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Abstract— Accurate predictions of image variances can be

useful for reconstruction algorithm analysis and for the design
of regularization methods. Computing the predicted variance at
every pixel using matrix-based approximations [1] is impractical.
Even most recently adopted methods that are based on local
discrete Fourier approximations are impractical since they would
require a forward and backprojection and two FFT calculations
for every pixel, particularly for shift-variant systems like fan-
beam tomography. This paper describes new “analytical” ap-
proaches to predicting the approximate variance maps of 2D
images that are reconstructed by penalized-likelihood estimation
with quadratic regularization in fan-beam geometries. The sim-
plest of the proposed analytical approaches requires computation
equivalent to one backprojection and some summations, so it is
computationally practical even for the data sizes in X-ray CT.
Simulation results show that it gives accurate predictions of the
variance maps. The parallel-beam geometry is a simple special
case of the fan-beam analysis. The analysis is also applicable to
2D PET.

Index Terms— variance approximation, local discrete Fourier
analysis, fan-beam tomography, penalized-likelihood image re-
construction.

I. INTRODUCTION

STATISTICAL methods have obtained increasing attention
in tomographic image reconstruction due to improved

noise and resolution properties. These methods are usually
nonlinear and shift-variant. To analyze the statistical character-
istics of the reconstructed images, one would like to be able to
predict the variances and covariances of estimated pixel values.
The variance information provides an uncertainty measure of
the reconstructed image and may aid regularization parameter
selection.

The existing noise analysis methods can be divided into two
categories: iteration based and estimator based. The iteration-
based variance predictions are studied in [2], [3] as a function
of the iteration number for the maximum-likelihood expec-
tation maximization algorithm based on the “stopping rule”
to terminate the iterations before convergence. The estimator-
based variance predictions are independent of the particular
algorithm and iterations, [1], [4], [5]. Our proposed method
falls in the estimator-based category. We will give a brief
overview on the existing estimator-based methods and our
proposed method.
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The estimator-based analysis for the mean and variance
proposed in [1] uses the partial derivatives of the cost function
and Taylor approximations. The approximations are matrix
form and give accurate results. However, the predictions
involve the inversion of the Hessian matrices and therefore
are computationally expensive. Based on this work, a great
deal of effort has been given to simplify these matrix meth-
ods [4], [5]. All these methods, that we refer to the DFT
approximations, are based on a factorization of the system
matrix and circulant approximations to the Hessian matrices
to precompute and store a great portion of the calculations. The
factorization of the system matrix into geometric and object-
dependent portions is specially useful for the shift-varying
imaging systems. However, these DFT approximations still
require in precomputation one forward and backprojection and
two FFT calculations, one for likelihood Hessian and one for
penalty Hessian, for each location of interest. Moreover, the
expressions are still in matrix form and provide little direct
insight into the noise properties.

Our proposed approximations in this paper are still based
on the results given in [1] but turn to a very different
analysis approach. Instead of working in the discrete space,
we use the discrete space Fourier transform (DSFT) and
Parseval’s theorem to bridge from the discrete space to the
continuous space. Using local shift-invariance approximations
and local Fourier analysis, we derive “analytical” closed-form
expressions for the local impulse response and local frequency
response of the Gram operator and the regularization operator.
The final approximations eliminate the need of FFTs for
variance predictions, greatly reducing computation for cases
where the variance is to be predicted at numerous pixel
locations. Furthermore, these approximations provide insight
into the resolution and noise properties of the reconstructed
images.

Because our analysis is built on the previous work in [1], we
briefly repeat its main results here. The goal of transmission
image reconstruction is to estimate an attenuation image µ[~n]
from projection data Y , where ~n is a vector denoting the 2D
image pixel location. We focus here on penalized-likelihood
estimators obtained by minimizing a cost function as follows:

µ̂ = arg min
µ

Φ(µ,Y ),

where µ = (µ[~n1], . . . , µ[~np]) ∈ R
p (p-dimensional real

space). The cost function includes a negative log-likelihood
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Fig. 1. A N × M lattice with approximately circular FOV. Only the pixels
with indices are estimated. In this example, p = |S| = 12.

term and a regularization term:

Φ(µ,Y ) = −L(µ,Y ) + αR(µ). (1)

As a concrete example, for transmission tomography under the
Poisson noise model, the log-likelihood is

L(µ,Y ) =
∑

i

Yi log
(

Ȳi(µ)
)

−Ȳi(µ). (2)

For mono-energetic transmission scans, the measurement
means are modeled by

Ȳi(µ) = bi e−[Aµ]i + ri, (3)

where A is the system matrix, bi denotes the blank scan, and
ri denotes the additive contribution of scatter to the ith ray.

We focus on regularization terms of the following form:

R(µ) =

4
∑

l=1

Rl(µ) (4)

Rl(µ) =
∑

~n,~n−~ml∈S

rl[~n]
1

2
(µ[~n]− µ[~n− ~ml])

2
, (5)

where S , {~nj : j = 1, . . . , p} denotes the sub-
set of the N × M lattice that is estimated and ~ml ∈
{(1, 0), (0, 1), (1, 1), (−1, 1)}. The roughness penalty (4)
involves the horizontal, vertical, and diagonal neighbors and
allows for the possibility of using regularization coefficients
{rl[~n]} that vary both with spatial location and direction [6],
[7]. In general 1 ≤ p ≤ NM and p < NM because the
physical field of view (FOV) is a subset of the lattice, see
Fig. 1.

The goal of this work is to approximate the covariance
matrix Cov{µ̂} efficiently yet accurately, motivated by the
problem of designing the regularizer R(µ). The proposed
prediction methods can be generalized to other log-likelihood
terms including 2D emission tomography by modifying W in
(??) below.

The following approximation to the p×p covariance matrix
of µ̂ was derived in [1]:

K = (A′WA + αP)−1A′WA(A′WA + αP)−1, (6)

where P is the Hessian matrix of the roughness penalty. For
transmission tomography with the models (1) and (2), W =

diag
{

Ȳi

}

. In practice Ȳi is unknown, so we plug in Yi as an
approximation [8]. The covariance between pixels µ̂[~nk] and
µ̂[~nj ] can be approximated using (6) as follows:

Cov{µ̂[~nj ], µ̂[~nk]} ≈ e
′
jKek, (7)

where ej denotes the jth unit column vector of length p.
The matrix method described in (6) and (7) has been used

in various applications [5], [9]. Simulation and experimental
results have confirmed the accuracy of this covariance approx-
imation in image regions where the non-negativity constraint
is usually inactive. However, evaluating (7) is relatively expen-
sive. In this paper, we introduce “continuous space analysis”
and use “local stationarity” to develop fast approximations for
the variance and covariance of the reconstructed image µ̂[~n].

The paper is organized as follows. Section II briefly reviews
the matrix method and the local shift-invariance approxima-
tions. Section III proposes the general analytical approach
for the variance approximation. Section IV and V apply this
method to fan-beam geometry and quadratic regularization.
Section VI and VII analyze the single integral approach used
and give simulation results for two types of quadratic regular-
ization, including a comparison of the predicted, DFT-based
and empirical standard deviation images. Finally, discussion
and conclusions are in Section VIII.

II. LOCAL SHIFT-INVARIANCE APPROXIMATIONS

The matrix method described in (6) and (7) is very expen-
sive to compute, even for the variance at a single pixel. To
accelerate computation, local shift-invariance approximations
are usually used in practice, e.g., [4], [5], [9]–[11].

Let M denote one of the p × p matrices in (6), such as
A′WA or P, or inverses or sums thereof. Then a matrix-
vector operation y = Mx can be expressed equivalently as

y[~n] = δS [~n]
∑

~n′∈S

h(~n, ~n′) x[~n′]

= δS [~n]
∑

~n′

h(~n, ~n′) x[~n′]δS [~n′], (8)

where δS [~n] is an indicator function of ~n defined as follows:

δS [~n] ,

{

1, ~n ∈ S
0, otherwise . (9)

In other words, the elements of M correspond to Mkj =
h(~nk, ~nj) .

Near a given location ~n0 of interest, we define a local
impulse response of M as follows1:

h0(~m) , h(~n0 + λ~m,~n0 − (1− λ) ~m)

δS [~n0 + λ~m]δS [~n0 − (1− λ)~m], (10)

where ~m ∈ Z
2, Z denotes the set of integers. Usually we

choose λ = 1. However, sometimes we can approximate h
even for non-integer arguments, in which case λ = 1/2 may
also be useful [12, p. 870].

We say that h(~n, ~n′) is locally shift invariant near ~n0

if h(~n, ~n′) ≈ h0(~n− ~n′) for ~n and ~n′ close to ~n0. The

1Throughout the paper we use the subscript “0” to indicate dependence on
a given pixel location ~n0.
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approximation should be accurate provided ~n and ~n′ are
“sufficiently close” to ~n0 relative to the width of h0. Thus,
if the operator M is approximately locally shift invariant near
~n0, then we can approximate the superposition sum (8) by
(almost) a convolution sum:

y[~n] ≈ δS [~n]
∑

~n′

h0(~n− ~n′) x[~n′]δS [~n′], (11)

or equivalently y ≈ M0x, where the p × p matrix M0 is
defined by [M0]kj = h0(~nk − ~nj) . The expression (11) is
almost a convolution sum, except for the “edge conditions” of
the indicator functions. If the point ~n0 is not “too close” to
the boundaries of the support mask S, then we may able to
disregard the indicator functions and treat the expression as a
convolution.

Let T be the NM × p matrix such that

T1+n+mN,j =

{

1, ~nj = (n,m)
0, otherwise ,

for n = 0, . . . N − 1 and m = 0, . . . M − 1. The purpose
of T is to embed the p elements of µ (as shown in Fig. 1)
back to the 2D N ×M lattice. Then M0 = T

′M̆0T, where
(M̆0)~n,~n′ = h0(~n− ~n′) is an NM×NM matrix that is block
Toeplitz with Toeplitz blocks (BTTB). Thus we can make a
circulant approximation to M̆0, [13]. Such approximations are
often reasonably accurate except near the edges of the FOV,
where the differences between “Toeplitz” and “circulant” end
conditions are largest. The local impulse response (10) and the
corresponding circulant approximation are two key tools for
analysis.

III. THE ANALYTICAL VARIANCE PREDICTION

In the spirit of the local shift-invariance approximations
presented in Section II, we approximate the covariance matrix
in (6) near a given location ~n0 by

K ≈ K0 , T
′K̆0T

K̆0 , (F0 + αP0)
−1F0(F0 + αP0)

−1,

where F0 and P0 are the NM ×NM BTTB approximations
corresponding to A′WA and P, respectively. Then we ap-
proximate the covariance between pixels µ̂[~n] and µ̂[~n′] in (7)
by the following inner product:

Cov{µ̂[~n], µ̂[~n′]} ≈ 〈K̆0e~n′ , e~n〉, (12)

where e~n is ~nth unit vector of length NM .
Two useful approximations to (12) follow from Parseval’s

theorem. One option is to interpret the arguments in (11) with
a suitable modulo N or M . In this case, the inner product
defined in (12) is in the form of circulant convolution and can
be approximated by FFTs:

Cov{µ̂[~n], µ̂[~n′]} ≈ 1

NM

~N−1
∑

~k=~0

Pd0[~k] ei~ω~k
·(~n−~n′) , (13)

for ~n, ~n′ ≈ ~n0, where ~N = (N,M), ~ω~k =
(2πk1/N, 2πk2/M) and

Pd0[~k] ,
Γ0[~k]

(Γ0[~k] + αΩ0[~k])2
,

with

F0 ≈ QΓ0Q
′

P0 ≈ QΩ0Q
′,

where Q is the 2D (N,M )-point orthonormal DFT matrix.
The diagonal matrices Γ0 and Ω0 have diagonal elements
Γ0[~k] and Ω0[~k] that are the 2D DFT coefficients of the local
impulse response of A′WA and P near ~n0, respectively. This
DFT/FFT approximation has been used in [4], [14], [15] to
predict variance at a single pixel:

Var{µ̂[~n]} ≈ 〈K̆0e~n, e~n〉

≈ 1

NM

~N−1
∑

~k=0

Γ0[~k]

(Γ0[~k] + αΩ0[~k])2
. (14)

Generally, evaluating this expression for a single pixel requires
a forward and backprojection and two FFTs. Computation of
this DFT approximation is still expensive for realistic image
sizes when the variance must be computed for many or all
pixels, particularly for shift-variant systems like fan-beam
tomography.

An alternative option is to consider µ[~n] to be defined over
all of Z

2 (two-dimensional integer space), in which case (12)
is in the form of ordinary convolution that can be expressed
using the discrete-space Fourier transform (DSFT) as follows:

Cov{µ̂[~n], µ̂[~n′]} ≈
∫ π

−π

∫ π

−π

Pd0(~ω) ei~ω·(~n−~n′) d~ω

(2π)2
, (15)

where Pd0(~ω) is the local spectrum of K̆0, given as follows:

Pd0(~ω) ,
Hd0(~ω)

[Hd0(~ω) + αRd0(~ω)]2
, (16)

where Hd0(~ω) is the local frequency response of the Gram
matrix A′WA and Rd0(~ω) is the local frequency response of
P near ~n0. To our knowledge, this paper is the first to use
(15) to develop analytical variance approximations as a faster
alternative to the DFT approach (14).

For regularizer design, the standard deviation map of the
reconstructed image is one quantity of interest, and our numer-
ical investigation will focus on variance prediction. However,
the methodology applies readily to approximate covariances.

Using the DSFT approximation (15), we approximate the
variance at pixel ~n0 as follows:

Var{µ̂[~n0]} ≈
∫ π

−π

∫ π

−π

Pd0(~ω)
d~ω

(2π)2
. (17)

Let ∆ denote the sample spacing in the reconstructed
image. By making the change of variable, ~ω = (2πρ∆)~eΦ

where ~eΦ , (cos Φ, sin Φ), we rewrite (17) in terms of polar
frequency coordinates (ρ,Φ) as follows:

Var{µ̂[~n0]} ≈ ∆2

∫ 2π

0

∫ ρmax

0

P0(ρ,Φ)ρdρ dΦ, (18)

where ρmax = 1
2∆ , and we define

P0(ρ,Φ) , Pd0(2πρ∆~eΦ) =
H0(ρ,Φ)

[H0(ρ,Φ) + αR0(ρ,Φ)]2
.

(19)
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Fig. 2. Angular coordinates in fan-beam geometry.

We defined H0 and R0 similarly in terms of Hd0 and Rd0. The
variance prediction (18) applies to any 2D geometry. The next
section specializes (18) by finding analytical approximations
to the local frequency response H0(ρ,Φ) for the fan-beam
geometry.

IV. FAN-BEAM GEOMETRY

The following analysis is focused on equiangular fan-beam
transmission tomography with an arc detector. However, the
method generalizes readily to flat detectors, i.e., equidistant
sampling and to parallel-beam geometries. As illustrated in
Fig. 2, fan-beam rays are indexed by coordinates (s, β), where
β is the angle of the source relative to the y axis, and s is the
arc length along the detector. For the case where the detector
focal point is at the source position, γ(s) = s/Dsd, where γ is
the angle of the ray relative to the source and Dsd is the source
to detector distance. The relation between parallel-beam and
fan-beam coordinates is [16]:

r(s) = Ds0 sin γ(s) (20)
ϕ(s, β) = β + γ(s), (21)

where Ds0 is the source-to-rotation center distance.

A. Local Impulse Response
To predict variance images in fan-beam transmission tomog-

raphy using (18), we need to determine the local frequency
response H0(ρ,Φ), or equivalently Hd0(~ω). We first find the
local impulse response.

Consider the 2D object model based on a common basis
function χ(~x) superimposed on a N ×M Cartesian grid as
follows:

µ(~x) =
∑

~n∈S

µ[~n]χ

(

~x− ~xc[~n]

∆

)

, (22)

where ~x ∈ R
2 denotes the 2D coordinates of the continuous

image space, and ~xc[~n] denotes the center of the basis function.
Typically

~xc[~n] = (~n− ~w~x)∆, ~n ∈ S
~w~x = ( ~N −~1)/2 + ~c~x,

where ~N = (N,M) and the user-selectable parameter ~c~x

denotes an optional spatial offset for the image center.
For simplicity, we assume here that the detector blur b(s) is

locally shift invariant, independent of source position β, and
acts only along the s coordinate. Then we model the mean
projections as follows:

ȳβ [sk] =

∫

b(sk − s′) pϕ(s′,β)(r(s
′)) ds′ (23)

for sk = (k − wS)∆S and k = 1, . . . , ns, where ∆S is the
sample spacing in s, wS is defined akin to ~w~x, and pϕ(r) is
the 2D Radon transform of µ(~x):

pϕ(r) =

∫

µ(r cos ϕ− ` sin ϕ, r sinϕ + ` cos ϕ) d` .

Substituting the basis expansion model in (22) for the object
into the measurement model (23) and simplifying leads to the
linear model

ȳβ [sk] =
∑

~n∈S

a(sk, β;~n)µ[~n],

where the fan-beam system matrix elements are samples of
the following fan-beam projection of a single basis function
centered at ~xc[~n]:

a(s, β;~n)=

∫

b(s− s′) ∆ g

(

r(s′)− rϕ(s′,β)[~n]

∆
, ϕ(s′, β)

)

ds′,

(24)
where g(·, ϕ) is the Radon transform of χ(~x) at angle ϕ and

rϕ[~n] , ~xc[~n] · ~eϕ,

with ~eϕ , (cosϕ, sinϕ).
Then the elements of the Gram matrix are given exactly by

hd[~n;~n′] =

{

[A′WA]jj′ , ~n = ~nj ∈ S, ~n′ = ~nj′ ∈ S
0, otherwise

= h̆d[~n;~n′]η(~xc[~n])η(~xc[~n
′]) (25)

where η(~xc[~n]) , 1{~n∈S},

h̆d[~n;~n′] ,

nA
∑

l=1

ns
∑

k=1

w(sk, βl) a(sk, βl;~n)a(sk, βl;~n
′) (26)

and w(s, β) denotes the weighting associated with W and
nA denotes the number of samples of the source position β.
To simplify (25), we first use an integral to approximate the
summation in (26) as follows:

h̆d[~n;~n′]≈ 1

∆β

1

∆S

∫ 2π

0

∫ ∞

−∞

w(s, β) a(s, β;~n)a(s, β;~n′)ds dβ,

(27)
where ∆β is the source angular sampling interval. Notice that
h̆d[~n;~n′] in (27) is not shift invariant.

We develop locally shift-invariant approximations to
h̆d[~n;~n′] in (27) by reparameterizing variables s, β using
analogs of fan-to-parallel beam rebinning. The following lo-
cally shift-invariant approximation to h̆d[~n;~n′] is derived in
detail in Appendix I:

h̆d[~n;~n′] ≈ 1

∆β

1

∆S

∫ 2π

0

w0(ϕ)h̆0(∆(~n− ~n′) · ~eϕ, ϕ) dϕ, (28)
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where the following 1D autocorrelation is with respect to r:

h̆0(r, ϕ) , a0(r, ϕ) ? a0(r, ϕ),

and a0(r, ϕ) is a locally parallel-beam version of the system
model defined in (51) (see Appendix I). The angle-dependent
weighting w0(ϕ) is associated with pixel ~n0, accounting for
the position-dependent magnification as follows:

w0(ϕ) , |m0(ϕ)|w(s(r0(ϕ)), β(r0(ϕ), ϕ)) (29)
r0(ϕ) , rϕ[~n0]

m0(ϕ) ,
∂

∂r
s(r)

∣

∣

∣

∣

r=r0(ϕ)

=
Dsd/Ds0

√

1− (r0(ϕ)/Ds0)2
, (30)

where s(r) and β(r, ϕ) are the inverse of (20) and (21). The
shape of the local impulse response (28) is a modification of
1/r (cf [17]) with statistically modulated angular weighting.
The key property of (28) is that it is locally shift invariant,
except for edge effects. This approximation should be reason-
ably accurate provided that ~n and ~n′ are “sufficiently close”
to ~n0, the coordinates of the pixel of interest.

B. Local frequency response
Having found the local impulse response approximation

(28), the next step is to find the local frequency response.
This requires consideration of the edge effects in (25).

The following local frequency response near a point ~n0 is
derived in detail in Appendix II:

H0(ρ,Φ) ≈ 1

∆β∆S∆2

∫ 2π

0

w0(ϕ)Sϕ(ρ,Φ) dϕ, (31)

where the following function captures both detector response
effects and edge effects:

Sϕ(ρ,Φ) = |A0(ρ cos(Φ− ϕ), ϕ)|2

·d0(ϕ) sinc2(d0(ϕ)ρ sin(Φ− ϕ)), (32)

d0(ϕ) denotes the length of the chord through ~n0 through the
FOV at angle (ϕ+π/2), and A0(ν, ϕ) is the 1D FT of a0(r, ϕ)
with respect to r.

C. Further approximations of local frequency response
The local frequency response of the Gram operator in (31)

is very accurate. However, direct implementation of (31) is
still computationally demanding. We present here two types
of further approximations to simplify (31).

1) Type I non-separable form: As d0(ϕ) → ∞, one can
show that for large |ρ|,

d0(ϕ) sinc2(d0(ϕ)ρ sin(Φ− ϕ))→ δ(ρ sin(Φ− ϕ)) .

Therefore the sinc2 term is sharply peaked near Φ = ϕ
and Φ = ϕ ± π, so we consider the further simplifying
approximation
∫ 2π

0

w0(ϕ)Sϕ(ρ,Φ) dϕ ≈ w0(Φ) |A0(ρ,Φ)|2 G0(ρ,Φ),

(33)
where

G0(ρ,Φ) =

∫ 2π

0

d0(ϕ) sinc2(d0(ϕ)ρ sin(Φ− ϕ)) dϕ . (34)
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Fig. 3. Type I and Type II local frequency responses H01(ρ, 0) and
H02(ρ, 0) for ~n0 at image center in unweighted case: w(s, β) = 1.
H01(0, 0) and H02(0, 0) are not shown because the value of H02(0, 0)
blows up.

Substituting into (31) leads to the “Type I” approximation:

H0(ρ,Φ)≈H01(ρ,Φ),
w0(Φ)

∆β∆S∆2
|A0(ρ,Φ)|2 G0(ρ,Φ).

(35)
Although H01(ρ,Φ) is not separable, we can precompute
w0(Φ) and tabulate G0(ρ,Φ) once for all pixels for coarsely
sampled Φ. Accurately computing G0(ρ,Φ) is crucial, there-
fore finely sampled ϕ is necessary in (33).

2) Type II separable form: We can simplify further by using
the sifting property of the Dirac impulse:

∫ 2π

0

w0(ϕ)Sϕ(ρ,Φ) dϕ ≈ 2

|ρ| w0(Φ) |A0(ρ,Φ)|2 .

Because typically A0(ν, ϕ) varies slowly, we also consider
the following further approximation:

A0(ν, ϕ) ≈ A0(0, ϕ).

Combining all the above approximations yields the following
separable approximation to the local frequency response:

H0(ρ,Φ) ≈ H02(ρ,Φ) ,
2 |A0(0, ϕ)|2
∆β∆S∆2

w0(Φ)

|ρ| . (36)

This “Type II” separable form agrees with the familiar FT
of 1

r . Figure 3 shows the profiles of two types of local
frequency responses for ~n0 at image center in unweighted
case. We can see that two profiles agrees with each other
closely. The discrepancy is mainly at low frequencies for both
the unweighted and weighted cases. The discrepancy is more
obvious when ~n0 is off image center.

V. QUADRATIC REGULARIZATION: R0(ρ,Φ)

To evaluate the variance using (18) and (19), we also
need the local frequency response of quadratic regularization,
R0(ρ,Φ), [7], [8], [18], [19].

Practical regularization methods are based on the differences
between neighboring pixel values. For a discrete-space 2D
object µ[~n], a typical quadratic roughness penalty is given
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in (4) and (5) for 1st-order differences. The rl[~n] values are
possibly space variant. For the purpose of local frequency
response analysis, we examine the characteristics of R(µ) near
a pixel ~n0 of interest, so we define rl,0 , rl[~n0] assuming rl[~n]
values vary smoothly. Then, the quadratic roughness penalty
near a pixel ~n0 has the following form:

R(µ) =
∑

~n

L
∑

l=1

rl,0
1

2

(

(cl ∗∗ µ)[~n]
)2

.

The rl,0 values are design parameters that affect the direc-
tionality of the regularization and hence the shape of the PSF.
Each cl[~n] is a (typically) high-pass filter. For a first-order
difference:

cl[~n] = ξl (δ2[~n]− δ2[~n− ~ml]) ,

or for a 2nd-order difference:

cl[~n] = ξl(δ2[~n]− δ2[~n− ~ml]) ∗∗ ξl(δ2[~n]− δ2[~n− ~ml]),

where ξl = ‖~ml‖−υ/2, ~ml = (nl,ml) denotes the spatial
offsets to the neighboring pixels, and υ is the power of weights
for diagonal neighbors that can be chosen by the user. For
example, common practice chooses υ = 1 [20], [21].

Applying Parseval’s theorem, we can rewrite R(µ) as
follows:

R(µ) =

L
∑

l=1

∫ π

−π

∫ π

−π

1

2
rl,0 |Cl(~ω)U(~ω)|2 d~ω

(2π)2
, (37)

where µ[~n]
FT←→ U(~ω) and the DSFT of a Λ-order (where

Λ ∈ N) difference has the following magnitude:

|Cl(~ω)| = ξΛ
l

∣

∣

∣
1− e−ı(~ω·~ml)

∣

∣

∣

Λ

= ξΛ
l 2Λ sinΛ

(

1

2
(~ω · ~ml)

)

.

In the polar coordinates of (19):

|Cl(ρ,Φ)|2= |Cl(2πρ∆~eΦ)|2= ξ2Λ
l 4Λ sin2Λ(π∆ρ~eΦ · ~ml) .

(38)
Thus, the Type I local frequency response for the regularization
operator is

R0(ρ,Φ) = R01(ρ,Φ) =
L
∑

l=1

rl,0 |Cl(ρ,Φ)|2

=

L
∑

l=1

rl,0ξ
2Λ
l 4Λ sin2Λ(π∆ρ~eΦ · ~ml) . (39)

Applying the approximation sin(x) ≈ x to (38) yields:

|Cl(ρ,Φ)|2 ≈ ξ2Λ
l (~ml · ~eΦ)2Λ(2π∆ρ)2Λ

= (2πρ∆)2Λξ
(1−2/υ)2Λ
l cos2Λ(Φ− ϕl),

where the angle between the lth neighbors is

ϕl , tan−1 ml

nl
.

With this simplification, the Type II local frequency response
of the regularizer is approximately separable in (ρ, Φ):

R0(ρ,Φ) ≈ R02(ρ,Φ) = (2πρ∆)2ΛR̃0(Φ), (40)

where

R̃0(Φ) ,

L
∑

l=1

ξ
(1−2/υ)2Λ
l rl,0 cos2Λ(Φ− ϕl) .

This separable form agrees with the familiar FT of the
differentiation operation.

VI. VARIANCE PREDICTION IMPLEMENTATION

Having obtained the approximations to H0(ρ,Φ), the local
frequency response of the Gram operator given in (35) and
(36), and to R0(ρ,Φ), the local frequency response of the
regularizer given in (39) and (40), we can discretize the
integral (18) again to compute the variance image. There are
two variance prediction expressions for fan-beam transmission
tomography based on the Type I H01(ρ,Φ) given in (35) and
R01(ρ,Φ) given in (39), and the Type II H02(ρ,Φ) given in
(36) and R02(ρ,Φ) given in (40).

A. Double integral approach
The variance prediction using H01(ρ,Φ) in (35) and

R01(ρ,Φ) in (39) involves a double integral and can be
implemented by a double summation. We call this prediction
the double integral (DI) approach. The location-dependent
weighting function w0(Φ) can be precomputed, with the com-
putation equivalent to one back-projection. We can coarsely
sample Φ because P0(ρ,Φ) is fairly smooth along Φ.

B. Single integral approach
The separability properties of H02(ρ,Φ) in (36) and

R02(ρ,Φ) in (40) enable us to carry out the inner integral
over ρ analytically. Therefore the double-integral in (18) is
reduced to one single integral over Φ. Substituting (36) and
(40) into (18) yields the remarkably simple expression:

Var{µ̂[~n]}≈
∫ 2π

0

ζ/3

2 |A0(0,Φ)|2 w0(Φ) + α4π2ζR̃0(Φ)
dΦ,

(41)
where ζ = ρ3

max∆β∆S∆
4 is a constant. We call this prediction

the single integral (SI) approach. We evaluate this integral
using a finite summation, with w0(Φ) and R̃0(Φ) precom-
puted. Therefore, computing (41) is equivalent to one back-
projection.

C. Implementation of the single integral prediction
We found empirically that the SI approach (41) gave pre-

dictions that could be improved by including a single global
scale factor, presumably because the SI approach (41) uses
many approximations to achieve its simple form. In particular,
we found that the SI method under estimates the variance,
presumably because the “Fisher information” implied by Type
II local frequency response in (36) is too large for low spatial
frequencies. To determine the scale factor, we assumed that
the DFT-based approach and the analytical approach should
produce equivalent results at the image center. Specifically,
we used the predicted variance for unweighted least squares
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estimator with standard quadratic penalty (QPULS) for unit
variance data.

For QPULS estimator for unit variance data, the statistical
weighting, w(s, β) becomes 1. Consider the standard quadratic
penalty with first-order (Λ = 1) differences and second-order
neighborhood (L = 4), for which ϕ1,2,3,4 = 0, π/2, π/4, and
−π/4 and rl,0 = (1, 1, 1, 1). We used υ = 1 both in calibration
and reconstruction as is the common practice in quadratic
regularization. For these choices, the Type II R02(ρ,Φ) in (40)
becomes independent of Φ:

R̃0(Φ) =

L
∑

l=1

‖~ml‖ = 1 +
√

2. (42)

Finally, to determine the scale factor, we computed the
ratio of the variance predicted by the DFT approach over that
predicted by (41). For the parameters used in our simulations,
this factor was (1.13)2. This value would need to recomputed
for different system geometries or regularization parameters,
but is otherwise patient independent.

VII. SIMULATION RESULTS

To evaluate the performance of the proposed methods,
we implemented the variance predictions for fan-beam to-
mographic images reconstructed by quadratically penalized
likelihood algorithm. We simulated 1000 realizations of fan-
beam transmission scans using a 256×256 Zubal phantom [22]
and a blank scan of 106 counts/detector. The corresponding
sinogram size was 444 samples in s, spaced by ∆S ≈ 2
mm and 492 source positions over 360

◦ . We simulated the
geometry of the GE LightSpeed Pro CT scanner with the
source-to-detector distance around 949 mm, the isocenter-to-
detector distance 408 mm and ∆ = 500/256 mm.

An ellipse support was used for S, with p = 43892. For
simplicity, in (34) we used the width of the central profile
through the FOV:

d0(ϕ) ≈ d(ϕ) ,
2z1z2

√

z2
1 sin2ϕ+z2

2 cos2ϕ
, (43)

where z1 = 244.1 mm and z2 = 220.7 mm are the semi-
major and semi-minor axes of the ellipse. This approximation
is exact when ~n0 is at the ellipse center. The approximation
to d(ϕ) becomes less accurate as ~xc[~n0] approaches the edge
of the ellipse support.

For simplicity, we model the detector response2 in (23) by
a shift-invariant rectangle of width ∆S:

b(s) =
1

∆S

rect

(

s

∆S

)

.

In the case of a square pixel basis χ(~x) = rect2(~x)3, we have
from (51) (see Appendix I)

A0(ν, ϕ) = sinc

(

∆Sν

m0(ϕ)

)

∆2 sinc(ν∆cosϕ) sinc(ν∆sinϕ),

(44)
2A more accurate model could include detector deadspace and crosstalk

effects.
3rect2(~x) , rect(x)rect(y) is a 2D square function.

which we substitute into (32). In our simulation, we make the
following simplification:

m0(ϕ) ≈ mc(ϕ) = mc = Dsd/Ds0,

where mc is the value of m0(ϕ) at the image center.
We chose the regularization parameter α = 211 to give

FWHM = 1.72 pixels, i.e., 3.4 mm, at the center of the image.
For each realization, µ̂ was reconstructed using 70 iterations
of the convergent incremental optimization transfer algorithm
(PL-IOT) [23] with 41 subsets and no nonnegativity constraint.
The initial images were the filtered back-projection (FBP)
images with equivalent spatial resolution, obtained by post-
filtering ramp-filtered FBP images with the designed PSF. We
computed the sample standard deviation pixel by pixel within
the finite support S used in reconstruction. All images and
profiles are shown in Hounsfield unit (HU).

Two prediction approaches are investigated here: the DI ap-
proximation (18) with Type I H01(ρ,Φ) in (35) and R01(ρ,Φ)
in (39), and the SI approximation (41) with R̃0(Φ) in (40). The
former formula was derived with fewer approximations while
the latter formula involves more approximations. The accuracy
and computation time are compared below.

We considered two types of regularization: standard and
certainty-based [24]. In both cases, we implemented (39) and
(40) for regularization with first-order (Λ = 1) differences
and second-order neighborhood (L = 4). In both cases, the
standard deviation images predicted by the DI approach are
displayed while both DI and SI predictions are compared in
the profile plots.

A. Standard Quadratic Penalty Function
We first considered a standard quadratic penalty where

rl,0 = κ2
c ,

and κ2
c is the value of κ2[~n0] at the image center in (45) below.

This choice assures that the resolution of the two studies is
matched at the image center. R̃0(Φ) = (1+

√
2)κ2

c is a constant
for all pixels.

Figure 4 shows the reconstructed images and empirical
standard deviation images. The empirical standard deviation
image for FBP is also shown. The average of FBP standard
deviations is around 2.2 HU, approximately 1.8 times higher
than that of PL-IOT, 1.2 HU, illustrating the noise advantage
of the statistical reconstruction methods at matched resolution.

Figure 4 also shows the central horizontal and vertical pro-
files of the standard deviation maps. The analytical, the FFT-
based and the empirical standard deviations agree with one
another very closely within the object. The largest discrepancy
within the object was about 10% in the left lung for unknown
reasons.

B. Certainty-based Quadratic Penalty Function
We next investigate a more complicated regularizer that was

designed to achieve nearly uniform spatial resolution [24]. In
this case, we used space-varying regularizer:

rl,0 = κ2[~n0],
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Fig. 4. Predicted and empirical standard deviation images (in HU) and central profiles for Zabul phantom for PL fan-beam transmission image reconstruction
using the standard quadratic penalty: R̃0 = (1 +

√
2)κ2

c
.

where

κ2[~n0] ,
1

2π

∫ 2π

0

w(s(r0(ϕ)), β(r0(ϕ), ϕ)) dϕ . (45)

Here, R̃0(Φ) is still independent of Φ, but varies spatially.
Computing the “certainty map” (45) requires a simple back-
projection with fan-to-parallel beam rebinning.

Figure 5 shows the reconstructed images, standard deviation
images and central horizontal and vertical profiles. In this
case, the average of FBP standard deviations is around 2.2
HU, approximately 1.8 times higher than that of PL-IOT, 0.7
HU. The analytical, the FFT-based and the empirical standard
deviations agree with one another very closely within the
object.

In both cases, the analytical and the FFT-based predictions
are somewhat less accurate near the edge of the finite support
used in image reconstruction. This is probably due to the fact
that the “local stationarity” approximation is less accurate in
this area where the statistical weights w(s, β) can vary rapidly.
The approximation (43) may also vary rapidly in our study,
so it may be possible to improve accuracy near the edges of
the FOV by using d0(ϕ).

C. Computation Time and Accuracy
In our calculations, we used 123 samples in Φ and 128

samples in ρ in (18) to predict a 256×256 standard deviation
image. Both DI and SI predictions precompute w0(Φ) and
G0(ρ,Φ). The precomputation time for w0(Φ) was about 19
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Fig. 5. Predicted and empirical standard deviation images (in HU) and central profiles for Zubal phantom for PL fan-beam transmission image reconstruction
using the certainty-based quadratic penalty.

seconds on dual Intel Xeon 3.40GHz CPU. The precomputa-
tion time for G0(ρ,Φ) with 492 samples in ϕ was 2.3 seconds.
The DI prediction requires no scale factor precomputation and
the computation time was about 135 seconds. The SI predic-
tion requires the scale factor precomputation that is (1.13)2 in
our case, and the computation time for prediction was about
0.6 second. In contrast, the FFT-based prediction needed about
374 seconds to compute only one single central profile. As
expected, the DI prediction is slightly more accurate than
the SI prediction, particularly near edges. The SI prediction
matches a bit better with the FFT-based prediction because
the scale factor calibration was based on FFT-predicted values.
For the purposes of regularization design or noise exploration,
we believe that the very fast SI approach is adequate.

Because we only compute two central profiles of the FFT-
based prediction in each case, we compute the normalized rms
(NRMS) percent errors only for these two central profiles. For
κ2

c case, the NRMS percent errors for FFT, DI and SI are
6.6%, 6.8% and 6.6%; for κ2

0 case, the NRMS percent errors
for FFT, DI and SI are 6.5%, 6.0% and 8.3%, respectively.

VIII. CONCLUSION AND DISCUSSION

This paper has developed analytical variance approxima-
tions for 2D tomography. The double integral (18) with
(35) and (39), and the single integral (41) provide fast and
accurate variance predictions for a quadratically penalized
likelihood estimator in fan-beam tomography. The simplest of
the proposed approaches (41) requires one backprojection with
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some additional summations, which is much less computation
than previous FFT-based methods. In fact, using the proposed
methods, we can predict the variance map in much less time
than it takes to reconstruct a single image. The proposed
approximations are especially useful in the case that the
variance information is needed for many or all pixels, such
as when choosing space-varying regularization parameters
[6]. The empirical results from the simulated fan-beam CT
transmission scans demonstrate that the proposed variance
approximations are very accurate. Future work will explore
using these predictions for regularization design.

Although we focused on variance prediction, by using (15)
we could also easily predict covariances and thus predict the
covariance of an ROI whose size is small enough that the local
approximations are sufficiently accurate. However, if only a
single local autocorrelation function is needed, then the FFT
approach is probably easier to use. For analysis of detectability
of lesions with unknown locations, autocorrelations at many
spatial positions may be needed [10], [25]–[28], in which case
the proposed approach based on (15) can save computation.
The matrix method described in (6) and (7) is also applicable
to other imaging modalities, such as PET and SPECT [1].
Therefore the proposed methods are also readily extended to
those imaging modalities, with different considerations of the
weighting function.

The proposed analytical variance approximations are only
investigated in the case of the shift-invariant detector blur. We
can also generalize the analysis to shift-variant detector blur
where the local shift-invariance approximation is applicable,
e.g., for varifocal collimators in SPECT. In this case, b(s− s′)
is replaced by b(s, s′) in (24) and b0(r, ϕ) in (52) becomes

b0(r, ϕ) , m0(ϕ) b(s0(ϕ) + m0(ϕ) r, s0(ϕ)),

where

s0(ϕ) , Dsd arcsin
r0(ϕ)

Ds0
.

This paper has focused on 2D fan-beam geometry. 3D
generalization of these methods can be done by applying
the same principles [29]. This paper has also focused on
analytical variance approximations for the case of quadratic
regularization. An interesting challenge for future work is to
generalize the analysis to the case of edge-preserving non-
quadratic regularization. The analysis in [30] may be a useful
starting point.

APPENDIX I
DERIVATION OF LOCAL IMPULSE RESPONSE

Reparameterize variables s and β in (27) according to the
inversion of (20) and (21):

s→ s(r) = Dsd arcsin(r/Ds0)

β → β(r, ϕ) = ϕ− arcsin(r/Ds0) .

Then the fan-to-parallel beam rebinning of a(s, β;~n) is

a(s(r), β(r, ϕ);~n) ≈
∫

b(s(r)− s(r′))∆

· g
(

r′ − rϕ[~n]

∆
, ϕ

)

|ṡ(r′)| dr′,

, a(r, ϕ;~n) (46)
because r(s(r′)) = r′ and ϕ(s(r′), β(r, ϕ)) ≈ ϕ for r ≈ r′.

A first-order Taylor expansion of s(r) around r′ yields
s(r)− s(r′) ≈ ṡ(r′)(r − r′).

Substituting into (46), the system matrix elements become

a(r, ϕ;~n) ≈
∫

b(ṡ(r′)(r − r′)) ∆

· g
(

r′ − rϕ[~n]

∆
, ϕ

)

|ṡ(r′)| dr′ . (47)

Substituting (47) into (27) and changing variables from (s,
β) to (r, ϕ) using (20) and (21) yields the local impulse
approximation,

h̆d[~n;~n′] ≈ 1

∆β

1

∆S

∫ 2π

0

∫ ∞

−∞

w̄(r, ϕ)a(r, ϕ;~n)a(r, ϕ;~n′)

· |J(r)| dr dϕ

=
1

∆β

1

∆S

∫ 2π

0

w̆(ϕ;~n;~n′)h̆ϕ[~n;~n′] dϕ, (48)

where |J(r)| = |ṡ(r)| is the determinant of Jacobian matrix,
and

h̆ϕ[~n;~n′] ,

∫ ∞

−∞

a(r − rϕ[~n], ϕ;~n) a(r − rϕ[~n′], ϕ;~n′) dr (49)

w̆(ϕ;~n;~n′) ,

∫∞

−∞
w̄(r, ϕ) |J(r)| a(r − rϕ[~n], ϕ) a(r − rϕ[~n′], ϕ) dr
∫∞

−∞
a(r − rϕ[~n], ϕ) a(r − rϕ[~n′], ϕ) dr

w̄(r, ϕ) , w(s(r), β(r, ϕ)).

Let r0(ϕ) , rϕ[~n0]. Because ṡ(r) is fairly smooth, we make
the following approximation for r′ ≈ r0(ϕ):

ṡ(r′) ≈ ṡ(r0(ϕ)) , m0(ϕ) . (50)
Substituting (50) into (47) and simplifying yields

a(r, ϕ;~n) ≈ a(r, ϕ;~n0) , a0(r, ϕ)

=

∫

b0(r − rϕ[~n]−r′′, ϕ)∆g

(

r′′

∆
, ϕ

)

dr′′, (51)

with r′′ = r′ − rϕ[~n] and
b0(r, ϕ) , m0(ϕ) b(m0(ϕ) r) . (52)

Therefore, we further simply (48) as follows

h̆d[~n;~n′] ≈ 1

∆β

1

∆S

∫ 2π

0

w0(ϕ)h̆0(∆(~n− ~n′) · ~eϕ, ϕ) dϕ, (53)

where because w̄(r, ϕ) often varies slowly in r relative to the
typically sharp peak of a0(r, ϕ) at r = 0,

h̆0(r, ϕ) , a0(r, ϕ) ? a0(r, ϕ),

w̆(ϕ;~n;~n′) ≈
∫∞

−∞
w̄(r, ϕ) |m0(ϕ)| a2

0(r − rϕ[~n0], ϕ) dr
∫∞

−∞
a2
0(r − rϕ[~n0], ϕ) dr

≈ |m0(ϕ)| w̄(r0(ϕ), ϕ) , w0(ϕ), (54)
where ? denotes a 1D autocorrelation with respect to r.
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APPENDIX II
DERIVATION OF LOCAL FREQUENCY RESPONSE

The simplest approach to finding the local frequency re-
sponse would be to take the 2D Fourier transform of the
local impulse response in (28), while ignoring the “edge
effects” caused by the support functions in (25). We found this
approach to yield suboptimal accuracy. One way to consider
the edge effects is to use a triangular function with the angular-
dependent width:

h̃ϕ[~n;~n0] , h̆0(∆~n · ~eϕ, ϕ)η1(∆~n)

where

η1(~x) , tri
(

~x · ~e⊥ϕ
d0(ϕ)

)

, (55)

and d0(ϕ) denotes the length of the chord through ~n0 through
the FOV at angle (ϕ + π/2). This approach is inspired by
circulant approximations for Toeplitz matrices [13], [31], [32],
preserving the nonnegative definite property of A′WA. This
choice might not be optimal in our application, and further
investigation may be beneficial.

One alternative way to consider edge effects is to use the
coordinate transformation recommended for analyzing quasi-
stationary noise in [12, p. 870] as follows:

h̃ϕ[~n;~n0] , hϕ[~n0 + ~n/2;~n0 − ~n/2]

= h̆0(∆~n · ~eϕ, ϕ)η2(∆~n),

where ~x0 , ~xc[~n0], and η2 denotes the support of the image,

η2(~x) , η(~x0 + ~x/2)η(~x0 − ~x/2). (56)

This approach yields a local impulse response that is symmet-
ric in ~n, thus ensuring that its spectrum is real.

Another alternative is to refer all displacements relative to
the point ~n0 as follows:

h̃ϕ[~n;~n0] , hϕ[~n0 + ~n;~n0]

= h̆0(∆~n · ~eϕ, ϕ)η3(∆~n),

where
η3(~x) , η(~x0 + ~x)η(~x0). (57)

This choice is not symmetric in ~n but it better corresponds to
the local Fourier analysis based on the DFT of A′WAej . For
simplicity, we could also approximate (57) as follows:

η4(~x) ≈ η0(~x) = η(~x)η(~x0). (58)

This choice also yields a local impulse response that is
symmetric in ~n provided η(~x) is symmetric itself.

We focus on η1(~x) in (55) hereafter because it preserves the
property of nonnegative definiteness [33]. Define the following
“strip like” function:

sϕ(~x) , h̆0(~x · ~eϕ, ϕ)η1(~x),

and sϕ(~x)
2D FT←→ Sϕ(u, v) . Taking the DSFT of (53) yields

the following result:

Hd0(~ω) =
1

∆β

1

∆S

∫ 2π

0

w0(ϕ)Hϕ(~ω) dϕ, (59)

where Hϕ(~ω) is the spectrum of h̃ϕ[~n;~n0] = sϕ(∆~n), as
follows:

Hϕ(~ω) =
∑

~n

sϕ(∆~n) e−ı(~ω·~n)

≈ 1

∆2

∫∫

sϕ(~x) e−ı 1

∆
(~ω·~x) d~x

=
1

∆2
Sϕ

(

~ω

2π∆

)

. (60)

The 2D FT of sϕ(~x) is easiest to see for the case ϕ = 0:

s0(x, y) = h̆0(x, 0)tri
(

y

d0(0)

)

2D FT←→ S0(u, v) = |A0(u, 0)|2 d0(0) sinc2(d0(0) v),

where A0(ν, ϕ) is associated with the detector response and
basis effect, given in (44). By the rotation property of the
2D FT:

Sϕ(ρ,Φ) ≈ |A0(ρ cos(Φ− ϕ), ϕ)|2

·d0(ϕ) sinc2(d0(ϕ)ρ sin(Φ− ϕ)) .

Therefore, using (54) and (60), the local frequency response
H0(ρ,Φ) around a point ~n0 is

H0(ρ,Φ) ≈ 1

∆β∆S∆2

∫ 2π

0

w0(ϕ)Sϕ(ρ,Φ) dϕ . (61)
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