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14 Abstract

16 Nonrigid image registration methods using intensity-based similarity metrécberoming increasingly common

17 tools to estimate many types of deformations. Nonrigid warps can be exipl# with a large number of parameters
and gradient optimization schemes are widely used to estimate them. Hdwelegge datasets, the computation of the
20 gradient of the similarity metric with respect to these many parametersrigsceery time consuming. Using a small
21 random subset of image voxels to approximate the gradient can redugeutation time. This work focuses on the
use of importance sampling to reduce the variance of this gradientapmtion. The proposed importance sampling
24 framework is based on an edge-dependent adaptive sampling distmiliesigned for use with intensity-based
25 registration algorithms. We compare the performance of registratioedbas stochastic approximations with and
26 without importance sampling to that using deterministic gradient descergirigat results, on simulated MR brain

data and real CT inhale-exhale lung data from 8 subjects, show that hiraiion of stochastic approximation

29 methods and importance sampling accelerates the registration procdésgrmekerving accuracy.
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Accelerated Nonrigid Intensity-Based Image

Registration Using Importance Sampling

|. INTRODUCTION

NONRIGID registration algorithms estimate a warp or defation with many (> 12 (3D affine) ) degrees
of freedom that appropriately maps one image onto another. e6timated warp models can be either parametric
[1]-[4] or non-parametric [5], [6]. In this paper, we focus imtensity-based image registration methods that estimat

parameterized warp models by solving an optimization Enwbl

0 = arg max, ¥ (0); )

where W is the similarity metric and is the estimate of the dimensional vector of warp parameters.

In registration scenarios that use differentiable intgAsased similarity metrics and gradient optimization hoets,
it is possible to derive an analytical expression for thedignat of the similarity metricv, ¥ (0). However for large
image datasets, the large number of warp parameters in noosigit registration methods makes the gradient
calculation time consuming. A simple strategy to reduce tamputation time is to use a small random subset of
image voxels to approximate the gradient [7].

Since this randomization of the gradient in effect makesstgrch direction a random variable, these techniques
cannot be used with algorithms like Conjugate Gradients ¢imaleavor to maintain the conjugacy of successive
search directions. Furthermore while it is possible to epipnate the Hessian, because the random sample-size is
small, its accuracy is suspect. Hence step-sizes basedanvidrse of the Hessian, as in the Levenberg-Marquardt
scheme, may not be reliable. It was reported in [7] that aty&oal gradient-based optimizer [2], [3], using a random
sub-sampling technique to approximate the gradient, paed better than that using gradient approximations based
on finite differences [8] and simultaneous perturbation [9]

The speed and accuracy of such registration algorithmsndepea the quality of the gradient approximation
obtained via random sampling. The subset of random voxaedtilmes is typically drawn using uniform sampling
(US). Here we present an alternative data-driven, nomumifsampling strategy that can be used efficiently to
improve these gradient approximations. We argue that ineaigees strongly influence intensity-based registration
estimates. Consequently, we propose the use of importamoelisg (IS) based on a sampling distribution that
emphasizes image edges to improve the gradient approgingati

Section II-A casts image registration in a Stochastic Agpnation framework. Importance sampling is described
in Sec. II-B; a non-uniform sampling distribution for intty-based registration is developed in Sec. II-C; and an
efficient implementation strategy is outlined in Sec. lISec. Il uses simulated 3D MRI volumes to compare the

performance of multi-modal image registration using b&rahd US with that using a deterministic gradient descent
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optimizer. Lastly we demonstrate the application of IS tgister real inhale-exhale lung CT data using deformable
B-spline warps. The quality of the registration for CT dataguantified using expert identified landmarks. These
results suggest that IS based on the sampling distributemigded in this work can accelerate intensity-based

nonrigid registration algorithms while preserving acayra

Il. THEORY
A. Stochastic Approximation

Image registration based on random sampling becomes aastaclpproximation technique with the following
updates:

Orp+1 =0k + arg(Or); 2

where ;. is the warp parameter estimate at #th iteration, §(6;) is an approximation of the gradie’t, ¥ ()

at 0, and ay is the step-size. The iterative updates given by (2) reqoiy an approximation of the gradient
V¥ (0); the similarity metric¥ () itself does not need to be computed. Stochastic approxdmg8A) is used

to find the zeros of a function (her€y¥(#)) when only noisy function evaluations are available [8]0][1SA
methods aim to find the unknown zeros by successively redubim inaccuracy in their estimates. They have been
applied successfully to numerous applications in the fieldstatistical modeling and controls. In gradient-based
image registration, SA techniques can be used to estimaie peaameters that maximize the similarity metric by
steadily reducing the imprecision introduced in succesgradient approximations.

A now common SA approach was first introduced by Robbins andrbi@l1]. This method aims to reduce the
inaccuracy in its estimates by gradually reducing the step-of the iterations; for brevity we call this technique
Step-SA. Step-SA requires that the number of points (imamelg) used to approximate the gradient, i.e., the
sample-size, remains fixed over iterations. The step-s&zpience, designed to guarantee convergence of the
optimizer, is a non-increasing non-zero sequefieg}, k € N such that) ;  ar = oo and "7, a;? < .
Clearly there are numerous sequences that describe a tegiebize progression. In practice the step-size sequence
is chosen heuristically for a given application.

Unlike Step-SA, sample-size controlled SA (Samp-SA) [18fs the step-size constant. Errors in parameter
estimates are reduced by progressively increasing thelessize used to approximate the gradient. The slowest
sample-size growth rate that ensures convergence is piapelrtoln(k) wherek is the iteration number [12]. Using
a slow growth rate should reduce computation time. Bothrtiegles effectively average out the approximation error
as the iterations progress, yielding convergence.

Irrespective of the SA scheme used, the efficiency of theshade for image registration applications depends on
the bias and variance properties of the underlying gradipptoximation based on a small random subset of image
voxels. This work focuses on the use of importance sampbrgnhance the performance of registration algorithms
by reducing the variance of such gradient approximatiorteauit introducing any bias. Since we use SA iterations

given by (2), we restrict our attention to the bias and varaproperties of the gradient approximati@{@) alone.
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The similarity metric?(¢) need not be computed or approximated. In the following eactve briefly review
importance sampling and identify image regions that stgointfluence intensity-based registration. Subsequently
we describe an appropriate adaptive sampling distributiaih emphasizes samples from these regions. Further, a

simple strategy to efficiently implement the sampling disttion is discussed.

B. Importance Sampling

Importance sampling (IS) is a variance reduction technicpygable of incorporating knowledge of the quantity
being approximated into the sampling process. IS recogrtizat certain types of random samples can affect the
approximation more than others and utilizes a samplingiligton that emphasizes these important samples. Such a
biased distribution would produce a biased estimator; kewby weighting the samples appropriately this bias can
be preempted. For completeness we briefly summarize IS dlangines of [13]. To study the variance reduction
afforded by IS, consider estimating a computationallyaatable integralb = [, f(x)dz. This integral can be

expressed as the expectation of a (non-linear) function umilh)rmly distributed random vectdry such that,

:/Qf(x)d:p = |Q|/f |Q| ®3)

— QIEu(f(U)). U - Unifg

where, Unif, is the uniform distribution ovef) given by
Loue
Unifq (u) z{ 1<

Alternatively, the intractable integrdl can also be written as the expectation of a function eba-uniformrandom

s = o o

= |QEY(£((};))), Y « Py, (4)

variableY’, given by:

where, the non-uniform distributiofy is given by

w(y)
. = ye
PY(y){ f(’)‘ else
S

To gain any advantage by usirgy (.) over Ey (.), the functionw(y) should be chosen carefully.
In practice, the expectations above are approximated kiy shenple means using’ i.i.d. samples of random
vectorsU,, « Unifg andY;, -~ Py. Ignoring the proportionality constaf2| , consider the following estimates of

the integral in (3);

. 1 Y

(I'uni £ N Z f(Un) ~ EU(f(U))
s LGSV, (FY)
@m"NZmeE%mn)

—

n=
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d,n corresponds to the uniform sampling (US) case ém}, is the estimate obtained by importance sampling (IS).
Both &, and <i>imp are unbiased with expectations proportional to the origimagral in (3). Since the random

samples are i.i.d., the variances of the two estimates &g diy

var(®yyi) = %var(f(U)) and vat®imp) = ;var(qj;((};))),

IS based on the sampling distributidty is beneficial only if[:)y(y) = “lj(Ty‘) is chosen to ensure that ‘(/érimp) <
var(®,). This is possible if and only if the functioﬁ% has lower variance thafi(.) alone. Thus the weights(.)
and correspondingly the sampling distributi® should be chosen to be similar in shape to the original integr

f (), ensuring that the functiorj% is approximately constant.

C. Sampling Distributions for Image Registration

To design a meaningful sampling distribution for gradibased image registration, we first identify image regions
that contribute significantly to the gradient of the sinitlametric. Consider registration between a pair of intgnsi
images, namely the reference image witl) voxels and the homologous image wil¥i, voxels. These images
are assumed to be sets of samples= u(z;), i = 1,2,...N,, andv; = v(y;), j = 1,2,... N,, of continuous
intensity functionsu(.) andv(.) respectively. These continuous functions are sampled @towtesr; € R* and
y; € R? respectively.

Most nonrigid registration algorithms assume that imagerdinates are related by a waifp, : R? — R3. The
vector of unknown warp parameteis € R? is estimated iteratively by the algorithm. At each iteratithe current
estimated = 6, is used to find intensities at coordinatgg = 7, (z;)} Y in the homologous image corresponding
to each reference voxel location. These transformed coate rarely lie on the sampling grid points and hence
their corresponding intensity valugg! ~ v(y?)} are not known. Intensity-based similarity metrics comryonl
approximate these unknown intensities by modeling theigoats intensity function(.) using an appropriate

interpolation kernel. Specifically, we use
N.

j=1
where B is a cubic B-spline andb;} are the corresponding spline coefficients. To ensure eréetpolation, the
B-spline coefficients are obtained by appropriately ptesitg the original imaggv;} using techniques described

in [14]. Similarity metrics¥ employing this model can be written as

U(0) = U({i;, o)1) (6)

%

Assuming differentiability and using the chain rule, thedjent of & is given by

N,
< 0v(6 A
90) 2 puie) =3 ZWg,0 ™
p v}
whereVy = [8%1, 8%2 . aiep} denotes the gradient operator. To accelerate the gradampwtation, a random

subset of image voxels is typically drawn from a uniform séngpdistribution [3], [7]. Thus any voxel pair is

equally likely to be used to approximate the gradient, eénguthat the resulting approximation is unbiased.
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Reducing the variance of this approximation (without idtroing any bias) will not only improve the convergence
of the SA optimizer but may also facilitate the use of smadl@emple-sizes. This may be possible by using IS to
encourage denser sampling from image regions that stronfijlience the gradient given by (7). These ‘important’

image regions can be identified by differentiating (5):

Vi —{ZbB ' 15) V] ®)

where B(y) = V,B(y), y € R? is the1 x 3 vector gradient of the B-spline kernel. The term in the bsamentains
the directional gradients or edges of the homologous iitieimeage along the three coordinate axes. Recalling (7),
only voxel intensities that lie on an edge in the homologouage{¢} will contribute significantly tog(6).

To see the importance of edges in the reference image wedesnsigistration by swapping the two images, i.e.,
treating{o,} as the reference image afd;} as the homologous image. This corresponds to finding anr§eve
warp. In this case, the continuous functiof) will be modeled using an interpolation kernel. Repeatirg dbove
analysis, we see that edges in the swapped reference imﬁgewill now be vital in the gradient calculation.
This suggests that our importance sampling scheme shollbdvfa distribution that emphasizes edges in both the
reference and the homologous images.

At the kth SA iteration with parameter gueg@s= 6;,, we base the design of odrdependent sampling distribution
P? on the edge magnitudes of the two intensity images. We chibesgrobability that a voxel pair with coordinates

(z4,9?) is selected as follows: ,

0/ A ¢ . o
PS(Z)_ZN“ 69.’ 1_1727"'Nu7 (9)
Jj=1"J
where
Si t? H Sq t?
+ , if N >T

Ny Ny Ny Ny =
0 4 PORY > td PO >t
€, = j=1 j=1 j=1 j=1
€ else

In the above equatiofs;}\, and {t?}« are approximate edge magnitudes of the reference and dtaeed

homologous images respectivel§.is a user-defined edge threshold and (0, 7.

The minimum probability that a voxel is used in the gradieppraximation is given by the parameter We
choosec to be a positive non-zero constant, so that in the limit ofrgdanumber of IS draws, all voxel-pairs will
contribute to the SA optimization scheme. The thresholehay be tailored to remove spurious noise induced edges
from the sampling distribution. If the normalized edge miagtes in both images were all smaller than then
the sampling distribution would become uniform with eaclxelgair having an equal chance of being selected.

Let (z,v?);i € S whereS C {1,2,...N,}, be coordinates of voxel pairs belonging to the small randabset
S, chosen according t&?(i). Then the approximate gradient used in (2) is given by

100 = Y- o T Vot (10
ies 6=0y,
wherew(i) = N, P’ (i) andf = 0}, is the warp parameter guess at #th SA iteration. The voxel pairs in random

subsetS follow the non-uniform sampling distribution given by (Buch non-uniform samples may yield a biased
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2

3

4 gradient estimate. However, by using the weight$) to appropriately weight each voxel pair, we can ensure that
2 the resulting gradient approximation in (10) is unbiasebisTapproximate gradient uses orl§| < N,, voxel

7 pairs; hence the time consuming sum in (7) is evaluated antigese|.S| sample points.

g Interestingly, Sabuncu et al. [15] recently developed ageedkependent sampling scheme to reduce the approximation
10 error in their Euclidean Minimum Spanning Trees (EMST) lohssgistration. However, results were demonstrated
g only for rigid registration of 2D brain images. Further, yheid not study the variance-bias properties of their
ﬁ approximation and assigned the same weight to all samples.

15

16 D. Optimization Scheme

g As discussed previously both Step-SA and Samp-SA can be tasedtimate the unknown warp parameters.
;g Our previous empirical results [16] comparing registmnatif simulated brain data indicated that under identical
21 conditions Samp-SA has faster initial convergence thap-St&;, however, Step-SA appeared to be more stable at
gé later iterations. Two schemes combining the advantagdsesktSA methods resulted in faster nonrigid registration:
24 (i) an ‘Hybrid-SA" scheme that started with Samp-SA for a fixaumber of iterations and then switched to
gg Step-SA and (ii) a ‘Pyramid-SA scheme that employed a Wweiaccombination of step and sample-sizes using a
27 multi-resolution pyramid approach. Because of the prexaef pyramid optimization schemes and their empirically
ég demonstrated robustness to local minima [2], [3], we usedid-SA for all experiments in this paper.

30 In our experiments all levels of Pyramid-SA used cubic Breplrepresentations of both images. Lower levels
g; of the pyramid used coarse image approximations with snmathumts of data to obtain initial warp estimates.
gi These warp estimates were then refined at higher levels gbytremid using more precise image representations
35 by including more intensity data. Since coarse image apprations are accompanied by a loss of detail, low
g? level warp estimates capture gross global alignment ancegpiained using fewer parameters. As image detalil
38 increases with pyramid levels, the warps become more etd@nd depend on a larger number of parameters.
28 Thus successive levels of the pyramid use an increasing euafbintensity pairs to estimate the similarity metric.
41 In an SA framework, this corresponds to implicitly incrempithe sample-size between each level of the pyramid.
jé ‘Optimal’ warp parameters within each pyramid level weréreated using Step-SA. For simplicity we call this
44 optimization scheme ‘Pyramid-SA. In lieu of a gradienfpdadant stopping criterion, we used a fixed number of
jg SA iterations at each level of the pyramid. The exact numb&tep-SA iterations at each level of our Pyramid-SA
47 scheme was chosen heuristically.

jg When the number of unknown warp parameters is very small, i b sufficient to empirically identify a
30 single step-size value for Step-SA algorithms. Howeveldaye-dimensional vector valued parameters, the optimal
g; step-size for each vector component may vary widely. To d3ntbkis, we adopted an adaptive step-size estimation
gi technique proposed in [17]. L6}, be the estimate of warp parameters at iteratipwith elements(6: },i = 1,...p.

55 The adaptive step-size strategy assumes that for a statipoant 6, of the similarity measure, rapid changes in the
gs sign of (6, — 0%) — (0;_, —0?) = 0% — 6% _, indicate that}, is closer to its optima. Similarly, fewer sign changes
58 are indicative of a greater distance fréfn Thus the step-size associated with ttfewarp parameter component is
59
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kept inversely proportional to the number of sign change of §¢ _,. Our implementation estimates the step-size
for theith component;, as follows:a}, = ao/(A+Q},), whereQ)j is the number of sign changes A, — 67, _,},
m=2,...kand Q% = 0. A anda, are positive non-zero constants. Such step-size sequarmresshown to be
convergent in [17]. While many choices af and ay values are valid in theory, using a largey may boost SA
performance by yielding larger step-sizes at later itere{18]. However a larger, may also result in instabilities at
earlier iterations. It was observed in [18] that incorpmmtstability constant’A < 0.1 x (Number of SA Iterations
could avoid such fluctuations in earlier SA iterations, wltgy the use of larget, values. For all experiments in
Sec. lll, we found that Pyramid-SA with two pyramid levelsniwed well, with A = 10 and less thad00 Step-SA

iterations at each level of the pyramid.

E. Implementation Issues

For IS to be advantageous in an image registration appitatt is crucial to design a meaningful sampling
distribution that requires minimal computational effdfhe sampling distributio®? depends on the changing warp
parameter estimates througt{ } M, so it has to be recomputed with significant variations in $feestimates of
0. Thus it is important to use a fast and simple approximatiothe edge maps. Since the reference image does not
change throughout the registration, we pre-compute itedjixedge map{si}fvgl. However the homologous image
geometry changes with updatesdrand corresponding edge magnitude values need to be recedngtdr large
homologous images, edge maps based on higher order keuctlas the cubic spline in (5) can be computationally
expensive. Hence we approximate edge magnitudes usin@risorder finite central differences of the intensity
images along each image dimension.

The sampling distribution (9) gives equal importance tortbamalized edge magnitude maps of both the reference
and the homologous image. In the early stages of the reigstrscheme, the reference and homologous images may
be strongly mis-aligned. Hence it is important to frequenthdate the homologous image’s edge map during initial
iterations, so as to accurately emphasize all the ‘imptrtais-aligned regions in both images. However, towards
the final stages of the registration algorithm, we can expetit images to be better aligned. That is, many of the
homologous image edges will now coincide with those of tHeremce image. Thus, it may be computationally
advantageous to update the homologous image edge mapgipatnater iterations. Further, the coarse-to-fine
framework of the Pyramid-SA scheme in Sec. II-D inherenglgults in coarse scale changes in the warp estimate at
lower levels of the pyramid, while finer warp adjustmentswcat higher pyramid levels. At each iteration, coarse
scale warp changes are more likely to significantly affeetédge map than finer refinements. Hence, we update
the sampling distribution frequently at lower Pyramid-S#véls and increase the number of iteratiom$between
updates as the optimizer switches to higher levels. SA dlgos are characterized by small steps along random
search directions. Thus the sampling distributihis updated everyn iterations to reflect the average change in
thesem warp estimates. At pyramid levél=1,2,... we usedm = 2.

Lastly, at every update, the approximate homologous imdge enap need be recomputed only at locations where

the effective deformation is large enough to significanthamge the edge magnitude. That is, we incrementally
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(a) Example Sampling Distribution (b) Importance Sampling (c) Uniform Sampling

Fig. 1. Comparison of samples obtained using the samplinghiigon given by (9) versus samples obtained by Uniform samgplimages
were created when the algorithm was not near registration.

update our finite central difference based edge estimatg atngeometric coordinates that move more than the
dimensions of a voxel in any direction on average. These uneagnsure that the overhead required to compute and
update the sampling distribution is reasonably small.Harrthis fractional overhead reduces steadily with ingirea
sample-sizes. Fig. 1 shows the sampling distribution ameesponding samples obtained using importance sampling

for registration of simulated brain datasets.

1. RESULTS

We demonstrate the use of IS for image registration usinig siohulated and real data. Results include pair-wise
monomodality and multimodality registration using two goon intensity-based similarity metrics. All registration
results using 1S-based Pyramid-SA (IS-SA) and US-basedrfigrSA (US-SA) described here employed the
optimization framework detailed in Sec. Il. For comparisoggistration was also performed using deterministic
Gradient Descent (GD) in the same multi-resolution pyrafrégnework. GD used all image voxels to compute
the analytical gradient at each iteration. All three methatlized multi-resolution representations of both ingge

using cubic splines and estimated deformable warps bas&isptines.

A. Behavior of IS-SA with Variations in Step-size

A limitation of SA approaches is their sensitivity to tunimmrameters such as step-sizes. If the sampling
distribution P? designed in (9) reduces the varianceg@#), IS-SA can be expected to have an increased tolerance
to variations in step-sizes. Simulated datasets were wsednpare the behavior of multi-modal registration using
IS-SA and US-SA with various step-sizes.

Mutual Information (MI) based registration was performevizeen1 80 x 260 x 60 T1 and PD-weighted simulated

MR volumes with1 x 1 x 3 mm?® voxels, obtained from ICBM [19]. A plug-in MI estimate beterethe two images,
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given by

P (91) IOg(pu(gl))

S
3
=
I
Mh

I
-

Py (hun; 0) log(Py (him: 0)) (11)

|
:ﬁM:

HMh

917 hma e log( uv(gh hm7 9))

was used as the similarity metri(f?v(hm;e) is the approximate probability that a homologous intensibyel

09 € [P — 1, h +n]; P, and P, are defined similarly over intensity levels = g1,9s,... ,9z and h,, =
hi,ha, ..., hy. These sets of intensity levelg; }¥ and {h,,}} are chosen to span the dynamic intensity range
of the reference and homologous images respectively. Oerofisgradient-based optimizers requires that we
approximate these pdfs using differentiable kernel dgrestimates [20].

All results using 1S-SA optimization schemes in this settised the sampling distribution given by (9). We
applied a known synthetic waff(.) derived using radial blobs of varying severity to the T1 voé& yielding ground
truth coordinated’(x;),i = 1,... , N,. This warped volume was treated as the reference, whilerinbanged PD
volume was the homologous image. B-spline wafp&) were estimated by mapping the homologous volume onto
the reference volume. Independent realizations of Gaussigse N (0,9) were added to both images prior to the
registration runs. Quality of the estimated wdff,(z;) ZN:”1 was evaluated using the RMS error between the warp

estimate and ground-truth:

N,
1 - 5
RMS error= J N ;:1 1T (i) = Ty()|™ 12)

A two level Pyramid-SA scheme was used to register the twasa#s. Level one usegit histogram bins, a
B-spline control point spacing of6 x 16 x 8 voxels and both images were down-sampled by a factor of two in
all dimensions. The second level ha#8 histogram bins, al x 8 x 4 voxels B-spline control point spacing and
no down-sampling. Both levels implement&sd and 250 iterations of Step-SA respectively and used only a fixed
percentage of all available voxel pairs at that level.

The step-sizen}, corresponding to componefif of the warp parameters’ estimate at iterationwas aj, =
ao/(10+ QL),i = 1,2,... ,p. Where,Qj, was the number of sign changes{iéf,, — 6:,_,},m =2,... k. The
parameterag in the step-size sequence remains to be chosen. To studyfftiot @& varying step-size parameter
ag, warp estimates fromo registration runs were obtained using IS and US, for sydiieaily increasing values
of ay from 1000 up to 25000 in increments of3000. This process was repeated for four different sample sizes o
0.25,0.5,1 and 2 percent respectively. Fig. 2 compares statistics of thd RMS errors obtained using the two
sampling strategies for a fixed CPU time. As hypothesizee5ASyields lower errors than US-SA over the entire
range of step-sizes.

Empirically, IS-SA was significantly less sensitive to stpe variations, while consistently giving more accurate

warp estimates. Further, US-SA required larger samples dizeachieve accuracies comparable to those using IS.
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Fig. 2. Comparison of the performance of IS-SA (red/notchadyws US-SA (blue/plain) with variations in step-sizegufés show RMS

error statistics for 10 nonrigid multimodality registratiouns at seven step-sizes and fo0r26, 0.5, 1 and 2%) sample-sizes. The line at the

center of each boxplot shows the median RMS error value andridpbottom edges are thié and25 percent quantile RMS errors. ‘Outliers’

are shown by (o) for IS and by (+) for US. IS does significantytér than US at all four sample-sizes. Specifically, IS tesollower variance

values and shows better tolerance to variations in stegssirends in the four plots indicate that the performanceotti Bampling strategies

will become comparable with an increase in sample-size.
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As sample-sizes increase both IS and US will capture sirtelagls of image complexity making their performance
comparable. The minimum sample-size beyond which both Baghmethods give similar results will depend on
the complexity of the datasets. In general, US will be effecat smaller sample-sizes when image edge features

are roughly uniformly dispersed.

B. Application to Human Data

Encouraged by the observations made in the previous seat@used IS to register human datasets. Intensity-based
registration using B-spline warps was applied to align (Taie and exhale lung datasets from 8 subjects. These CT
scan pairs were obtained using a helical CT scanner (CTHe@¢Electric, Milwaukee, WI) witl).187 x0.187x 0.5
cm?® voxels. Each scan pair was acquired during coached volubtaath-hold periods of 18 to 35 secs; the first
scan at normal exhale followed by one at normal inhale. A nuwtiled description of the data can be found in
[21].

Monomodality registration was performed using the negativSum of Squared Differences (SSD) as a similarity
metric. In this case, both the reference and homologousemare assumed to be noisy realizations drawn from the
same continuous function. Let the reference image be giyea $et of noisy sample@i}f\’:“l. Then the negative

SSD similarity metric is
1 _
Ussolt) = — 5~ > (@ — )", (13)

©
Il
N

where the interpolated homologous ima@é}fvzul is given by (5). Differentiating the above expression shaet
image edges are important to the gradientigkp. To ensure thatlssp was not affected by inherent differences
in the scale of intensities of the two images, both imageswermalized to have the same intensity ranges prior

to registration.

Step-size Training

Effective use of US-SA or IS-SA to register a population dlr@atasets requires an efficient strategy to estimate
the step-size parametep. Here we outline a simple procedure to estimate thisalue using a single randomly
chosen dataset from the target CT population. In the abs#rie®wn ground truth, B-spline warp estimates obtained
using deterministic GD optimization were treated as theigegground-truth. This is a reasonable assumption since
the goal of our SA algorithms is to use only a small subsetrategically selected image voxels to attain registration
accuracy comparable to that using GD with all image voxetsmitigate local minima, registration estimates from
multiple runs of a GD algorithm were used. Each run was iiwta using a small randomly generated warp. The
final registration estimate corresponding to the largesiilaiity metric value was treated as the best attainable
warp. For a given sample-size, optimal values using both IS-SA and US-SA were chosen to consigtéint

warp estimates that yielded the smallest RMS error valudéis respect to this pseudo ground-truth warp.
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For training purposes, we employed a two-level pyramidstegiion scheme. Level 1 downsampled the images by
a factor of 2, estimated B-spline warps with@x 16 x 8 voxels control point spacing and usegl as the step-size
parameter. The second level used no downsamplirgyx& x 4 B-spline control point spacing and the step-size
parameter wad.5 x ag. Each level used % of the total available voxels at that level. Ten wrap estenawvere
obtained using both IS-SA and US-SA for a set of five diffekgnvalues. Each registration run was terminated after
10 mins and at every iteration we recorded RMS errors of thenes&d B-spline warp with respect to the pseudo
ground-truth warp. Step-size parameter valige= 1 was found to yield the best results for both SA methods.
Fig. 3(a) shows statistics of RMS error values for ®ll IS-SA and US-SA registration runs at all fiwg values.
Fig. 3(b) shows speed and accuracy comparisons of GD, IStBIAUS-SA (both usingiy = 1) with respect to
the pseudo ground-truth warp. All subsequent SA basedtratims were performed using this trained pyramid

scheme withag = 1.

34 + \
+ I \ O Deterministic GD
33 3314 \ ¢ Pyramid—SA: Uniform Sampling
32 + O Pyramid—SA: Importance Sampling
: +
gl [ .
3.1 +
= . £
S 30 H 8 £
& =
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o © v
3 2.8 o =
= o
27 ‘ @
26 © 0 3 E
o GD after > 3000 secs
25 25E
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Step-size CPU time (secs)
(a) Step-size parameted) estimation. (b) Speed and accuracy comparison of IS-SA, US-SA and GD.

Fig. 3. Comparison of the speed and accuracy of IS-SA (rectied) and US-SA (blue/plain) for registration of CT Lungadathe optimal
step-size parameter, was empirically chosen to consistently produce warp estsnaliesest to the pseudo ground-truth warp in an RMSE
sense. Fig. 3(a) shows that = 1 was the best value for both methods. The line at the centerabf lsax-plot is the median RMS error, while
top and bottom edges af& and 25 percent quantiles. Outliers are represented d)yfgr IS-SA and ¢) for US-SA. Fig. 3(b) shows how
the speed and accuracy of the best IS-SA and US-SA schemes (1 and sample-size= 1%) compare with those using GD (sample-size
= 100%) on average. Dotted lines atel standard deviation plots.

Validation

To gauge the performance of IS-SA and US-SA based on theettgayramid scheme described above, we
applied both methods to register all 8 CT inhale-exhale lswan pairs. To quantify registration accuracy, six expert
identified feature points were used per scan pair. Thesarésincluded both bronchial and vascular bifurcations.

For each subject, registration was performed by treatiegetkhale scan as the reference and the inhale scan as
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the homologous dataset. Following registration, the estich B-spline warp was used to transform the six exhale
feature point coordinates to obtain predicted inhale fegpwint coordinates. The average of the Euclidean distance
between the coordinates of each predicted and expert figehitnhale feature point was used as an error metric to
guantify registration accuracy for each dataset.

Since in reality we wish to replace a single GD registration by a single SA registration run it is important
that the method of choice give consistently good warp esémwaith as little variance as possible. To empirically
demonstrate the estimate variance associated with both &Roals, each CT dataset registration was repeated ten
times. For comparison each dataset was also registereg Gén Each of the ten GD repetitions was initialized
with a small random independently generated warp. Each §istration run was completed in approximately 5 to
8 mins on a moderate PC running C++ code; in contrast, eaatessiftl GD registration required about 30 to 90
mins. Fig. 4 summarizes statistics of the resulting feapaiat error metric for all ten registration warp estimates
using IS-SA and US-SA for all 8 datasets. In general IS-SAillted in better accuracy than US-SA and showed a

reduction in estimate variance.
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Fig. 4. Comparison of the accuracy and variation in traine®#S(red/notched) versus US-SA (blue/plain) registratising expert identified
feature points for CT inhale-exhale lung data. The line atdlnter of each box-plot is the median error metric, while tog lbottom edges
are 75 and 25 percent quantiles. Outliers are representedd)yfdr IS-SA and ) for US-SA. Dataset 5 was used in the training step.

The average Euclidian distance between the expert idehtifidhale and inhale feature points can be used as
some measure of the severity of the initial deformation.|&abndicates that for datasets with larger deformations
(datasets 1, 2 and 3) IS-SA showed a marked improvement ramc over US-SA. For datasets with smaller
deformations (datasets 6, 7 and 8) both methods performmga@bly with IS-SA doing only slightly better than
US-SA. The datasets are presented in order of decreasitigl idéformation for ease of comparison. For most

datasets 1S-SA showed accuracy comparable to that usinge@ipirically, for datasets with larger deformations,
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SA methods appeared to be less susceptible to local miniema @D. For datasets 1, 2 and 3 most repeated GD
registration trials got stuck in local minima and termimhgdter 5 to 7 mins. These GD registrations resulted in
poor inhale feature point predictions and were discardednasiccessful. In particular no GD registration run was

successful for datasets 2 and 3, while only one run manageddape local minima for dataset 1.

TABLE |

COMPARISON OF THE AVERAGEEUCLIDIAN DISTANCE ERROR FOR INHALE FEATURE POINTS PREDICTE USING US-SA, IS-SAAND GD.

Avg. CT Dataset Number
Error
om |1 |2 s a4 |s s |7 |

Initial 15.10| 14.52| 13.31]| 11.73] 9.13 | 8.62 | 7.77 | 6.89

Final

US-SA | 464 | 752 | 3.40 || 3.06 | 429 | 1.92 | 1.76 | 3.95

IS-SA 331 | 641 | 297 || 3.05| 3.84 | 1.83 | 1.66 | 3.89

GD 3.14 | - - 215|329 | 1.95| 2.12 | 3.63

IV. DISCUSSION ANDCONCLUSION

We have developed and validated an importance samplingdbsteehastic approximation (IS-SA) approach
to accelerate nonrigid image registration. We leveragedsignificant influence of image edges on gradients of
intensity-based similarity metrics to design an adaptiwe-aniform sampling distribution that encourages sangplin
from these regions. Results for both synthetic simulatemd real lung CT data show that registration using IS-SA
can yield better speed and accuracy than SA schemes thahifiserusampling (i.e., US-SA). In particular, Fig. 2
shows that the number of samples required to attain a phaticegistration accuracy was halved by using I1S-SA.
For a fixed sample-size in Fig. 3(b) IS-SA was more than 2 tifaster than US-SA on average. In contrast to
approaches that replace or modify existing similarity mestby explicitly incorporating image gradient-based term
[22], [23], our IS-based SA strategy can improve the speedsacuracy of a wider range of existing intensity-based
registration methods without altering their similarity tmes (such as SSD, MlI).

Correspondences between six expert identified bronchilvascular bifurcations from each inhale-exhale CT
scan pair were used in the validation procedure in Sec. .INMBile the selection of these bifurcations may have
depended on edges, most of the voxels drawn in each IS-S&iderusing the sampling distribution (9) would not
be near any bifurcation. Hence, we expect any bias towal8ASa the validation criterion to be small.

The use of SA methods in practical applications can be heulby their dependence on the step-size parameter.
To effectively apply these methods to populations of reahdwe introduced a training strategy to empirically
estimate a reasonable value for this step-size parametbeiabsence of ground-truth. The training method uses

only a single randomly chosen dataset from the target ptipoland its corresponding ‘successful’ deterministic
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GD registration warp estimate. This approach should betipedavhen several scans from the same protocol need to
be registered. Finding automatic parameter selectionadstfor a single image pair is a challenging open problem.
Though we have demonstrated the efficacy of 1IS-SA only withpBae warps, our framework is applicable to
most other parametric non-rigid warp models. Specificallymhore global warps (such as Thin-plate Splines) where
each warp parameter depends on a larger number of imagesyoxelexpect to see more marked improvements

in registration performance using 1S-SA.

The data used here to demonstrate improvements in registrasing IS-SA had few or sparse edges. As the
percentage of edges increases it may be beneficial to use e strorgent criterion to retain fewer edges in the
sampling distribution. More empirical experiments will beeded to quantify the approximate percentage of edges
that need to be retained in such cases. In our implementatiensmall random subset of samplgsfollowing
the sampling distribution in (9) was drawn using the ‘ineemdf transform’ sampling method. Alternatively, the
samples inS may be drawn using a rejection sampling-like approach; @alhe when the datasets have a large
percentage of edges. Further, an edge-based samplinggstratly not be the best choice for registration when one
image has significant strongly demarcated structures alfigen the other image(s).

The edge-based sampling distribution in (9) is not necégsastimal. Since the gradient(d) in (7) depends on

both V,9¢ and ag’;f); 1=1,2,...N,, it may be possible to design alternative sampling distidims that emphasize

image regions where both these terms are large. Finally,otethat a class of low discrepancy sequences, namely
Highly Uniform Point-sets (HUPS), were used in [24] to impeothe performance of uniform sampling based
registration. A similar strategy, i.e., transforming sudbJPS to obtain samples that follow the target sampling

distribution in (9), may further augment the performancengbortance sampling based registration.
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RESPONSE TO REVIEWERS COMMENTS

Note: The page numbers referenced in our responses are actual manuscript page numbers (not ‘Workflow’
numbers).

Associate Editor: Pluim, Josien
Comments to the Author:
Please replace the in press reference [22] by the published one and conference papers by journal
publications (if possible).

Reference [24] (previously, reference [22]) now cites the published work. Conference paper references 7] and [19]
have been replaced by citations to corresponding journal publications.

Reviewer: 1
Comments to the Author
I am satisfied with the answers to the issues I was raising in my previous review, and also with the
new version of the submission.

Reviewer: 2
Comments to the Author
The paper proposes a very practical algorithm that can potentially have a great impact on the
implementation of similarity based image registration methods. This reviewer is satisfied with the
changes the authors have made to clarify the paper based on the reviews. The notation is especially
much clearer and easy to follow. Their expanded discussion includes further comparisons with other
work and points to directions for interesting future research.

Reviewer: 3
Comments to the Author
I like to thank the authors for improving the quality of the paper. However, some issues (like the
reflection of other methods, discussion of the ill-posedness, or proper stopping) are still unaddressed,
see details below. Though I would like to see these points addressed, I consider them to be minor
and don’t want to further postpone publication. I assume the authors make a responsible decision
on how to deal with those.

1) The reflection of image registration tools is very narrow and includes only parametric approaches.

Variational as well as analytic approaches (like the Thin-plate Spline approach, where coefficients
can be computed solving a least squares problem) are not reflected. Furthermore, it is stated that
registration is an optimization problem, which out-rules flow approaches like Christensen’s fluid reg-
istration or Thirion’s demon approach.

R: “Lines 15-17 on page 1 were modified to stress that the paper focuses only on registration
methods that estimate parameterized warps and that can be expressed as an optimization problem.
Though we focus on parametric approaches, we believe that there are a significant number of image
registration schemes based on parametric warps and optimization strategies that can benefit from
our importance sampling approach.”

O: The modification reads: “In this paper, we focus on image registration methods that estimate
parameterized warp models” which does not reflect other approaches like the ones outlined in the
1st review. Please fix.

While image registration methods using both non-parametric and parametric warps are available, the optimiza-
tion framework and importance sampling strategy outlined in our work was designed specifically for registration
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algorithms that estimate parametrized warp models. Developing an IS strategy to accelerate non-parametric regis-
tration methods based on PDEs and optical flow constraints is out of the scope of this submission.

Lines 15-18 on page 1 now note that while non-parametric/flow-based registration algorithms are available, our
work focuses only on parametric registration methods.

2) Proper references are missing at various places (like for example at pl 15: This ill-posed prob-
lem is ...). Ill-posedness is identified as a major issue in registration in the very beginning but
not addressed subsequently. However, ill-posedness is particularly relevant to the topic, since the
ratio between the number of used data and the number of used parameters can be interpreted as a
measure for ill-posedness: using a sample size of one while looking for a thousand parameters may
not be wise. A reflection of these issues is missing.

R: “To address the earlier comment, line 15 on page 1 was modified to restrict attention to registra-
tion schemes using parameterized warps. Of course the problem may still be ill-conditioned, but this
is true of all image registration methods based on many parameters, and is not the main point of this
work. We removed the distracting mention of ill-posedness. Further, the minimum probability that
any voxel is chosen is given by € > 0 in Eq. 9. Thus, in the limit, all available voxel pairs (or data sam-
ples) will be used to approximate the gradient. That is, over time, all voxel pairs will contribute to
the SA optimization scheme. Sec. II C, lines 43-46 on page 5, were revised to comment on this issue.”

O: Ill-posedness is a key issue and reducing the information using subsampling might be critical.
The point was to address and reflect this problem, not to remove the discussion. Please fix.

Though ill-posedness is a potential problem in most existing non-rigid registration methods, we believe that
our importance sampling strategy does not further exacerbate this issue. We ensure that each image voxel has a
non-zero probability of being used to approximate the gradient by choosing € > 0 in Eq. 9. Hence, over a large
number of iterations, all voxel pairs will contribute to the gradient approximation. That is, over time, the loss in
information due to subsampling can be considered to be small. We re-worded lines 43-46 on page 5 in Sec. II C to
stress this point.

3) Fixed.

4) It is also well-known in the literature that gradient based optimization of course heavily relies on

the gradient. Here, however, the gradient is replaced by a stochastic process (in addition to a finite
difference approximation). Thus, one would at least expect a stopping criteria based on a vanishing
expectation value of the gradient. This would require more computation time. None of these issues
are discussed.

R: “The gradient of the similarity metric is approximated using Eq. 10 and computing the expec-
tation of this approximation seems impractical. The number of Step-SA iterations at each level of
our Pyramid-SA optimization scheme were chosen heuristically. Lines 45-48 on page 6 were added
to Sec. IT D to address this issue.”

O: The lack of a proper stopping criterion, results in either being far from optimal or performing
many possibly redundant steps, which is related to the time issue. Please reveal your heuristics.

We found that Pyramid-SA with two pyramid levels and less than 400 Step-SA iterations at each level of the
pyramid worked well for all experiments described in Sec. III. This is noted in Sec. II D, lines 15-17 on page 7.

5) The weighting function in eq. (9) leads to another non-differentiability of the objective function.
It is not explained nor discussed why to use this function, what are the benefits as compared to
differentiable functions, and how to automatically identify the parameters.
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R: “The gradient of the similarity metric V,¥ () is approximated by g(0) using Eq. 10. This
corresponds to evaluating the analytical summation in Eq. 7 over a small random subset of image
voxel pairs given by S. Please note that the actual similarity metric ¥() and its gradient V¥ (6) are
not altered in any way.

The sampling distribution P! Eq. 9 is used only to draw the random subset of voxel pairs S. Since
these random samples follow a non-uniform distribution, the weights w(.) = N,P?(.) are required to
ensure that the resulting gradient approximation in Eq. 10 remains unbiased. Thus, these weights
are a consequence of importance sampling and do not affect the differentiability of ¥ (). Lines 57-59
on page 5 and lines 4-7 on page 6 were added ...”.

O: Sorry, I'm a little confused here. It is true that the equality in the continuous framework of (4)
holds independent on the choice of w, but after discretization this may change, doesn’t it?The basic
idea is to replace the sum over all pixels by a sum over a smartly chosen subset S, right? Thus,
your ”gradient” g depend on S. It is actually nor clear to me, whether g is a true gradient of an
objective function, which then of course also depends on S. Thus, changing the subset will change
the objective in the optimization. Anyway, I’'m fine with point.

To obtain the k + 1th guess of the warp parameters 6 = 011 using Eq. 2, we approximate the gradient
g(0) = Vo¥(0) by g(0x). This approximate gradient is computed at the current ( kth ) guess of the warp parameters
0 = 0. Thus, the approximation §(fy) is based on a new random subset S, drawn from the adaptive sampling
distribution P? in Eq. 9 computed at 6 = 0. That is, the random subset S used to compute §(f) depends on 6y
through P’+. However the properties of the actual similarity metric ¥(6) and its gradient g(#) are not altered.

We modified line 27 on page 5 in Sec. II C to clarify that 8 = 6, in Eq. 9. We also modified Eq. 10 to note that

§(0x) is computed at the current guess of warp parameters 6 = 6.

The guideline for the parameters in (9) is still missing.

All the symbols and parameters in Eq. 9 are described in the lines immediately following Eq. 9.

In particular, line 39 on page 5, defines {Sz}fi1 and {t?}fil as the approximate edge magnitudes of the reference
and (interpolated) homologous images, respectively. These edge magnitudes are approximated using finite central
differences (as noted in Sec. IT E on page 7, lines 30-34) and are used to compute only the sampling distribution in
Eq. 9. A discussion relating to the choice of the user-defined threshold 7" in presented in the paragraph following
Eq. 9 in Sec. II C, lines 46-49 on page 5. Comments on the choice of € appear at the beginning of the same

paragraph.

3. Minor Objections ... are resolved.



