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Understanding the movement of tumors caused by respiratory motion is very important for confor-
mal radiatherapy. However, respiratory motion is very difficult to study by conventional x-ray CT
imaging since object motion causes inconsistent projection views, leading to artifacts in recon-
structed images. We propose to estimate the parameters of a nonrigid, free breathing motion model
from a set of projection views of the thorax that are acquired using a slowly rotating cone-beam CT
scanner. This approach involves deforming a motion-free reference thorax volume according to the
estimated parameters and comparing its projections to the corresponding measured projection
views. The parameters are optimized by minimizing a regularized squared error cost function.
Simulation results with a fan-beam geometry show good agreement between the estimated motion
and the true motion, which supports the potential of this approach for estimating four-dimensional
sthree-dimensional spatial1 temporald respiratory motion. ©2005 American Association of
Physicists in Medicine. fDOI: 10.1118/1.1879132g
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I. INTRODUCTION

Conformal radiotherapy requires that the delivery of ra
tion is focused on the tumor area while sparing the no
adjacent tissue. Although various methods have been d
oped for delivering precise radiotherapy, respiratory mo
remains a significant source of error in treatment plan
for the thorax and upper abdomen. Conventional techn
to deal with the motion effects often involve an increas
the margin of the target volume. To suppress respiratory
tion, treatment can be done under breathhold condition
sisted with breathing control devices.1,2 But some patients
especially those with lung cancer, have difficulty hold
their breath, so techniques for treatment in free brea
conditions are now being investigated.3 In those technique
consideration of organ motion is essential.

Because of the significance of motion effects in ra
therapy, a growing number of studies have been dedicat
four-dimensionals4Dd CT imaging. Most work in this fiel
focuses on the reconstruction of a CT volume with m
mized motion artifacts. This work can be divided into th
main categories: fast scanning, reconstruction for mo
compensation, and gated image acquisition. In the first c
researchers endeavor to shorten scanner rotation time
data acquisition to reduce motion artifacts and improve
poral resolution.4–6 In the second class, reconstruction al
rithms for motion compensation are based on assumptio
a priori deformation model,7–9 or based on the estimation
detection of motion using extra hardware.10,11In gated imag

acquisition techniques, devices are used to measure th
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breathing state either as a trigger signal to initiate the sc
acquire data at a certain breathing state,12 or as a metric t
sort the CT scans into bins of equivalent breathing stat
form a volume.13,14

Although lots of work has been carried out related to
CT imaging, there have been fewer studies on building
model for free breathing motion.15,16Naqaet al. proposed to
estimate respiratory motion by registering several th
dimensionals3Dd CT volumes at ordered breathing sta
which are acquired using gated image acquis
techniques.15 Usually, this technique requires multiple sc
sabout 15d for each table position. Such motion estima
methods are promising, but currently have two drawba
First, due to x-ray dose limitation, the motion model
only be estimated from a few CT volumes which may
insufficient to fit the respiratory motion of a whole breath
cycle. Second, when sorting the two-dimensionals2Dd CT
slices corresponding to the same breathing state to form
image, the accuracy depends on the bin size of the brea
states and the accuracy of the device that measure
breathing states. Zijpet al. proposed a novel idea to sort
cone-beam x-ray projection images into several bin
breathing phases based on the position of the diaphrag
the projection images.16 They detected the diaphragm by
ing image enhancement techniques and tracked the sup
inferior position of the diaphragm to generate a periodic
dimensional breathing signal. Then 4D thorax volumes w
reconstructed using the projections corresponding to

esame breathing phase. The advantage of this method is that

984…/984/8/$22.50 © 2005 Am. Assoc. Phys. Med.
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no extra device is required. But one limitation of such m
ods is the assumption of periodicity of the respiratory
tion.

In this work, we develop a different approach to estim
respiratory motion from two sets of measurements. On
is a sequence of projection views acquired from a slo
rotating cone-beam CT scanner, such as the type of im
that could be incorporated into a radiotherapy system.
ally such systems take about 1 min per rotation. During
a long acquisition period, patients would breathe freely
the measured projection views capture information abou
piratory motion. We also assume that we have availab
motion-free reference volume, such as the reconstructed
rax images acquired by conventional breath-hold x-ray
on a modern fast scanner. Our approach involves defor
this reference image according to the estimated motion
rameters and comparing its projections to the correspon
measured projection views. In contrast to gated ima
techniques, our method requires only one to two scan
stead of dozens of scans. Moreover, because the mea
projection views correspond to the naturally continu
breathing state, the external state-measuring devices a
necessary.

As is well known, estimation is an inverse proced
aimed at recovering unknown parameters from avail
measurements. Generally, for a nonlinear estimation p
lem, there are three main tasks: define a suitable sy
model, choose a good cost function, and select approp
optimization algorithms. In our estimation problem, mot
is defined by a parametric model based on B-splines.
cost function is the penalized least square error. The op
zation algorithm we used is the Levenberg–Marqu
method.

The paper is organized as follows. Section II describe
problem and Sec. III describes the proposed estim
method, including the temporal motion model, simila
measure, and optimization method. Section IV presents
fan-beam simulation results. Finally, we set out our con
sion and future work.

II. PROBLEM STATEMENT

The following defines the estimation problem, beginn
with a description of the x-ray projection operator, and t
turning to an explanation of the measurements we will
lect for the estimation problem.

A. X-ray projection operator

CT is a noninvasive imaging technique allowing the v
alization of the internal structure of an object. In a CT s
tem, the patient is placed between an x-ray source an
array of x-ray detectors. By rotating the source and the
tector simultaneously around the patient, a large numb
x-ray projections from different angles can be obtained
ing the data acquisition period. Ideally, each projection
resents the summation or line integral of the attenuation
efficients of an object along a particular ray path, which

be represented mathematically as follows:
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gm,n =E
Lfm,n

f tm
sxddl, n = 1, . . . ,N, m= 1, . . . ,M , s1d

wheref tsxd, xPRd denotes the attenuation coefficients ofd
dimensional objects d=2 or 3d at time t, gm,n the projection
value at thenth element of the detector from projection an
fm, N the number of detector elements,M the number o
projection views, andLfm,n the line between the x-ray sour
and thenth detector pixel at projection anglefm.

Let Afm
denote the projection operator for anglefm, then

Eq. s1d can be written simply as follows:

gm = Afm
ftm

, s2d

wheregm=sgm,1, . . . ,gm,Nd. Ignoring beam hardening effec
the measurementsY from an x-ray detector are related to
projections by Beer’s law:17

EfYm,ng = Im,ne
−gm,n + Sm,n, n = 1, . . . ,N, m= 1, . . . ,M ,

s3d

whereEf·g stands for the expectation of a random varia
Im,n is a constant related to the incident x-ray intensity,
Sm,n denotes the scatter contribution togm,n.

B. Measurement model

The proposed method uses two sets of measurem
One set is a motionless thorax imagef ref, obtained with a
conventional fast breath-hold CT scan. This image serv
a reference image and all the deformations are applied t
image. The other set is a sequence ofM projection views
from a slowly rotating scanner:hĝmj, m=1, . . . ,M, wherefm

is the projection angle at timetm. The projection views ar
estimated from the measurementsY as follows:

ĝm,n = logS Im,n

Ym,n − Sm,n
D , s4d

whereSm,n is a spossibly zerod scatter estimate.
Our method could also work with faster scanning,

recently developed cone-beam CT systems for radiothe
usually have rotation speeds of approximately 6° /s. A
360° rotation takes about 1 min. Patients breathe natu
during the scan. Although we allow the cone-beam sca
to rotate slowly, we require the acquisition time of each
jection view to be short. For example, recently develo
systems can acquire 15 frames/s, i.e., around 0.067 s/ f
We therefore assume that the respiratory motion is negli
within each single projection view.

The measured projections will be degraded by noise
simplicity, we treat the x-ray detector outputs as indepen
Poisson random variables:17

Ym,n , PoissonhEfYm,ngj, n = 1, . . . ,N, m= 1, . . . ,M .

s5d

We want to estimate a sequence of moving objectsf t us-
ing f ref from hĝmjt=1

M . This is not a conventional image reco
struction problem. Most reconstruction algorithms ass

that the object is motionless during the whole data acquisi-
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986 Zeng, Fessler, and Balter: Respiratory motion estimation from slowly rotating x-ray projections 986
tion period, or assume simple motion models such
affine.7–9 In our problem the object deforms while be
scanned and the task is to estimate the motion by minim
the difference between the measured projection views
the calculated projection views of the estimated moving
jects. This is a kind of “tomographic image registratio
problem.

III. THEORY

A. Temporal motion model

Let hf tsxdj, xPRd, tP f0,Tg denote the moving thora
volumes over scan durationT. We assume the moving vo
umes are all deformations of the reference thorax volumf ref

because they are from the same patient. Thus there
geometric correspondence betweenf t and f ref as follows:

f tsxd = f refsTsx;u,tdd, s6d

whereTsx ;u ,td is the unknown deformation function d
scribed by parametersu. Usually, warping at each time po
is described byd deformation functions, each along one
mension.

We assume the motion is nonrigid but smooth. We m
the deformation function using a weighted sum of shi
basis functions,

Tsx;u,td = x + o
t=1

K

o
i

ut,ibS t

Dt
− tDbS x

Dx
− iD , s7d

whereDx controls the width of the spatial basis functionbsxd
andDt controls the width of the temporal basis functionbstd.
The general approach applies to any differentiable b
functions. Here we chosebstd to be a cubic B-spline,18 and
bsxd to be the tensor product of cubic B-splines, i.e.,bsxd
=P1

d bsxid, where x=fx1, . . . ,xdg8, a d-dimensional spatia
position vector. We chose B-splines for several reas
B-splines offer good approximation of band-limit
signals,18 and B-splines have been used extensively for m
eling nonrigid deformation.19,20 The compact support
B-splines, and hence small overlap between knots, red
the dependency between parameters thus makes the o
zation problem easier to solve. Combining Eqs.s6d and s7d,
we can write the deformed object as

f t = Wsu,tdf ref, s8d

whereWsu ,td denotes the warping operator correspond
to Eq. s6d.

Based on the above-defined motion model, the mo
estimation problem is to find the deformation parameteu.
These parameters characterize both the temporal and s
motion. After estimatingu, one can determine the motion
each point of the object at any time within the scann
period, because the motion models7d is continuous with re
spect to the spatial variablesx and the time variablet.

In Eq. s6d, the deformation acts on a continuous-sp

reference imagef refsxd. Since the actual reference image ob-
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tained from a CT scanner is a discrete image, interpolati
needed. We used uniform cubic B-splines for image-dom
interpolation:

f refsxd = o
r

crbsx − rd, s9d

where the coefficientscr are determined by prefiltering t
reference CT volume appropriately.18

B. Estimation

We estimate the deformation parameters by minimi
the difference between the measured projection views
the calculated projection views of the deformed refere
image. For simplicity, we focus here on the least-squ
error metric:

Lsud =
1

2 o
m=1

M

iĝm − Afm
Wsu,tmdf refi2. s10d

The principle generalizes to more complicated statis
models.

Depending on how many motion parameters one use
stable estimation it may be necessary to include regula

tion. We compute the estimateû by minimizing the follow-
ing regularized least-squares cost function:

û = argminu csud,

Csud = Lsud + aRsud, s11d

whereLsud is described in Eq.s10d, Rsud denotes the reg
larization function, and the scalara controls the trade-o
between the similarity term and the regularity term. We
lect Rsud to encourage smoothness of respiratory motio
using

Rsud = 1
2iCui2, s12d

whereC is a differencing matrix. The regularity term can
a combination of both temporal and spatial roughness p
ties.

C. Optimization

General-purpose methods can be used to search fo
values of parametersu that minimize the cost functioncsud.
We chose the Levenberg–Marquardt method,21 because it of
ten offers fast convergence for least-squares problems
iterative scheme is represented as follows:

u n+1 = u n − sH + ln diaghHjd−1 ¹ csu nd, s13d

where¹csu ndis the gradient ofcsud evaluated atu n, H is an
approximation of the Hessian matrix ofcsud, and ln is a
positive tuning parameter. Usually,ln is initialized to be a
modest value, sayl0=10. After a successful step, it is d
creased by a factor of 10; otherwise, it is increased
factor of 10 for the next iteration. The gradient and Hes
are found using the chain rule. See the Appendix for exp
expressions. To save computation time, we update the

sian only when the current iteration fails.
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IV. SIMULATION

This section presents our simulation results. For sim
ity, we started with fan-beams2Dd geometry to study th
performance of the proposed approach.

A. Experiment methods

Figure 1 shows the 2003200 reference imagef ref used in
our simulation, one slice from a 3D breathhold thorax
scan. The pixel size of this reference image is 1.96 mm
form a sequence of moving imageshf tm

jm=1
32 , we warpedf ref

according to the following synthetic motion functions:

Txsx,y,td = x − 32 sin2Spt

T
D cosSpsx − x0d

X
D

3expF− 8S2x

X
− 1D2GexpF− 8S2y

Y
− 1D2G ,

s14d

Tysx,y,td = y + 16 sin2Spt

T
D cosSpsy − y0d

Y
D

3expF− 8S2x

X
− 1D2GexpF− 8S2y

Y
− 1D2G ,

s15d

whereX andY denote the width and height of the refere
image, respectively,x0 and y0 the coordinates of the uppe
left pixel, andT the scan duration. The motion generated
these two equations are smooth and symbolically repre

expansion and contraction of a breathing cycle. The real mo

Medical Physics, Vol. 32, No. 4, April 2005
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tion is usually smaller than what we generated. But since
is a 2D simulation, we have exaggerated the deformatio
emulate the larger motion seen in 3D respiratory mo
After generating the deformed images, we computed 32
jection views for a fan-beam geometry with project
angles evenly spaced over 360°. The fan beam had
samples spaced by 2.60 mm, and the source to detecto
tance and isocenter to detection distance were 95
40.8 cm, respectively. We added the effects of Poisson
as described in Sec. II B to produce the noisy data
hĝmjm=1

32 , shown in Fig. 2sbd. The noise corresponds to 16

incident photons per detector element.22 For this initial in-
vestigation, we simulated an imaging system that acq
32 projection views over 360° over a single respiratory c
sT=4 sd. In practice multiple respiratory cycles will occ
when collecting projection views over such a large ang
range. In our future work we expect to include qu
periodicity regularization terms to use projection views
span multiple respiratory cycles, but here we focus on
case of a single cycle for simplicity.

To illustrate the artifacts in reconstructed images ca
by motion effects, we applied filtered backprojection rec
struction method to both the motion-free projections and
motion-corrupted projectionssFig. 2d. Figure 2sdd shows
blurring artifacts at the inner chest wall and degraded
trast of the mass between the lungs because of the inc
tent projection views caused by motion. Since our goal
estimate respiratory motion rather than image reconstruc
we are not concerned about the streak artifacts prese
both reconstructed images due to the small number of

FIG. 1. The reference CT imagef ref.
-jection views.
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For optimization, the deformation parameters were all
tialized to be zero. We terminated the optimization algori
when the absolute difference of the cost function value
tween the two most current iterations was less than a th
old. An important step for the estimation is to decide how
distribute the control knots. Generally, a finer control gri
favored for the motion that changes fastersless smoothlyd.19

However, there is tradeoff. Coarse control grids may no
able to capture the real motion in detail; whereas overly
control grids require more parameters, increase comput
and may overfit noise. We adjusted knot spacings manu
starting with a relatively coarse control grid, and then
creased the knot spacings until the optimizations with
two most recent control grids reached very similar res
This manual procedure finally arrived at a spatial control
of 737 knots and a temporal grid ofK=5 knots, with the
knot spacings Dx=20 pixels, Dy=20 pixels, and Dt

=8 pixels. So the deformation model contains two set
245 parameters with each defining the deformation alox
andy direction, respectively. We placed the knots in the
age region where the support of each knot overlaps with
thorax. This placement helps prevent near zero-valued
ments in the Hessian matrix, and also reduces comput
relative to covering the entire square array. For regula
tion, we seta=5310−6 and used the second-order spa
and temporal roughness penalties with a typical row of
differencing matrixC in Eq. s12d having the forms. . . ,0 ,
−1,2,−1,0, . . .d.

B. Results

The Levenberg–Marquardt algorithm took about 15 it

tions to converge. On a Pentium 2 GHz computer, each it

Medical Physics, Vol. 32, No. 4, April 2005
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eration consumed about 26 s without Hessian calculation
about 54 s otherwise. Fortunately the Hessian was up
only rarely. In fact here the computation of Hessian
needed only once at the beginning of the optimization.
ure 3 displays the transverse and longitudinal movemen
point located at the edge of the right lung. Figure 4 comp
the motion vector of the image field att=2 s. Both figure
indicate good agreement between the estimates and the
even though there is model mismatch between the tru
formation s14d, s15d and our deformation models7d. The
mean absolute error of the estimated motion for the w
image field was 0.23 mm and the maximum error
1.94 mm. These errors are small compared to the syn
motion, which has a maximum displacement of 15.14
and a mean absolute displacement of 1.11 mm. To exa
the spatial distribution of errors, Fig. 5 shows the contou
the reference image superimposed upon an image of th
ference between the estimated deformation and the tru
formationsat time t=2 sd. The relatively large errors tend
occur in image regions that lack structure, which may
have significant effect on generating deformed images b
on the estimated motion. Figure 6 illustrates this viewpoi
only small discrepancies exist in the difference imagefFig.
6scdg between the true and the estimated deformed ima

Since there was model mismatch between the B-s
motion model and the synthetic motion, we did B-sp
least-squares fitting of the synthetic motion using the s
control grid to investigate how much error would result fr
estimation alone. We found that the B-spline fitting rms e
was 0.03 mm and the maximum absolute error 0.48 mm
in this study model mismatch was a second source of e

FIG. 2. Illustration of motion effects i
image reconstruction. Motion-fre
projectionssad and the correspondin
conventional fan-beam FBP reco
structed imagescd. Motion-corrupted
projectionshĝmjm=1

32 sbd and the corre
sponding reconstructed imagesdd.
-Although using much finer control grids would reduce model
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FIG. 4. Truesleft paneld and estimate
sright paneld motion vectors att=2 s
sthe time of maximum displacemend.
s-
-

er-
f
sti-
FIG. 5. Distribution of deformation e
timation error, illustrated by superim
posing the deformation estimation
ror image att=2 s with the contour o
the reference image. Transverse e
mation errorsleft paneld and longitudi-
nal estimation errorsright paneld.
FIG. 3. Transversesleft paneld and
longitudinal sright paneld movemen
for point s120, 80d located at the edg
of the right lung.
Medical Physics, Vol. 32, No. 4, April 2005
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mismatch error, more degrees of freedom associated
finer control grids would increase the number of lo
minima, degrading the performance of optimization a
rithms.

V. DISCUSSION AND CONCLUSION

This paper described a method for estimating non
motion from a motion-free reference image and a sequ
of slowly rotating projection views of the moving obje
Cubic B-spline functions were applied as the basis of
parametric temporal motion model. We used a regular
least-squares estimator of the motion parameters. For
dose projection views, better performance may be achie
by applying the maximum-likelihood estimator for a Pois
statistic model. As proposed, the method does not re
any external respiratory monitoring device. However, the
proach could be generalized to use information from s
devices, e.g., by adding appropriate terms to the cost
tions.

Our initial investigation used a simulated fan-beam ge
etry. Since the theory described in Sec. III generalizes re
to 4D, the method should also be applicable to cone-b
projections of 3D thorax data and real respiratory mot
although the memory requirement and computation time
increase significantly. The parts that consume most o
computation time are the calculation of the gradient and
sian in Eq.s10d. Based on Eqs.sA1d–sA3d, the complexity o
the calculation of gradient isOsMVd, and that of the Hessia
is OsCMVd, whereV is the number of voxels,M the frame
number of projection views, andC the number of knots o
the deformation control grid. In the 4D case, computing

Hessian may require prohibitive memory and time, so a good

Medical Physics, Vol. 32, No. 4, April 2005
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approximation of the Hessian or alternate optimization a
rithms not requiring a Hessian will be needed. We will c
duct 4D studies in the near future, including experim
with real thorax data.
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APPENDIX: CALCULATION OF THE GRADIENT
AND HESSIAN

We need to calculate the gradient and Hessian to im
ment the optimization algorithm described in Sec. III C.
plicit derivatives can be found using the chain rule.

There are two terms,Lsud andRsud, in the cost functio
csud. We first compute the partial derivatives ofLsud.

Let us introducef̂m=Wsu ,tmdf ref to denote the estimat
deformed object at timetm. Let uk

psp=1, . . . ,dd be the coef
ficient of thekth knot in thepth dimension. Starting from E
s10d, we obtain the first partial derivatives as follows:

]L

]uk
p = − o

m=1

M Ksĝm − Afm
f̂md,Afm

] f̂m

]uk
pL

=− o
m=1

M KAfm
8 sĝm − Afm

f̂md,
] f̂m

]uk
pL , sA1d

FIG. 6. True deformed image att
=2 s stop left paneld, estimated de
formed image at t=2 s stop right
paneld, and the difference image at
=2 s sbottom right paneld.
and the second partial derivatives
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]2L

]uk
p ] u j

q = o
m=1

M SKAfm

] f̂m

]uk
p ,Afm

] f̂m

]u j
qL

−Ksĝm − Afm
f̂md,Afm

] f̂m

]uk
p ] u j

qLD , sA2d

whereka,bl denotes the inner product of arraya andb. We
disregard the second derivative term in expressionsA3d be-

cause are usual relatively small. Furthermore,sĝm−Afm
f̂md

should be the random measurement errors and conseq
the second derivative terms tend to cancel out
summation.21 Therefore,

]2L

]uk
p ] u j

q < o
m=1

M KAfm

] f̂m

]uk
p ,Afm

] f̂m

]u j
qL . sA3d

We need to determine] f̂m/]uk
p to complete the calculatio

of Eqs. sA1d and sA3d. We use the chain rule again. Us

Eqs.s6d and s7d, the expression forf̂msxd is

sA4d

Let uk correspond to the coefficient of the control knot

cated atst̂ , îd, where t̂ is the temporal position andî the
spatial position, then from Eq.sA4d

] f̂m

]uk
psxd =

] f̂m

]ut̂,î
sxd=f¹ f refux=x8gpbS tm

Dt
− t̂DbS x

Dx
− îD ,

sA5d

wherefu¹ f refux=x8gp, thepth element of the spatial gradient
the reference image evaluated atx8, can be calculated fro
the interpolation models9d as follows:

f¹ f refux=x8gp = o
r

ctf¹bsx8 − rdgp, sA6d

f¹bsx8 − rdgp = ḃsxpd p
t=1,lÞp

d

bsxld. sA7d

The remaining calculation is that of the derivatives
Rsud. These can be found easily from Eq.s12d as follows:

¹Rsud = C8Cu, sA8d

2
¹ Rsud = C8C. sA9d
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