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Abstract

The Majorize-Minimize (MM) optimization technique
has received considerable attention in signal and image
processing applications, as well as in the statistics liter-
ature. At each iteration of an MM algorithm, one con-
structs a tangent majorant function that majorizes the
given cost function and is equal to it at the current iter-
ate. The next iterate is obtained by minimizing this tan-
gent majorant function, resulting in a sequence of iterates
that reduces the cost function monotonically. A well-
known special case of MM methods are Expectation-
Maximization (EM) algorithms. In this paper, we ex-
pand on previous analyses of MM, due to [12, 13],
that allowed the tangent majorants to be constructed in
iteration-dependent ways. Also, in [13], there was an er-
ror in one of the steps of the convergence proof that this
paper overcomes.

There are three main aspects in which our analysis
builds upon previous work. Firstly, our treatment re-
laxes many assumptions related to the structure of the
cost function, feasible set, and tangent majorants. For
example, the cost function can be non-convex and the
feasible set for the problem can be any convex set. Sec-
ondly, we propose convergence conditions, based on up-
per curvature bounds, that can be easier to verify than
more standard continuity conditions. Furthermore, these
conditions in some cases allow for considerable design
freedom in the iteration-dependent behavior of the algo-
rithm. Finally, we give an original characterization of
the local region of convergence of MM algorithms based
on connected (e.g., convex) tangent majorants. For such
algorithms, cost function minimizers will locally attract
the iterates over larger neighborhoods than is typically
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guaranteed with other methods. This expanded treatment
widens the scope of MM algorithm designs that can be
considered for signal and image processing applications,
allows us to verify the convergent behavior of previously
published algorithms, and gives a fuller understanding
overall of how these algorithms behave.

1 Introduction

This paper pertains to the Majorize-Minimize (MM) op-
timization technique1 as applied to minimization prob-
lems of the form

min. Φ(θ) s.t. θ ∈ Θ. (1.1)

Here Φ(θ) : Θ ⊂ R
p → R is a continuously differen-

tiable (but possibly non-convex) cost function, R
p is the

space of length p column vectors,
The MM technique has a long history in a range of

literature. In the statistics literature, a prominent exam-
ple is the Expectation Maximization (EM) methodology
(commonly attributed to [9]) which is an application of
MM to maximum likelihood estimation. Further exam-
ples can be found in in [14, 15, 20, 22]). The interest
in maximum likelihood estimation for tomographic im-
age reconstruction subsequently lead to many examples
of EM, and more general MM algorithms, in the image
processing literature (e.g., [28, 21, 6, 7, 8, 30, 32]). MM
has also received considerable attention in the signal pro-
cessing literature, including [24, 3, 19, 23, 4].

An MM algorithm is one that reduces Φ monotoni-
cally by minimizing a succession of approximations to

1The technique has gone by various other names as well, such
as optimization transfer, SAGE, and iterative majorization. The term
MM was coined in [22].
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Φ, each of which majorizes Φ in a certain sense. An
MM algorithm uses what we call a majorant generator
φ(·; ·) to associate a given expansion point θi with what
we call a tangent majorant φ(·;θi). In the simplest case
(illustrated for a 1D cost function in Figure 1), a tangent
majorant satisfies Φ(θ) ≤ φ(θ;θi) for all θ ∈ Θ and
Φ(θi) = φ(θi;θi). That is, φ(·;θi) majorizes Φ with
equality at θi. The constrained minimizer θi+1 ∈ Θ
of φ(·;θi) satisfies Φ(θi+1) ≤ Φ(θi). Repeating these
steps iteratively, one obtains a sequence of feasible vec-
tors {θi} such that {Φ(θi)} is monotone non-increasing.
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Figure 1: One-dimensional illustration of an MM algo-
rithm.

A more elaborate form of MM was introduced in [12]
that allow an iteration-dependent sequence {φi(·; ·)} of
majorant generators to be used, rather than just a sin-
gle φ(·; ·). This generalization allows considerable free-
dom in choosing the form of the majorant generator at
a given iteration. For example, its form can be adap-
tively determined based on the observed progress of the
algorithm over previous iterations. In addition, one can
allow the tangent majorants {φi(·;θi)} to depend on an
i-dependent subset of the components of θ. The latter re-
sults in iterative steps that, similar to coordinate descent,
reduce Φ(θ) as a function of subsets of the optimization
variables. This technique, which we call block alter-
nation, can simplify algorithm design, because the ma-
jorization requirement need be satisfied only with respect
to the variables being updated. Furthermore, because the
majorization requirement is easier to satisfy, there is em-

pirical evidence that tangent majorants obtained this way
may approximate Φ better (leading to faster convergence)
than non-block alternating alternatives. An example of
where the block alternation technique lead to faster con-
vergence was presented in [12]. Block alternating MM
has also seen subsequent use in [24, 11, 3, 19, 23, 4].

The reasons why the MM technique has been attractive
to algorithm designers are mixed, and some of the work
in this paper may motivate some new reasons. Histori-
cally, the main appeal of MM is perhaps that it often leads
to algorithms in which the iteration updates are given by
simple closed-form formulas (e.g., [28, 6, 7, 10]) and
hence, in these cases, tend to be easy to implement. This
is in contrast to standard gradient descent methods that
employ numerical line searches to ensure global conver-
gence. For large-scale problems, the efficient implemen-
tation of line search operations can require complicated
customized software implementation, as well as special
hardware resources. As an example, one can consider
the minimization of the Poisson loglikelihood function
encountered in fully 3D Positron Emission Tomography
(PET) image reconstruction, e.g., [26]. There, efficiency
demands that line searches be implemented in sinogram
space. Doing so in turn necessitates considerable RAM,
such as would be available on a parallel computing plat-
form. It is likely that, for this reason, investigators in the
field of 3D PET have looked to MM alternatives such as
[28, 7]. A related reason why MM is attractive is that,
when the iteration update computations are simple, one
might hope for reduced overall CPU time. This benefit is
harder to guarantee, because it demands not only that the
tangent majorants be simple to compute/minimize, but
also that they provide accurate approximations to Φ, and
these two design requirements can conflict. Hence, one
sometimes sees examples of MM in the literature that,
although easy to implement, are in fact quite slow (e.g.,
[28]). Conversley, a successful instance of MM acceler-
ation was presented in a logisitic regression example in
[22, Example 11]. There, the MM algorithm was found
to be competitive with Newton’s method. In this paper
(see Section 5), we suggest what might be a third benefit
of MM. Namely, we discuss how the unusual local con-
vergence properties of MM might be harnessed by cer-
tain non-convex minimization strategies.

The overall endeavour of this paper is to revisit and
expand the MM convergence analysis of [13]. The scope
of [13] is the only one that we know of that includes si-
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multaneously the case where the majorant generator se-
quence {φi(·; ·)} can vary non-trivially with i and, fur-
thermore, where minima may lie at constraint bound-
aries. Our treatment makes three principal contributions
to the work begun there. (In the course of our analysis,
we also remedy an error in [13], see Remark 4.5).

Our first contribution is to rework the analysis of
iteration-dependent MM while relaxing many specific
structural assumptions made in [13] on the form of the
constraints, the cost function Φ, and the tangent majo-
rants. For example, in [13], only non-negativity con-
straints were considered.2 Conversely, in this paper, Θ
can be any convex set or, in the case of block alternating
MM, any convex set appropriately decomposable into a
Cartesian product. Furthermore, in [13], Φ and the tan-
gent majorants were both assumed to be strictly convex.
In the present treatment, cases are considered where nei-
ther of the two are even convex. Flexibility is also in-
troduced in the domain over which the tangent majorants
are defined. In [13], the tangent majorant domains were
assumed to be all of Θ, whereas here, the domains can
be strict subsets of Θ. Lastly, in [13], the tangent majo-
rants were assumed twice-differentiable, whereas in our
analysis, only once-differentiability is assumed. These
generalizations widen the range of applications to which
[13] is applicable and provide a more flexible framework
for algorithm design. Moreover, they allow us to verify
the convergence (or at least the asymptotic stationarity)
of some previously published block alternating MM al-
gorithms, which the convergence analysis in [13] was not
general enough to cover. Among these are the algorithm
proposed in [11, Section 6] for the joint estimation of at-
tenuation and activity images in PET. They also include
algorithm designs that we proposed (see [17] and [16,
Section 6.6]) for a motion-corrected PET image recon-
struction application. The convergence analysis in [13]
does not apply to these examples because they involve
non-convex cost functions, and for various other reasons.
Further motivating examples for these generalizations are
discussed in [18, Section 6].

Our second contribution is an alternative set of conver-
gence conditions requiring local upper curvature bounds.
In the MM literature involving i-independent majorant
generators (e.g., [29, 21, 25]), convergence proofs usu-

2Readers who closely scrutinize [13] will see that the line of proof
there would also apply to general polyhedral constraints. It would not,
however, apply to curved constraints, convex or otherwise.

ally invoke an assumption that the {φi(·; ·)} are contin-
uous (jointly in both arguments). This continuity as-
sumption admits an analysis using Zangwill’s conver-
gence theorem [31, p. 91]. In [13], this line of analysis
was generalized to iteration-dependent majorant genera-
tors under certain additional conditions, and the present
paper continues to study these. In addition, however,
we show that the continuity condition can be relaxed in
favor of a requirement that the tangent majorant curva-
tures are uniformly locally upper bounded in the region
of the expansion points. This latter condition is some-
times more easily verifiable than the standard continuity-
based ones. Furthermore, when block alternation is not
used, we show that such a curvature bound is sufficient
for convergence while admitting considerable freedom
in the iteration-dependent behavior of the algorithm (see
Remark 4.2).

Our third contribution is an original characterization
of the local region of convergence of MM algorithms to
local minima. This branch of our analysis is restricted
to tangent majorants that are connected (e.g., convex),
which is a common practical case. Algorithm design-
ers commonly design tangent majorants that are convex
to facilitate minimization. Our results show that the as-
sociated MM algorithm will be attracted to a local min-
ima from essentially any point within a basin-like region
surrounding that minimum. The same is not generally
true of standard derivative-based algorithms. This prop-
erty has important implications for the tendency of com-
mon kinds of MM designs to become trapped at local
minima in non-convex minimization problems. As men-
tioned, however, we also discuss how this property might
be harnessed by some established non-convex minimiza-
tion strategies.

The rest of the paper is organized as follows. In Sec-
tion 2, we formalize the class of MM algorithms con-
sidered in this paper. Next, in Section 3, we give a few
additional mathematical preliminaries and describe vari-
ous conditions imposed in the subsequent analysis. Our
analysis begins in Section 4, where we study the global
convergence of both block alternating and non-block al-
ternating MM. In this section, the principal step is show-
ing the stationarity of MM limit points under conditions
alluded to above. (This asymptotic stationarity property
is often used as a definition for “convergence” in the non-
linear optimization literature.) Once asymptotic station-
arity is established, convergence of MM in norm can be
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proved (and we do so in Theorem 4.4) in a standard way
by imposing discreteness assumptions3 on the set of sta-
tionary points of (1.1). Section 5 gives our analysis of
the local region of convergence for MM, and its relation
to capture basins. A concluding summary follows in Sec-
tion 6.

2 Mathematical Description of MM Al-
gorithms

In this section, we describe the class of MM algorithms
considered in this paper. With no loss of generality, we
assume that the feasible set Θ is a Cartesian product of
M ≤ p convex sets, i.e.,

Θ = Θ1 × Θ2 × . . . × ΘM , (2.1)

where Θm ⊂ R
pm , m = 1, . . . , M and

∑M
m=1 pm =

p. Since Θ is assumed convex, such a representation is
always possible with M = 1.

To facilitate discussion, we first introduce some index-
ing conventions. Given θ = (θ1, . . . , θp) ∈ Θ, we can
represent θ as a vertical concatenation4 of vector parti-
tions θ = (θ1,θ2, . . . ,θM ) where θm ∈ Θm, m =
1, . . . , M . If S = {m1, m2, . . . , mq} is a subset of
{1, . . . , M}, then we write

θS = (θm1 ,θm2 , . . . ,θmq)

ΘS = Θm1 × Θm2 × . . . × Θmq

RS = R
pm1+pm2+...+pmq

to indicate certain Cartesian sub-products and their ele-
ments. Thus, one can write θS ∈ ΘS ⊂ RS . The com-
plement of S shall be denoted S̃ . We may also represent
a given θ ∈ Θ in the partitioned form θ = (θS ,θ

S̃
), and

Φ(θ) may be equivalently written Φ(θS ,θ
S̃
).

Given an index set S ⊂ {1, . . . , M} and a point-to-set
mapping D(·) such that θ̄S ∈ D(θ̄) ⊂ ΘS for all θ̄ ∈

3Non-isolated stationary points are not generally stable (cf. [1,
p. 22]) under perturbations of Φ. Therefore, whether or not an al-
gorithm converges in norm to such points seems mainly a question
of theoretical interest. It is for such reasons that algorithm users of-
ten settle for algorithms with stationary limit points. Nevertheless,
we have done some work on convergence to non-isolated stationary
points, which the interested reader can find in [18, Section 7].

4In this paper, (a, b, c, . . .) will always denote the vertical conca-
tentation of vectors/scalars a, b, c, . . ..

Θ, we define a majorant generator φ(·; ·) as a function
mapping each θ̄ ∈ Θ to what we call a tangent majorant,
a function φ(·; θ̄) : D(θ̄) ⊂ ΘS → R satisfying

Φ(ξ, θ̄
S̃
) − Φ(θ̄)

≤ φ(ξ; θ̄) − φ(θ̄S ; θ̄), ∀ξ ∈ D(θ̄). (2.2)

We call θ̄ the expansion point of the tangent majorant.
Given the point-to-set mapping D(·), we can also write
φ(·; ·) : D → R, in which

D =
{

(ξ; θ̄) : ξ ∈ D(θ̄) ⊂ ΘS , θ̄ ∈ Θ
}

denotes the domain of the majorant generator.
To design an MM algorithm, one selects an initial

point θ0 ∈ Θ, a sequence of index sets
{

Si
}∞

i=0
, and a

sequence of majorant generators
{

φi(·; ·) : Di → R
}∞

i=0
with domains

Di =
{

(ξ; θ̄) : ξ ∈ Di(θ̄) ⊂ ΘSi , θ̄ ∈ Θ
}

.

where the Di(·) ⊂ ΘSi are point-to-set mappings, each
satisfying θ̄Si ∈ Di(θ̄) for all θ̄ ∈ Θ. The simplest
case is when Di(θ̄) = ΘSi and Di = ΘSi × Θ for all i.
This was the assumption made in [13]. This assumption
does not hold, however, for the MM algorithms in [6, 17].
Once the majorant generators are chosen, the MM algo-
rithm is implemented by generating an iteration sequence
{

θi ∈ Θ
}∞

i=0
satisfying,

θi+1
Si ∈ argmin

ξ∈Di(θi)

φi(ξ;θi) (2.3)

θi+1
S̃i

= θi

S̃i . (2.4)

Here, we assume that the set of minimizers in (2.3) is
non-empty. We shall refer to the total sequence

{

θi
}∞

i=0
produced this way as an MM sequence. In the simplest
case, in which one chooses φi(θSi ; θ̄) = Φ(θSi , θ̄

S̃i)
for all i, (2.3) and (2.4) become a generalization of block
coordinate descent (e.g., [1, p. 267]), in which the coordi-
nate blocks are not necessarily disjoint. By virtue of (2.2)
and (2.3), {Φ(θi)} is monotonically non-increasing.

A tangent majorant is a mild generalization of what we
call a true tangent majorant. A function φ(·; θ̄) satisfy-
ing (2.2) is a true tangent majorant if it also satisfies

φ(ξ; θ̄) ≥ Φ(ξ, θ̄
S̃
) ∀ξ ∈ D(θ̄), (2.5)

φ(θ̄S ; θ̄) = Φ(θ̄). (2.6)
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That is, φ(·; θ̄) majorizes Φ(·, θ̄
S̃
) over D(θ̄) and is tan-

gent to it in the sense that equality holds5 at θ̄S . These
considerations motivate our choice of the term tangent
majorant.6 Any tangent majorant can be made into a true
tangent majorant by adding to it an appropriate global
constant. Doing so does not influence the update formu-
lae (2.3) and (2.4). The distinction between tangent ma-
jorants and true tangent majorants is therefore irrelevant
in studying MM sequences. The distinction becomes im-
portant, however, when deriving tangent majorants by
composition of functions (see [18, Note A.1]).

When the sets S i vary non-trivially with the iteration
number i, we say that the algorithm is block alternating
(cf. [12, 13]). Conversely, if all S i = {1, . . . , M}, then
ΘSi = Θ for all i, and we say that the algorithm is not
block alternating (or, that the updates are simultaneous).
In the latter case, (2.2) simplifies to

Φ(ξ) − Φ(θ̄)

≤ φ(ξ; θ̄) − φ(θ̄; θ̄), ∀ξ ∈ D(θ̄), (2.7)

while (2.3) and (2.4) reduce to

θi+1 ∈ argmin
θ∈Di(θi)

φi(θ;θi), (2.8)

The technique of block alternation can be advantageous
because it can be simpler to derive and minimize tangent
majorants satisfying (2.2), which involve functions of
fewer variables, than tangent majorants satisfying (2.7).
Block alternation can also provide faster alternatives to
certain non-block alternating algorithm designs [12]. To
apply block alternation meaningfully, Θ must be de-
composable into the Cartesian product form (2.1) with
M > 1.

3 Mathematical Preliminaries and As-
sumptions

In this section, we overview mathematical ideas and as-
sumptions that will arise in the analysis to follow.

5It is also tangent to it in the sense that the directional derivatives
of φ(·; θ̄) and Φ(·, θ̄

S̃
) match at θ̄S except in special circumstances

(see [18, Note A.2]).
6In some literature, the term surrogate has been used, however

much more general use of this term has been used in other works. We
feel that the term tangent majorant is much more descriptive of the
kind of surrogate functions used in MM specifically.

3.1 General Mathematical Background

A closed d-dimensional ball of radius r and centered at
x ∈ R

d is denoted

Bd(r, x)
4
=

{

x′ ∈ R
d : ||x′ − x|| ≤ r

}

.

where || · || is the standard Euclidean norm. For the min-
imization problem (1.1), we shall also use the notation

BS(r, ξ)
4
= ΘS ∩

{

ξ′ ∈ RS : ||ξ′ − ξ|| ≤ r
}

.

to denote certain constrained balls. Given a set G ⊂ R
d,

the notation cl(G), ri(G), and aff(G) shall denote the
closure, relative interior, and affine hull of G, respec-
tively. The notation ∂G will denote the relative boundary,
cl(G) \ ri(G).

A function f : D ⊂ R
d → R is said to be connected

on a set D0 ⊂ D if (see [27, p. 98]), given any x, y ∈ D0,
there exists a continuous function g : [0, 1] → D0 such
that g(0) = x, g(1) = y, and

f(g(α)) ≤ max{f(x), f(y)}

for all α ∈ (0, 1). A set C ⊂ R
d is said to be path-

connected if, given any x, y ∈ C there exists a con-
tinuous function g : [0, 1] → C such that g(0) = x
and g(1) = y. Convex and quasi-convex functions are
simple examples of connected functions with g(α) =
αy + (1 − α)x. Also, it has been shown (e.g., Theo-
rem 4.2.4 in [27, p. 99]) that a function is connected if
and only if its sublevel sets are path-connected.

Often, we will need to take gradients with respect to
a subset of the components of a function’s argument.
Given a function f(x; y), we shall denote its gradient
with respect to its first argument, x, as ∇10f(x; y). Like-
wise, ∇20f(x; y) shall denote the Hessian with respect
to x. An expression like ∇mΦ(θ), m ∈ {1, . . . , M}
shall denote the gradient with respect to the sub-vector
θm ∈ Θm of θ. Similarly, ∇SΦ(θ) is the gradient with
respect to θS .

A key question in the analysis to follow is whether the
limit points of an MM algorithm (i.e., the limits of sub-
sequences of {θi}) are stationary points of (1.1). By a
stationary point of (1.1), we mean a feasible point θ∗ that
satisfies the first order necessary optimality condition,

〈∇Φ(θ∗), θ − θ∗〉 ≥ 0 ∀θ ∈ Θ. (3.1)
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Here 〈·, ·〉 is the usual Euclidean inner product. Hence-
forth, when an algorithm produces a sequence {θi}
whose limit points (if any exist) are stationary points of
(1.1), we say that the algorithm and the sequence {θi}
are asymptotically stationary .

3.2 Assumptions on MM Algorithms

Throughout the article, we consider cost functions Φ and
tangent majorants φ(·; θ̄) that are continuously differen-
tiable throughout open supersets of Θ and D(θ̄) respec-
tively. For every θ̄, the domain D(θ̄) is assumed convex.
In addition, for a given MM algorithm and correspond-
ing sequence {φi(·;θi)}, we impose conditions that fall
into one of two categories. Conditions in the first cate-
gory, listed next, are what we think of as regularity condi-
tions. In this list, a condition enumerated (Ri.j) denotes a
stronger condition than (Ri), i.e., (Ri.j) implies (Ri). Typ-
ical MM algorithms will satisfy these conditions to pre-
clude certain degenerate behavior that could otherwise be
exhibited.

(R1) Feasibility of the algorithm. The sequence {θi} lies
in a closed subset of Θ. Thus, any limit point of
{θi} is feasible.

(R1.1) Feasibility/boundedness of the algorithm. The
sequence {θi} is contained in a compact sub-
set of Θ.

(R2) First order consistency/continuity. For each i and
ξ ∈ ΘSi , the Gâteaux differential,

ηi(θ; ξ)
4
=

〈

∇10φi(θSi ;θ), ξ − θSi

〉

(3.2)

is continuous as a function of θ throughout Θ. Fur-
thermore,

ηi(θi; ξ) =
〈

∇SiΦ(θi), ξ − θi
Si

〉

. (3.3)

Thus, the directional derivatives of the tangent ma-
jorants {φi(·;θi)} at their expansion points match
those of the cost function in feasible directions.

(R2.1) Matching gradients. For every i and θ̄ ∈ ΘSi ,

∇10φi(θ̄Si ; θ̄) = ∇SiΦ(θ̄). (3.4)

Here, the tangent majorant and cost function deriva-
tives match in all directions (not just feasible ones)
and at all expansion points (not just at the {θi}).
Note that, under (R2.1), the continuity of any
ηi(·; ξ) follows from (3.4) and the fact that Φ is con-
tinuously differentiable.

(R3) Minimum size of tangent majorant domains. There
exists an r > 0 such that BSi(r,θi

Si) ⊂ Di(θi) for
all i. In other words, each tangent majorant is de-
fined on a feasible neighborhood of some minimum
size around its expansion point.

Aside from the above regularity conditions, most re-
sults will require specific combinations of the following
technical conditions. Similar to before, a condition de-
noted (Ci.j) implies (Ci).

(C1) Connected tangent majorants. Each tangent majo-
rant φi(·;θi) is connected on its respective domain
Di(θi).

(C2) Finite collection of majorant generators. The ele-
ments of the sequence {φi(·; ·)} are chosen from a
finite set of majorant generators.

(C3) Continuity of majorant generators in both arguments.
For each fixed i, the majorant generator
φi(·; ·) is continuous throughout its domain
Di. In addition, for any closed subset Z of
Θ, there exists an ri

Z
> 0 such that the set

{

(ξ,θ) : ξ ∈ BSi(ri
Z
,θi

Si),θ ∈ Z
}

lies in a
closed subset of Di.

(C4) Regular updating of coordinate blocks. There ex-
ists an integer J > 0 and, for each m ∈
{1, . . . , M}, an index set S(m) containing m, a
majorant generator φ(m)(·; ·), and a set Im =
{

i : Si = S(m), φi = φ(m)
}

such that

∀n ≥ 0, ∃i ∈ [n, n + J ] s.t. i ∈ Im.

That is, every sub-vector θm ∈ Θm, m = 1 . . .M
of θ is updated regularly by some φ(m).

(C5) Diminishing differences. lim
i→∞

||θi+1 − θi|| = 0.

(C5.1) Uniform strong convexity. The sequence {θi}
has at least one feasible limit point. Also, there
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exists a γ− > 0, such that for all i and ξ,ψ ∈
Di(θi),

〈

∇10φi(ξ;θi) −∇10φi(ψ;θi), ξ −ψ
〉

≥ γ−||ξ −ψ||2.

In other words, the {φi(·;θi)} are strongly
convex with curvatures that are uniformly
lower bounded in i. The fact that (C5.1) im-
plies (C5) is proven in Lemma 3.4(c).

(C6) Uniform upper curvature bound. In addition to
(R3), there exists a γ+ ≥ 0, such that for all i and
ξ ∈ BSi(r,θi

Si) (here BSi(r,θi
Si) is as in (R3)),

〈

∇10φi(ξ;θi) −∇10φi(θi
Si ;θ

i), ξ − θi
Si

〉

≤ γ+||ξ − θi
Si ||

2
.

In other words, the curvatures of the tangent majo-
rants are uniformly upper bounded along line seg-
ments emanating from their expansion points. The
line segments must extend to the boundary of a fea-
sible neighborhood of size r around the expansion
points.

There are a variety of standard conditions under which
Condition (R1) will hold. The simplest case is if Θ is it-
self closed. Alternatively, (R1) will hold if one can show
that the sublevel sets sublevτ Φ

4
= {θ ∈ Θ : Φ(θ) ≤ τ}

of Φ are closed, which is often a straightforward exer-
cise. In the latter case, with τ0 = Φ(θ0), the sublevel set
sublevτ0 Φ is closed, and because {Φ(θi)} is montoni-
cally non-increasing, it follows that the entire sequence
{θi} is contained in this set. Similarly, if Θ (or just
sublevτ0 Φ) is compact, then (R1.1) holds. The closure
or compactness of sublevel sets often follows if Φ is co-
ercive, i.e., tends to infinity at the boundary of Θ.

The simplest case in which (R3) holds is when
Di(θ) = ΘSi for all i and θ ∈ Θ. A typical situa-
tion in which (C4) holds is if the index sets {S i} and
the majorant generators {φi(·; ·)} are chosen cyclically.
Condition (C5) has frequently been encountered in the
study of feasible direction methods (e.g., [27, p. 474]).
Condition (C5.1) is a sufficient condition for (C5) that is
relatively easy to verify. It is essentially a generalization
of Condition 5 in [13].

Remark 3.1 In the MM literature, the stronger condition
(R2.1) is used customarily to ensure (R2). However, for
constrained problems, this can be excessive as discussed
in [18, Note A.3].

Remark 3.2 Equation (3.3) is, in fact, implied whenever
aff(Di(θ̄)) = aff(ΘSi) and θ̄Si ∈ ri(Di(θ̄)). For details,
see [18, Note A.2].

3.3 Lemmas

We now give several lemmas that facilitate the analysis
in this paper. Most of these lemmas are slight generaliza-
tions of existing results. Their proofs are straightforward
exercises and are omitted here, but the reader can find
full proofs in [18].

Lemma 3.3 (Functions with curvature bounds)
Suppose f : D ⊂ R

d → R is a continuously differen-
tiable function on a convex set D and fix y ∈ D.

(a) If 〈∇f(x) −∇f(y), x − y〉 ≤ γ+||x − y||2 for
some γ+ > 0 and ∀x ∈ D, then likewise

f(x) − f(y) ≤ 〈∇f(y), x − y〉 +
1

2
γ+||x − y||2.

(b) If 〈∇f(x) −∇f(y), x − y〉 ≥ γ−||x − y||2, for
some γ− > 0 and ∀x ∈ D, then likewise

f(x) − f(y) ≥ 〈∇f(y), x − y〉 +
1

2
γ−||x − y||2.

Lemma 3.4 (Implications of limit points) Suppose
that {θi} is an MM sequence with a limit point θ∗ ∈ Θ.
Then

(a) {Φ(θi)} ↘ Φ(θ∗).

(b) If θ∗∗ ∈ Θ is another limit point of {θi}, then
Φ(θ∗∗) = Φ(θ∗).

(c) If (C5.1) also holds then, lim
i→∞

||θi − θi+1|| = 0.

Lemma 3.5 (Convergence to isolated stationary points)
Suppose {θi} is a sequence of points lying in a compact
set K ⊂ Θ and whose limit points S ⊂ K are stationary
points of (1.1). Let C denote the set of all stationary
points of (1.1) in K. If either of the following is true,
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(a) C is a singleton, or

(b) Condition (C5) holds and C is a discrete set.

then {θi} in fact converges to a point in C.

4 Asymptotic Stationarity and Conver-
gence to Isolated Stationary Points

In this section, we establish conditions under which MM
algorithms are asymptotically stationary. Convergence
in norm is then proved under standard supplementary
assumptions that the stationary points are isolated (see
Theorem 4.4). Theorem 4.1, our first result, establishes
that non-block alternating MM sequences are asymptot-
ically stationary under quite mild assumptions. Two sets
of assumptions are considered. One set involves (C3), a
continuity condition similar to that used in previous MM
literature (e.g., [29, 13, 25]). The continuity condition
is motivated by early work due to Zangwill [31, p. 91],
which established a broadly applicable theory for mono-
tonic algorithms.

In the second set, the central condition is (C6), which
requires a uniform local upper bound on the tangent ma-
jorant curvatures. To our knowledge, we are the first to
consider such a condition in the context of MM.7 Con-
dition (C6) can be easier to verify than (C3). For ex-
ample, the SPS algorithm of [10] is an example of MM
based on quadratic tangent majorants. To verify that it
satisfies (C3), one must show that the optimal curvature
function ci(l

n
i ) (see [10], Equation (28)) is continuous,

which is not apparent from the defining expression. Con-
versely, to verify (C6), it is sufficient to show that ci(l

n
i )

bounded, a fact that follows readily from the fact that
the cost function considered in [10] has globally bounded
second derivatives.

Theorem 4.1 (Stationarity without block alternation)
Suppose that all S i = {1, . . . , M}, that {θi} is an MM
sequence generated by (2.8), and that the regularity
conditions (R1), (R2), and (R3) hold. Suppose further
that either (C6) or the pair of conditions {(C2), (C3)}
holds. Then any limit point of {θi} is a stationary point
of (1.1).

7Curvature bounds also arise in the convergence theory of trust-
region methods, e.g., [5, pp. 121-2].

Proof. Suppose θ∗ ∈ Θ is a limit point of {θi} (it must
lie in Θ due to (R1)) and, aiming for a contradiction, let
us assume that it is not a stationary point. Then there
exists a θ′ 6= θ∗ ∈ Θ such that

〈

∇Φ(θ∗),
θ′ − θ∗

||θ′ − θ∗||

〉

< 0. (4.1)

Since ∇Φ is continuous, then, with (R2) and (R3), it fol-
lows that there exists a constant c < 0 and a subsequence
{θik} satisfying, for all k,

||θ′ − θik || ≥ min(r, ||θ′ − θ∗||/2)
4
= t̄, (4.2)

where r is as in (R3), and
〈

∇10φk(θik ;θik),
θ′ − θik

||θ′ − θik ||

〉

≤ c. (4.3)

Define the unit-length direction vectors

s
k 4

=
θ′ − θik

||θ′ − θik ||
, s

∗ 4
=

θ′ − θ∗

||θ′ − θ∗||

and, for t ∈ [0, t̄ ], the scalar functions

hk(t)
4
= φik(θik + tsk;θik)

−
[

φik(θik ;θik) − Φ(θik)
]

. (4.4)

Due to (R3) and (4.2), all hk are well-defined on this
common interval. The next several inequalities follow
from (2.8), (2.7), and Lemma 3.4(a), respectively,

hk(t) ≥ φik(θik+1;θik) −
[

φik(θik ;θik) − Φ(θik)
]

≥ Φ(θik+1) (4.5)
≥ Φ(θ∗). (4.6)

The remainder of the proof addresses separately the cases
where {(C6)} and {(C2), (C3)} hold.

First, assume that (C6) holds. This, together with
Lemma 3.3(a), implies that for t ∈ [0, t̄ ],

hk(t) − hk(0) ≤ ḣk(0)t +
γ+

2
t2.

However, hk(0) = Φ(θik), while ḣk(0) ≤ c due to (4.3).
These observations, together with (4.6), leads to

Φ(θ∗) − Φ(θik) ≤ ct +
γ+

2
t2 t ∈ [0, t̄ ] .
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Passing to the limit in k,

ct +
γ+

2
t2 ≥ 0, t ∈ [0, t̄ ] .

Finally, dividing this relation through by t and letting
t ↘ 0 yields c ≥ 0, contradicting the assumption that
c < 0, and completing the proof for this case.

Now, assume {(C2), (C3)}. In light of (C2), we can
redefine our subsequence {θik} so that, in addition to
(4.2) and (4.3), φk(·; ·) equals some fixed function φ̂(·; ·)
for all k. That and (4.5) give, for t ∈ [0, t̄ ],

hk(t) = φ̂(θik + tsk;θik) −
[

φ̂(θik ;θik) − Φ(θik)
]

≥ Φ(θik+1). (4.7)

From (R1), we know that {θik} lies in a closed subset Z
of Θ. With (C3), there therefore exists a positive rZ ≤ t̄
such that hk(t), as given in (4.7), converges as k → ∞

to h∗(t)
4
= φ̂(θ∗ + ts∗;θ∗) −

[

φ̂(θ∗;θ∗) − Φ(θ∗)
]

for
all t ∈ [0, rZ ]. Letting k → ∞ in (4.7) therefore yields,

h∗(t) ≥ Φ(θ∗) ∀t ∈ [0, rZ ] . (4.8)

The function h∗(t) is differentiable at t = 0 due to (R2).
Now, hk(0) = Φ(θik), so that in the limit, h∗(0) =
Φ(θ∗). Thus, we have that (4.8) holds with equality at
t = 0, from which it follows that

ḣ∗(0) ≥ 0. (4.9)

However, ḣk(0) ≤ c due to (4.3), and the continuity re-
quirement in (R2) implies that ḣk(0) converges to ḣ∗(0)
as k → ∞. Thus, we have in the limit that ḣ∗(0) ≤ c <
0, contradicting (4.9). 2

Remark 4.2 (Curvature and iteration-dependence)
Note in Theorems 4.1 that, when the curvature upper
bound (C6) holds, there is essentially no restriction on
how {φi(·; ·)} can depend on i.

The next result addresses the block alternating case,
but requires additional conditions, namely (C4) and (C5).
(Although, Condition (C2) is no longer required.) These
conditions, however, are no stronger than those invoked
previously in [13]. Condition (C4) is a generalization of
[13, Condition 6]. Condition (C5) is an implied condition
in [13], as shown in Lemma 3 in that paper.

Theorem 4.3 (Stationarity with block alternation)
Suppose that {θi} is an MM sequence generated by (2.3)
and (2.4) and that the regularity conditions (R1), (R2),
and (R3) hold. Suppose, further, that (C4), (C5) and
either (C6) or (C3) holds. Then any limit point of {θi}
is a stationary point of (1.1).
Proof. Suppose θ∗ ∈ Θ is a limit point of {θi} (it
must lie in Θ due to (R1)) and, aiming for a contradiction,
let us assume that it is not a stationary point. In light
of (2.1), there therefore exists a θ′ 6= θ∗ ∈ Θ and an
m ∈ {1, . . . , M}, such that

〈

∇mΦ(θ∗), θ′m − θ∗m
〉

< 0 (4.10)

and such that θ′m̃ = θ∗m̃, ∀m̃ 6= m. Then, with S(m) as
in (C4), it follows from (4.10) that,

〈

∇S(m)Φ(θ∗),
θ′
S(m) − θ

∗

S(m)

||θ′
S(m) − θ

∗

S(m) ||

〉

< 0. (4.11)

Now, consider a subsequence {θik} converging to θ∗.
We can assume that S ik = S(m) and φik = φ(m), for
otherwise, in light of (C4), we could construct an alter-
native subsequence {θik+Jk}, Jk ≤ J which does have
this property. Furthermore, this alternative subsequence
would converge to θ∗ due to (C5).

In light of (4.11), we can also choose {θik} so that,
similar to the proof of Theorem 4.1,

||θ′ − θik || ≥ min(r, ||θ′ − θ∗||/2)
4
= t̄.

and
〈

∇10φ(m)(θik
S(m) ;θ

ik),
θ′
S(m) − θ

ik
S(m)

||θ′
S(m) − θ

ik
S(m) ||

〉

≤ c.

for some c < 0. Now define

s
k 4

=
θ′
S(m) − θ

ik
S(m)

||θ′
S(m) − θ

ik
S(m) ||

and, for t ∈ [0, t̄ ]

hk(t)
4
=φ(m)(θik

S(m) + tsk;θik)

−
[

φ(m)(θik
S(m) ;θ

ik) − Φ(θik)
]

.

The form and properties of this hk(t) is a special case of
that defined in (4.4). Under (C6), a verbatim argument as
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in the proof of Theorem 4.1 therefore leads to the contra-
diction c ≥ 0, completing the proof for this case. Like-
wise, the hk(t) above has the same form and properties as
in (4.7). The arguments in the proof of Theorem 4.1 fol-
lowing (4.7) relied only on (C3), and complete the proof
of this theorem as well. 2

In the following theorem, we deduce convergence in
norm by adding discreteness assumptions on the station-
ary points of (1.1).

Theorem 4.4 (Convergence in norm) Suppose {θi} is
an MM sequence satisfying (R1.1), as well as the condi-
tions of either Theorem 4.1 or Theorem 4.3. Suppose, in
addition, that either of the following is true.

(a) The problem (1.1) has a unique solution as its sole
stationary point, or

(b) Condition (C5) holds and (1.1) has a discrete set of
stationary points.

Then {θi} converges to a stationary point. Moreover, in
case (a), the limit is the unique solution of (1.1).
Proof. Under (R1.1), {θi} lies in a compact subset of
Θ. Moreover, the limit points of {θi} are all guaranteed
to be stationary by either Theorem 4.1 or Theorem 4.3.
The result then follows from Lemma 3.5. 2

Remark 4.5 (An error remedied) The convergence
analysis in [13] is less general than stated due to an
error in the proof of Lemma 6 in that paper. The error
occurs where it is argued “if ∇10

k φ(k)(θi
S(k) ;θ

i) > 0

then θi+1
k > θi

k”. This argument would be valid only
if, in addition to what was already assumed, φ(k)(·;θi)
were a function of a single variable. Due to the analysis
in the present paper, however, we can claim that the con-
clusions of [13] are indeed valid, even if the arguments
are not. This follows from Theorem 4.4(a) above, which
implies convergence under conditions no stronger than
those assumed in [13].

5 Region of Local Convergence for
Connected Tangent Majorants

In the study of minimization algorithms, one often
wishes to know over what surrounding region of a strict

local minimizer an algorithm is guaranteed to converge
to that minimizer. In this section, we characterize this
region of capture for MM algorithms that use connected
(e.g., convex) tangent majorants. It is a prevalent design
choice to make the tangent majorants convex, since this
facilitates their minimization. We show in Theorem 5.6
that any unimodal, basin-shaped region surrounding a
minimizer is a region of capture.

This is to be contrasted with the standard theory con-
cerning derivative-based methods (e.g., gradient, New-
ton’s, Levenberg-Marquardt). If one examines some
standard local convergence proofs (e.g., [1, p. 51, Propo-
sition 1.2.5] and [1, p. 90, Proposition 1.4.1(a)]) for these
methods, one finds that capture is only guaranteed in a
neighborhood where the derivatives are in sufficiently
close agreement with the derivatives at the minimizer.
Such a neighbourhood can be a significantly small subset
of a basin-shaped region around the minimizer. Even just
by considering 1D examples (e.g., Figure 1 in the interval
[B, C]), one can see that the first and second derivatives
of a cost function can vary greatly throughout a basin.
Thus, our findings suggest that connected tangent majo-
rants lead to larger regions of capture than for non-MM
derivative-based algorithms. This property has various
practical implications that we shall discuss.

To proceed with our analysis, we require a formal
mathematical definition of a “basin”. The following def-
inition describes what we call a generalized basin. It in-
cludes the kind of regions that one traditionally thinks of
as a basin-shaped region as a special case.

Definition 5.1 We say that a set G ⊂ Θ is a generalized
basin (with respect to the minimization problem (1.1)) if,
for some θ ∈ G, the following is never violated

Φ(θ) < Φ(θ̃), θ̃ ∈ cl(G) ∩ cl(Θ \ G). (5.1)

Moreover, we say that such a θ is well-contained in G.

Thus, a point is well-contained in G if it has lower
cost than any point θ̃ in the common boundary cl(G) ∩
cl(Θ \G) between G and its complement. The definition
is worded so that cl(G) ∩ cl(Θ \G) can be empty. Thus,
for example, the whole feasible set Θ always constitutes
a generalized basin (provided that it contains some θ),
because cl(Θ) ∩ cl(Θ \ Θ) is empty, implying that (5.1)
can never be violated.
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Remark 5.2 The regions described by Definition 5.1 are
a bit more general than traditional notions of a capture
basin in a few ways. In particular, the definition re-
quires neither that Φ be unimodal over G, nor that G be
path-connected. However, it is straightforward to show
that any generalized basin G must have the same dimen-
sion as Θ, in the sense that aff(G) = aff(Θ) (see [18,
Note A.5]). Thus, for example, if Θ = R

2, no line seg-
ment inside Θ can constitute a generalized basin. This is
consistent with common intuition.

Remark 5.3 Any sublevel set G = {θ ∈ Θ : Φ(θ) ≤ τ}
is a generalized basin so long as τ is not the global mini-
mum value of Φ over Θ. Moreover, any global minimizer
θ∗ is well-contained in G.

The following proposition lays the foundation for the
results of this section. It asserts that, if the expansion
point of a connected tangent majorant is well-contained
in a generalized basin G, then any point that decreases
the cost value of that tangent majorant (relative to the
expansion point) is likewise well-contained in G.

Proposition 5.4 Suppose that φ(·; θ̄) is a tangent majo-
rant that is connected on its domain D(θ̄) ⊂ ΘS and
whose expansion point θ̄ ∈ Θ is well-contained in a gen-
eralized basin G. Suppose, further, that θ ∈ Θ satisfies

θS ∈ D(θ̄), θ
S̃

= θ̄
S̃
,

φ(θS ; θ̄) ≤ φ(θ̄S ; θ̄), (5.2)

Then θ is likewise well-contained in G.
Proof. It is sufficient to show that θ ∈ G. For taking any
θ̃ ∈ cl(G) ∩ cl(Θ \ G), and then combining (5.2), (2.2),
and the fact that θ̄ is well-contained in G,

Φ(θ) ≤ Φ(θ̄) < Φ(θ̃), (5.3)

implying that θ is also well-contained in G. Aiming for
a contradiction, suppose that θ ∈ Θ \ G. Since φ(·; θ̄)
is connected on D(θ̄), there exists a continuous function
g : [0, 1] → Θ with g(0) = θ̄, g(1) = θ, and such that,
for all α ∈ (0, 1), one has

[g(α)]S ∈ D(θ̄),

[g(α)]
S̃

= θ̄
S̃
,

φ([g(α)]S ; θ̄) ≤ max{φ(θ̄S ; θ̄), φ(θS ; θ̄)}

= φ(θ̄S ; θ̄), (5.4)

where the equality in (5.4) is due to (5.2). Also, since
g(0) = θ̄ ∈ G,

α∗ 4
= sup {α ∈ [0, 1] : g(α) ∈ G}

is well-defined. Finally, let ψ = g(α∗).Combining the
definitions of g() and α∗, the continuity of g(), and the
fact that θ ∈ Θ \ G, one can readily show that ψ ∈
cl(G) ∩ cl(Θ \ G).

Therefore, from the rightmost inequality in (5.3), we
have, with θ̃ = ψ,

Φ(θ̄) < Φ(ψ) = Φ([g(α∗)]S , θ̄
S̃
). (5.5)

With (2.2), this implies that φ([g(α∗)]S ; θ̄) > φ(θ̄S ; θ̄)
contradicting (5.4). 2

Using Proposition 5.4, we obtain the following result
as an immediate consequence. It articulates a capture
property for MM sequences.

Theorem 5.5 (Capture property of MM) Suppose that
{θi} is an MM sequence generated by (2.3) and (2.4). In
addition, suppose that some iterate θn is well-contained
in a generalized basin G and that the tangent majorant
sequence {φi(·;θi)}∞i=n satisfies (C1). Then likewise θi

is well-contained in G for all i > n.
Proof. The result follows from Proposition 5.4 and an
obvious induction argument. 2

Finally, we obtain the principal result of this section.

Theorem 5.6 (Region of Convergence) In addition to
the assumptions of Theorem 5.5, suppose that the condi-
tions of either Theorem 4.1 or Theorem 4.3 are satisfied.
Suppose further that G is bounded and cl(G) contains a
single stationary point θ∗. Then {θi} converges to θ∗.
Proof. Since G is bounded, it follows from Theorem 5.5
that the sequence {θi} lies in the compact set K = cl(G).
Moreover, all limit points of {θi} are stationary, as as-
sured by either Theorem 4.1 or Theorem 4.3. The con-
clusions of the theorem then follow from Lemma 3.5(a).
2

As mentioned, Theorem 5.6 implies that MM al-
gorithms, based on connected tangent majorants, have
wider local regions of capture than traditional derivative-
based algorithms generally have. There are a mixture of
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positive and negative practical implications to this prop-
erty. Since it is common to use convex (and hence con-
nected) tangent majorants, it is essential for algorithm de-
signers to be aware of these implications.

A positive consequence is that global minimizers will,
as a special case, attract the iterates over larger distances.
Thus, the algorithm may only require a a moderately
good initial guess of the solution to perform well. A neg-
ative consequence is that sub-optimal local minimizers
will also attract the iterates over larger distances. Thus,
if not even a moderately good initial guess is available,
the chances of failure can be high, depending on the pre-
ponderance of sub-optimal local minima in the graph of
Φ.

A potential application of Theorem 5.6 is to non-
convex optimization strategies that decompose the prob-
lem into a sequence of local minimization steps. These
include a method due to [2] called Graduated Non-
Convexity (GNC), in which a parametric family of ap-
proximations to the cost function Φ are locally mini-
mized at successive increments of the parameter. The se-
quence of local minimizers are meant to trace a paramet-
ric curve to the global minimum of Φ. Another example
is the strategy of selecting a mesh of initial points and
locally minimizing Φ around each point so as to probe
for the global minimum. In these strategies, MM with
connected tangent majorants seem an appropriate tool
for implementing the local minimization steps since, of
course, local minimization tasks benefit from a wide re-
gion of convergence.

6 Summary

In this paper, we have revised the analysis of [13] in
an expanded framework, introduced alternative conver-
gence conditions, and provided original insights into the
locally convergent behavior of iteration-dependent MM.
In the course of doing so, we also remedied an error in
the previous convergence proof (see Remark 4.5). The
core results of our global convergence analysis were The-
orems 4.1 and 4.3, which proved asymptotic stationarity
for non-block alternating and block alternating MM re-
spectively. The core result of our local convergence anal-
ysis was Proposition 5.4, which proved the fundamental
property of MM algorithms employing connected tan-
gent majorants to become trapped in basin-like regions

of the cost function. Our treatment here, we believe, pro-
vides enhanced insight into the behavior of MM, as well
as a highly broad and flexible framework for MM algo-
rithm design. The results have been useful in verifying
the convergence of previously proposed algorithms for
different PET imaging applications [11, 17, 16].

An unresolved theoretical question is whether MM
will converge in norm when the stationary points of the
optimization problem are non-isolated. It is rare to be
able to prove this behavior for iterative optimization al-
gorithms in general. However, it has been proven for the
EM algorithm of Shepp and Vardi [28], a prominent ex-
ample of MM in the field of emission tomography. Thus,
it is tempting to think that this behavior may be provable
in wider generality within the class of MM algorithms.
Our preliminary work on this question in [18] may be a
starting point for future analysis.
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