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Abstract— In fast MR imaging with long readout times, such
as echo-planar imaging (EPI) and spiral scans, it is important
to correct for the effects of field inhomogeneity to reduce image
distortion and blurring. Such corrections require an accurate
field map, a map of the off-resonance frequency at each voxel.
Standard field map estimation methods yield noisy field maps,
particularly in image regions with low spin density. This paper
describes regularized methods for field map estimation from two
or more MR scans having different echo times. These methods
exploit the fact that field maps are generally smooth functions.
The methods use algorithms that decrease monotonically a
regularized least-squares cost function, even though the problem
is highly nonlinear. Results show that the proposed regularized
methods significantly improve the quality of field map estimates
relative to conventional unregularized methods.

I. INTRODUCTION

MR imaging techniques with long readout times, such as
echo-planar imaging (EPI) and spiral scans, suffer from the
effects of field inhomogeneity that cause blur and image
distortion. To reduce these effects via field-corrected MR
image reconstruction, e.g., [1]–[5], one must have available
an accurate estimate of the field map. A common approach
to measuring field maps is to acquire two scans with different
echo times, and then to reconstruct the images (without field
correction) from those two scans. The conventional method
is then to compute their phase difference and divide by the
echo time difference 41. This model makes no account for
noise and creates field maps that are very noisy in voxels
with low spin density. Section II first introduces this model
and then reviews standard approaches for this problem. A
limitation of the standard two-scan approach to field mapping
is that selecting the echo-time-difference 41 involves a trade
off: if 41 is too large, then undesirable phase wrapping will
occur, but if 41 is too small, the variance of the field map is
large. One way to reduce the variance while also avoiding
phase unwrapping procedures is to acquire more than two
scans, e.g., one pair with a small echo time difference and
a third scan with a larger echo time difference. By using
multiple echo readouts, the scan times may remain reasonable,
at least for the modest spatial resolutions needed in fMRI.
Therefore, we present a general model that accommodates
more than two scans and describe a regularized least-squares
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field map estimation method using those scans. Section III
shows the improvements both in the estimated field maps and
the reconstructed images using multiple scans. This is shown
first with simulated results in Section III-A and then using real
MR data in Section III-B.

II. MULTIPLE SCAN FIELDMAP ESTIMATION - THEORY

A. Reconstructed Image Model

The usual approach to measuring field maps in MRI is to
acquire two scans of the object with slightly different echo
times, and then to reconstruct images y0 and y1 (without field
correction) from those two scans, e.g., [6]–[8]. We assume the
following model for those undistorted reconstructed images is

y0
j = fj + ε0j

y1
j = fj eıωj41 + ε1j , (1)

where 41 denotes the echo-time difference, fj denotes the
underlying complex transverse magnetization in the jth voxel
which is a function of the spin density, and εj denotes
(complex) noise. The goal in field mapping is to estimate an
(undistorted) field map, ω = (ω1, . . . , ωN ), from y0 and y1,
whereas f = (f1, . . . , fN ) is a nuisance parameter vector.
This section reviews the standard approach for this problem,
other approaches in the literature, and then describes a new
and improved method.

B. Conventional Field Map Estimator

Based on (1), the usual field map estimator ω̂j uses the
phase difference of the two images, computed as follows [1],
[9]:

ω̂j = ∠(y0
j
∗y1

j )/41 . (2)

This expression is a method-of-moments approach that would
work perfectly in the absence of noise and phase wrapping,
within voxels where |fj | > 0. However, (2) can be very
sensitive to noise in voxels where the image magnitude |fj |
is small relative to the noise deviations. Furthermore, that
estimate ignores our a priori knowledge that field maps tend
to be smooth or piecewise smooth. Although one could try
to smooth the above estimate using a low pass filter, usually
many of the ω̂j values are severely corrupted so smoothing
would further propagate such errors (see Fig. 2 top right).
Instead, we propose below to integrate the smoothing into the
estimation of ω in the first place, rather than trying to “fix”
the noise in ω̂ by post processing.
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C. Other Field Map Estimators
Although the conventional estimate (2) is most common,

other methods for estimating field maps have appeared in the
literature.

Different techniques have been proposed that incorporate
field map acquisition with image acquisition ( [7] for pro-
jection reconstruction and [10] for spiral scans). Chen et al.
in [11] used multiple echos during EPI acquisition and used
these distorted scans to create a final corrected undistorted
image. Priest et al. in [12] used a two-shot EPI technique to
obtain a field map for each image; this could prevent changes
in the field map due to subject motion from being propagated
through an entire fMRI time series.

Stand alone field map acquisition techniques have also been
proposed. Windischberger et al. [13] used three echos and
corrected for phase wrapping by classifying the degree of
phase wrapping into seven categories. They then used linear
regression to create a field map that is followed by median
and Gaussian filtering. Reber et al. [14] used ten separate
echo times and acquired distorted EPI images. They used a
standard phase unwrapping technique of adding multiples of
2π and then spatially smoothed the image with a Gaussian
filter. While these techniques both seek to use more echos
to increase the accuracy of the field map, they have several
disadvantages. Neither are based on a statistical model and,
thus, do not consider any noise in developing their estimator.
The filtering suggested by both techniques also adds additional
blur. Aksit et al. [15] used three scans, the first two with
a small echo time and no phase unwrapping and the third
with a larger echo time. Two techniques were tried: 1) phase
unwrapping by using the first two sets of data and 2) taking
a Fourier transform to determine the EPI shift experienced.
In phantom studies, using three scans yielded half to a third
of the error of two scans. Because the estimator uses a linear
fit, there is still error in voxels near phase discontinuities and
along areas of large susceptibility differences.

An additional technique used to improve the conventional
estimate is local (non-linear) fitting, e.g. [16], [17]. While
this can improve the conventional estimate, we desire a more
statistical approach.

Our technique is unique in that it uses a statistical model
using multiple scans and operates without the constraint of
linearity. By using a penalized-likelihood cost function, we
can easily adjust the regularization parameter to control the
amount of smoothing without any additional filtering step.
By using a field map derived from the first two echos as
the initialization for the iterative method (assuming the two
echos are close enough together), no phase unwrapping is
required. Our model also takes into account R∗

2 decay, which
was ignored in previous multiple echo techniques.

D. Multiple Scan Model
We now generalize the conventional model (1) to the case of

multiple scans, i.e., with more than one echo time difference.
The reconstructed images are denoted here by y0, . . . ,yL,
where L is the number of echo time differences. Because we
are using multiple echo time differences, R∗

2 decay may no

longer be negligible and should be included in our model.
Our model for these images is:

yl
j = fj eıωj4l e−Rj4l + εl

j , (3)

for l = 0, . . . , L, where 4l denotes the echo time difference
of the lth scan relative to the original scan i.e., (40 = 0),
where j denotes the voxel number and where Rj denotes
the value of R∗

2 for the jth voxel. As in most field map
estimation methods, this model assumes implicitly there is no
motion between the scans. As in (1), fj denotes the complex
transverse magnetization and εl

j denotes the (complex) noise.
If we choose the 4l values carefully, this data model allows
for a scan that is free or largely free of phase wraps but which
gives a phase difference lower in SNR, as well as scan(s) with
wrapped phase but higher in SNR. Including the scan(s) with
a larger echo time difference should help reduce noise in ω̂j ,
whereas the wrap-free scan helps avoid the need for phase
unwrapping tools.

E. Maximum-Likelihood Field Map Estimation
The conventional estimate (2) appears to disregard noise ef-

fects, so a natural alternative approach is to estimate ω using a
maximum likelihood (ML) method based on a statistical model
for the measurements y. In MR, the k-space measurements
have zero-mean white gaussian complex noise [18], and we
furthermore assume here that the additive noise values in y

in (3) have independent gaussian distributions1 with the same
variance σ2. Under these assumptions, the joint log likelihood
for f and ω given y = (y0, . . . , yL) is

log p(y;f ,ω) =

L
∑

l=0

log p
(

yl;f ,ω
)

≡
−1

2σ2

N
∑

j=1

L
∑

l=0

∣

∣yl
j − fj eıωj4l e−Rj4l

∣

∣

2
,(4)

where “≡” denotes equality to within constants independent of
f and ω. If the Rj values were known, the joint ML estimate
of f and ω could be solved by the following minimization
problem:

arg min
ω∈RN ,f∈CN

N
∑

j=1
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. (5)

This problem is quadratic in fj ; minimizing over fj yields the
following ML estimate:

f̂j =

∑L

l=0 y
l
j e−ıωj4l e−Rj4l

∑L

l=0 e−2Rj4l

. (6)

Substituting this estimate back into the cost function (5) and
simplifying considerably yields the following cost function

1Independence in image space is an approximation. The noise values in
k-space data are statistically independent, but reconstruction may produce
correlations, especially in scans with non-Cartesian k-space imaging.
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used for ML estimation of ω:

ΨML(ω) ≡

N
∑

j=1

L
∑

m=0

L
∑

n=0

∣

∣ym
j y

n
j

∣

∣ · wm,n
j ·

[

1 − cos
(

∠yn
j − ∠ym

j − ωj(4n −4m)
)]

,(7)

where wm,n
j is a weighting factor that depends on R∗

2 as
follows:

wm,n
j =

e−Rj(4m+4n)

∑L

l=0 e−2Rj4l

. (8)

Similar weighting appeared in the weighted phase estimate
proposed in [19] for angiography. The ML cost function
ΨML(ω) is periodic, similar to cost functions used in phase
unwrapping problems, e.g., [20]. The cost function (7) appears
to require either knowledge of or a good estimate of R∗

2.
However, we note that:

∣

∣E
[

ym
j

]
∣

∣ = |fj |
∣

∣e−Rj4m
∣

∣ ;

therefore, hereafter, we approximate wm,n
j as follows:

wm,n
j ≈

∣

∣ym
j

∣

∣

∣

∣yn
j

∣

∣

∑L

l=0

∣

∣yl
j

∣

∣

2 . (9)

This approximation does not require knowledge of R∗
2 values.

There is no analytical solution for the minimizer, ω in (7),
except in the L = 1 case. Thus, iterative minimization methods
are required, even for the ML estimator.

F. Special Case: L = 1 (Conventional Two Scans)
In the case where L = 1 usually 41 is chosen small enough

that we can ignore R∗
2 decay (i.e., let R∗

2 = 0) and the ML
cost function in (7) simplifies to

ΨML(ω) ≡

N
∑

j=1

∣

∣y0
j y

1
j

∣

∣

[

1 − cos
(

∠y1
j − ∠y0

j − ωj41

)]

.

(10)
The ML estimate is not unique here due to the possibility of
phase wrapping. But ignoring that issue, the ML estimate of ω

is ω̂j = (∠y1
j −∠y0

j )/41, because 1− cos(t) has a minimum
at zero. This ML estimate is simply the usual estimate (2) once
again to within multiples of 2π. Thus the usual field mapping
method (for L = 1) is in fact an ML estimator under the
white gaussian noise model. The more general cost function
(7) for the field map ML estimator for L > 1 is new to our
knowledge.

G. Penalized-Likelihood Field Map Estimation
The ML estimator ignores our a priori knowledge that field

maps tend to be spatially smooth functions due to the physical
nature of main field inhomogeneity and susceptibility effects2.
(We note that this assumption does not address the presence
of signal from fat). A natural approach to incorporating this
characteristic is to add a regularizing roughness penalty to

2There may be discontinuities at air/water boundaries. Even in this case,
sharp boundaries can be problematic if there is motion between scans, further
motivating the use of regularization.

the cost function. Here we regularize only the phase map
ω and not the magnetization map f ; we expect f to be
far less smooth because it contains anatomical details. Such
regularization is equivalent to replacing ML estimation with
the following penalized-likelihood estimator:

(ω̂, f̂) = arg max
ω,f

L
∑

l=0

log p
(

yl;f
)

−β R(ω),

where R(ω) is a spatial roughness penalty (or log prior in a
Bayesian MAP philosophy). Based on (6) and (7), after solving
for f and substituting it back in, the resulting regularized cost
function has the form

ΨPL(ω) , ΨML(ω) +β R(ω), (11)

where we use the approximation (9) for ΨML(ω). This cost
function automatically gives low weight to any voxels where
the magnitude

∣

∣ym
j y

n
j

∣

∣ is small. For such voxels, the regular-
ization term will have the effect of smoothing or extrapolating
the neighboring values. Thus, this approach avoids the phase
“outlier” problem that plagues the usual estimate (2) in voxels
with low signal magnitude. If ω corresponds to a N1 × N2

field map ωn,m, then a typical regularizing roughness penalty
uses the second-order finite differences between horizontal and
vertical neighboring voxel values as follows:

R(ω) =

N1−1
∑

n=1

N2−1
∑

m=0

ψ(2ωn,m − ωn−1,m − ωn+1,m)

+

N1−1
∑

n=0

N2−1
∑

m=1

ψ(2ωn,m − ωn,m−1 − ωn,m+1),(12)

where ψ is a convex “potential function.” Here, we use the
quadratic potential function, ψ(t) = t2/2. In this paper, we
used second-order differences for all results; we found that
second-order finite differences are preferable to first-order
differences because the resulting PSF tails decrease more
rapidly even when the FWHM values are identical. A quadratic
potential function has the advantage of being differentiable
and easy to analyze, especially with Gaussian noise. Although
quadratic regularization blurs edges, we assume the field map
is smooth, so a more complicated potential function, such as
using a Huber function [21], is not considered here.

Usually ψ is differentiable, so we can minimize the cost
function Ψ(ω) either by conventional gradient descent meth-
ods or by optimization transfer methods [22]–[24]. In partic-
ular, in the usual case where ψ̇(t) /t is bounded by unity,
then the following iteration is guaranteed to decrease Ψ(ω)
monotonically:

ω(n+1) = ω(n) − diag

{

1

dj + β · c

}

∇Ψ(ω(n)), (13)

where ∇ is the gradient of the cost function,

c ,

{

4, regularization with 1st-order differences
16, regularization with 2nd-order differences

(14)
and

dj ,

L
∑

m=0

L
∑

n=0

∣

∣ym
j y

n
j

∣

∣ · wm,n
j · (4n −4m)2, (15)
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using the approximation for wj shown in (9). For examples in
this paper, we used a similar minimization algorithm described
in Appendix A because of its faster convergence properties.

To initialize ω(0), we used the regularized ML estimate
(11) based on the first two sets of data y0 and y1. We
choose the echo times to avoid phase wrapping between these
sets of data (this same idea is used in [15] in their three-
point method). Therefore, there is no need to apply phase
unwrapping algorithms - the algorithm will converge to a local
minimizer in the “basin” of the initial estimate [22].

In [25], we considered approximating the 1 − cos term in
(11) with its second-order Taylor series to create a penalized
weighted least squares (PWLS) cost function. A simplified
PWLS approach where the weights were thresholded was also
considered. Those models ignore any phase wrap that may
occur when evaluating (2). They also have increased error
with little computational benefit. Therefore, those simplified
methods are not explored further in this paper.

H. Spatial Resolution Analysis of Field Map Estimation
To use the regularized method (11) the user must select

the regularization parameter β, which could seem tedious if
one used trial-and-error methods. Fortunately, it is particularly
simple to analyze the spatial resolution properties for this
problem, using the methods in [26] for example. We make the
second-order Taylor series approximation for this analysis. The
local frequency response of the estimator using second-order
finite differences at the jth voxel can be shown to be:

H(ΩX ,ΩY ) ≈
1

1 +
β

dj

(Ω2
X + Ω2

Y )p

, (16)

where ΩX and ΩY are the Discrete Space Fourier Trans-
form (DSFT) frequency variables. and where p = 1 for
regularization based on first-order differences and p = 2 for
second-order finite differences as in (12). (See [27] for related
analyses.) From (16) we see that the spatial resolution at
each voxel depends on the data through dj . In areas with
small signal magnitudes, there will be more smoothing, as
desired. The spatial resolution (16) also depends on the 4l

values being used. Data from scans with larger 4l values have
lower ω̂j variance (see (17) below), and will be smoothed less.
However, data from these scans will also be affected by R∗

2

decay through wm,n
j if the data is not scaled to compensate for

this factor. To simplify selecting β, we normalize the data by
the median of the square root of (15) using the approximation
(9) for wj . Normalizing by this factor allows us to create a
standard β to FWHM table or graph (e.g., Fig. 1). If this
normalization were not applied, a similar figure would need to
be calculated with each new data set (or at least with each new
set of 4l values) or β would need to be chosen empirically.
Normalizing based on the analytical result (16) enables us to
use the same β for all scans.

We used the inverse 2D DSFT of (16) to compute the
PSF h[n,m] and tabulate its FWHM as a function of β,
assuming the previous corrections were made and that the
pixel j has dj = 1. Fig. 1 shows this FWHM as a function

of log2(β), for both p = 1 and p = 2. The FWHM increases
monotonically with β, as expected, although the “knees” in
the curve are curious. Nevertheless, one can use this graph to
select the appropriate β given the desired spatial resolution
in the estimated field map. The resulting spatial resolution
will be inherently nonuniform, with more smoothing in the
regions with low magnitudes and vice versa. One could explore
modified regularization methods [26] to make the resolution
uniform, but in this application nonuniform resolution seems
appropriate since the goals include “interpolating” across
signal voids.
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Fig. 1. Angularly averaged FWHM of PSF for field map estimation as a
function of log

2
β for dj = 1 in (16).

I. Qualitative Example: L = 1

Fig. 2 shows an example of the data magnitude
∣

∣y0
j

∣

∣ and the
usual phase estimate based on L = 1 (2) which is very noisy.
This is real data taken from a 3T MR scanner with 41 = 2 ms.
The maximum value of |ωj · 41| is 1.61 radians in nonzero
voxels, making the scan free of any phase wraps. Fig. 2 also
shows the penalized-likelihood estimate based on (13) using
two different values for β and using 150 iterations. Here, we
can see the improvement from using a regularized estimator
versus the conventional ML estimator. The effect of β on the
smoothness of the estimate is also seen. The improvement seen
is analyzed quantitatively in Section III. Fig. 2 also shows the
effective FWHM (in pixels) of the regularized algorithm based
on (16) for both values of β. Most of the image has a FWHM
corresponding to the chosen β based on Fig. 1. Areas of low
magnitude have a much higher FWHM (such as the sinuses)
and areas of high magnitude have the lowest FWHM.

J. Theoretical Improvements Over 2 Data Sets
Using more than two sets of data requires a longer data

acquisition and also involves choosing the 4l values. An-
alyzing the theoretical improvements that may be attained
by using multiple data sets can help determine when the
increased acquisition time is warranted and can guide our
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Fig. 2. Top row: magnitude image |yj |, conventional field map estimate(2).
Middle row: (field map estimates): penalized-likelihood estimate using (13)
with β = 2−6 (left) and β = 2−3 (right). Bottom row: Maps of the spatial
resolution at each pixel measured by the FWHM for β = 2−6 (left) and
β = 2−3 (right).

choice of the 4l values. Therefore, we calculated the Cramér-
Rao bound (CRB) for the model (3). This bound expresses the
lowest achievable variance possible for an unbiased estimator
based on a given model. Although a biased estimator (the
penalized-likelihood estimator) is used in our implementation,
the bound quantifies the maximal improvement possible based
on the model and allows for a comparison on how close our
implementation is to the ideal, unbiased case.

Because there are multiple unknown parameters in these
models θ = (ωj , |fj | ,∠ fj), the multiple parameter CRB must
be used. In that case, the matrix CRB is

Covθ

{

θ̂
}

≥ F−1(θ)

where F(θ) = −E
[

∇2
θ ln p(Y ;θ)

]

is the Fisher information.
Because fj is a nuisance parameter, we focus on the CRB
for the variance of ωj , although the effect of fj will be felt
through the inversion of the Fisher matrix. For simplicity, we
initially set R∗

2 to 0 in the CRB derivations shown below.
Applying the CRB to the L echo-time difference model (3)

yields, after considerable simplification, the expression:

VarL{ω̂j} ≥
σ2

(L+ 1) 42
1 |fj |

2
λL

, (17)

where, defining αl = 4l / 41:

λL ,

(

1

L+ 1

L
∑

l=0

α2
l

)

−

(

1

L+ 1

L
∑

l=0

αl

)2

.

The variance reduces, in general, as L is increased. The ex-
pression for λL is the “variance” of {α0, α1, · · ·αL}, measur-
ing the variance between the echo time differences. Increasing
the variance (spread) of the 4l values will decrease the overall
variance of the field map estimate.

For the L = 1 (2 sets of data) model, λ1 = 1/4 and (17)
simplifies to:

CRB1 ,
2σ2

42
1 |fj |

2 .

As expected, the field map variance decreases when the signal
strength |fj |, or echo time difference 41, increase. For an
unbiased estimator based on the model (3) with L = 2 (3 sets
of data) one can show:

CRB2 ,
CRB1

4/3(α2
2 − α2 + 1)

. (18)

Interestingly, simply using three scans, but using 42 = 41

(or α2 = 1), would reduce the variance by only 4/3.
From (18), increasing α2 should decrease the variance for

an unbiased estimator. Making α2 arbitrarily large, however,
is not advisable for many reasons. A larger α2 creates more
phase-wrapping. Eventually, the wrapping will lead to intra-
voxel aliasing and the desired improvement would be unattain-
able. Another problem with large values of αl is the effect on
the MR pulse sequence length. A large α2 also causes much
more R∗

2 decay in the signal as shown in (7). Choosing optimal
4l values requires some knowledge of R∗

2 decay. This can be
seen more clearly in the CRB bounds for the model (3) with
R∗

2 decay included. For the L = 1 model, one can show:

Var1{ω̂j} ≥ CRB1 ·
1 + e2Rj41

2
. (19)

For the L = 2 (3 sets of data) model:

Var2{ω̂j} ≥
σ2

42
1 |fj |

2

1 + e−2Rj41 + e−2Rj41α2

b
, (20)

where

b , e−2Rj41+α2
2 e−2Rj41α2+(1+α2

2−2α2) e−2Rj41(1+α2) .

Using these expressions, we can optimize the 4l values,
which will be inversely proportional to the value of R∗

2. In
fact, for L = 1, one can show that the optimal choice is
4opt

1 = 1.11 / Rj . Therefore, small values of αl based on
the amount of R∗

2 decay expected should be used.

III. EXPERIMENTS

A. Simulation: Comparison of L = 1 and L = 2 Methods
We compared the L = 1 and L = 2 methods with two

examples. First, we used a simulated Gaussian true field map
(Fig. 3) with a magnitude map equal to unity at all points.
Second, we simulated a brain example. For the magnitude,
we used a simulated normal T1-weighted brain image [28],
[29]. We generated a simple field map consisting of a 4.8
cm diameter sphere of air (centered around the nasal cavity)
embedded in water using simple geometrical equations [30],
[31], using a slice slightly above the sphere. Fig. 4 shows
the field map and magnitude image |fj |. We added complex
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True field map noisy phase α2=3 noisy phase α2=7

Conventional estimate L=1 estimate L=2 estimate α2=3 L=2 estimate α2=7

Fig. 3. Top: “True” field map for Gaussian example in Hz; Noisy (SNR = 10dB) wrapped phase ∠y2

j with α2 = 3, Noisy (SNR = 10dB) wrapped phase
with α2 = 7. Bottom: Conventional estimate for L = 1, PL estimates for L = 1, L = 2 with α2 = 3, and L = 2 with α2 = 7. All field maps and estimates
are shown on a colormap of [-10 128] Hz. The wrapped phase images are shown on a colormap of [-π π].

True field map magnitude |y1| (ROI marked) mask noisy phase α2=3 noisy phase α2=5

Conventional estimate Gauss Filtered estimate L=1 estimate L=2 estimate α2=3 L=2 estimate α2=5

Conventional error

RMSE =  6.0 Hz

Filtered error

RMSE =  3.3 Hz

L=1 error

RMSE =  2.8 Hz

L=2 α2=3 error

RMSE =  1.0 Hz

L=2 α2=5 error

RMSE =  0.6 Hz

Fig. 4. Top: True field map and magnitude for brain example and mask, (SNR = 8.5dB) wrapped phase for α2 = 3 and α2 = 5 images. Center and Bottom:
Conventional, Conventional convolved with a Gaussian filter, PL with 2 sets (L = 1), and PL with 3 sets (L = 2) for both α2 = 3 and α2 = 5 estimated
field maps and their respective errors and RMSE. The wrapped phase images are shown on a colormap of [-π π]. All field maps and estimates are shown on
a colormap of [-2 100] Hz. Field map errors are shown on a colormap of [-15 15] Hz.
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Gaussian noise at many levels of SNR to the images. For this
paper, we used the following definition of SNR:

SNR = 20 log
‖f‖

‖y0 − f‖
. (21)

The SNR remains consistent even when varying R∗
2, L, or α.

We used 41 = 2 msec for both cases. For the L = 2 case
we also varied α2 to produce several 42 values. We used a
uniform value of R∗

2 = 20 sec−1 in generating our simulations.
The field map was reconstructed using the penalized-

likelihood method (11) using normalization as described in
Section II-H for both L = 1 and L = 2. The algorithm
(13) was run at each SNR level for the L = 1 case and
for the L = 2 case of data with varying values of α2 using
5 realizations. We ran 300 iterations of the algorithm, using
β = 2−3.

We also applied the conventional estimator to our data.
To reduce the noise, we convolved the conventional es-
timate with Gaussian filters of varying widths (σ =
0.0625, 0.1250, . . . , 3.125). We chose the “optimal” σ based
on the minimum masked RMSE. Choosing the optimal σ using
the true field map gives the conventional estimate an advantage
in this example unavailable in practice.

The RMS error (in Hz) was computed between the “true”
field map and the field map reconstructed using the PL method
(11) and the conventional estimate. This RMSE was calculated
in a masked region (pixels with magnitudes at least 20% of
the maximum true magnitude).

Fig. 3 shows an example of the PL with L = 1 estimate
compared to the PL with L = 2 estimate at α2 = 3 and α2 = 7
at an SNR of 10dB. Qualitatively, we can see improvements
with increases in both L and α2. Fig. 4 shows similar results
for the brain example.

The largest errors in these field maps occur where the
magnitude is smallest. The RMSE is much higher using only
the conventional method. We also calculated the RMSE in
the sinus region of the brain (the ROI is shown in Fig. 4). We
chose this ROI because the low magnitude makes the field map
difficult to estimate here although the field inhomogeneity is
also greatest here. The RMSE in this ROI was 61.1 Hz for
the conventional estimate, 11.6 Hz for the Gaussian filtered
estimate, 3.4 Hz for the L = 1 regularized estimate, and 1.9
Hz for the L = 2 α2 = 3 regularized estimate and 1.7 Hz for
the L = 2 α2 = 5 regularized estimate. Overall, the filtered
conventional estimate performed similar to the PL method with
L = 1 over the masked region, but had higher error in the
ROI. The PL method with L = 2 showed a decreased error
in both the masked region and the ROI. We would expect
even higher improvement over any practical Gaussian filtered
estimate because a suboptimal σ would be used. The proposed
regularized estimators are more accurate in pixels with low
magnitude. Adding additional scans (L > 1) makes the PL
estimate even more accurate.

Fig. 5 shows the improvement (defined as the RMS error
for PL estimate with L = 1 divided by the error for PL
estimate with L = 2) gained by using an additional set
of data for the Gaussian example. For comparison, we also
plotted the predicted improvement, given by the square root

of the ratio of the expressions (19) and (20). The experimental
gains are actually higher than the improvements anticipated as
shown by the dotted lines (the predicted improvement) for
some SNR values. Because this is a ratio of RMSEs and
the amount of bias can vary between L = 1 and L = 2,
the unbiased CRB provides a benchmark of expected ratios
rather than an exact upper limit. Also, recall that (19) and
(20) considered R∗

2 to be a known value when, in fact, R∗
2

is unknown and approximated through (9). The RMSE is low
(in voxels with large magnitudes) at high SNRs using either
L = 1 or L = 2. At lower SNRs, however, including in voxels
with low magnitudes, using L = 2 and higher values of α2

greatly reduces RMS error. We repeated these simulations with
R∗

2 = 0 (results not shown) and the empirical improvement
almost exactly matched (18).
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Fig. 5. Improvement in the RMSE for the Gaussian example by using 3 data
sets rather than 2 sets. Expected improvements shown by dotted lines.
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Fig. 6. Improvement in the RMSE for the brain example by using 3 data
sets rather than 2 sets. Expected improvements shown by dotted lines.
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Fig. 6 shows the improvement gained by using an additional
set of data for the brain image. For a low SNR (for example 10
dB), the improvements are close to expected. The brain image
has some areas where the magnitude is very low, making
estimation using any method quite challenging. In addition,
the field map phase itself is less smooth than in the Gaussian
case, making the estimation more difficult. For a higher SNR
(for example 20 dB), the 3-set case still outperforms the 2-set
case substantially but by less than predicted by (18).

The RMSE has components of both bias error and variance
in it, as shown below:

RMSE(X) =

√

Var{X}+bias2(X).

Therefore, we analyzed the bias and the standard deviation
at a single representative SNR = 20 dB and at α2 = 1, 2,
. . . 7 using 500 iterations and 100 realizations for each factor.
Fig. 7 compares the standard deviation for each α2 relative to
that at α2 = 1 and the empirical improvements were compared
to those predicted by the CRB (20) for the Gaussian example.
As expected, the improvements in variance are very close to
predicted. Here, the bias is also very low at all levels of SNR
- explaining the improvement seen in RMSE in Fig. 7.

Fig. 8 shows the bias and standard deviation for a signle
SNR = 20 for the brain example. The empirical variances were
close to those expected. The bias, however, introduced in part
by the regularization, was nearly constant (independent of α).
So for large values of α2, the bias begins to dominate the
variance in RMSE calculations, explaining Fig. 6.

Overall, the variance reductions in both examples due to
using three echo times were close to the results predicted by
the CRB. For low values of α2 (i.e., five or less), the expected
benefit using L > 1 holds even with a moderate value of
R∗

2. The RMSE reductions are largest at lower SNRs. For
phase estimation, the local SNR depends on the spin density
of each voxel as seen in (17). Voxels with lower spin density
effectively have lower SNR. It is precisely in these voxels
where using 3 or more scans has the greatest benefit.

B. MR phantom data: Application to Spiral Trajectories
To illustrate how improved field map estimation leads to

improved reconstructed images, we used field maps produced
by the conventional method (2) and produced by the PL
method with three scans (11) to correct real spiral MR data for
field inhomogeneities. We imaged a phantom with large field
inhomogeneity. We used a spiral-out trajectory with a TE of
30 ms, TR of 2 sec, and a flip angle of 90 degrees. We took
six slices spaced 5 cm apart over the 15 cm field of view.
First, we collected data to create the field maps (using eight
interleaves to minimize the effect of the field inhomogeneity)
at the original 30 ms, as well as at 32 ms (41 = 2 ms) and
at 34 ms (42 = 4 ms) and at 40 ms (42 = 10 ms). We took
ten realizations for each echo difference. We reconstructed
iteratively the resulting 64 × 64 pixel images in a masked
region using [32]. Then, we used these images to create (for
each slice) a conventional field map (2), a conventional field
map blurred with a Gaussian filter, a PL field map with L = 1,
a PL field map with L = 2 and α2 = 2, a PL field map
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Fig. 7. Bias and RMSE improvement for Gaussian example. Top: Space-
averaged σ and absolute bias for several α2 values; Bottom: RMSE improve-
ment, empirical and expected, over α2 = 1 for several α2 values.
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Fig. 8. Bias and RMSE improvement for brain example. Top: Space-averaged
σ and absolute bias for several α2 values; Bottom: RMSE improvement,
empirical and expected, over α2 = 1 for several α2 values.

with L = 2 and α2 = 5, and a PL field map with L = 3,
(11). We used β = 2−6 for the regularized iterative algorithm
and σ = .5 for the Gaussian filter approach, approximately
matching the FWHM of the two approaches. Finally, we
collected one-shot spiral out data with TE = 30 ms. This scan is
thus much more affected by final inhomogeneity. We collected
two realizations and then averaged them in k-space. We first
reconstructed this data iteratively without a field map as in
[32]. Uncorrelated field inhomogeneity causes a blurred image
for spiral trajectories. Finally, we iteratively reconstructed this
one-shot data with each of the field maps previously created
as in [2].

Fig. 9 shows one representative slice. The regularized field
maps are less noisy than the conventional one, especially in
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|x| (8 shot) Conventional Gauss Filter L = 1 L = 2 α2 = 2 L = 2 α2 = 5 L = 3 Field map

|x| (1 shot) conventional Filtered L = 1 L = 2 α2 = 2 L = 2 α2 = 5 L = 3

Fig. 9. First Slice - Top: Reconstructed 8-shot image, Conventional field map, Gaussian filtered field map, regularized field map L=1, regularized field map
L=2; α2 = 2, regularized field map L=2 α2 = 5, regularized field map L=3. The field maps are displayed with a common color scale from -35 Hz to 50
Hz; Bottom: Reconstructed one-shot image with no field map and with each of the field maps above. The images are all on the same color scale. These are
all from one representative realization.

TABLE I
PHANTOM NRMSE FOR TWO REPRESENTATIVE SLICES

Phantom NRMSE (%) for one realization
Slice One Slice Three

Whole Image Low Magnitude Whole Image Low Magnitude
µ σ µ σ µ σ µ σ

No Field Map 31.1 - 4.8 - 20.4 - 2.9 -
Conventional 15.0 0.5 6.8 0.6 15.5 0.2 2.2 0.1
Gauss Filter 14.3 0.4 6.1 0.4 15.1 0.2 1.9 0.08
L=1 13.0 0.4 4.0 0.4 15.2 0.2 1.8 0.04
L=2 α2 = 2 13.1 0.4 4.1 0.4 14.8 0.1 1.8 0.03
L=2 α2 = 5 13.5 0.08 4.3 0.2 14.6 0.02 1.8 0.01
L=3 13.5 0.09 4.4 0.1 14.6 0.02 1.8 0.01

areas of low magnitude and along the edges. Fig. 9 illustrates
the blur and distortion in the one-shot image reconstructed
without a field map. The images reconstructed with a field
map do not have this blur. Nevertheless, a noisy field map
can cause error in the reconstructed image. For example, in
Fig. 9, the image reconstructed with the conventional field
map shows more artifacts than the eight-shot data or either of
the images reconstructed with regularized field maps. Using
the eight-shot data as “truth”, we computed the NRMSE of
each image and Table I shows the mean and variance over
the ten realizations. We include data from two representative
slices to show a range of values, although slice three is not
shown. In addition, we calculated the NRMSE in the one-
shot reconstructed images in pixels where the magnitude is
less than .2 times the maximum pixel value of the eight-
shot reconstructed image to see if the regularized field maps
reduce errors in areas of the image with low magnitude. This
is also reported in Table I. We use the norm of the eight-
shot 30 ms image for normalization. The regularized iterative
PL methods have a lower RMSE and much less variability
than the other methods. Therefore, these regularized methods
(especially with more than one echo time) give a very reliable
estimate of the field map with little variability.

IV. DISCUSSION

We described a regularized method for field map estimation
using two or more scans: the penalized-likelihood method (11).
This method yields field maps that interpolate smoothly over
regions with low spin density, thereby avoiding phase outliers
that plague the conventional estimate (2). The method has been
used with L = 1 (without full description) in [3], [33], [34].

Our analysis also shows that the conventional estimate (2)
is in fact the ML estimate, a property that has previously gone
unnoticed to our knowledge.

We also analyzed the spatial resolution properties of this
method, leading to a practical procedure for choosing the
regularization parameter to achieve a given desired spatial
resolution.

We studied the CRB on the variance of the estimate for
this method and found that our empirical simulation results
for the PL method compared favorably, showing a reduction
in the RMSE in comparison to using only two scans.

We collected real MR phantom data and created con-
ventional and PL estimates of the field map which were
used to reconstruct final images. The PL estimate reduces
image artifacts caused by the field inhomogeneity and has a
reduced RMSE, especially in areas of very low magnitude
where the conventional estimate has many errors. Omitting or
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using a poor field map estimate for image reconstruction can
dramatically affect the final image quality.

As noted in Section II-D, our cost function assumes, as
do most other field map estimation problems, that there is
no motion between scans. While our analysis indicated that
a larger L is better in terms of variance, motion could be
a problem during the larger time required for L echo time
differences. Practically, L = 1 or L = 2 are the most likely
choices for L and here motion is less likely to be an issue.
If a larger number of echo differences are desired, then the
cost function could be further generalized to include a joint
estimation of the field map and rigid motion parameters.

We have focused here on the case of a single receive coil.
It is straightforward to generalize the method for phased array
coils, cf. [35].

Although we did not estimate R∗
2, we used a simple weight-

ing (9) in our algorithm to partially account for R∗
2 decay; the

improvements seen over estimation with two scans are still
large, especially when using a small value of α2.

While this method assumed the first two echo time dif-
ferences were close enough to prevent phase wrapping, this
method could, with proper intialization, extend to data with
larger echo time differences and some phase wrapping. This is
especially interesting at higher field strengths where wrapping
still exists at low echo time differences.

Overall, this method has potential to be a reliable estimator
for MR field maps, able to utilize many scans to produce a
good estimate. The general penalized-likelihood approach in
this work is also applicable to estimating other parametric
maps in MRI, such as relaxation maps [36] and sensitivity
maps [37]. It may also be useful for phase unwrapping
problems with noisy data. In some cases, it may be preferable
to use edge-preserving regularization in (12), such as the
Huber potential function [38].

Ultimately, this method is a tool that may help answer the
main question of field mapping: how to best allocate scan
time to achieve the most accurate field map. The preliminary
CRB analysis guides choice of echo times given a set number
of scans. In future work, we wish to further explore the
relationship between number of echoes, signal to noise ratio,
and spatial resolution.

APPENDIX A
MINIMIZATION ALGORITHMS

To minimize the cost function (11) developed in this paper,
we need a method that will decrease it monotonically. The
simple minimization algorithm shown in (13) is guaranteed to
decrease Ψ(ω) monotonically; the proof that ensures mono-
tonicity uses the fact that the second derivative of 1 − cos t
is bounded above by unity. This algorithm will converge to a
local minimizer of Ψ(ω) within the “basin” that contains the
initial estimate [39].

However, this simple minimization algorithm shown in (13)
is only one possible option to minimize the cost function
given in (11). In our implementation, we used an optimization
transfer approach to refine the iterative algorithm [23], [39].

First express (11) as shown below:

Ψ(ω) ,

N
∑

j=1

L
∑

m=0

L
∑

l=0

ϕjml(ωj) + β R(ω), (22)

where we define

ϕjml(ω) ,
∣

∣ym
j y

l
j

∣

∣wm,l
j ϕ

(

ω(4l −4m) + ∠ym
j − ∠yl

j

)

with
ϕ(t) , 1 − cos(t) .

To minimize this cost function, we adopt an optimization
transfer approach, for which we need a surrogate function for
ϕ(s). In particular, we use the following parabola surrogate
for ϕ:

ϕ(t) ≤ q(t; s) , ϕ(s) + ϕ̇(s)(t− s) +
1

2
κϕ({s}2π)(t− s)2

where {s}2π denotes the principle value of s. Huber stated that
parabola surrogate functions (which he called a comparison
function) exist for ϕ that satisfy Huber’s conditions [21,
p.184-5]; the functions must be differentiable, symmetric, and
have curvatures (κϕ(s)) that are bounded and monotone non-
increasing for s > 0. For |s| ≤ π, ϕ(s) shown above satisfies
Huber’s conditions. We note

ϕ̇(s) = sin(s)

and
κϕ(s) ,

ϕ̇(s)

s
=

sin(s)

s
.

Substituting this curvature κϕ(s) into the expression for
ϕjml(ω) gives us the following curvature for the parabola
surrogate

κϕ,jml(s) ,
ϕ̇jml(s)

s
=
∣

∣ym
j y

l
j

∣

∣wm,l
j (4l −4m)2

sin(s)

s
,

which is bounded as s → 0 and decreasing as |s| increases.
For values of |s| > π, we exploit the periodicity of ϕ and
find an integer k such that |s− k2π| ≤ π, i.e., the principal
value of the phase s. Fig. 10 shows ϕ and parabola surrogates
for several values of s. When s is an even multiple of π, the
curvature κϕ is the maximum curvature of ϕ. When s is an
odd multiple of π, the curvature κϕ is zero, and ϕ̇ is also zero,
so the surrogate function is a constant.

Aggregating such surrogates leads to the following surrogate
function for the cost function Ψ(ω):

φ(n)(ω) ,

N
∑

j=1

L
∑

m=0

L
∑

l=0

q(n)

jml(ωj) +β R(ω)

where

q(n)

jml(ω) , ϕjml(ω
(n)
j ) + ϕ̇jml(ω

(n)
j )(ω − ω

(n)
j )

+
1

2
κϕ,jml(s

(n)
r )(ω − ω

(n)
j )2,

and where

s(n)
r , (ω

(n)
j |4l −4m| + ∠ym

j − ∠yl
j)modπ ∈ [−π, π].

If the roughness penalty R(ω) is a quadratic function, which is
the natural choice for smooth phase maps, then the surrogate
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Fig. 10. Illustration of ϕ(t) and quadratic surrogates for several values of
s.

φ(n) above is a quadratic function that can be minimized
easily by any classical method such as the conjugate gradient
algorithm.

In our implementation, we used a separable quadratic sur-
rogate algorithm to minimize this cost function [40]. Then,
the following iteration, similar to that of (13), is guaranteed
to decrease Ψ(ω) monotonically:

ω(n+1) = ω(n) − diag

{

1

d̃
(n)
j + β · c

}

∇Ψ(ω(n)), (23)

where c was defined in (14) and where

d̃
(n)
j =

L
∑

m=0

L
∑

l=0

κϕ,jml(s
(n)
r ).

The advantage of (23) over (13) is that d̃(n)
j ≤ dj in (15), so

(23) will converge faster [41].
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