming. A simple strategy to reduce this computation time is to use a small random subset of

image voxels to approximate the gradient [7].

Since this randomization of the gradient in effect makes thesearch direction a random variable, these techniques

cannot be used with algorithms like Conjugate Gradients that endeavor to maintain the conjugacy of successive

search directions. Furthermore while it is possible to approximate the Hessian, because the random sample-size is

small, its accuracy is suspect. Hence step-sizes based on the inverse of the Hessian, as in the Levenberg-Marquardt

scheme, may not be reliable. It was reported in [7] that an analytical gradient-based optimizer [2], [3], using a random

sub-sampling technique to approximate the gradient, performed better than that using gradient approximations based

on finite differences [8] and simultaneous perturbation [9].

The speed and accuracy of such registration algorithms depend on the quality of the gradient approximation

obtained via random sampling. The subset of random voxel locations is typically drawn using uniform sampling

(US). Here we present an alternative data-driven, non-uniform sampling strategy that can be used efficiently to

improve these gradient approximations. We argue that imageedges strongly influence intensity-based registration

estimates. Consequently, we propose the use of importance sampling (IS) based on a sampling distribution that

emphasizes image edges to improve the gradient approximations.

Section II-A casts image registration in a Stochastic Approximation framework. Importance sampling is described

in Sec. II-B; a non-uniform sampling distribution for intensity-based registration is developed in Sec. II-C; and an

efficient implementation strategy is outlined in Sec. II-E.Sec. III uses simulated 3D MRI volumes to compare the

performance of multi-modal image registration using both IS and US with that using a deterministic gradient descent
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optimizer. Lastly we demonstrate the application of IS to register real inhale-exhale lung CT data using deformable

B-spline warps. The quality of the registration for CT data is quantified using expert identified landmarks. These

results suggest that IS based on the sampling distribution designed in this work can accelerate intensity-based

nonrigid registration algorithms while preserving accuracy.

II. T HEORY

A. Stochastic Approximation

Image registration based on random sampling becomes a stochastic approximation technique with the following

updates:

θk+1 = θk + akĝ(θk); (2)

whereθk is the warp parameter estimate at thekth iteration, ĝ(θk) is an approximation of the gradient∇θΨ(θ)

at θk and ak is the step-size. The iterative updates given by (2) requireonly an approximation of the gradient

∇θΨ(θ); the similarity metricΨ(θ) itself does not need to be computed. Stochastic approximation (SA) is used

to find the zeros of a function (here∇θΨ(θ)) when only noisy function evaluations are available [8], [10]. SA

methods aim to find the unknown zeros by successively reducing the inaccuracy in their estimates. They have been

applied successfully to numerous applications in the fieldsof statistical modeling and controls. In gradient-based

image registration, SA techniques can be used to estimate warp parameters that maximize the similarity metric by

steadily reducing the imprecision introduced in successive gradient approximations.

A now common SA approach was first introduced by Robbins and Monro [11]. This method aims to reduce the

inaccuracy in its estimates by gradually reducing the step-size of the iterations; for brevity we call this technique

Step-SA. Step-SA requires that the number of points (image voxels) used to approximate the gradient, i.e., the

sample-size, remains fixed over iterations. The step-size sequence, designed to guarantee convergence of the

optimizer, is a non-increasing non-zero sequence{ak}, k ∈ N such that
∑∞

k=1 ak = ∞ and
∑∞

k=1 ak
2 < ∞.

Clearly there are numerous sequences that describe a valid step-size progression. In practice the step-size sequence

is chosen heuristically for a given application.

Unlike Step-SA, sample-size controlled SA (Samp-SA) [12] keeps the step-size constant. Errors in parameter

estimates are reduced by progressively increasing the sample-size used to approximate the gradient. The slowest

sample-size growth rate that ensures convergence is proportional to ln(k) wherek is the iteration number [12]. Using

a slow growth rate should reduce computation time. Both techniques effectively average out the approximation error

as the iterations progress, yielding convergence.

Irrespective of the SA scheme used, the efficiency of these methods for image registration applications depends on

the bias and variance properties of the underlying gradientapproximation based on a small random subset of image

voxels. This work focuses on the use of importance sampling to enhance the performance of registration algorithms

by reducing the variance of such gradient approximations without introducing any bias. Since we use SA iterations

given by (2), we restrict our attention to the bias and variance properties of the gradient approximationĝ(θ) alone.
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The similarity metricΨ(θ) need not be computed or approximated. In the following section we briefly review

importance sampling and identify image regions that strongly influence intensity-based registration. Subsequently

we describe an appropriate adaptive sampling distributionthat emphasizes samples from these regions. Further, a

simple strategy to efficiently implement the sampling distribution is discussed.

B. Importance Sampling

Importance sampling (IS) is a variance reduction techniquecapable of incorporating knowledge of the quantity

being approximated into the sampling process. IS recognizes that certain types of random samples can affect the

approximation more than others and utilizes a sampling distribution that emphasizes these important samples. Such a

biased distribution would produce a biased estimator; however by weighting the samples appropriately this bias can

be preempted. For completeness we briefly summarize IS alongthe lines of [13]. To study the variance reduction

afforded by IS, consider estimating a computationally intractable integralΦ =
∫

Ω
f(x)dx. This integral can be

expressed as the expectation of a (non-linear) function of auniformly distributed random vectorU such that,

Φ =

∫

Ω

f(x)dx = |Ω|

∫

Ω

f(u)
1

|Ω|
du (3)

= |Ω|EU (f(U)), U ∽ UnifΩ

where, UnifΩ is the uniform distribution overΩ given by

UnifΩ(u) =







1
|Ω| , u ∈ Ω

0 else.

Alternatively, the intractable integralΦ can also be written as the expectation of a function of anon-uniformrandom

variableY , given by:
∫

Ω

f(x)dx = |Ω|

∫

Ω

f(y)

w(y)

w(y)

|Ω|
dy

= |Ω|EY

(

f(Y )

w(Y )

)

, Y ∽ P̂Y , (4)

where, the non-uniform distribution̂PY is given by

P̂Y (y) =







w(y)
|Ω| , y ∈ Ω

0 else.

To gain any advantage by usingEY (.) over EU (.), the functionw(y) should be chosen carefully.

In practice, the expectations above are approximated by their sample means usingN i.i.d. samples of random

vectorsUn ∽ UnifΩ andYn ∽ P̂Y . Ignoring the proportionality constant|Ω| , consider the following estimates of

the integral in (3);

Φ̂uni ,
1

N

N
∑

n=1

f(Un) ≈ EU (f(U))

Φ̂imp ,
1

N

N
∑

n=1

f(Yn)

w(Yn)
≈ EY

(

f(Y )

w(Y )

)

.
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Φ̂uni corresponds to the uniform sampling (US) case andΦ̂imp is the estimate obtained by importance sampling (IS).

Both Φ̂uni and Φ̂imp are unbiased with expectations proportional to the original integral in (3). Since the random

samples are i.i.d., the variances of the two estimates are given by

var(Φ̂uni) =
1

N
var(f(U)) and var(Φ̂imp) =

1

N
var

(

f(Y )

w(Y )

)

.

IS based on the sampling distribution̂PY is beneficial only ifP̂Y (y) = w(y)
|Ω| is chosen to ensure that var(Φ̂imp) ≪

var(Φ̂uni). This is possible if and only if the functionf(.)
w(.) has lower variance thanf(.) alone. Thus the weightsw(.)

and correspondingly the sampling distribution̂PY should be chosen to be similar in shape to the original integrand

f(.), ensuring that the functionf(.)
w(.) is approximately constant.

C. Sampling Distributions for Image Registration

To design a meaningful sampling distribution for gradient-based image registration, we first identify image regions

that contribute significantly to the gradient of the similarity metric. Consider registration between a pair of intensity

images, namely the reference image withNu voxels and the homologous image withNv voxels. These images

are assumed to be sets of samplesũi = u(xi), i = 1, 2, . . . Nu, and ṽj = v(yj), j = 1, 2, . . . Nv, of continuous

intensity functionsu(.) andv(.) respectively. These continuous functions are sampled at coordinatesxi ∈ R
3 and

yj ∈ R
3 respectively.

Most nonrigid registration algorithms assume that image coordinates are related by a warpTθ∗
: R

3 → R
3. The

vector of unknown warp parametersθ∗ ∈ R
p is estimated iteratively by the algorithm. At each iteration, the current

estimateθ = θk is used to find intensities at coordinates{yθ
i = Tθ(xi)}

Nu

i=1 in the homologous image corresponding

to each reference voxel location. These transformed coordinates rarely lie on the sampling grid points and hence

their corresponding intensity values{v̂θ
i ≈ v(yθ

i )} are not known. Intensity-based similarity metrics commonly

approximate these unknown intensities by modeling the continuous intensity functionv(.) using an appropriate

interpolation kernel. Specifically, we use

v̂θ
i =

Nv
∑

j=1

bjB(yθ
i − yj), i = 1, . . . Nu, (5)

whereB is a cubic B-spline and{bj} are the corresponding spline coefficients. To ensure exact interpolation, the

B-spline coefficients are obtained by appropriately pre-filtering the original image{ṽj} using techniques described

in [14]. Similarity metricsΨ employing this model can be written as

Ψ(θ) = Ψ({ũi, v̂
θ
i }

Nu

i=1). (6)

Assuming differentiability and using the chain rule, the gradient ofΨ is given by

g(θ) , ∇θΨ(θ) =

Nu
∑

i=1

∂Ψ(θ)

∂v̂θ
i

∇θv̂
θ
i . (7)

where∇θ = [ ∂
∂θ1

, ∂
∂θ2

. . . ∂
∂θp

] denotes the gradient operator. To accelerate the gradient computation, a random

subset of image voxels is typically drawn from a uniform sampling distribution [3], [7]. Thus any voxel pair is

equally likely to be used to approximate the gradient, ensuring that the resulting approximation is unbiased.
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Reducing the variance of this approximation (without introducing any bias) will not only improve the convergence

of the SA optimizer but may also facilitate the use of smallersample-sizes. This may be possible by using IS to

encourage denser sampling from image regions that stronglyinfluence the gradient given by (7). These ‘important’

image regions can be identified by differentiating (5):

∇θv̂
θ
i =

{ Nv
∑

j=1

bjḂ(yθ
i − yj)

}

[∇θy
θ
i ], (8)

whereḂ(y) = ∇yB(y), y ∈ R
3 is the1× 3 vector gradient of the B-spline kernel. The term in the braces contains

the directional gradients or edges of the homologous intensity image along the three coordinate axes. Recalling (7),

only voxel intensities that lie on an edge in the homologous image{v̂θ
i } will contribute significantly tog(θ).

To see the importance of edges in the reference image we consider registration by swapping the two images, i.e.,

treating{ṽj} as the reference image and{ũi} as the homologous image. This corresponds to finding an ‘inverse’

warp. In this case, the continuous functionu(.) will be modeled using an interpolation kernel. Repeating the above

analysis, we see that edges in the swapped reference image{ûθ
j} will now be vital in the gradient calculation.

This suggests that our importance sampling scheme should follow a distribution that emphasizes edges in both the

reference and the homologous images.

At the kth SA iteration with parameter guessθ = θk, we base the design of ourθ-dependent sampling distribution

P θ
s on the edge magnitudes of the two intensity images. We choosethe probability that a voxel pair with coordinates

(xi, y
θ
i ) is selected as follows:

P θ
s (i) ,

eθ
i

∑Nu

j=1 eθ
j

, i = 1, 2, . . . Nu, (9)

where

eθ
i ,















si
Nu
P

j=1

sj

+
tθ
i

Nu
P

j=1

tθ
j

, if si
Nu
P

j=1

sj

+
tθ
i

Nu
P

j=1

tθ
j

≥ T

ǫ else.

In the above equation{si}
Nu

i=1 and {tθi }
Nu

i=1 are approximate edge magnitudes of the reference and interpolated

homologous images respectively.T is a user-defined edge threshold andǫ ∈ (0, T ].

The minimum probability that a voxel is used in the gradient approximation is given by the parameterǫ. We

chooseǫ to be a positive non-zero constant, so that in the limit of a large number of IS draws, all voxel-pairs will

contribute to the SA optimization scheme. The thresholdT may be tailored to remove spurious noise induced edges

from the sampling distribution. If the normalized edge magnitudes in both images were all smaller thanT , then

the sampling distribution would become uniform with each voxel pair having an equal chance of being selected.

Let (xi, y
θ
i ); i ∈ S whereS ⊂ {1, 2, . . . Nu}, be coordinates of voxel pairs belonging to the small randomsubset

S, chosen according toP θ
s (i). Then the approximate gradient used in (2) is given by

ĝ(θk) =
∑

i∈S

1

w(i)

∂Ψ(θ)

∂v̂θ
i

∇θv̂
θ
i

∣

∣

∣

∣

∣

θ=θk

(10)

wherew(i) = NuP θ
s (i) andθ = θk is the warp parameter guess at thekth SA iteration. The voxel pairs in random

subsetS follow the non-uniform sampling distribution given by (9).Such non-uniform samples may yield a biased
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gradient estimate. However, by using the weightsw(i) to appropriately weight each voxel pair, we can ensure that

the resulting gradient approximation in (10) is unbiased. This approximate gradient uses only|S| ≪ Nu voxel

pairs; hence the time consuming sum in (7) is evaluated only at these|S| sample points.

Interestingly, Sabuncu et al. [15] recently developed an edge-dependent sampling scheme to reduce the approximation

error in their Euclidean Minimum Spanning Trees (EMST) based registration. However, results were demonstrated

only for rigid registration of 2D brain images. Further, they did not study the variance-bias properties of their

approximation and assigned the same weight to all samples.

D. Optimization Scheme

As discussed previously both Step-SA and Samp-SA can be usedto estimate the unknown warp parameters.

Our previous empirical results [16] comparing registration of simulated brain data indicated that under identical

conditions Samp-SA has faster initial convergence than Step-SA; however, Step-SA appeared to be more stable at

later iterations. Two schemes combining the advantages of these SA methods resulted in faster nonrigid registration:

(i) an ‘Hybrid-SA’ scheme that started with Samp-SA for a fixed number of iterations and then switched to

Step-SA and (ii) a ‘Pyramid-SA’ scheme that employed a variable combination of step and sample-sizes using a

multi-resolution pyramid approach. Because of the prevalence of pyramid optimization schemes and their empirically

demonstrated robustness to local minima [2], [3], we used Pyramid-SA for all experiments in this paper.

In our experiments all levels of Pyramid-SA used cubic B-spline representations of both images. Lower levels

of the pyramid used coarse image approximations with small amounts of data to obtain initial warp estimates.

These warp estimates were then refined at higher levels of thepyramid using more precise image representations

by including more intensity data. Since coarse image approximations are accompanied by a loss of detail, low

level warp estimates capture gross global alignment and areexplained using fewer parameters. As image detail

increases with pyramid levels, the warps become more elaborate and depend on a larger number of parameters.

Thus successive levels of the pyramid use an increasing number of intensity pairs to estimate the similarity metric.

In an SA framework, this corresponds to implicitly increasing the sample-size between each level of the pyramid.

‘Optimal’ warp parameters within each pyramid level were estimated using Step-SA. For simplicity we call this

optimization scheme ‘Pyramid-SA’. In lieu of a gradient-dependant stopping criterion, we used a fixed number of

SA iterations at each level of the pyramid. The exact number of Step-SA iterations at each level of our Pyramid-SA

scheme was chosen heuristically.

When the number of unknown warp parameters is very small, it may be sufficient to empirically identify a

single step-size value for Step-SA algorithms. However forlarge-dimensional vector valued parameters, the optimal

step-size for each vector component may vary widely. To remedy this, we adopted an adaptive step-size estimation

technique proposed in [17]. Letθk be the estimate of warp parameters at iterationk, with elements{θi
k}, i = 1, . . . p.

The adaptive step-size strategy assumes that for a stationary point θ∗ of the similarity measure, rapid changes in the

sign of (θi
k − θi

∗)− (θi
k−1 − θi

∗) = θi
k − θi

k−1 indicate thatθi
k is closer to its optima. Similarly, fewer sign changes

are indicative of a greater distance fromθi
∗. Thus the step-size associated with theith warp parameter component is
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kept inversely proportional to the number of sign changes ofθi
k −θi

k−1. Our implementation estimates the step-size

for the ith componentθi
k as follows:ai

k = a0/(A+Qi
k), whereQi

k is the number of sign changes in{θi
m−θi

m−1},

m = 2, . . . k and Qi
1 = 0. A and a0 are positive non-zero constants. Such step-size sequenceswere shown to be

convergent in [17]. While many choices ofA and a0 values are valid in theory, using a largera0 may boost SA

performance by yielding larger step-sizes at later iterations [18]. However a largera0 may also result in instabilities at

earlier iterations. It was observed in [18] that incorporating ‘stability constant’A ≤ 0.1×(Number of SA Iterations)

could avoid such fluctuations in earlier SA iterations, allowing the use of largera0 values. For all experiments in

Sec. III, we found that Pyramid-SA with two pyramid levels worked well, withA = 10 and less than400 Step-SA

iterations at each level of the pyramid.

E. Implementation Issues

For IS to be advantageous in an image registration application, it is crucial to design a meaningful sampling

distribution that requires minimal computational effort.The sampling distributionP θ
s depends on the changing warp

parameter estimates through{tθi }
Nu

i=1, so it has to be recomputed with significant variations in theSA estimates of

θ. Thus it is important to use a fast and simple approximation of the edge maps. Since the reference image does not

change throughout the registration, we pre-compute its (fixed) edge map{si}
Nu

i=1. However the homologous image

geometry changes with updates inθ and corresponding edge magnitude values need to be recomputed. For large

homologous images, edge maps based on higher order kernels such as the cubic spline in (5) can be computationally

expensive. Hence we approximate edge magnitudes using fastfirst order finite central differences of the intensity

images along each image dimension.

The sampling distribution (9) gives equal importance to thenormalized edge magnitude maps of both the reference

and the homologous image. In the early stages of the registration scheme, the reference and homologous images may

be strongly mis-aligned. Hence it is important to frequently update the homologous image’s edge map during initial

iterations, so as to accurately emphasize all the ‘important’ mis-aligned regions in both images. However, towards

the final stages of the registration algorithm, we can expectboth images to be better aligned. That is, many of the

homologous image edges will now coincide with those of the reference image. Thus, it may be computationally

advantageous to update the homologous image edge map sparingly at later iterations. Further, the coarse-to-fine

framework of the Pyramid-SA scheme in Sec. II-D inherently results in coarse scale changes in the warp estimate at

lower levels of the pyramid, while finer warp adjustments occur at higher pyramid levels. At each iteration, coarse

scale warp changes are more likely to significantly affect the edge map than finer refinements. Hence, we update

the sampling distribution frequently at lower Pyramid-SA levels and increase the number of iterationsm between

updates as the optimizer switches to higher levels. SA algorithms are characterized by small steps along random

search directions. Thus the sampling distributionP θ
s is updated everym iterations to reflect the average change in

thesem warp estimates. At pyramid levell = 1, 2, . . . we usedm = 2l.

Lastly, at every update, the approximate homologous image edge map need be recomputed only at locations where

the effective deformation is large enough to significantly change the edge magnitude. That is, we incrementally
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(a) Example Sampling Distribution (b) Importance Sampling (c) Uniform Sampling

Fig. 1. Comparison of samples obtained using the sampling distribution given by (9) versus samples obtained by Uniform sampling. Images

were created when the algorithm was not near registration.

update our finite central difference based edge estimate only at geometric coordinates that move more than the

dimensions of a voxel in any direction on average. These measures ensure that the overhead required to compute and

update the sampling distribution is reasonably small. Further, this fractional overhead reduces steadily with increasing

sample-sizes. Fig. 1 shows the sampling distribution and corresponding samples obtained using importance sampling

for registration of simulated brain datasets.

III. R ESULTS

We demonstrate the use of IS for image registration using both simulated and real data. Results include pair-wise

monomodality and multimodality registration using two common intensity-based similarity metrics. All registration

results using IS-based Pyramid-SA (IS-SA) and US-based Pyramid-SA (US-SA) described here employed the

optimization framework detailed in Sec. II. For comparison, registration was also performed using deterministic

Gradient Descent (GD) in the same multi-resolution pyramidframework. GD used all image voxels to compute

the analytical gradient at each iteration. All three methods utilized multi-resolution representations of both images

using cubic splines and estimated deformable warps based onB-splines.

A. Behavior of IS-SA with Variations in Step-size

A limitation of SA approaches is their sensitivity to tuningparameters such as step-sizes. If the sampling

distributionP θ
s designed in (9) reduces the variance ofĝ(θ), IS-SA can be expected to have an increased tolerance

to variations in step-sizes. Simulated datasets were used to compare the behavior of multi-modal registration using

IS-SA and US-SA with various step-sizes.

Mutual Information (MI) based registration was performed between180×260×60 T1 and PD-weighted simulated

MR volumes with1×1×3 mm3 voxels, obtained from ICBM [19]. A plug-in MI estimate between the two images,
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given by

Ψmi(θ) = −
L

∑

l=1

P̂u(gl) log(P̂u(gl))

−
M
∑

m=1

P̂v(hm; θ) log(P̂v(hm; θ)) (11)

+

M
∑

m=1

L
∑

l=1

P̂uv(gl, hm; θ) log(P̂uv(gl, hm; θ)),

was used as the similarity metric.̂Pv(hm; θ) is the approximate probability that a homologous intensityvoxel

v̂θ
i ∈ [hm − η, hm + η]; P̂u and P̂uv are defined similarly over intensity levelsgl = g1, g2, . . . , gL and hm =

h1, h2, . . . , hM . These sets of intensity levels{gl}
L
1 and{hm}M

1 are chosen to span the dynamic intensity range

of the reference and homologous images respectively. Our use of gradient-based optimizers requires that we

approximate these pdfs using differentiable kernel density estimates [20].

All results using IS-SA optimization schemes in this section used the sampling distribution given by (9). We

applied a known synthetic warpT (.) derived using radial blobs of varying severity to the T1 volume, yielding ground

truth coordinatesT (xi), i = 1, . . . , Nu. This warped volume was treated as the reference, while the unchanged PD

volume was the homologous image. B-spline warpsT
θ̂
(.) were estimated by mapping the homologous volume onto

the reference volume. Independent realizations of Gaussian noiseN(0, 9) were added to both images prior to the

registration runs. Quality of the estimated warp{T
θ̂
(xi)}

Nu

i=1 was evaluated using the RMS error between the warp

estimate and ground-truth:

RMS error=

√

√

√

√

1

Nu

Nu
∑

i=1

‖T (xi) − T
θ̂
(xi)‖

2
. (12)

A two level Pyramid-SA scheme was used to register the two datasets. Level one used64 histogram bins, a

B-spline control point spacing of16 × 16 × 8 voxels and both images were down-sampled by a factor of two in

all dimensions. The second level had128 histogram bins, an8 × 8 × 4 voxels B-spline control point spacing and

no down-sampling. Both levels implemented150 and250 iterations of Step-SA respectively and used only a fixed

percentage of all available voxel pairs at that level.

The step-sizeai
k, corresponding to componentθi

k of the warp parameters’ estimate at iterationk, was ai
k =

a0/(10 + Qi
k), i = 1, 2, . . . , p. Where,Qi

k was the number of sign changes in{θi
m − θi

m−1},m = 2, . . . , k. The

parametera0 in the step-size sequence remains to be chosen. To study the effect of varying step-size parameter

a0, warp estimates from10 registration runs were obtained using IS and US, for systematically increasing values

of a0 from 1000 up to 25000 in increments of3000. This process was repeated for four different sample sizes of

0.25, 0.5, 1 and 2 percent respectively. Fig. 2 compares statistics of the final RMS errors obtained using the two

sampling strategies for a fixed CPU time. As hypothesized, IS-SA yields lower errors than US-SA over the entire

range of step-sizes.

Empirically, IS-SA was significantly less sensitive to step-size variations, while consistently giving more accurate

warp estimates. Further, US-SA required larger sample sizes to achieve accuracies comparable to those using IS.
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(b) Each pyramid level used0.5% of all available voxels.
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(d) Each pyramid level used2% of all available voxels.

Fig. 2. Comparison of the performance of IS-SA (red/notched) versus US-SA (blue/plain) with variations in step-sizes. Figures show RMS

error statistics for 10 nonrigid multimodality registrationruns at seven step-sizes and four (0.25, 0.5, 1 and2%) sample-sizes. The line at the

center of each boxplot shows the median RMS error value and topand bottom edges are the75 and25 percent quantile RMS errors. ‘Outliers’

are shown by (o) for IS and by (+) for US. IS does significantly better than US at all four sample-sizes. Specifically, IS results in lower variance

values and shows better tolerance to variations in step-sizes. Trends in the four plots indicate that the performance of both sampling strategies

will become comparable with an increase in sample-size.
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As sample-sizes increase both IS and US will capture similarlevels of image complexity making their performance

comparable. The minimum sample-size beyond which both sampling methods give similar results will depend on

the complexity of the datasets. In general, US will be effective at smaller sample-sizes when image edge features

are roughly uniformly dispersed.

B. Application to Human Data

Encouraged by the observations made in the previous section, we used IS to register human datasets. Intensity-based

registration using B-spline warps was applied to align CT inhale and exhale lung datasets from 8 subjects. These CT

scan pairs were obtained using a helical CT scanner (CT/I, General Electric, Milwaukee, WI) with0.187×0.187×0.5

cm3 voxels. Each scan pair was acquired during coached voluntary breath-hold periods of 18 to 35 secs; the first

scan at normal exhale followed by one at normal inhale. A moredetailed description of the data can be found in

[21].

Monomodality registration was performed using the negative of Sum of Squared Differences (SSD) as a similarity

metric. In this case, both the reference and homologous images are assumed to be noisy realizations drawn from the

same continuous function. Let the reference image be given by a set of noisy samples{ũi}
Nu

i=1. Then the negative

SSD similarity metric is

ΨSSD(θ) = −
1

Nu

Nu
∑

i=1

(

ũi − v̂θ
i

)2
, (13)

where the interpolated homologous image{v̂θ
i }

Nu

i=1 is given by (5). Differentiating the above expression showsthat

image edges are important to the gradient ofΨSSD. To ensure thatΨSSD was not affected by inherent differences

in the scale of intensities of the two images, both images were normalized to have the same intensity ranges prior

to registration.

Step-size Training

Effective use of US-SA or IS-SA to register a population of real datasets requires an efficient strategy to estimate

the step-size parametera0. Here we outline a simple procedure to estimate thisa0 value using a single randomly

chosen dataset from the target CT population. In the absenceof known ground truth, B-spline warp estimates obtained

using deterministic GD optimization were treated as the pseudo ground-truth. This is a reasonable assumption since

the goal of our SA algorithms is to use only a small subset of strategically selected image voxels to attain registration

accuracy comparable to that using GD with all image voxels. To mitigate local minima, registration estimates from

multiple runs of a GD algorithm were used. Each run was initialized using a small randomly generated warp. The

final registration estimate corresponding to the largest similarity metric value was treated as the best attainable

warp. For a given sample-size, optimala0 values using both IS-SA and US-SA were chosen to consistently find

warp estimates that yielded the smallest RMS error values with respect to this pseudo ground-truth warp.
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For training purposes, we employed a two-level pyramid registration scheme. Level 1 downsampled the images by

a factor of 2, estimated B-spline warps with a16×16×8 voxels control point spacing and useda0 as the step-size

parameter. The second level used no downsampling, a8 × 8 × 4 B-spline control point spacing and the step-size

parameter was1.5 × a0. Each level used1% of the total available voxels at that level. Ten wrap estimates were

obtained using both IS-SA and US-SA for a set of five differenta0 values. Each registration run was terminated after

10 mins and at every iteration we recorded RMS errors of the estimated B-spline warp with respect to the pseudo

ground-truth warp. Step-size parameter valuea0 = 1 was found to yield the best results for both SA methods.

Fig. 3(a) shows statistics of RMS error values for all10 IS-SA and US-SA registration runs at all fivea0 values.

Fig. 3(b) shows speed and accuracy comparisons of GD, IS-SA and US-SA (both usinga0 = 1) with respect to

the pseudo ground-truth warp. All subsequent SA based registrations were performed using this trained pyramid

scheme witha0 = 1.
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(a) Step-size parameter (a0) estimation.
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(b) Speed and accuracy comparison of IS-SA, US-SA and GD.

Fig. 3. Comparison of the speed and accuracy of IS-SA (red/notched) and US-SA (blue/plain) for registration of CT Lung data. The optimal

step-size parametera0 was empirically chosen to consistently produce warp estimates closest to the pseudo ground-truth warp in an RMSE

sense. Fig. 3(a) shows thata0 = 1 was the best value for both methods. The line at the center of each box-plot is the median RMS error, while

top and bottom edges are75 and 25 percent quantiles. Outliers are represented by (◦) for IS-SA and (+) for US-SA. Fig. 3(b) shows how

the speed and accuracy of the best IS-SA and US-SA schemes (a0 = 1 and sample-size= 1%) compare with those using GD (sample-size

= 100%) on average. Dotted lines are±1 standard deviation plots.

Validation

To gauge the performance of IS-SA and US-SA based on the trained pyramid scheme described above, we

applied both methods to register all 8 CT inhale-exhale lungscan pairs. To quantify registration accuracy, six expert

identified feature points were used per scan pair. These features included both bronchial and vascular bifurcations.

For each subject, registration was performed by treating the exhale scan as the reference and the inhale scan as
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the homologous dataset. Following registration, the estimated B-spline warp was used to transform the six exhale

feature point coordinates to obtain predicted inhale feature point coordinates. The average of the Euclidean distance

between the coordinates of each predicted and expert identified inhale feature point was used as an error metric to

quantify registration accuracy for each dataset.

Since in reality we wish to replace a single GD registration run by a single SA registration run it is important

that the method of choice give consistently good warp estimates with as little variance as possible. To empirically

demonstrate the estimate variance associated with both SA methods, each CT dataset registration was repeated ten

times. For comparison each dataset was also registered using GD. Each of the ten GD repetitions was initialized

with a small random independently generated warp. Each SA registration run was completed in approximately 5 to

8 mins on a moderate PC running C++ code; in contrast, each successful GD registration required about 30 to 90

mins. Fig. 4 summarizes statistics of the resulting featurepoint error metric for all ten registration warp estimates

using IS-SA and US-SA for all 8 datasets. In general IS-SA resulted in better accuracy than US-SA and showed a

reduction in estimate variance.
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Fig. 4. Comparison of the accuracy and variation in trained IS-SA (red/notched) versus US-SA (blue/plain) registrationusing expert identified

feature points for CT inhale-exhale lung data. The line at the center of each box-plot is the median error metric, while top and bottom edges

are75 and25 percent quantiles. Outliers are represented by (◦) for IS-SA and (+) for US-SA. Dataset 5 was used in the training step.

The average Euclidian distance between the expert identified exhale and inhale feature points can be used as

some measure of the severity of the initial deformation. Table I indicates that for datasets with larger deformations

(datasets 1, 2 and 3) IS-SA showed a marked improvement in accuracy over US-SA. For datasets with smaller

deformations (datasets 6, 7 and 8) both methods performed comparably with IS-SA doing only slightly better than

US-SA. The datasets are presented in order of decreasing initial deformation for ease of comparison. For most

datasets IS-SA showed accuracy comparable to that using GD.Empirically, for datasets with larger deformations,
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SA methods appeared to be less susceptible to local minima than GD. For datasets 1, 2 and 3 most repeated GD

registration trials got stuck in local minima and terminated after 5 to 7 mins. These GD registrations resulted in

poor inhale feature point predictions and were discarded asunsuccessful. In particular no GD registration run was

successful for datasets 2 and 3, while only one run managed toescape local minima for dataset 1.

TABLE I

COMPARISON OF THE AVERAGEEUCLIDIAN DISTANCE ERROR FOR INHALE FEATURE POINTS PREDICTED USING US-SA, IS-SAAND GD.

Avg.

Error

CT Dataset Number

(mm) 1 2 3 4 5 6 7 8

Initial 15.10 14.52 13.31 11.73 9.13 8.62 7.77 6.89

Final

US-SA 4.64 7.52 3.40 3.06 4.29 1.92 1.76 3.95

IS-SA 3.31 6.41 2.97 3.05 3.84 1.83 1.66 3.89

GD 3.14 - - 2.15 3.29 1.95 2.12 3.63

IV. D ISCUSSION ANDCONCLUSION

We have developed and validated an importance sampling based stochastic approximation (IS-SA) approach

to accelerate nonrigid image registration. We leveraged the significant influence of image edges on gradients of

intensity-based similarity metrics to design an adaptive non-uniform sampling distribution that encourages sampling

from these regions. Results for both synthetic simulationsand real lung CT data show that registration using IS-SA

can yield better speed and accuracy than SA schemes that use uniform sampling (i.e., US-SA). In particular, Fig. 2

shows that the number of samples required to attain a particular registration accuracy was halved by using IS-SA.

For a fixed sample-size in Fig. 3(b) IS-SA was more than 2 timesfaster than US-SA on average. In contrast to

approaches that replace or modify existing similarity metrics by explicitly incorporating image gradient-based terms

[22], [23], our IS-based SA strategy can improve the speed and accuracy of a wider range of existing intensity-based

registration methods without altering their similarity metrics (such as SSD, MI).

Correspondences between six expert identified bronchial and vascular bifurcations from each inhale-exhale CT

scan pair were used in the validation procedure in Sec. III-B. While the selection of these bifurcations may have

depended on edges, most of the voxels drawn in each IS-SA iteration using the sampling distribution (9) would not

be near any bifurcation. Hence, we expect any bias toward IS-SA in the validation criterion to be small.

The use of SA methods in practical applications can be hindered by their dependence on the step-size parameter.

To effectively apply these methods to populations of real data, we introduced a training strategy to empirically

estimate a reasonable value for this step-size parameter inthe absence of ground-truth. The training method uses

only a single randomly chosen dataset from the target population and its corresponding ‘successful’ deterministic
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GD registration warp estimate. This approach should be practical when several scans from the same protocol need to

be registered. Finding automatic parameter selection methods for a single image pair is a challenging open problem.

Though we have demonstrated the efficacy of IS-SA only with B-spline warps, our framework is applicable to

most other parametric non-rigid warp models. Specifically for more global warps (such as Thin-plate Splines) where

each warp parameter depends on a larger number of image voxels, we expect to see more marked improvements

in registration performance using IS-SA.

The data used here to demonstrate improvements in registration using IS-SA had few or sparse edges. As the

percentage of edges increases it may be beneficial to use a more stringent criterion to retain fewer edges in the

sampling distribution. More empirical experiments will beneeded to quantify the approximate percentage of edges

that need to be retained in such cases. In our implementation, the small random subset of samplesS following

the sampling distribution in (9) was drawn using the ‘inverse pdf transform’ sampling method. Alternatively, the

samples inS may be drawn using a rejection sampling-like approach; especially when the datasets have a large

percentage of edges. Further, an edge-based sampling strategy may not be the best choice for registration when one

image has significant strongly demarcated structures absent from the other image(s).

The edge-based sampling distribution in (9) is not necessarily optimal. Since the gradientg(θ) in (7) depends on

both∇θv̂
θ
i and ∂Ψ(θ)

∂v̂θ
i

; i = 1, 2, . . . Nu, it may be possible to design alternative sampling distributions that emphasize

image regions where both these terms are large. Finally, we note that a class of low discrepancy sequences, namely

Highly Uniform Point-sets (HUPS), were used in [24] to improve the performance of uniform sampling based

registration. A similar strategy, i.e., transforming suchHUPS to obtain samples that follow the target sampling

distribution in (9), may further augment the performance ofimportance sampling based registration.
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Associate Editor: Pluim, Josien
Comments to the Author:
Please replace the in press reference [22] by the published one and conference papers by journal
publications (if possible).

Reference [24] (previously, reference [22]) now cites the published work. Conference paper references [7] and [19]
have been replaced by citations to corresponding journal publications.

Reviewer: 1
Comments to the Author
I am satisfied with the answers to the issues I was raising in my previous review, and also with the
new version of the submission.

Reviewer: 2
Comments to the Author
The paper proposes a very practical algorithm that can potentially have a great impact on the
implementation of similarity based image registration methods. This reviewer is satisfied with the
changes the authors have made to clarify the paper based on the reviews. The notation is especially
much clearer and easy to follow. Their expanded discussion includes further comparisons with other
work and points to directions for interesting future research.

Reviewer: 3
Comments to the Author
I like to thank the authors for improving the quality of the paper. However, some issues (like the
reflection of other methods, discussion of the ill-posedness, or proper stopping) are still unaddressed,
see details below. Though I would like to see these points addressed, I consider them to be minor
and don’t want to further postpone publication. I assume the authors make a responsible decision
on how to deal with those.

1) The reflection of image registration tools is very narrow and includes only parametric approaches.
Variational as well as analytic approaches (like the Thin-plate Spline approach, where coefficients
can be computed solving a least squares problem) are not reflected. Furthermore, it is stated that
registration is an optimization problem, which out-rules flow approaches like Christensen’s fluid reg-
istration or Thirion’s demon approach.

R: “Lines 15-17 on page 1 were modified to stress that the paper focuses only on registration
methods that estimate parameterized warps and that can be expressed as an optimization problem.
Though we focus on parametric approaches, we believe that there are a significant number of image
registration schemes based on parametric warps and optimization strategies that can benefit from
our importance sampling approach.”

O: The modification reads: “In this paper, we focus on image registration methods that estimate
parameterized warp models” which does not reflect other approaches like the ones outlined in the
1st review. Please fix.

While image registration methods using both non-parametric and parametric warps are available, the optimiza-
tion framework and importance sampling strategy outlined in our work was designed specifically for registration
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algorithms that estimate parametrized warp models. Developing an IS strategy to accelerate non-parametric regis-
tration methods based on PDEs and optical flow constraints is out of the scope of this submission.

Lines 15-18 on page 1 now note that while non-parametric/flow-based registration algorithms are available, our
work focuses only on parametric registration methods.

2) Proper references are missing at various places (like for example at p1 15: This ill-posed prob-
lem is ...). Ill-posedness is identified as a major issue in registration in the very beginning but
not addressed subsequently. However, ill-posedness is particularly relevant to the topic, since the
ratio between the number of used data and the number of used parameters can be interpreted as a
measure for ill-posedness: using a sample size of one while looking for a thousand parameters may
not be wise. A reflection of these issues is missing.

R: “To address the earlier comment, line 15 on page 1 was modified to restrict attention to registra-
tion schemes using parameterized warps. Of course the problem may still be ill-conditioned, but this
is true of all image registration methods based on many parameters, and is not the main point of this
work. We removed the distracting mention of ill-posedness. Further, the minimum probability that
any voxel is chosen is given by ǫ > 0 in Eq. 9. Thus, in the limit, all available voxel pairs (or data sam-
ples) will be used to approximate the gradient. That is, over time, all voxel pairs will contribute to
the SA optimization scheme. Sec. II C, lines 43-46 on page 5, were revised to comment on this issue.”

O: Ill-posedness is a key issue and reducing the information using subsampling might be critical.
The point was to address and reflect this problem, not to remove the discussion. Please fix.

Though ill-posedness is a potential problem in most existing non-rigid registration methods, we believe that
our importance sampling strategy does not further exacerbate this issue. We ensure that each image voxel has a
non-zero probability of being used to approximate the gradient by choosing ǫ > 0 in Eq. 9. Hence, over a large
number of iterations, all voxel pairs will contribute to the gradient approximation. That is, over time, the loss in
information due to subsampling can be considered to be small. We re-worded lines 43-46 on page 5 in Sec. II C to
stress this point.

3) Fixed.

4) It is also well-known in the literature that gradient based optimization of course heavily relies on
the gradient. Here, however, the gradient is replaced by a stochastic process (in addition to a finite
difference approximation). Thus, one would at least expect a stopping criteria based on a vanishing
expectation value of the gradient. This would require more computation time. None of these issues
are discussed.

R: “The gradient of the similarity metric is approximated using Eq. 10 and computing the expec-
tation of this approximation seems impractical. The number of Step-SA iterations at each level of
our Pyramid-SA optimization scheme were chosen heuristically. Lines 45-48 on page 6 were added
to Sec. II D to address this issue.”

O: The lack of a proper stopping criterion, results in either being far from optimal or performing
many possibly redundant steps, which is related to the time issue. Please reveal your heuristics.

We found that Pyramid-SA with two pyramid levels and less than 400 Step-SA iterations at each level of the
pyramid worked well for all experiments described in Sec. III. This is noted in Sec. II D, lines 15-17 on page 7.

5) The weighting function in eq. (9) leads to another non-differentiability of the objective function.
It is not explained nor discussed why to use this function, what are the benefits as compared to
differentiable functions, and how to automatically identify the parameters.
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R: “The gradient of the similarity metric ∇θΨ(θ) is approximated by ĝ(θ) using Eq. 10. This
corresponds to evaluating the analytical summation in Eq. 7 over a small random subset of image
voxel pairs given by S. Please note that the actual similarity metric Ψ(θ) and its gradient ∇θΨ(θ) are
not altered in any way.

The sampling distribution P θ
s Eq. 9 is used only to draw the random subset of voxel pairs S. Since

these random samples follow a non-uniform distribution, the weights w(.) = NuP θ
s (.) are required to

ensure that the resulting gradient approximation in Eq. 10 remains unbiased. Thus, these weights
are a consequence of importance sampling and do not affect the differentiability of Ψ(θ). Lines 57-59
on page 5 and lines 4-7 on page 6 were added . . .”.

O: Sorry, I’m a little confused here. It is true that the equality in the continuous framework of (4)
holds independent on the choice of w, but after discretization this may change, doesn’t it?The basic
idea is to replace the sum over all pixels by a sum over a smartly chosen subset S, right? Thus,
your ”gradient” g depend on S. It is actually nor clear to me, whether g is a true gradient of an
objective function, which then of course also depends on S. Thus, changing the subset will change
the objective in the optimization. Anyway, I’m fine with point.

To obtain the k + 1th guess of the warp parameters θ = θk+1 using Eq. 2, we approximate the gradient
g(θ) = ∇θΨ(θ) by ĝ(θk). This approximate gradient is computed at the current ( kth ) guess of the warp parameters
θ = θk. Thus, the approximation ĝ(θk) is based on a new random subset S, drawn from the adaptive sampling
distribution P θ

s in Eq. 9 computed at θ = θk. That is, the random subset S used to compute ĝ(θk) depends on θk

through P θk

s . However the properties of the actual similarity metric Ψ(θ) and its gradient g(θ) are not altered.
We modified line 27 on page 5 in Sec. II C to clarify that θ = θk in Eq. 9. We also modified Eq. 10 to note that

ĝ(θk) is computed at the current guess of warp parameters θ = θk.

The guideline for the parameters in (9) is still missing.

All the symbols and parameters in Eq. 9 are described in the lines immediately following Eq. 9.
In particular, line 39 on page 5, defines {si}

Nu

i=1
and {tθ

i
}Nu

i=1
as the approximate edge magnitudes of the reference

and (interpolated) homologous images, respectively. These edge magnitudes are approximated using finite central
differences (as noted in Sec. II E on page 7, lines 30-34) and are used to compute only the sampling distribution in
Eq. 9. A discussion relating to the choice of the user-defined threshold T in presented in the paragraph following
Eq. 9 in Sec. II C, lines 46-49 on page 5. Comments on the choice of ǫ appear at the beginning of the same
paragraph.

3. Minor Objections ... are resolved.
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