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Fourier-Based Forward and Back-Projectors
in Iterative Fan-Beam Tomographic

Image Reconstruction
Yingying Zhang-O’Connor* , Student Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstract—Fourier-based forward and back-projection methods
can reduce computation in iterative tomographic image re-
construction. Recently, an optimized nonuniform fast Fourier
transform (NUFFT) approach was shown to yield accurate
parallel-beam projections. In this paper, we extend the NUFFT
approach to describe an ( 2 log ) projector/backprojector
pair for fan-beam transmission tomography. Simulations and
experiments with real CT data show that fan-beam Fourier-based
forward and back-projection methods can reduce computation for
iterative reconstruction while still providing accuracy comparable
to their ( 3) space-based counterparts.

Index Terms—Fan-beam tomography, iterative tomographic
image reconstruction, min-max interpolation, nonuniform FFT.

I. INTRODUCTION

THE CLASSICAL approach to reconstructing fan-beam to-
mography images is filtered back-projection (FBP). Sta-

tistical image reconstruction methods are based on models for
measurement statistics and physics, and offer advantages such
as the potential for improved image quality and reduced dose.
A drawback of statistical image reconstruction methods is the
longer computation time of iterative algorithms.

Most iterative algorithms require one forward projection and
one back-projection each iteration, and these steps are the com-
putational bottleneck. Using the Fourier-slice theorem for par-
allel-beam tomography, Matej et al. evaluated forward and back
projectors [1]–[4] that used a nonuniform fast Fourier transform
(NUFFT) with a min-max optimized Kaiser-Bessel (KB) in-
terpolation kernel [5]. Their results showed low interpolation
error and good computation efficiency. This paper extends the
NUFFT approach to the fan-beam geometry that is used widely
in X-ray computed tomography (CT) systems [6].

There are two complications in extending Fourier-based pro-
jectors to a fan-beam geometry. Firstly, in the fan-beam case
there is no suitable Fourier slice theorem. (A recent extension
is suitable for analytical reconstruction [7], but it is not evident
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how to use it for forward projection.) Therefore, we use the usual
Fourier slice theorem and interpolate into the fan-beam coor-
dinates. To ensure good accuracy and computation efficiency,
we use a min-max optimized KB NUFFT approach for the ra-
dial “interpolation.” The second complication is that Fourier-
methods are efficient only for shift-invariant detector response
models. In emission tomography with converging (fan-beam)
collimators, the detector response is highly shift variant, and it
is unlikely that Fourier-based methods can be suitable. We focus
here on transmission tomography for the fan-beam geometries
of typical clinical X-ray CT scanners, where the variation in
detector response over the field of view is often fairly modest.
We approximate the detector response by the effective width at
the center of the field of view, and investigate the effect of this
approximation.

We focus on iterative reconstruction but we note for com-
pleteness that NUFFT-based direct Fourier image reconstruc-
tion methods have also been investigated [8], [9].

The paper is organized as follows. Section II describes the al-
gorithm for the fan-beam case. Section III gives simulation and
real data reconstruction results, including an accuracy compar-
ison of NUFFT-based, space-based and analytically computed
forward and back-projections, both as stand-alone modules and
within iterations.

II. ALGORITHM

This section describes the steps for fan-beam NUFFT-based
forward projection, as summarized in Fig. 2.

A. Fourier Slice Theorem

The Fourier slice theorem [10] is the foundation of
Fourier-based forward projection. Let denote the
two-dimensional (2-D) image and denote its 2-D FT in
polar coordinates

(1)

The ideal line-integral projection of at angle (taken
counter-clockwise from the axis) as a function of the radial
distance from the origin is given by

(2)
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Fig. 1. Angular coordinates in fan-beam geometry.

For our purposes, the most convenient form of the Fourier slice
theorem expresses each projection as a one-dimensional (1-D)
inverse Fourier transform of as follows:

(3)

Fourier-based projectors use discretized versions of (1) and (3),
whereas space-based projectors discretize (2).

B. Fan-Beam Tomography

As illustrated in Fig. 1, fan-beam rays are indexed by angular
coordinates , where is the angle of the source relative
to the axis, and is the angle of the ray relative to the source.
Fan-beam FBP methods exist only for special detector config-
urations [11]. Here, we accommodate any set of samples ,

. We assume that is sampled uniformly, i.e.,
, , although this could be

relaxed.
To develop a Fourier-based projector for fan-beam geome-

tries, we use the well-known relation between parallel-beam and
fan-beam coordinates [12]

(4)

(5)

where is the source to rotation center distance, illustrated in
Fig. 1. For typical angular samples , the corresponding

radial samples are spaced nonuniformly. And
when is sampled uniformly, for a given (or equivalently a
given ), the corresponding values of are also equally spaced
but shifted by .

C. NUFFT-Based Fan-Beam Forward Projector

Fig. 2 shows the four major steps of the proposed fan-beam
NUFFT-based forward projector. These four steps are summa-
rized next.

1) Two-Dimensional NUFFT : Step 1 in Fig. 2 uses a 2-D
NUFFT to evaluate a discretized version of (1). The input is

samples of the image . The output is polar co-
ordinate samples of that are equally-spaced along at

locations , for , where
is the sample spacing in . is chosen based on the choice of

and the extent of the spectral samples. In light of (5), we use
samples that match the samples, i.e. .
Step 1 is identical to the parallel-beam case that is detailed in

[1]–[5]. It involves the following operations.
a) Multiply the 2-D image samples by a scaling function that

precompensates for imperfections in the frequency-do-
main interpolator. We use separable KB scaling functions
for simplicity [5].

b) Calculate a point (oversampled) 2-D FFT of the
scaled discrete image. Typically and

.
c) Interpolate onto the desired, nonuniformly-spaced fre-

quency locations from the nearest neighbors,
using the KB interpolator that minimizes the worst-case
approximation error [13], [14].

d) Multiply by the spectrum of the image-domain basis func-
tion (typically square pixels).

By choosing sufficient oversampling and sufficiently large
neighborhood, very high accuracy is achieved [4], [5].

2) Approximating Detector Response: In parallel-beam to-
mography, one can model shift-invariant detector blur in the fre-
quency domain by multiplying the image spectrum with
the frequency response of the detector blur [4]. In fan-beam to-
mography, detector blur effects depend on the distances between
each image pixel and the detector elements, and hence cannot be
modeled exactly in the frequency domain. For example, in the
CT system described in Section III, the effective detector width
varies from 0.22 mm to 0.64 mm over a 40 cm field of view.
For simplicity, we approximate the depth-dependent detector re-
sponse by the effective beam width at the rotation center, cal-
culated by multiplying the actual detector width by the ratio
of the source-to-isocenter distance over the source-to-detector
distance.

Simulations in Section III evaluate the effects of this shift-
invariant approximation.

The next two steps in Fig. 2 also differ between the parallel-
beam and fan-beam geometries.

3) One-Dimensional Nonuniform IFFTs: Step 3 in Fig. 2
evaluates a discretized version of (3). In the parallel-beam case,
a simple 1-D inverse FFT along for each will suffice [4]. For
the fan-beam case, the desired radial samples are spaced un-
equally, per [4]. We discretize (3) as follows for :

(6)

where we choose to avoid aliasing.
Since the values are spaced unequally, whereas the

values are spaced equally, we evaluate (6) for each using
a 1-D NUFFT with “frequency” locations [5].

4) One-Dimensional Shifts Using FFT-Based Interpolations:
After step 3 in Fig. 2, we have projection data that is nonuni-
formly spaced in (corresponding to each ), and uniformly-
spaced in . For each , a 1-D shift [by , see
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Fig. 2. Basic steps of NUFFT forward projection in fan-beam CT. 1) Two-dimensional NUFFT of image to obtain polar spectrum samples. 2) Multiply radially
by the frequency response of the effective detector blur. 3) One-dimensional NUFFTs along radial direction r for each �. 4) One-dimensional shifts in � using
interpolation with periodic end condition.

TABLE I
FLOATING-POINT OPERATIONS FOR NUFFT-BASED AND SPACE-BASED

FORWARD PROJECTORS. ASSUME N �N IMAGE AND N � N

(5)] in the direction is needed. Since projections are peri-
odic in , Dirichlet-like “periodic sinc” interpolation is a natural
choice to “fractionally shift” the resulting projection data in the
previous step into the desired locations. We use 1-D FFTs for
this final step [15].

5) Symmetry Properties: Because the input image, is
real in CT, its Fourier transform, is Hermitian symmetric.
Thus, only half of the Fourier samples must be calculated in the
2-D NUFFT (step 1) and the 1-D NUFFT (step 3). In particular,
we implement (3) as follows:

(7)

This approach reduces computation and also ensures that the
projections are entirely real valued. There may still be small
negative values even if is nonnegative. For some iterative al-
gorithms these may need be set to zero.

For further savings, we exploit the Radon symmetry property:
. So we only need to compute the polar fre-

quency samples for instead of in step 1 shown
in Fig. 2.

6) Backprojection: Iterative algorithms require repeated for-
ward and back-projections, where the back-projector is the ad-
joint operator of the forward projector. We implement the back-
projector by “reversing” (not inverting!) the linear steps above.
This approach provides an exact adjoint, so the forward and
back projectors are matched perfectly.

D. Theoretical Analysis of Operation Flops

Table I summarizes the dominant operation counts for the
NUFFT-based forward projector. The expressions are for a

image and a sinogram. We use a neighborhood
of 2-D DFT samples for interpolation in the 2-D NUFFT, and

neighbors for the 1-D NUFFT. The 2-D NUFFT computes
polar frequency samples.

For comparison, a line-length space-based forward projector
requires operations, where the proportionality
constant can be large when the intersection lengths are com-
puted on the fly (rather than precomputed) due to the very large
image sizes in CT.

In the usual third-generation CT fan-beam geometry where
and , the overall computation for the

NUFFT-based forward projector is , akin to pre-
vious hierarchical methods [16], whereas most space-based for-
ward projectors require operations.

III. RESULTS

We simulated a third-generation fan-beam X-ray CT system
with sinogram size of approximately radial bins by
views over 360 . The source to detector distance is about 949
mm, and the rotation center to detector distance is about 408
mm. Thus, . For example, when , the cor-
responding sinogram size is 888 samples in , spaced by

and 984 source positions over 360 , so . A
quarter detector offset is also included to reduce aliasing. Ex-
cept where noted below, we use and
in (7).

The Fourier-based method is implemented in Matlab (version
7.0.4) using double precision; the NUFFT spectral interpolator
is an ANSI C MEX routine. The space-based projector is an
ANSI C MEX routine using single precision. All projectors are
evaluated on a Dell 670n computer with dual Intel Xeon 3.40
GHz CPU.

The space-based projector used here was designed originally
for coordinate-wise algorithms, e.g., [17]. It was not optimized
for ray-driven calculation of the line-integral model described
in case 1 in Section III-A. Its primary role here is for accuracy
comparisons.

A. Forward and Back-Projector as Single Modules

1) Forward Projector: We evaluated the NUFFT-based fan-
beam forward and back-projectors using the Shepp-Logan dig-
ital phantom. The brain-size field of view is approximately 308
mm, thus pixel size is about 0.6 mm for . We in-
vestigated four different scenarios, involving three different an-
alytical models. All cases used the analytical formula for the
fan-beam projections of ellipses to provide a “gold standard”
reference sinogram.
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TABLE II
SPACE-BASED AND NUFFT-BASED FORWARD PROJECTIONS OF A 512 � 512 IMAGE COMPARED TO EXACT ANALYTICAL PROJECTIONS FOR THREE DIFFERENT

ANALYTICAL MODELS. CASE 1: ANALYTICAL, SPACE-BASED AND NUFFT-BASED METHODS ALL USE LINE INTEGRALS. CASE 2: ANALYTICAL METHOD

LINEARLY AVERAGES EIGHT RAYS ACROSS ONE DETECTOR ELEMENT; SPACE-BASED METHOD USES THE THIN-WEDGE BEAM AND NUFFT-BASED METHOD

APPROXIMATES THE BEAM WIDTH AT THE ROTATION CENTER. CASE 3a: ANALYTICAL METHOD NONLINEARLY AVERAGES EIGHT RAYS ACROSS ONE DETECTOR

ELEMENT BEFORE TAKING THE LOGARITHM; SPACE-BASED METHOD USES THIN-WEDGE BEAM; NUFFT-BASED METHOD USES THE BEAM WIDTH AT THE

ROTATION CENTER. CASE 3b: AS IN CASE 3a EXCEPT NUFFT AND SPACE-BASED METHODS BOTH USE MULTILINE NONLINEAR AVERAGING

Case 1— Line Integral Model: Here, we used the analytical
formula for the fan-beam line-integral projections of an ellipse,
sampled at the center of each detector element. For the NUFFT
approach we set the detector frequency response to unity. For
the space-based approach we set to the usual length of in-
tersection of the th ray with the th pixel. (This was imple-
mented by setting the beam-width in Case 2 below to zero, rather
than by developing an optimized, ray-driven line-integral algo-
rithm.) This line-integral model is often used in evaluating for-
ward projectors.

Case 2—Linear Averaging Model: The line-integral model
is unrealistic since detectors have finite width and they average
the incoming signal across that width. For Case 2, we gen-
erated the reference sinogram by linearly averaging 8 analyt-
ical rays sampled across each detector element. This also ac-
counts for depth-dependent detector response. For the NUFFT
method, we accounted for the finite beam width approximately
by using the beam width at the center of the field of view. For
the space-based approach, we computed as the area of in-
tersection between the th pixel and the thin-wedge connecting
the point X-ray source with the th finite-width detector. That
space-based model accounts for distance dependent beam-width
but increases computation.

Case 3—Nonlinear Averaging Model: Due to the nonlin-
earity of Beer’s law, the linear averaging model is imperfect.
For Case 3, instead of linearly averaging the 8 analytically
computed line integrals per detector element used in Case 2,
we formed the reference sinogram by computing the negative
logarithm of the average of the exponentials of the negatives
of these ray values multiplied by 0.02/mm. This nonlinear
averaging introduces the “exponential edge gradient effect”
that occurs in practice [18].

For this reference sinogram, we compared two different ap-
proaches to pixelized forward projectors. For Case 3a we used
the same NUFFT and space-based forward projectors described
under Case 2. Those projectors use linear averaging so increased
errors are expected. For Case 3b we used over-sampled ver-
sions of the line-integral models described under Case 1 and
nonlinearly averaged the resulting line integrals over each de-
tector element. These over-sampling approaches require much
more computation than may be practical for routine use, but
better match the nonlinearly averaged analytical sinogram. In
this case, all of the methods account for distance-dependent
beam width.

Fig. 3. Simulation results for forward projectors of image size 512 � 512 in
Case 2: sinogram size of 888 bins by 984 views. The gray-scale ranges were
chosen to show details. The exact ranges are shown below each image.

For all of the above scenarios, we computed the normalized
maximum error, , and the normal-
ized error, , specifically the normalized
absolute error ( error) and the normalized root-mean-square
(NRMS) error. For 1-D and 2-D NUFFT, we used FFT over-
sampling factor and the number of neighbor sam-
ples . Table II summarizes the comparisons under these
three different Cases. The space-based and NUFFT-based for-
ward projectors perform similarly for all situations, despite the
approximated detector response model.

We also performed the forward projections on various image
sizes, , 256, 384, 512, and 1024. Fig. 3 shows the pro-
jections of an image of size in Case 2. The sinograms are
visually indistinguishable. The accuracy of the NUFFT-based
method is comparable with the space-based method, while the
computation time (using Matlab cputime command) is about
57 times faster.

Table III further compares the computation times and accura-
cies for images of various sizes. To further demonstrate the com-
putation efficiency, we also include the performance of the fast
distance-driven (DD) projector proposed recently by De Man et
al. [19], which is a method, implemented as a C MEX



586 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 5, MAY 2006

TABLE III
COMPARISON OF SPACE-BASED, NUFFT-BASED AND DD FORWARD PROJECTORS FOR VARIOUS IMAGE SIZES

Fig. 4. Trade-off between NUFFT-based forward projector accuracy and over-
sampling factor K=N and neighborhood J � J for 512 image.

interface to C++ code provided by those authors. The computa-
tion time of the NUFFT-based forward projector is comparable
to the DD forward projector for small images and is about 2–4
times faster for larger images. The benefits of a
method improves as increases, but in practice, the preferred
method will depend on hardware considerations like pipelining.

Fig. 4 shows the accuracy as a function of the oversampling
factor and the neighborhood size . This plot suggests that

would be adequate. However, this plot shows only the
accuracy in the sinogram domain. In the image domain, some
ringing artifacts appeared in the NUFFT image for , sug-
gesting that the sinogram domain does not adequately reveal
high frequencies. Therefore, in all subsequent results, we chose

.
2) Back-Projector: To evaluate the backprojector, we pro-

cessed the sinogram obtained from the analytical projections
with the first two steps in the fan-beam FBP method. Since
there is no easy way to calculate the exact back-projections an-
alytically, here we applied only space-based and NUFFT-based
methods to this processed sinogram.

In results not shown, the computation efficiencies and accu-
racies were very similar to those in Table III, as is expected
because the back-projector is the exact adjoint of the forward
projector. For a image, the back-projecton times for the
space-based, NUFFT and DD methods were 245.2, 2.4 and 5.1
seconds, respectively.

B. Forward and Back-Projectors Within Iterative
Reconstruction

Because even small approximation errors might accumulate
after many iterations, it is necessary to evaluate the accuracy
of the NUFFT-based projectors in iterative reconstruction
methods.

1) Simulation Study: We used the analytical method men-
tioned under “Case 2” in Section III-A-1 to simulate a noiseless
sinogram from a Shepp-Logan phantom. The sinogram size was
888 radial bins by 984 views over 360 . We ran 200 iterations of
the conjugate gradient algorithm, initialized with , for the
following penalized weighted least-squares cost function with a
quadratic roughness penalty (QPWLS-CG):

(8)

(9)

where is the negative log of the measured sinogram, s
are statistical weighting factors, is the system matrix, is
a differencing matrix and is the potential function. Here,

, a quadratic penalty. For this simulation, we used
where is a scaling factor chosen to

set the maximum value of to about 5. We chose
for this simulation. Evaluating the PSF using the approxi-

mations described in [20] shows that the FWHM is about 2.1
pixels, i.e., 1.3 mm, for this value of . We used the modified
quadratic roughness penalty in [20] to obtain approximately uni-
form resolution.

We ran QPWLS-CG using the DD, space-based and NUFFT-
based forward and back projectors respectively. Here, we used

in (7).
Fig. 5 shows that the reconstructed images are visually indis-

tinguishable even with a 200-Hounsfield units (HU) window.
Fig. 6 shows the profiles through the region of interest con-
taining the small features in lower part of the phantom. The
max percent difference between NUFFT-based and space-based
and DD methods is less than 1.4% and NRMS is about 0.3%.
This difference is much smaller than the 3.7% NRMS error
of the PWLS estimates themselves (compared to the true ob-
ject). The NUFFT method exhibits oscillations of about 1HU
in this region. This could be reduced by increasing at the
price of increased computation. The computation time is re-
duced by a factor of 80 for the NUFFT approach compared to
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Fig. 5. QPWLS-CG reconstruction (200 iterations) for Shepp-Logan phantom with projectors from case 2: noiseless data, square pixels.

Fig. 6. Horizontal profiles through region of interest of the reconstructed im-
ages of DD, space-based and NUFFT-based methods at the 200th iteration.

the space-based method and a factor of 2 for the NUFFT ap-
proach compared to the DD method.

2) Real X-Ray CT Data: We further tested the NUFFT
approach within iterative reconstruction using real (noisy) CT
data. Transmission data from a human shoulder phantom were
acquired on a GE Lightspeed scanner. The field of view is
500 mm, thus, pixel size is about 1.0 mm. Other parameters
are as the same as those used in the previous noiseless data
simulation. The initial image is the ramp-filtered FBP image
with median filtering using a 3-by-3 neighborhood.

We ran 60 iterations of conjugate gradient algorithm for a
PWLS cost function (PWLS-CG) [21]. We again use the ex-
pression in (8) and (9) except here we used an edge-preserving
“hyperbola” penalty function

(10)

The regularization parameters were and
which gives FWHM 1.7 pixels, i.e., about 1.6 mm. We also
used the modified penalty described in [20]. We chose to cor-
respond to the 2nd derivative of the transmission Poisson log-
likelihood [22].

Fig. 7 shows the results of iterative reconstruction on real data
with space-based and NUFFT-based projectors, respectively,
using a standard display window width of 400 HU. The recon-
structed images from the reconstruction methods with space-
based and NUFFT-based projectors are again visually indistin-
guishable, with the max difference less than 3.4% (178.3 HU)
and NRMS around 1.0%. The largest differences were at the
edges of the field-of-view (FOV).

IV. DISCUSSION

This paper has presented a NUFFT-based projection method
for fan-beam tomography. This framework is an extension of
parallel-beam NUFFT-based projectors. Our results show that
the min-max NUFFT approach provides an accurate and effi-
cient method for fan-beam forward and back-projection. Soft-
ware is available online [23].
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Fig. 7. PWLS-PCG reconstruction (60 iterations) for real X-ray CT fan-beam sinogram data with projectors from Case 2.

The NUFFT-based forward and back-projectors with
min-max interpolation kernels are computationally efficient
compared to space-based methods, and are reasonably accurate.
As expected, the computation advantage increases with larger
data size (Table III). The approximation error remains low even
after many iterations. We have proposed this NUFFT approach
for iterative fan-beam reconstruction. It is unclear how the
NUFFT method could be used directly for fan-beam FBP, since
that approach requires a weighted backprojection. However,
one could first rebin from fan-beam to parallel-beam rays and
then apply an NUFFT-type method.

In this paper we have used a NUFFT method that works
generally for arbitrary sampling patterns. Further acceleration
may be possible if one uses a specific 2-D NUFFT approach
that is tailored to the polar sampling pattern required for the
Radon transform, e.g., [24]. Many such methods have been
proposed for direct Fourier reconstruction, e.g., [25]–[29].
Presumably some of these methods could be adapted to it-
erative reconstruction, for both parallel-beam and fan-beam
geometries. The method also can be extended to the helical
cone-beam geometry.

However, this method is poorly suited for “ordered-subsets”
algorithms since it must compute an oversampled 2-D FFT even
if only a few projecton views are needed. This property limits its
application to algorithms where ordered-subsets are not needed.
Existing methods also have this limitation [30].

ACKNOWLEDGMENT

The authors gratefully acknowledge J. Hsieh for providing
the real data used in Section III-B2, and B. De Man and S. Basu
for providing the code of the DD projector used in Section III-A.

REFERENCES

[1] J. A. Fessler and B. P. Sutton, “A min-max approach to the multidi-
mensional nonuniform FFT: application to tomographic image recon-
struction,” in Proc. IEEE Int. Conf. Image Processing, 2001, vol. 1, pp.
706–709.

[2] J. A. Fessler, Iterative Tomographic Image Reconstruction Using
Nonuniform Fast Fourier Transforms Tech. Rep., Comm. and
Signal Process. Lab., Dept. EECS, Univ. Michigan, Ann Arbor, MI,
48 109-2122, Dec. 2001 [Online]. Available: http://www.eecs.umich.
edu/~fessler, Technical report available from

[3] S. Matej, J. A. Fessler, and I. G. Kazantsev, Fourier-Based Forward
and Back-Projectors for Iterative Image Reconstruction Univ. Penn-
sylvania, Philadelphia, Tech. Rep. MIPG303, May 2003.

[4] ——, “Iterative tomographic image reconstruction using Fourier-based
forward and back-projectors,” IEEE Trans. Med. Imag., vol. 23, no. 4,
pp. 401–412, Apr. 2004.

[5] J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms
using min-max interpolation,” IEEE Trans. Signal Process., vol. 51,
no. 2, pp. 560–574, Feb. 2003.

[6] Y. Zhang and J. A. Fessler, “Fourier-based forward and back-projec-
tors in iterative fan-beam tomographic image reconstruction,” in Proc.
IEEE Int. Symp. Biomedical Imaging, 2004, pp. 364–367.

[7] G.-H. Chen, S. Leng, and C. A. Mistretta, “A novel extension of the par-
allel-beam projection-slice theorem to divergent fan-beam and cone-
beam projections,” Med. Phys., vol. 32, no. 3, pp. 654–665, Mar. 2005.

[8] S. De Francesco and A. M. Ferreira da Silva, “Efficient NUFFT-based
direct Fourier algorithm for fan beam CT reconstruction,” Proc. SPIE,
vol. 5370, Medical Imaging 2004: Image Processing, pp. 666–677,
2004.

[9] K. Fourmont, “Non-equispaced fast Fourier transforms with applica-
tions to tomography,” J. Fourier Anal. and Appl., vol. 9, no. 5, pp.
431–450, Sep. 2003.

[10] A. C. Kak and M. Slaney, Principles of Computerized Tomographic
Imaging. Piscataway, NJ: IEEE Press, 1988.

[11] G. Besson, “CT fan-beam parametrizations leading to shift-invariant
filtering,” Inverse Prob., vol. 12, no. 6, pp. 815–833, Dec. 1996.

[12] H. Peng and H. Stark, “Direct Fourier reconstruction in fan-beam to-
mography,” IEEE Trans. Med. Imag., vol. 6, no. 3, pp. 209–219, Sep.
1987.

[13] J. D. O’Sullivan, “A fast sinc function gridding algorithm for Fourier
inversion in computer tomography,” IEEE Trans. Med. Imag., vol. 4,
no. 4, pp. 200–207, Dec. 1985.

fessler
Highlight
actually, although in principle it could be done, it is unclear to me how to do this efficiently.



ZHANG-O’CONNOR AND FESSLER: ITERATIVE FAN-BEAM TOMOGRAPHIC IMAGE RECONSTRUCTION 589

[14] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski,
“Selection of a convolution function for Fourier inversion using
gridding,” IEEE Trans. Med. Imag., vol. 10, no. 3, pp. 473–478,
Sep. 1991.

[15] D. Fraser, “Interpolation by the FFT revisited. An experimental inves-
tigation,” IEEE Trans. Acoust. Speech Signal Process., vol. 37, no. 5,
pp. 665–676, May 1989.

[16] S. Basu and Y. Bresler, “Error analysis and performance optimiza-
tion of fast hierarchical backprojection algorithms,” IEEE Trans. Image
Process., vol. 10, no. 7, pp. 1103–1117, Jul 2001.

[17] J. A. Fessler, E. P. Ficaro, N. H. Clinthorne, and K. Lange,
“Grouped-coordinate ascent algorithms for penalized-likelihood
transmission image reconstruction,” IEEE Trans. Med. Imag., vol. 16,
no. 2, pp. 166–175, Apr. 1997.

[18] P. M. Joseph and R. D. Spital, “The exponential edge-gradient effect
in X-ray computed tomography,” Phys. Med. Biol., vol. 26, no. 3, pp.
473–487, May 1981.

[19] B. De Man and S. Basu, “Distance-driven projection and backpro-
jection in three dimensions,” Phys. Med. Biol., vol. 49, no. 11, pp.
2463–2475, Jun 2004.

[20] J. A. Fessler and W. L. Rogers, “Spatial resolution properties of pe-
nalized-likelihood image reconstruction methods: space-invariant to-
mographs,” IEEE Trans. Image Process., vol. 5, no. 9, pp. 1346–1358,
Sep. 1996.

[21] J. A. Fessler and S. D. Booth, “Conjugate-gradient preconditioning
methods for shift-variant PET image reconstruction,” IEEE Trans.
Image Process., vol. 8, no. 5, pp. 688–699, May 1999.

[22] K. Sauer and C. Bouman, “A local update strategy for iterative recon-
struction from projections,” IEEE Trans. Signal Process., vol. 41, no.
2, pp. 534–548, Feb. 1993.

[23] J. A. Fessler, Matlab Tomography Toolbox 2004 [Online]. Available:
http://www.eecs.umich.edu/~fessler

[24] A. Averbuch and Y. Shkolnisky, “3D Fourier based discrete Radon
transform,” Appl. Computational Harmonic Anal., vol. 15, no. 1, pp.
33–69, Jul. 2003.

[25] W. Lawton, “A new polar Fourier transform for computer-aided to-
mography and spotlight synthetic aperture radar,” IEEE Trans. Acoust.
Speech Signal Process., vol. 36, no. 6, pp. 931–933, Jun. 1988.

[26] P. L. Bellon and S. Lanzavecchia, “Fast direct Fourier methods, based
on one- and two-pass coordinate transformations, yield accurate recon-
structions of X-ray CT clinical images,” Phys. Med. Biol., vol. 42, no.
3, pp. 443–464, Mar. 1997.

[27] J. Waldén, “Analysis of the direct Fourier method for computer tomog-
raphy,” IEEE Trans. Med. Imag., vol. 19, no. 3, pp. 211–222, Mar.
2000.

[28] D. Potts and G. Steidl, “A new linogram algorithm for computerized
tomography,” IMA J. Numer. Anal., vol. 21, no. 3, pp. 769–782, Jul.
2001.

[29] G. Bal and P. Moireau, “Fast numerical inversion of the attenuated
Radon transform with full and partial measurements,” Inverse Prob.,
vol. 20, no. 4, pp. 1137–1164, Aug. 2004.

[30] S. Xiao, Y. Bresler, and D. Munson, “O(N logN) native fan-beam
tomographic reconstruction,” in Proc. IEEE Int. Symp. Biomedical
Imaging, 2002, pp. 824–827.




