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Abstract—Blood oxygen level dependent (BOLD) functional
magnetic resonance imaging (fMRI) is conventionally done by
reconstructing

2
-weighted images. However, since the images

are unitless they are nonquantifiable in terms of important physi-
ological parameters. An alternative approach is to reconstruct

2

maps which are quantifiable and have comparable BOLD contrast
as

2
-weighted images. However, conventional

2
mapping

involves long readouts and ignores relaxation during readout. An-
other problem with fMRI imaging is temporal drift/fluctuations in
off-resonance. Conventionally, a field map is collected at the start
of the fMRI study to correct for off-resonance, ignoring any tem-
poral changes. Here, we propose a new fast regularized iterative
algorithm that jointly reconstructs

2
and field maps for all time

frames in fMRI data. To accelerate the algorithm we linearize the
MR signal model, enabling the use of fast regularized iterative re-
construction methods. The regularizer was designed to account for
the different resolution properties of both

2
and field maps and

provide uniform spatial resolution. For fMRI data with the same
temporal frame rate as data collected for

2
-weighted imaging

the resulting
2

maps performed comparably to
2

-weighted
images in activation detection while also correcting for spatially
global and local temporal changes in off-resonance.

Index Terms—Field map, functional magnetic resonance
imaging (fMRI), joint reconstruction, linear approximation, mag-
netic field drift correction, physiological noise correction,

2
.

I. INTRODUCTION

T HE most common method of imaging brain activation
in functional magnetic resonance imaging (fMRI) is

through the blood oxygen level dependent (BOLD) contrast
mechanism. This contrast comes from changes in cerebral
hemodynamics, such as blood flow (CBF), blood volume
(CBV), and blood oxygenation (CMRO2) that microscopically
distorts the magnetic field. This introduces dephasing of the
spatially local magnetization, causing temporally varying
contrast changes in -weighted magnitude images [1], [2].
While the hemodynamics are not a direct measure of neuronal
activity, a strong relationship exists between the two [3]–[5].
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Hence, brain function can be spatially mapped by acquiring
multiple -weighted time frames of a subjects brain, that has
been instructed to perform some task, followed by statistical
detection.

While -weighted magnitude images give a qualitative mea-
sure of BOLD contrast, they are not quantitative in terms of the
cerebral hemodynamics. However, the BOLD contrast can also
be represented by the signal relaxation rate map
[6], [7]. The map expresses the signal relaxation that occurs
during readout due to intravoxel dephasing of magnetization. It
is quantifiable, i.e., has units of 1/s, and can be related to cere-
bral hemodynamics such as CBF, CBV, and CMRO2 [8]–[10].
This makes it an attractive method to map the observed BOLD
contrast to the underlying mechanisms that drive it.

A complication of using maps for fMRI is the nonlinear
relationship it has to the acquired MR data. Models for relax-
ation in the MR signal equation have included a bi-exponential
relaxation model [11] and, in the presence of background gra-
dients, a mono-exponential with a quadratic exponent [12] or a
logspline density function [13]. However, in the absence of these
gradients and for conventional resolutions and acquisition times
used in current fMRI studies, relaxation has been shown both
in simulations [6] and in vivo experiments [7], [14]–[16] to ap-
proximate a mono-exponential behavior. Although this models
the relaxation adequately, the relationship between and ac-
quired MR data is still nonlinear. This makes the problem of
reconstructing maps more difficult than if the relationship
were linear, as is the case for -weighted images.

To simplify calculation, most studies that have used
maps for fMRI [7], [14], [17]–[20] have assumed models in
which mono-exponential relaxation occurs instantaneously
at the echo time (TE), ignoring relaxation during the MR
signal readout. Hence, conventional mapping involves mul-
tiple readouts with different echo times from which multiple

-weighted images are reconstructed followed by voxel-wise
exponential decay fits. This process requires time consuming
data collection and limits the spatial coverage and/or temporal
resolution for based fMRI. This can be improved by using
partial parallel imaging such as SENSE [21] or GRAPPA [22]
but with some loss of signal-to-noise ratio (SNR). In contrast,
conventional -weighted images require only a single readout
which, along with the inability of conventional fMRI analysis
tools to handle multiecho fMRI data, has made estimates
less popular than -weighted images for fMRI.

Areas in the brain that have high susceptibility differences,
such as air and tissue interfaces, are a source of off-resonance
in fMRI imaging. This can lead to distortions in reconstructed

-weighted MR images. These degradations can be partially
corrected using field map corrected reconstruction algorithms
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[23]–[27]. Prior to employing these reconstructions the field
map is conventionally estimated from additional data [28], [29],
collected at the beginning of the fMRI study. This “static” field
map is then used to reconstruct all the images collected during
the study.

While acquiring fMRI data the magnetic field can drift and
fluctuate causing temporal changes in the field map that are ig-
nored in “static” field map corrected image reconstruction. Such
temporal changes arise from heating in passive shim elements
in the scanner bore, motion and physiological processes such
as respiration [30], [31]. These temporal changes can be par-
tially corrected in real time while collecting the MR data using
navigators [32] or in the image reconstruction by updating the
field map either before reconstructing each time frame or jointly
[33]–[38]. However, the navigators correct only for spatially
global off-resonance changes and even though updating the field
map gives a voxel-based correction of the off-resonance, the
image reconstruction methods are based on nonlinear iterative
algorithms that can converge slowly.

Recently fast iterative field map corrected image reconstruc-
tion algorithms to solve linear problems have grown in popu-
larity within the MRI community [26], [27]. These algorithms
are versatile in dealing with non-Cartesian sampled MR data,
with no need to estimate density compensation functions (DCF),
and are easily extendable to correct for relaxation and off-
resonance. Also, iterative reconstruction algorithms can include
regularization functions to control for bias and variance of the
reconstructed images. Local point spread functions [39] have
been used to investigate the local resolution properties of the
reconstructed images. This information can be used to design
regularizers for which the reconstructed images have a prede-
termined resolution that is spatially uniform [40]. The design
must precede image reconstruction so it is desirable for it to be
computationally efficient.

Here, we propose a method for fast joint reconstruction of
and field maps from MR data collected during an fMRI study.
We use the mono-exponential relaxation model for enabling
us to combine and field map into a single complex-valued
map (Section II). We then linearize the MR signal equation rel-
ative to the temporal dynamics of this map and employ fast reg-
ularized iterative algorithms to reconstruct the complex-valued
map (Section III). We also analyze the resolution properties of
the reconstruction method and design a penalty to achieve ap-
proximately spatially uniform resolution for the reconstructed
images (Section IV). We then simulate fMRI data for analysis
and collect in vivo fMRI data for qualitative purposes (Sec-
tions VI and VII). For simplicity, motion is excluded from the
reconstruction algorithm and the simulations.

II. JOINT RECONSTRUCTION OF AND FIELD MAP

In fMRI the received complex-valued and discrete
-weighted MR data , including effects

of mono-exponential relaxation and off-resonance, can be
modeled as follows [6]:

(1)

(2)

where denotes complex-valued independent and identically
distributed (i.i.d.) Gaussian noise [41] and is a sample of
the MR signal equation defined in (2). In (2), is a 2-D or 3-D
image space coordinate, is the magnetization of the object
directly after excitation, is the k-space trajectory used to
acquire the MR data, and is a complex-valued spatial map

where the map and the field map characterize
the relaxation rate and off-resonance effects respectively for

-weighted images. Here, we would like to reconstruct
from .

Reconstructing the continuous-space map from the dis-
crete MR data using (2) is an ill-posed inverse problem. To
simplify the problem, we parametrize and with the
following approximations [26]:

(3)

where is the voxel basis function, chosen here as the 2-D
or 3-D rect function. Using this in (2) gives

(4)

where is the discrete-space MR signal equation and
is the Fourier transform of . This form of the signal

equation can now be used to reconstruct a discrete image from
. Note that is generally not known and thus either needs to

be determined before is reconstructed or jointly reconstructed
with using (4).

In an fMRI study, a series of time frames are collected in an
MRI scanner, where a frame can either be an image slice (2-D)
or volume (3-D). Using (1) and (4), we model the received fMRI
data for time frame as follows:

(5)

where is the received MR data, is the discrete MR
signal from (4) and is i.i.d. Gaussian noise. An assumption in
(5) is that is not time frame dependent, which in the absence
of motion is reasonable for single shot MR data acquired using
low-flip angles and/or long TRs to control for blood inflow en-
hancement [7]. Since is time frame independent, it can be re-
constructed from specifically collected MR data prior to the
fMRI acquisition. The reconstructed is denoted .

Using we can reconstruct from for by
minimizing a penalized likelihood cost function as follows:

(6)
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where is the reconstructed and is
an appropriately chosen roughness penalty (see Section III-A)
that controls the tradeoff between spatial resolution and noise in

. The cost function is nonconvex and would require a
nonlinear iterative minimization algorithm, e.g., [35]–[38]. Any
algorithm used to minimize it is likely to return a local minimum
and thus needs to be carefully initialized.

We propose to solve (6) by converting it to a sequence of
quadratic optimization problems so that fast iterative recon-
struction algorithms can be used. The idea is to use a linear
approximation to the dynamic temporal changes between
and a carefully chosen reference . The advantage of using
a sequence of quadratic approximations is that for each one,
we can precompute temporal interpolators required for fast
field-corrected image reconstruction [26], and then minimize
that quadratic by nonuniform fast Fourier transform (NUFFT)
or Toeplitz methods [27]. In contrast, if we apply gradient de-
scent or conjugate gradient (CG) directly to (6), each gradient
calculation would need new temporal interpolator coefficients,
significantly increasing the computation time per iteration.

III. DYNAMIC RECONSTRUCTION

This section describes an efficient algorithm for (6). Suppose
a previously reconstructed reference map is available (see dis-
cussion later in this section) in addition to . Under this assump-
tion, adding and subtracting in the exponent containing in
(4) gives the following:

(7)

where the exponential has been split into two separate expo-
nentials with one containing the difference of and . When
this difference is small, that term can be approximated using a
first-order Taylor expansion, as follows:

(8)

Substituting this in (7) yields

(9)

Using the approximation in (8) the relationship of to
is now approximately linear (or more precisely affine) ac-

cording to (9). This allows us to rewrite (9) in a matrix-vector
form as follows:

(10)

where is the system matrix of size , with elements
written as follows:

(11)

Using the approximation in (10), we can now approximate
the difference of and , as follows:

(12)

where

Using the approximation in (12) we can form a new cost func-
tion as follows:

(13)

where is quadratic in terms of the objective . By min-
imizing one can then reconstruct using fast iterative
reconstruction algorithms such as [26] and [27]. How well that
matches to the result of (6) depends on the approximation made
in (8), i.e., we must find a that is close enough to the true
so that (8) does not introduce too much error in (12).

As previously discussed, the MR data is already needed to
get . This data could be acquired so that and are jointly
reconstructed from [35], [36]. Thus, one might choose to
be the reconstructed map . This reference map would approx-
imate the baseline state of and field map. However, in an
fMRI study at 3 T the voxels showing activation have and
showing maximum temporal changes of approximately
[15] and 3 Hz [38], respectively, for a 3-min scan relative to
baseline. By using as the reference map and for a typical
single shot acquisition with a ms the normalized root
mean square (NRMS) error for the approximation in (8) would
at worst be %, which would be undesirably large.

A more appropriate choice is to dynamically update using
a previous estimate of , where the estimate then gets gradu-
ally refined. To differentiate between the refinements we denote
them as , where is the refinement index. Thus, we choose

as when reconstructing , and if the total number of
refinements are we set

With this choice of , (8) should have a smaller approximation
error as increases, and thus the approximation in (12) should
improve when used in (13).

Including the refinement concept into the reconstruction al-
gorithm, we rewrite (12) as follows:

Using this we reconstruct for by minimizing
quadratic cost function as follows:

(14)

where was defined in (13) and . This form of
the reconstruction algorithm is very flexible and should approx-
imate well the results of the original nonlinear reconstruction
problem given in (6).
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A. Roughness Penalty and Its Implications on

We must choose a roughness penalty in (14). The con-
ventional choice is given as follows:

where is the regularization parameter and is a real-valued
first-order difference matrix that evaluates the differences of
neighboring pixels within a user specified neighborhood. If

were defined as this penalty the real and imaginary parts
of would be penalized equally. However, because the field
map is usually smoother than the map , we choose to
regularize these maps separately, as follows:

(15)

where is the first-order difference matrix and and are,
respectively, the real and imaginary parts of . Note that can
be defined separately for and . This can have some ad-
vantages, e.g., defining for as a second-order difference
matrix as suggested in [29] while for is a first-order differ-
ence matrix. However, for simplicity we chose to use the same
matrix for both parameters.

As evident from (11) the elements of depend on ,
which has values near 0 outside the object. This relationship has
the following consequences:

This implies that the roughness penalty becomes the
dominant factor in for spatial positions outside
the object.

B. Implementation of the Fast Iterative Algorithm

For fast minimization of in (14) we use the
CG method [42]. To reduce memory we never explicitly form
the large matrix , rather we use a software object to repre-
sent this matrix.1 This software uses fast methods such as FFT
(for Cartesian k-space trajectories) or NUFFT (for non-Carte-
sian k-space trajectories) [43] and temporal segmentation [26],
[27] to greatly decrease computation time. The total compute
time of the reconstruction algorithm is then roughly times
longer than previous fast iterative algorithms used to reconstruct

-weighted images [26], [27].
The convergence of CG depends on how it is initialized. A

common CG initialization is to set all the elements of the ini-
tial solution to zero. This is a convenient initialization, but does
not exploit any prior knowledge of the solution of (14). An-
other CG initialization would be to use the conjugate phase
(CP) [24] reconstructed . This initializer was shown to im-
prove the convergence of CG, compared to initializing with all
zeros, when used to iteratively reconstruct an off-resonance cor-
rected -weighted image [26]. However, since also
includes relaxation, CP is ineffective here.

1Software available at http://www.eecs.umich.edu/~fessler/

As previously stated, should change only slightly between
neighboring time frames and across refinements. Thus, it is ad-
vantageous to exploit this relatively gradual temporal change
to initialize the CG algorithm sensibly. Hence, when we recon-
struct the previous refinement is used to initialize CG.

IV. RESOLUTION PROPERTIES: REGULARIZATION DESIGN

The resolution properties of are important to further un-
derstand the relationship of the regularization function in (15)
and the spatial smoothness of . Local point spread functions
(LPSF) [39] have been previously used to analyze this rela-
tionship, using the approximate local resolution properties of
regularized reconstruction algorithms with parametrized object
models [40] as in (3). This analysis will be used first, to check if
the penalized reconstruction in (14) has uniform spatial resolu-
tion and, if needed, design a penalty to achieve such uniformity.
Then it will be used to set values to achieve a predetermined
resolution that is quantified using the full-width at half-max-
imum (FWHM) of the LPSF.

A. Resolution Analysis

We estimate by minimizing in (14) with
separate regularization of the real and imaginary parts per (15).
The Appendix derives the LPSF for such reconstruction prob-
lems. If the LPSF can be shown to be shift invariant then the
spatial resolution of is uniform and the resolution properties
of the algorithm can be quantified approximately by evaluating
the LPSF in (26) at a single spatial location. If both and

are Toeplitz, then using (26) one can show that the LPSF
is approximately locally shift invariant.

For the reconstruction method used in this paper is
Toeplitz but is not as seen from (11). Thus, the LPSF is
shift variant, which makes the resolution nonuniform for the
usual first-order difference matrix in (15). Next, we propose
a spatially variant penalty design that leads to approximately
uniform local spatial resolution.

B. Spatially Variant Penalty Design

Although is not Toeplitz, using methods similar to those
proposed in [40] we can find an approximation of the form

(16)

where is Toeplitz and is a real-valued and invertible
matrix. Having found such an approximation, we introduce a
spatially variant differencing matrix , as follows:

(17)

By replacing with in (15) the stacked LPSF in (26) becomes
as follows:

(18)

(19)
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where and are shown in (27), is a block diagonal
matrix with and forming the diagonal blocks,
is the th diagonal element of and

Thus, even though is not Toeplitz we can still make the
LPSF to be approximately locally shift invariant by introducing
a spatially variant penalty of the form (17) in the reconstruction.

We use a diagonal matrix such that the diagonal of and
are equal. This equality constraint when estimating

can be written as follows:

(20)

To find we need to define such that is Toeplitz
and yet ensure (16) is a good approximation. The term in that

makes non-Toeplitz is . Even though
can be separated from as proposed in (16) the same

cannot be said for because of its spatio-temporal
structure. However, by approximating the elements of
with the median value of , denoted , we define the elements
of as follows:

(21)

This definition of makes Toeplitz and the diagonal ele-
ments of are then given as follows:

(22)

with . Note that this form of allows us
to use (19) to find a single pair of regularization parameters to
achieve a desired resolution that depends only on .

C. Spatially Variant Penalty Implementation

To implement the penalty designed in (22) there were some
issues regarding computational speed and stability of the recon-
struction that needed to be addressed.

• For stability, we find according to (22) at the beginning
of the algorithm after estimating and use that for subse-
quent and , i.e., for all .

• Calculating (22) for all is computationally expensive due
to the spatio-temporal dependence of the numerator. How-
ever, since an map generally has values within a fairly
tight range we approximate the numerator by histograming

.
• Our implementation of the penalty suggested in (17) uses

the modification given in (35) in [40].
• Equation (19) is implemented efficiently using FFTs [44].

This allows us to evaluate it for multiple values, calculate
the FWHM of the resulting LPSFs and interpolate that to

the desired FWHMs and their associated values in a fast
manner.

V. RECONSTRUCTION ALGORITHM—OVERVIEW

We can now summarize the proposed reconstruction algo-
rithm as follows.

• Find and from multiecho MR data that is
collected at the beginning of the fMRI study.

• Using (19), find and that yield the desired
resolution for the real and imaginary parts of .

• Generate for the regularizer using (22) with .
• Reconstruct for all as follows:

for [time]

Set .

for [refinement]

Form and generate .

Solve using CG.

end

Set .

end

VI. SIMULATIONS

We simulated k-space data using the exact form of the signal
equation given in (4), with no temporal interpolation. We used
a 4713 sample spiral-out k-space trajectory with a readout of
18.8 ms, FOV of 22 cm, and maximum gradient amplitude and
slew rate of 22 mT/m and 180 mT/m/ms, respectively. The sim-
ulation maps were 128 128 but reconstructed as 64 64, un-
less otherwise noted, with the baseline maps and shown in
Fig. 1(a)–(c). For simulations corrupted by noise, we found the
variance of the i.i.d. Gaussian noise to make the SNR 80, 55, or
30 for the baseline k-space data with ms, where:

This noise variance was then used to generate i.i.d. Gaussian
noise for k-space data of other time frames and TEs.

For the iterative algorithm parameters we used nine segments
for the temporal segmentation of , which were interpo-
lated using min-max interpolation coefficients [26]. When com-
paring the exact and interpolated complex exponential the max-
imum error and normalized RMS error (NRMSE) were on the
order of and respectively for the simulation maps
shown in Fig. 1(b)–(c). For the NUFFT parameters we used
oversampling and a 5 5 neighborhood [43]. We ran 20 itera-
tions of CG for each pair to get and used a reconstruc-
tion mask to reduce the number of reconstructed voxels from
4096 to 2404. Fig. 1(a) shows the edge of the reconstruction
mask. All reconstructions were run on a 2.13 GHz Intel Core 2
Duo with 2 GB of memory.
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Fig. 1. True and reconstructed maps (SNR = 55) used in the simulations. (a) fff with the edge of the reconstruction mask for reference. (b) zzz . (c) zzz .
(d) f̂ff . (e) ẑzz . (f) ẑzz . The reconstructed maps for simulated k-space data are only shown for voxels within the reconstruction mask and the (N)RMSE is the
(normalized) rms error of the reconstructed map relative to the true map within the mask jfff j > 0 for SNR = (80; 55;30). (d) NRMSE = (3:9; 5:3;8:8)%. (e)
RMSE = (0:61; 0:66;0:85)s . (f) RMSE = (0:30;0:41;0:70) Hz.

A. Initialization: Estimating and

The proposed reconstruction needs and for ini-
tialization. These spatial maps were reconstructed from
multiple fully sampled readouts, i.e., multiecho data. Here,
we simulated 5 echos with noise, where the readouts had

ms. We reconstructed two
-weighted images from the 4.5 and 6.5 ms readouts using

iterative reconstruction [26] and then estimated from the
phase difference of these two images [28], [29]. This was re-
peated two times, where after estimating the first time it was
used in the iterative reconstruction to correct for off-resonance
during readout.

Using , we reconstructed an off-resonance corrected
-weighted image for each echo of the multiecho data using

the same iterative reconstruction. The reconstructed images
have different -weighting which is assumed to occur at TE.
This allowed us to fit the decay of each voxel in the recon-
structed images to a mono-exponential model [14], which gave

. Since this fit is highly sensitive to noise in voxels with
low SNR, spatially weighted smoothing was performed that
applied low smoothing to in areas inside the object and
higher smoothing where there are signal voids and outside the
object, similar to [29]. We chose the weights as the magnitude
image with ms. This was repeated three times,
where after estimating each time it was used in the iterative
reconstruction to correct for relaxation during readout.

From [14], we know that could also be reconstructed using
the mono-exponential fitting method. However, due to the poor

fitting performance in voxels with low SNR, we chose to recon-
struct iteratively using the signal model in (4) as follows:

where is the concatenated multiecho data, is a rough-
ness penalty and the elements of are given as follows:

where are the concatenated time vector samples of the simu-
lated readouts and is formed using and . We chose the
spatial regularization for so that the LPSF of the center voxel
had a FWHM of approximately 1.25 voxels.

The results for simulated k-space data with are
shown in Fig. 1(d)–(f) and the (N)RMSE shown below the im-
ages is the (normalized) RMS error of the reconstructed map
relative to the true map within the mask for all SNRs.

B. Resolution: Properties and Nonuniformity Correction

Here, we analyze the performance of the proposed spatially
variant penalty. All the analysis is based on the true simulation
maps in Fig. 1(a)–(c). We started by finding and to achieve
a desired resolution. We chose the desired resolution such that
the LPSF for the center voxel gave a FWHM of 1.35 and 1.5
voxels for the real and imaginary parts of respectively. This
was done by evaluating the LPSF in (19) for 100 pairs of and

, where was the median of the true in Fig. 1(b)–(c). Using
FFTs [44] it took 19.2 s to evaluate the LPSFs for all 100 pairs.
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Fig. 2. Voxel positions where the LPSFs in (18) were evaluated. The positions
are split into two groups, indicated by the x’s and o’s, where each group are at
locations where the value of fff is the same.

Fig. 3. FWHM scatter plots and average profile of the LPSF for the two groups
of voxel positions in Fig. 2. Results are shown for the real and imaginary parts
of ẑzz when using the spatially variant and nonvariant penalty. (a) Scatter plot
for spatially nonvariant penalty. (b) Scatter plot for spatially variant penalty. (c)
Average profile for spatially nonvariant penalty. (d) Average profile for spatially
variant penalty.

The FWHMs of those LPSFs were then used to interpolate the
desired FWHM to their associated values.

Using those values, we calculated the exact LPSF using
(18) at the voxel positions shown in Fig. 2. We investigated the
resolution properties by evaluating (18) for , with formed
by stacking and using the true in place of . The spa-
tially variant penalty was formed in 4.7 s using (22), where the
true simulation maps were again used and the numerator was
calculated by histograming with 100 bins. For comparison,
we also designed a spatially nonvariant penalty by making a
diagonal matrix using the mean of in (22) across all
voxels where . This made the nonvariant penalty approx-
imately have the desired FWHM using the previously calculated

values.
Fig. 3 shows both FWHM scatter plots and the average pro-

file of the LPSF for the voxel positions in Fig. 2 of the real and

imaginary parts of for both penalties. The calculated FWHM
values are more concentrated around the desired FWHM values
when using the spatially variant penalty compared to the non-
variant one. This is further confirmed in the profile plots of the
LPSFs averaged over each group for both the real and imagi-
nary parts of . This indicates the importance of compensating
for spatial resolution nonuniformity in the reconstruction algo-
rithm.

Table I shows the mean and the standard deviation of the
FWHM for both the real and imaginary parts of . It shows
further evidence of the effect of in causing resolution nonuni-
formity in the reconstructed . The mean FWHM of the two
groups from Fig. 2 deviate more when using a spatially nonva-
riant penalty compared to the proposed penalty. Repeating these
measurements for for a time frame during activation the
numbers did not change significantly while still using to
form . This indicates that it is sufficient to find based on
and and use that for all time frames.

C. Simulated fMRI Data

To analyze the proposed reconstruction in (14) for fMRI time
series we compared its activation detection and estimation
performance to an iterative -weighted reconstruction [26]
and a multi-echo reconstruction [14]. We simulated a 70 time
frame four-echo fMRI data with
ms. The ms readouts were used for the proposed
and the -weighted reconstructions. For the multiecho
reconstruction we iteratively reconstructed four -weighted
images [26], one for each readout, and estimated both and

by fitting a mono-exponential decay to each voxel of the
-weighted magnitude images.
Fig. 4 shows the simulated fMRI spatial activation map and

the temporal changes. Fig. 4(a) shows the spatial weights for
four enumerated activation clusters, along with the edges of
in Fig. 1(a) shown for reference. Fig. 4(b) shows the task re-
lated temporal changes in that were simulated in all the clus-
ters. Additionally, in clusters 2 and 3 we added task correlated
changes in and respectively (maximum change of 1% and
0.15 rad/s). Cluster 1 was placed where the in-plane field map
gradient of was large, while cluster 4 was placed along the
edge of . Fig. 4(c) shows the spatially global drift in that
simulates the effects of magnetic field drift and respiration. The
k-space time series was generated by adding these spatio-tem-
poral changes to and in Fig. 1, using the exact MR signal
(4) and noise.

To choose for the proposed reconstruction, we generated
noiseless k-space data from 64 64 images to reconstruct
with by solving (14). The desired resolution was
set as described in the first paragraph in Section VI-B and we
used the true and to exclude any effect from the initializa-
tion of the reconstruction. With the exception of the first time
frame the algorithm had similar temporal RMSE for
(average temporal RMSE was 0.197). Hence, we chose to use

for the first time frame and for subsequent time
frames when reconstructing the k-space data from 128 128
images. We also initialized the reconstruction using and
from Section VI-A.
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TABLE I
AVERAGE FWHM FOR BOTH ẑzz AND ẑzz WITH ITS STANDARD DEVIATION FOR BOTH THE SPATIALLY NONVARIANT AND PROPOSED PENALTIES

Fig. 4. Simulated spatial and temporal activations. (a) Map of the spatial
weights for four enumerated activation clusters, along with the edges of fff
in Fig. 1(a) shown for reference. (b) Additive task waveform for R for all
clusters. Additionally, in clusters 2 and 3 we added task related changes in
fff and zzz respectively (maximum change of 1% and 0.15 rad/s). (c) Additive
spatially global drift in the field map to simulate the effects of magnetic field
drift and respiration.

All the -weighted reconstructed readouts used 20 CG it-
erations, with CG initialized using the conjugate phase recon-
struction [24], and corrected for off-resonance in all time frames
using . The regularization parameter was chosen to have a
LPSF with FWHM of 1.35 so that the resolution was compa-
rable to from the proposed reconstruction.

We reconstructed all the time frames for all SNRs. We did
the time series analysis using a GLM model with the task
waveform as a regressor and generated z-score maps that were
thresholded with a Bonferroni corrected P-value of 0.01. Fig. 5
shows the overlaid z-score of the voxels inside that were
above the threshold for (left) and (right).
Voxels with true positives are shown with a color coded z-score
and false negatives with an empty square. Fig. 5(a)–(b) shows
the results from the dynamically reconstructed , Fig. 5(c)–(d)
from the -weighted reconstruction, and Fig. 5(e)–(f) from
the multi-echo reconstruction.

Fig. 5 shows that in terms of total number of true positives
the four-echo reconstruction performs the worst. This is es-
pecially apparent in cluster 1 due to the high in-plane field map
gradient. Compared to the -weighted reconstruction, the pro-

Fig. 5. Overlaid z-score of the voxels inside fff that were above the threshold
(Bonferroni corrected P-value of 0.01) for SNR = 80 (left) and SNR = 30

(right). (a) and (b): Dynamic ẑ reconstruction. (c) and (d): T -weighted re-
construction. (e) and (f): Multiecho R reconstruction.

posed reconstruction performs slightly better for both SNRs, es-
pecially for voxels that have low functional CNR. This is partic-
ularly evident in cluster 3, that has the task correlated changes
in the field map, and cluster 4. However, both these reconstruc-
tions are sensitive to the task correlated changes in for cluster
2. The multiecho reconstruction is more robust to this effect.
Similar trends are seen for as for the other SNRs.

Fig. 6 shows time series from the three reconstructions,
spatially averaged over cluster 1-3, as shown in Fig. 6(a)–(c),
respectively. For reference, the plots show the true spatially av-
eraged time series. To convert the -weighted time se-
ries to we calculated its time series using
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Fig. 6. Estimated R time series (SNR = 55) for all the reconstructions, which was spatially averaged over each cluster, along with the true zzz . (a) Results
from cluster 1. (b) Results from cluster 2. (c) Results from cluster 3.

, where is the -weighted magnitude
image of time frame . This time series was then shifted by .
The plots show that the multiecho reconstruction performs
the worst and the proposed reconstruction the best in estimating
the time series. This is obvious in Fig. 6(a) due to the high
in-plane field map gradient of cluster 1. Fig. 6(b) shows how
the simulated inflow changes in cluster 2 affect the estimates
during activation for both the proposed and -weighted recon-
structions. Additionally, all plots indicate a slight linear drift in
the time series, as clearly seen in Fig. 6(c). All the clusters
have % error in estimating time series for the proposed
reconstruction.

VII. EXPERIMENTAL DATA

We scanned a single subject in an fMRI experiment to demon-
strate the proposed reconstruction for in vivo data and compared
with -weighted and multiecho reconstructions. The data
had 102 time frames, four-echo spiral-out readouts,
cm, s, and . The first time frame had

ms, the second time frame the
same TEs shifted by 2 ms, and subsequent time frames had

ms. The subject was instructed to
repeat 5 times 32 s of rest followed by 32 s of bilateral finger
tapping prompted by a flickering checkerboard. We collected 26
axial slices that covered the visual and motor cortices.

The four readouts from the first time frame and the first
readout of the second time frame were used to form a five-echo
k-space data with ms. This
five-echo data was used to estimate and identically to the
procedure described in Section VI-A. For the proposed and

-weighted reconstructions we used only the ms
readout while the multiecho reconstruction used all the
readouts. All the reconstructions were set up identically to what
was described in Section VI.

The fMRI analysis was applied to all the reconstructions,
using a GLM model with a gamma-variate regressor [45] for
the task and a linear regressor for the linear drift. We generated
z-score maps that were thresholded using a Bonferroni corrected
P-value of 0.01 followed by a clustering constraint [46] of at
least one neighboring voxel above the threshold. Fig. 7 shows
two slices with overlaid z-scores of voxels above the threshold
for all the reconstructions. The left column of Fig. 7 shows a su-
perior slice with motor activation and the right column shows an

inferior slice with visual activation. Fig. 7(a)–(b) shows the re-
sults from the proposed reconstruction, Fig. 7(c)–(d) from the

-weighted reconstruction, and Fig. 7(e)–(f) from the four-
echo reconstruction.

Fig. 7 shows clear activations in the motor cortex, supplemen-
tary motor area, and the visual cortex for all the reconstructions.
Also, estimates from the four-echo reconstruction showed
only three voxels in the visual cortex having minor task corre-
lated inflow and none in the motor cortex. The results from the
superior slice follows the trend shown in the simulations, where
the proposed reconstruction has the most number of voxels clas-
sified as active and the four-echo reconstruction the fewest.
However, this is not the case for the inferior slice, where the

-weighted reconstruction has the most active voxels. This dif-
ference may be due to the stronger field gradients in the inferior
slice that currently are not included in the signal model in (4).

VIII. CONCLUSION AND DISCUSSION

We have proposed a method for reconstructing dynamic
and field maps for fMRI data with the same temporal resolution
as -weighted imaging. This was done using a linear approxi-
mation to the temporal changes in and field maps relative to a
previously determined reference map. Simulations showed the
reconstruction outperformed both -weighted and four-echo

reconstructions in detecting active voxels. For the quantita-
tive estimation the proposed reconstruction did considerably
better than the four-echo reconstruction but about the same
as the -weighted reconstruction after converting it to
and excluding the shift. However, there was a slight drift
present in the time series, which may explain the lower
detection performance of the -weighted reconstruction com-
pared to the proposed reconstruction. Adding a linear drift re-
gressor into the GLM model did improve the performance of
the -weighted reconstruction, but still not to the level of the
proposed reconstruction.

For the in vivo data all the reconstructions showed a similar
trend to the simulation results for the superior slice, less so for
the inferior slice. Since the inferior slice is closer to the sinuses
it is more affected by field gradients than the superior slice. The
effects of the gradients are not in the signal equation for any
of the reconstructions used here. However, when compared to

-weighted reconstruction, the proposed reconstruction does
rely on a mono-exponential relaxation model which can intro-
duce model bias in areas with high gradients [12], [13]. Adding
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Fig. 7. Z-scores of voxels above the threshold for two slices overlaid on
anatomical images for all the reconstructions. Left column shows the results of
a superior slice with motor activation and right column shows the results of an
inferior slice with visual activation. (a) and (b): Dynamic ẑzz reconstruction. (c)
and (d): T -weighted reconstruction. (e) and (f): Four-echo R reconstruction.

gradients in the signal equation in (4), [47] may also alleviate
this model mismatch for the proposed reconstruction. This is
something that needs further investigation. Any further com-
parisons in terms of detection performance for the in vivo data
would need more acquisitions and estimation of test–retest reli-
ability [48].

The compute time and the performance of the algorithm de-
pends mainly on the number of refinements used to find . It
was shown in the simulations that for the first time frame
and for other time frames was adequate. The compute
time for the first time frame was 60.3 s, which includes forming

(4.7 s) and finding the values to satisfy our desired reso-
lution (19.2 s), and subsequent time frames took 17.7 s. This
time could be reduced by reusing common parts of for all
time frames. The reconstruction is then two times longer than

-weighted reconstruction since , but with the added
benefit of correcting for field drift and getting estimates.

Currently, the algorithm does not include any motion correc-
tion. Since all the simulations were done without motion the per-
formance of the algorithm with motion has not been assessed.
However, since it relies on the reconstructed map , one would
assume that any motion in the data is going to translate into
changes in . This may make the algorithm more sensitive to
motion induced errors than -weighted image reconstruction,
where all the frames can be reconstructed independent of past
or future time frames.

One simple method for motion correction would be to esti-
mate rigid body motion parameters from -weighted images,
using the first time frame as the reference frame. We would
then use those motion parameters when reconstructing for
the same data to correct in the system matrix for any motion.
This method and others need to be investigated further but ulti-
mately motion correction must be included in the algorithm for
it to be robust.

In addition to excluding motion there is also an assumption
of blood inflow being limited. Under this assumption should
be time frame invariant when reconstructing for all . One
way to limit the effects of inflow enhancement is to acquire the
data by either increasing TR or decreasing the flip angle [7],
which, respectively, puts limitations on the data acquisition and
lowers SNR. This effect could also be decreased by jointly re-
constructing and . However, due to the higher dimension-
ality of this ill-conditioned reconstruction of both spatial maps,
longer readouts and further regularization of would be needed.
This would potentially be at a cost of higher compute times due
to the increased complexity.

In our nonuniform regularization design, there are mainly
three limitations. First, we form the spatially nonuniform
penalty once and then only based on . This can result
in time frame varying resolution for voxels with significant
temporal changes in . Additionally, any spatial resolution
variations due to are not compensated since we only account
for spatial variations in . Second, we chose the regularization
parameter arbitrarily to satisfy a desired FWHM. There are
alternative methods available to choose this parameter [49],
such as cross validation. Third, since is multiplicative in ,
voxels with low will have very little regularization. This
could be alleviated by smoothly extending high voxels
over the low valued voxels to decrease the variance of the
estimates. These design limitations need further investigation,
especially with respect to resolution uniformity, reconstruction
compute time and bias/variance trade-off.

The simulated and in vivo k-space data was acquired using a
single shot spiral-out trajectory. The accuracy of the algorithm
does depend on the readout length of the trajectory that is used
to acquire the data. For instance, a fully sampled single shot
spiral-in followed by an undersampled spiral-out was shown
to have higher correlation values than using only spiral-in data
[50]. Further investigation of the behavior of the algorithm for
various trajectories and readout lengths is needed.

To initialize the algorithm, we used data collected at the start
of the fMRI study to reconstruct , then , and finally . The
reconstruction of may be sensitive to errors in , which may
especially come from since log fitting is very sensitive to
noise. An alternative solution would be to use a joint reconstruc-
tion algorithm [35], [36], where and are simultaneously re-
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constructed by minimizing one regularized cost function instead
of minimizing separate cost functions for each spatial map.

APPENDIX A
STACKED LPSF

It has been previously shown [40] that for a quadratic penal-
ized likelihood (QPL) reconstruction using a roughness penalty
that penalizes the real and imaginary parts equally

the LPSF at spatial position is given by

(23)

where is the LPSF and is a vector with 1 at vector element
position and zeros elsewhere (Kronecker impulse). However,
for a QPL reconstruction using our preferred roughness penalty
given in (15), where the real and imaginary parts are penalized
separately

(24)

the same analysis used in [40] to derive the LPSF does not apply.
To analyze this situation, we introduce a “stacked” formulation
in which the matrices and vectors are rewritten as follows:

where the subscripts R and I refer to the real and imaginary
part of the variable respectively and and

, where and can be chosen independently. Using
these definitions for the stacked matrices and vectors we can
write the stacked QPL reconstruction in (24) as follows:

(25)

Using the analysis that led to (23), the stacked LPSF for
at spatial position can be written as follows:

(26)

with

(27)

where and are the real and imaginary parts of
, respectively, and is used to select the stacked

LPSF of the real or imaginary parts of .
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