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Abstract— In some types of magnetic resonance (MR) imaging,
particularly functional brain scans, the conventional Fourier
model for the measurements is inaccurate. Magnetic field in-
homogeneities, caused by imperfect main fields and by magnetic
susceptibility variations, induce distortions in images that are
reconstructed by conventional Fourier methods. These artifacts
hamper the use of functional MR imaging (fMRI) in brain
regions near air/tissue interfaces. Recently, iterative methods
that combine the conjugate gradient (CG) algorithm with non-
uniform FFT (NUFFT) operations have been shown to provide
considerably improved image quality relative to the conjugate-
phase method. However, for non-Cartesian k-space trajectories,
each CG-NUFFT iteration requires numerous k-space interpola-
tions, operations that are computationally expensive and poorly
suited to fast hardware implementations. This paper proposes a
faster iterative approach to field-corrected MR image reconstruc-
tion based on the CG algorithm and certain Toeplitz matrices.
This CG-Toeplitz approach requires k-space interpolations only
for the initial iteration; thereafter only FFTs are required.
Simulation results show that the proposed CG-Toeplitz approach
produces equivalent image quality as the CG-NUFFT method
with significantly reduced computation time.

Index Terms— fMRI imaging, spiral trajectory, magnetic sus-
ceptibility, non-Cartesian sampling

I. I NTRODUCTION

I N magnetic resonance (MR) imaging, the standard model
for the measurementsy = (y1, . . . , yM ) is

E[yi] =

∫

f(~r) e−ı2π~νi·~r d~r, i = 1, . . . ,M, (1)

where f(~r) denotes the unknown object magnetization,~r
denotes 2D or 3D spatial coordinates,~νi denotes the (possibly
nonuniform) frequency-space sample locations associatedwith
the specific MR pulse sequence, andE[·] denotes expectation.
MR measurements contain additive white complex Gaussian
noise [1, Ch. 15]:

yi = E[yi] +εi, i = 1, . . . ,M. (2)

The goal is to reconstructf(~r) from y.
The usual Fourier model (1) is reasonable for some types of

magnetic resonance (MR) scans, and many MR reconstruction
methods are based on that model.

This work was supported in part by NIH grant NIDA R01 DA15410.

For MR scans with long readout times, there areoff-
resonance effects, caused by magnetic field inhomogeneity
(main field imperfections and magnetic susceptibility varia-
tions), and/orrelaxation effects that depart from the simple
Fourier model. Failure to compensate for such effects leadsto
geometric distortions in echo-planar imaging, and blurring and
artifacts when imaging with non-Cartesian trajectories. These
degradations can be severe in brain scans based on the BOLD
effect [2], hampering the use of fMRI in brain regions near
air/tissue interfaces. Numerous solutions have been proposed
based both on data acquisition strategies and reconstruction
methods [3]–[22].

In the presence of such non-Fourier effects, a more realistic
model for MR measurements is the following:

E[yi] =

∫

f(~r) e− z(~r) ti e−ı2π~νi·~r d~r, (3)

where ti denotes the time of theith sample. The complex
quantity z(~r) can include both relaxation and off-resonance
effects as follows:

z(~r) = α(~r) +ı ω(~r) . (4)

The real functionα(~r) corresponds to the relaxation term
(e.g., an R∗

2 map) at spatial position~r, and the real function
ω(~r) corresponds to off-resonance effects (e.g., susceptibility).
Since bothα(~r) andω(~r) have inverse time units, we refer to
z(~r) as therate map hereafter. For simplicity here, we address
the problem where the rate mapz(~r) is known,i.e., where we
are given relaxation mapsα(~r) and field mapsω(~r) and the
goal is to reconstruct the objectf from the measurementsy,
e.g., [21]. For field-corrected MR reconstruction, usually one
assumes thatα(~r) is zero. Further applications of the general
approach described here include situations where either the
field map ω(~r) is unknown and also to be estimated,e.g.,
[23]–[25], or the relaxation mapα(~r) is also to be estimated,
e.g., [26], [27] or both,e.g., [28]–[35]. We focus on the case
of a single receive coil, although the methods extend readily
to parallel imaging with multiple coils,e.g., [36].

The standard approach to correcting these effects is the
conjugate-phase image reconstruction method and its fast
variants,e.g., [5], [37]. That family of methods is relatively fast
since it is non-iterative, but it only partially compensates for
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off-resonance effects. Recently, iterative methods that combine
the conjugate gradient (CG) algorithm with non-uniform FFT
(NUFFT) operations have been shown to provide considerably
improved image quality relative to the conjugate-phase method
[21]. However, for non-Cartesian k-space trajectories such as
spirals, each CG-NUFFT iteration requires numerous k-space
interpolations, also known as “gridding,”e.g., [38]. These
operations are computationally expensive and poorly suited
to fast hardware implementations.

This paper proposes a faster iterative approach to field-
corrected MR image reconstruction based on the CG algorithm
and certain Toeplitz matrices. This CG-Toeplitz approach
requires k-space interpolations only for the initial iteration;
thereafter only FFTs are required, making the method more
suitable for fast hardware implementations. In the absenceof
field inhomogeneity, this method is closely related to certain
algorithms for band-limited signal interpolation,e.g., [39].
The Toeplitz/FFT structure has been investigated previously
for MR image reconstruction in the context of sensitivity
encoded imaging [40], [41]. The primary contribution here
is the extension of such methods to the non-Fourier model
(3). Simulation results with a realistic brain field map show
that the proposed CG-Toeplitz approach significantly reduces
computation time yet produces image quality equivalent to the
CG-NUFFT method.

The outline of this paper is as follows.§II describes the
basic CG approaches for iterative MR image reconstruction.
§III compares approximation methods for the non-Fourier
exponentiale− z(~r) ti in (3). §IV applies one of those ap-
proximations to derive the CG-Toeplitz method.§V presents
simulation results showing the efficiency of the proposed
approach.

II. REGULARIZED LS RECONSTRUCTION

A. Object discretization

Equation (3) is a continuous-to-discrete model that is
challenging to manipulate (see [42], [43]). The problem is
simplified by parameterizing the objectf(~r) using a linear
combination ofN basis functions:

f(~r) =

N
∑

j=1

xj p(~r − ~rj) . (5)

So the image reconstruction problem becomes that of esti-
mating the parameter vectorx = (x1, . . . , xN ) of expansion
coefficients. For simplicity, we focus on rect functions (the
voxel basis), as in [21], in which caseN is the number of
pixels,e.g., 642, andxj is thejth pixel value. We also assume
that the rate map has (approximately) constant values over
each voxel, so we can write

z(~r) =

N
∑

j=1

zj p(~r − ~rj), (6)

where

zj , α(~rj) +ı ω(~rj), j = 1, . . . , N. (7)

For cases with large within-voxel gradients of the rate map,
one can use smaller voxels to reduce signal loss, albeit with
increased computation [44] [45, p. 140].

Under these assumptions, the integral signal model (3)
simplifies to the following discrete-to-discrete sum1:

ȳi(x) = E[yi] = Pi

N
∑

j=1

xj e−zjti e−ı2π~νi·~rj , (8)

using the following Fourier transform:

Pi , P (~νi) =

∫

p(~r) e−ı2π~νi·~r d~r .

In matrix-vector form:

ȳ(x) = Ax, A = {aij} , (9)

aij = Pi e−zjti e−ı2π~νi·~rj . (10)

Typically the matrixA is too large to be stored explicitly,
so we would like to use procedures like FFT operations to
evaluateAx, rather than explicit matrix-vector multiplication.
Unfortunately,A is not a Fourier matrix in general. In any
case, the MR reconstruction problem is to reconstructx from
y using (9).

B. Regularized LS minimization

Since MR measurements have white complex gaussian
noise, we focus on methods that form an estimatex̂ of x

by minimizing regularized least-squares cost functions ofthe
form2

Ψ(x) =
1

2
‖y − ȳ(x)‖2

+ R(x), (11)

where R(x) denotes any differentiable roughness penalty
function andy denotes the measured data defined in (2). The
goal is to find the imagêx that minimizes this cost function,
typically by using gradient-based iterative algorithms. Most of
the work in such algorithms is in computing the gradient of
Ψ, and we focus on this computation hereafter.

One way to write the gradient ofΨ is:

∇Ψ(x) = −A′(y − Ax) + ∇R(x), (12)

whereA′ denotes the adjoint (complex conjugate transpose)
of A. The computational bottleneck in (12) is calculating
the matrix-vector productsAx and A′r, where r denotes
the residualy − Ax. We previously used the above gradient
expression and combined NUFFTs [46] with temporal inter-
polation based on a “time-segmentation” approximation [5]so
as to be able to compute efficientlyAx andA′r [21]. We refer
to (12) as the “NUFFT approach.”

An alternative, mathematically equivalent gradient expres-
sion is the following:

∇Ψ(x) = Tx − b + ∇R(x), (13)

1In problems wherezj is estimated by linearization, an extra “ti” term
appears in the summation [35]. One can absorb this intoPi and then all
remaining formulae are also applicable to such problems.

2An unweighted norm is used in the usual case where the measurements
have equal variances, although the approach generalizes readily to weighted
norms.
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whereT , A′A andb , A′y. SinceT is Toeplitz when the
rate mapz is zero, with some abuse of terminology we refer
to (13) as the “Toeplitz approach.” The primary bottleneck in
using (13) is multiplication ofT by x each iteration. IfT
were Toeplitz, then this could be done efficiently using well-
known FFT methods [47], as has been proposed previously
for iterative MR image reconstruction [40], [41]. Here,T

is not Toeplitz due to the rate mapz, so we will introduce
approximations.

The next section first examines the approximations that have
been used to evaluate (12).§IV then returns to methods for
computing efficiently the gradient expression (13).

III. A PPROXIMATIONS FOR EXPONENTIALS

In the expression (10) for the elements of the matrixA,
the problematic part is the non-Fourier exponential terms
e−zjti . Direct implementation ofAx using (8) would require
O(MN) computations, which is undesirably slow. To reduce
computation, one must make approximations, but these must
be sufficiently accurate.

All of the known approximations are special cases of the
following general form:

e−zjti ≈
L
∑

l=1

bilclj ,
j = 1, . . . , N
i = 1, . . . ,M,

(14)

for various choices for thebil and clj terms. Substituting
such an approximation into the discrete signal model (8) and
rearranging yields

[Ax]i ≈ Pi

L
∑

l=1

bil





N
∑

j=1

(xjclj) e−ı2π~νi·~rj



 . (15)

In matrix form,

A ≈ diag{Pi}
L
∑

l=1

diag{bil}G diag{clj},

whereG denotes theM×N NUFFT operator having elements
gij = e−ı2π~νi·~rj , and diag{Pi} denotes a diagonal matrix
with diagonal elements{Pi}. We can evaluate (15) efficiently
using L NUFFT calls [46], since the bracketed expression
is an NUFFT of the signal(x1cl1, . . . , xNclN ). In short, an
approximation of the form (14) reduces computation since it
contains no terms that depend on bothi and j.

Each NUFFT requiresO(K log N) + O(JdM) where K
is the over-sampled FFT size (typicallyK = 2dN for d-
dimensional imaging) andJ is the frequency domain inter-
polator width (typicallyJ = 6) [46]. So computingAx via
(15) reduces the total count fromO(MN) to O(L(cN log N+
JdM)) for a small constantc.

The remainder of the section summarizes and compares
possible choices for thebil and clj terms, including efficient
methods for computing those terms.

A. Time segmentation (TS) approximations

In the context of MR reconstruction with field inhomogene-
ity correction, Nollet al. evaluated the exponentialse−zjti at
a predetermined set of time points,

{

ťl : l = 1, . . . , L
}

, and
then used a linear interpolation method for times between
those points [5], [37]. We can express this “time segmentation”
approach as an approximation of the form (14) where

bil , bl(ti) e−z̄ti , clj , e−(zj−z̄)ťl . (16)

Eachbl(t) denotes a temporal interpolator, andz̄ denotes an
(optional) baseline rate map value.

Originally, shift-invariant temporal interpolators wereused
[5]. These were generalized to min-max optimal temporal
interpolators in [21], significantly reducing approximation
error. (See§III-F below.)

If one chooses̄z = 0, then the choice (16) reverts to the
classical time segmentation method. Alternatively, ifz(~r) is
uniform with valuez̄, then (16) becomes exact if we choose
L = 1 andbl(ti) = 1. A baselinez̄ is useful for conventional
interpolators, but is not needed for the LS time-segmentation
method described in (21) below.

B. Frequency segmentation

Instead of choosing time samples, an alternative approach
is to choose a set of “frequency” samplešzl, for l =
1, . . . , L, and interpolate between these values to evaluate the
exponential [37], [48], [49]. We can express this “frequency
segmentation” approach as an approximation of the form (14)
with

bil , e−žl(ti−t̄) , clj , cl(zj) e−zj t̄ , (17)

where t̄ is a nominal time reference (e.g., an echo time, or
simply t̄ = 0) and where eachcl(·) denotes a frequency-
domain interpolator.

In the original version [37], theclj ’s were chosen to be
either nearest-neighbor, linear, or Hanning interpolators. (See
also [20].) Later, Manet al. described a least-squares approach
(cf. (19) below) to choosing the interpolatorscl(·) [49].

In the frequency segmentation approach, a practical issue is
choosing the frequency samples{žl}. The traditional choice
is equally-spaced frequencies that span the band-width of the
field map. However, that choice is suboptimal for nonuniform
field map distributions. Instead, it is preferable to concentrate
more frequency components where they are most needed based
on the rate map histogram. We achieve this by using the
asymptotic theory of quantization, which specifies the optimal
density of centroids for high-rate quantization [50].

C. Generalized approximations

Both “time segmentation” and “frequency segmentation”
lead to approximations of the form (14), and both enable
the efficient implementation (15). Thus, from the point of
view of rapid computation, time segmentation and frequency
segmentation are equally viable methods. In fact, for a given
L, any choices for thebil and clj terms lead to the same
compute time for evaluatingAx.
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Since compute times are determined only byL (and N
and M ), rather than by the form ofbil and clj , it is natural
to consider choosing thebil and clj terms to minimize the
error in the approximation (14). LetB = {bil} ∈ C

M×L and
C = {clj} ∈ C

L×N . We would like to examine choices forB
and C that are “optimal” in some sense, without necessarily
being constrained to the exponential forms used in (16) and
(17).

The possibility of using non-exponential bases was explored
in [49] using SVD analysis, with the conclusion that frequency
segmentation is nearly optimal. However, that investigation
used equally weighted, equally-spaced frequency samples,
which corresponds implicitly torate mapshaving uniform
distributions (a rectangular histogram). In practice, therate
maps for real brain scans can be quite nonuniform.

The least-squares optimal choices forB and C minimize
the Frobenius norm

arg min
B,C

|||E − BC|||2Frob

= arg min
B,C

M
∑

i=1

N
∑

j=1

∣

∣

∣

∣

∣

e−zjti −
L
∑

l=1

bilclj

∣

∣

∣

∣

∣

2

, (18)

or a weighted generalization thereof, whereE is theM × N
matrix with elementseij = e−zjti . This minimization is a
“principal components” problem that is solved by theSVD of
E. This solution can be of theoretical interest as a performance
benchmark, but appears to require too much memory and
computation for routine use.

Rather than optimizing bothB and C jointly, one can
first chooseB heuristically and then find the matrixC that
optimizes (18), or one can first chooseC and then optimize
B. These two alternatives are explored next.

D. Histogram principal components

For a given matrixB, the LS-optimal choice ofC is

C = [B′B]−1B′E. (19)

We now focus on choosingB efficiently. To simplify (18), we
histogram the rate map values{zj} into K � N bins with
centersz̃k, k = 1, . . . ,K, possibly spaced unequally, and let
hk denote the number ofzj values in thekth bin. Then a
natural approximation to (18) is the following WLS criterion:

arg min
B

K
∑

k=1

hk

∥

∥ẽk − B[B′B]−1B′ẽk

∥

∥

2
, (20)

where we definẽek = (e−z̃kt1 , . . . , e−z̃ktM ). The solution to
this minimization problem is given by the firstL left singular
vectors of theM × K matrix

[√
h1ẽ1 . . .

√
hK ẽK

]

. Since
K � N , this SVD is much more practical than (18).

E. LS frequency-segmentation approach

As described in [49], one can chooseB using the frequency-
segmentation choice (17), and then find the corresponding LS-
optimal choice ofC using (19).

F. LS time-segmentation approach

To avoid SVDs altogether, a simpler approach is to choose
the matrix C that corresponds to the time segmentation
approximation (16), and then optimizeB by least squares
[21]. (When B is thus optimized, thēz term in (16) is
unnecessary.) Again, to reduce computation we histogram the
rate map values as described above [21]. Lettingb(ti) =
(b1(ti), . . . , bL(ti)) denote theith row of B, we find B by
the following WLS criterion:

b(t) = arg min
b∈CL

K
∑

k=1

hk

∣

∣

∣

∣

∣

e−z̃kt −
L
∑

l=1

bl e
−z̃k ťl

∣

∣

∣

∣

∣

2

, (21)

where hk was defined before (20). ForK � N histogram
bins, the computation ofB is O(LK(M + L) + L3M).

G. Comparisons

We evaluated the above approximations for a wide variety
of simulated and real fieldmaps. We summarize here one
representative comparison, using the brain fieldmap shown in
Fig. 1. This map, a brain slice near the ear canals, was acquired
using standard delayed-echo field mapping methods on a GE
3T MR scanner [51]. Fig. 2 shows the histogram of this field
map.

For evaluation, we usedti’s with 5 µs sampling forM =
3770, corresponding to a 18.855 ms readout time. This time is
typical for one-shot spiral trajectories on our 3T GE scanner
for 64 × 64 brain scans with a 22 cm FOV.

We compared four approximations: (i) the SVD approach of
§III-D using the histogram approximation (20) withK = 40
bins; (ii) the time-segmentation (TS) approach of§III-F with
the WLS criterion (21); (iii) the frequency segmentation (FS)
method of§III-E using the LS-optimal interpolators (19). For
FS, we found that uniformly spaceďzl values worked well
only for a simple fieldmap that varied linearly over space,
which has a uniform field histogram (results not shown). As an
alternative, we applied the Lloyd-Max algorithm from scalar
quantizer design to choose the frequency samples from the
fieldmap histograms. This reduced error in all cases.

Fig. 3 shows the normalized root mean-squared error
(NRMSE), defined by 1

N
|||E − BC|||Frob (see (18)), as a

function of L for the fieldmap shown in Fig. 1, for all four
approximations. Naturally, as the number of approximation
terms L increases, the error decreases. In all cases, for any
given L the SVD approach has the minimum error. However,
the TS approximation has only slightly larger error. In fact,
to achieve a NRMSE less than 1%, both the SVD and the TS
methods requireL = 6 for this fieldmap.

From these representative results and others not shown, we
conclude that TS approximations, when optimized per§III-F,
provide the most attractive tradeoff between accuracy and ease
of computation. This conclusion is fortuitous since the Toeplitz
approach described in§IV is most efficient when implemented
with TS approximations.

IV. TOEPLITZ APPROACH

Now we turn to computing the “Toeplitz approach” (13)
efficiently. Under the model (9), the matrixT in (13) has the
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for the field map shown in Fig. 1.

following elements:

Tkj = [A′A]kj =

M
∑

i=1

a∗

ikaij

=

M
∑

i=1

|Pi|2 e−(z∗

k+zj)ti e−ı2π~νi·(~rj−~rk) . (22)

In the usual case where the voxel centers~rj are spaced equally,
this matrix would be Toeplitz3 in the absence of relaxation
effects and off-resonance effects,i.e., whenz(~r) = 0.

In the presence of such effects,T is not Toeplitz due
to the problematic terme−(z∗

k+zj)ti . So we must introduce
approximations to develop fast methods for computing the
matrix-vector productTx required in the gradient calculation
(13). Two possible approaches are described next.

A. O(L2) approach

One approach is to separate the problematic exponential
first, and then make approximations as follows:

e−(z∗

k+zj)ti = e−z∗

kti e−zjti ≈
(

L
∑

l′=1

bil′cl′k

)∗
L
∑

l=1

bilclj ,

i.e., to invoke approximations of the form (14) twice. Substi-
tuting into (22) and rearranging leads to the following:

T ≈
L
∑

l′=1

L
∑

l=1

D′

l′Tl′,lDl, (23)

whereDl = diag{clj} and

[Tl′,l]kj =
M
∑

i=1

|Pi|2 b∗il′bil e
−ı2π~νi·(~rj−~rk) .

Each matrixTl′,l is Toeplitz, so we can multiply this approx-
imation toT by a vectorx usingL2 pairs of FFTs [47]. An
advantage of this approach is that one can use theB and
C matrices corresponding to any exponential approximation
(14). But a significant disadvantage is that it requiresO(L2)
computation.

B. O(L) approach

To reduce computation, we would like to use an approxi-
mation for the problematic exponential term that will allowus
to “separate” thez∗k +zj term in (22) after making the approx-
imation. Of the various approximation methods described in
§III, only the time segmentation approach appears to have the
desired property. (Fortunately the time segmentation approach
is also sufficiently accurate, as shown in§III-G.) Substituting
the approximation (16) (with̄z = 0) into (22) yields the
following approximation to the elements ofT :

Tkj ≈
M
∑

i=1

|Pi|2
[

L
∑

l=1

bil e
−(z∗

k+zj)ťl

]

e−ı2π~νi·(~rj−~rk)

=

L
∑

l=1

e−z∗

k ťl [Tl]kj e−zj ťl , (24)

3For simplicity, we say “Toeplitz” rather than “block Toeplitz with
Toeplitz blocks” [47].
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where the element of each matrixTl are defined by

[Tl]kj =

M
∑

i=1

|Pi|2 bil e
−ı2π~νi·(~rj−~rk) . (25)

In matrix form,

T ≈
L
∑

l=1

D′

lTlDl, (26)

whereDl = diag
{

e−zj ťl

}

. Each matrixTl is Toeplitz, so one
can multiply Tl by a vector efficiently using a pair of FFTs
[47]. These FFTs use the first row ofTl, which we precompute
prior to iterating by a pair of NUFFT calls. EachDl matrix
is diagonal, so multiplying with it is trivial. Thus, to compute
Tx (approximately) requiresL pairs of FFTs, for an operation
count ofO(LN log N). In contrast, the NUFFT approach that
uses the gradient expression in (12) with an approximation like
(15) requiresL pairs of NUFFTs, which is more computation
due to interpolations [46].

A subtle but key issue in using (24) is choosing the
interpolatorsbil. If the rate mapzj contains frequency offsets
in the rangeνmin to νmax, then the terme−(z∗

k+zj)t will
contain frequency offsets in the range−(νmax − νmin) to
νmax − νmin. In other words, its “bandwidth” is twice as
wide as the bandwidth ofe−zjt. So we have found that it
can be necessary to use larger values ofL for the Toeplitz
approximation (24) than for the NUFFT approximation (15).
Nevertheless, by avoiding DFT interpolations, the Toeplitz
approach is still faster than the NUFFT approach.

For (25) to be accurate, we would like to chooseB to
provide a LS approximation to terms of the forme−(z∗

k+zj)ti .
For a fieldmap with a given histogram{hk}, the histogram
of z∗k + zj is given by the auto-correlation function ofhk.
So to designB for the Toeplitz approach, we first find
the fieldmap histogram, then compute the auto-correlation
function of that histogram, and then apply the WLS criterion
(21) using that auto-correlated histogram. We found that this
approach provided much improved accuracy relative to using
(21) with the original histogram. Furthermore, because “auto-
correlated” histograms are symmetric about zero, the resulting
B matrix is real valued, saving computation in precomputing
the Toeplitz kernels in (25).

We summarize all of the required steps as follows. Fig. 4
illustrates the data flow4.
CG-Toeplitz Algorithm
• Determine the relaxation map and/or the field map to form

the rate mapz(~r) in (4).
• Compute the histogram of that rate map, and then the auto-

correlation function of that histogram.
• Using that auto-correlated histogram, use (21) and (16) to

compute the interpolatorsB and the coefficientsC using
the LS time-segmentation method of§III-F.

• Precomputeb = A′y using the combination of temporal
interpolation and NUFFT methods described in [21], [46].
Since this need only be done once, rather than each itera-
tion, it can be done with a high accuracy approximation.

4Software available on web site
http://www.eecs.umich.edu/∼fessler.

• Precompute the first row ofTl for l = 1, . . . , L using (25),
in preparation for using a2× over-sampled FFT to perform
the operation of matrix-vector multiplication byTl [47].
This requiresL pairs of NUFFT calls.

• Using (26) to computeTx approximately for the gradi-
ent expression (13), apply a gradient-based optimization
method such as the CG algorithm (e.g., [21]) to find x̂

iteratively.

Compute FFT of

Field Map
(Optional)

Relax Map
(Optional)

Gradient−based
Optimization

Image
DisplayMeasured Data

MR k−space

Design basis
and coefficients Toeplitz matrix row

B

C

y

Tl

Fig. 4. Block diagram of MR image reconstruction data flow.

V. SIMULATION

We compared four methods for field-corrected MR image
reconstruction: (i) the conjugate-phase reconstruction method
[5] using Voronoi-based density compensation factors [52]and
the LS-optimal time-segmentation approximation described in
§III-F, (ii) the CG-NUFFT method based on the gradient
expression (12), using the time-segmentation approximation
described in§III-F [21], (iii) the CG-Toeplitz method based
on the gradient expression (13) using theO(L) approximation
described in§IV, and (iv) for completeness, the conjugate-
phase methodwithout field correction. For the CG methods
we used quadratic regularization with a small regularization
parameter, chosen such that the FWHM of the PSF was about
1.36 pixels. For simplicity we initialized the CG algorithms
with x = 0.

To evaluate the methods quantitatively, we performed sim-
ulations using the brain fieldmap shown in Fig. 1, and the
synthetic imagex shown in Fig. 5. We evaluated the recon-
struction methods using a spiral trajectory containing 3770
points with a sampling time of 5µs, so the data acquisition
time was 18.855 ms. This spiral trajectory is used routinelyon
our GE 3T MR system. To generate the (noiseless) simulated
dataȳ, we used the exact system matrix (10).

For all methods, we estimated only the 2936 pixels within
the elliptical region of interest shown in Fig. 5. For reconstruc-
tion, we used NUFFTs with 2× over-sampling andJ = 6,
which we have found previously to be sufficiently accurate.

Fig. 6 shows the NRMS error as a function of iteration,
defined as‖x̂ − xtrue‖ / ‖xtrue‖ · 100%, for the values ofL
listed. Larger values ofL did not reduce the error further.
Since there was no noise in the simulated k-space data, the
lower limit on NRMS error is a function of the (modest)
regularization used and the inherent NUFFT approximations.
For these values ofL (or larger) the CG algorithm essentially
converged by 15 iterations.
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Fig. 7 shows the NRMS error as a function ofL. To achieve
the same accuracy, the CG-Toeplitz approach requiresL to be
slightly larger than for CG-NUFFT. The RMS error of the CP
method changes relatively little forL > 1, apparently because
that error is dominated by imperfect density compensation
for the spiral trajectory. We separately examined a Cartesian
trajectory (results not shown), where density compensation is
moot, and in that case the NRMS error decreased monotoni-
cally in L until reaching a minimum value of 14% atL = 6.

Fig. 8 shows the reconstructed images. Based on the results
in Fig. 7, we usedL = 6 for the conjugate phase and CG-
NUFFT approaches, andL = 8 for the CG-Toeplitz approach.

Table I compares the CPU time of the various reconstruction
methods (using MATLAB ’s cputime on a Dell 650n with
3.06GHz Xeon CPU). For the CG methods, the times are
for 15 iterations, which is adequate based on Fig. 6. The
total times shown in the table include the time required
to “precompute”B, C, etc. The Toeplitz approach shows
significant acceleration. In MATLAB , for the sameL the
Toeplitz approach runs several times faster per iteration than
the NUFFT approach, because it avoids the NUFFT interpo-
lations. The Toeplitz approach requires a slightly larger value
for L and requires precomputing the kernels of theTl terms,
but despite this “overhead” the overall compute time is still
reduced significantly.

To investigate whether the approximations would increase
sensitivity to noise, we added several different levels of
pseudo-random white complex gaussian noise toȳ and re-
peated the reconstructions. Table I shows that the noise
properties of the CG-NUFFT and CG-Toeplitz approach are
indistinguishable, because the chosenL values ensure that
approximation error is negligible relative to estimation error.

VI. SUMMARY

This paper has described a new CG-Toeplitz method for
field-corrected MR image reconstruction using the approxima-
tions (26). Simulation results show that this proposed method
is as accurate as the previously proposed CG-NUFFT method
[21] but is considerably faster. The CG-Toeplitz approach
is also better suited to fast hardware implementation since
only FFTs are required during the iterations, eliminating the
frequency domain interpolations required by the CG-NUFFT
approach. We believe the CG-Toeplitz approach is the method
of choice for iterative field-corrected MR image reconstruc-
tion. The improved image quality in regions with severe field
inhomogeneity may enable detection of brain activation even
in regions near air/tissue interfaces.

An alternative CG approach has recently proposed by Barnet
et al. [53]. That approach involves expressions of the form
AA′, which is never Toeplitz, even when the rate map is
zero, so it cannot benefit from the accelerations proposed
here. Furthermore, it is limited to the special case of quadratic
regularization with an invertible Hessian, whereas the gradient-
based approach that uses (12) or (13) can accommodate even
non-quadratic regularization methods,e.g., [54].

There are several opportunities to extend this work.
• Whenz(~r) = 0, the matrixT in (22) is Toeplitz, and good

circulant preconditioners are available [47]. Whenz(~r) 6=

1 64

Image and support
1

64 0

2.5

Fig. 5. True imagex used in simulations. Only pixels within the outer
elliptical region were reconstructed.

0 5 10 15
0

5

10

15

20

25

30

Iteration

%
 N

R
M

S
E

Toeplitz L=6
Toeplitz L=7
NUFFT L=5
NUFFT L=6

Fig. 6. NRMSE ofx̂ versus iteration for the two CG reconstruction methods
for the spiral trajectory.
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Fig. 7. NRMSE of x̂ versus approximation orderL for the three field-
corrected reconstruction methods for the spiral trajectory.
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Precomputation NRMS % vs SNR
Method L B,C A′Dy b = A′y Tl 15 iter Total Time ∞ 50 dB 40 dB 30 dB 20 dB

Conj. Phase 6 0.4 0.2 0.6 30.7 37.3 46.5 65.3 99.9
CG-NUFFT 6 0.4 5.0 5.4 5.6 16.7 26.5 43.0 70.4
CG-Toeplitz 8 0.4 0.2 0.6 1.3 2.5 5.5 16.7 26.4 42.9 70.4

TABLE I

CPU TIMES (SECONDS), INCLUDING PRECOMPUTATION TIMES, AND NRMS ERROR(%) FOR THREE FIELD-CORRECTEDMR IMAGE RECONSTRUCTION

METHODS. THE PROPOSEDCG-TOEPLITZ APPROACH IS FASTER THANCG-NUFFTYET EQUALLY ACCURATE.

Uncorrected Conj. Phase, L=6

CG−NUFFT
L=6

CG−Toeplitz
L=8

0 2.5

Fig. 8. Reconstructed images for the spiral trajectory.

0, thenT is approximately the “weighted sum” of Toeplitz
matrices in (26). An open question for future work is how
to precondition this sum effectively; preconditioners have
been developed for other shift-variant problems [47], [55].

• The model (6) assumes that the rate map is constant
over each voxel. To compensate for within-voxel field
gradients, one can use smaller voxels [44]. This increases
computation, so an interesting challenge is to try to account
for field gradients with less computation.

• For echo-planar imaging (EPI), the primary blur in the read-
out direction. This affects the properties of theTl matrices,
and it may be possible to further reduce computation.

• For both the NUFFT and Toeplitz methods investigated
here, we used FFTs with2× over-sampling in each dimen-
sion. In the absence of field inhomogeneity, NUFFT-type

methods may tolerate smaller over-sampling factors [41].
Whether the Toeplitz approach could also tolerate reduced
over-sampling requires further investigation, particularly in
the presence of field inhomogeneity.

• For the methods described here, we separated the problems
of designing the “temporal” interpolatorsB andC and of
designing the interpolators that are used in the frequency
domain for the NUFFT operation. Whether one could de-
sign both interpolators simultaneously to improve accuracy
(or reduce computation) is an interesting challenge.

ACKNOWLEDGEMENT

We thank Dave Neuhoff for recommending [50].

REFERENCES

[1] E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan,
Magnetic resonance imaging: Physical principles and sequence design.
New York: Wiley, 1999.

[2] S. Ogawa, R. S. Menon, D. W. Tank, S. G. Kim, H. Merkle, J. M. Eller-
mann, and K. Ugurbil, “Functional brain mapping by blood oxygenation
level-dependent contrast magnetic resonance imaging. A comparison of
signal characteristics with a biophysical model,”Biophys. J., vol. 64,
no. 3, pp. 803–12, Mar. 1993.

[3] K. Sekihara, S. Matsui, and H. Kohno, “NMR imaging for magnets with
large nonuniformities,”IEEE Tr. Med. Imag., vol. 4, no. 4, pp. 193–9,
Dec. 1985.

[4] E. Yudilevich and H. Stark, “Spiral sampling in magnetic resonance
imaging - the effect of inhomogeneities,”IEEE Tr. Med. Imag., vol. 6,
no. 4, Dec. 1987.

[5] D. C. Noll, C. H. Meyer, J. M. Pauly, D. G. Nishimura, and A. Macovski,
“A homogeneity correction method for magnetic resonance imaging with
time-varying gradients,”IEEE Tr. Med. Imag., vol. 10, no. 4, pp. 629–37,
Dec. 1991.

[6] D. C. Noll, J. M. Pauly, C. H. Meyer, D. G. Nishimura, and A. Macovski,
“Deblurring for non-2D Fourier transform magnetic resonance imaging,”
Mag. Res. Med., vol. 25, pp. 319–33, 1992.

[7] H. Chang and J. M. Fitzpatrick, “A technique for accuratemagnetic
resonance imaging in the presence of field inhomogeneities,”IEEE Tr.
Med. Imag., vol. 11, no. 3, pp. 319–29, Sept. 1992.

[8] T. S. Sumanaweera, G. H. Glover, T. O. Binford, and J. R. Adler, “MR
susceptibility misregistration correction,”IEEE Tr. Med. Imag., vol. 12,
no. 2, pp. 251–9, June 1993.

[9] P. Jezzard and R. S. Balaban, “Correction for geometric distortion in
echo planar images fromB0 field variations,”Mag. Res. Med., vol. 34,
no. 1, pp. 65–73, July 1995.

[10] Y. M. Kadah and X. Hu, “Simulated phase evolution rewinding
(SPHERE): A technique for reducingB0 inhomogeneity effects in MR
images,”Mag. Res. Med., vol. 38, pp. 615–27, 1997.

[11] ——, “Algebraic reconstruction for magnetic resonance imaging under
B0 inhomogeneity,”IEEE Tr. Med. Imag., vol. 17, no. 3, pp. 362–70,
June 1998.

[12] T. B. Harshbarger and D. B. Twieg, “Iterative reconstruction of single-
shot spiral MRI with off-resonance,”IEEE Tr. Med. Imag., vol. 18, no. 3,
pp. 196–205, Mar. 1999.

[13] H. Schomberg, “Off-resonance correction of MR images,”IEEE Tr. Med.
Imag., vol. 18, no. 6, pp. 481–95, June 1999.



9

[14] J. Kybic, P. Thevenaz, A. Nirkko, and M. Unser, “Unwarping of
unidirectionally distorted EPI images,”IEEE Tr. Med. Imag., vol. 19,
no. 2, pp. 80–93, Feb. 2000.

[15] P. Munger, G. R. Crelier, T. M. Peters, and G. B. Pike, “Aninverse
problem approach to the correction of distortion in EPI images,” IEEE
Tr. Med. Imag., vol. 19, no. 7, pp. 681–9, July 2000.

[16] K. S. Nayak and D. G. Nishimura, “Automatic field map generation and
off-resonance correction for projection reconstruction imaging,” Mag.
Res. Med., vol. 43, no. 1, pp. 151–4, Jan. 2000.

[17] K. S. Nayak, C.-M. Tsai, C. H. Meyer, and D. G. Nishimura, “Efficient
off-resonance correction for spiral imaging,”Mag. Res. Med., vol. 45,
no. 3, pp. 521–4, Mar. 2001.

[18] J. A. Akel, M. Rosenblitt, and P. Irarrazaval, “Off-resonance correction
using an estimated linear time map,”Mag. Res. Im., vol. 20, no. 2, pp.
189–98, Feb. 2002.

[19] R. Deichmann, O. Josephs, C. Hutton, D. R. Corfield, and R.Turner,
“Compensation of susceptibility-induced BOLD sensitivitylosses in
echo-planar fMRI imaging,”NeuroImage, vol. 15, no. 1, pp. 120–35,
Jan. 2002.

[20] H. Moriguchi, B. M. Dale, J. S. Lewin, and J. L. Duerk, “Block regional
off-resonance correction (BRORC): A fast and effective deblurring
method for spiral imaging,”Mag. Res. Med., vol. 50, no. 3, pp. 643–8,
Sept. 2003.

[21] B. P. Sutton, D. C. Noll, and J. A. Fessler, “Fast, iterative image
reconstruction for MRI in the presence of field inhomogeneities,” IEEE
Tr. Med. Imag., vol. 22, no. 2, pp. 178–88, Feb. 2003.

[22] D. C. Noll, J. A. Fessler, and B. P. Sutton, “Conjugate phase MRI
reconstruction with spatially variant sample density correction,” IEEE
Tr. Med. Imag., vol. 24, no. 3, Mar. 2005, to appear.

[23] B. P. Sutton, D. Noll, and J. A. Fessler, “Simultaneous estimation
of image and inhomogeneity field map,” inISMRM Minimum Data
Acquisition Workshop, 2001, pp. 15–8.

[24] B. P. Sutton, J. A. Fessler, and D. C. Noll, “Field-corrected imaging
using joint estimation of image and field map,” inProc. Intl. Soc. Mag.
Res. Med., 2002, p. 737.

[25] B. P. Sutton, D. C. Noll, and J. A. Fessler, “Dynamic field map
estimation using a spiral-in / spiral-out acquisition,”Mag. Res. Med.,
vol. 51, no. 6, pp. 1194–204, June 2004.

[26] S. Lee, S. J. Peltier, J. A. Fessler, and D. Noll, “Estimation of R∗

2
using

extended rosette acquisition,” inHum. Brain Map., 2002, pp. 151–2, in
NeuroImage 16(2 S1):151-2, 2002.

[27] V. T. Olafsson, D. C. Noll, and J. A. Fessler, “New approach for
estimating∆R∗

2
in fMRI,” in Proc. Intl. Soc. Mag. Res. Med., 2003, p.

132.
[28] O. Speck and J. Hennig, “Functional imaging byI0 andT ∗

2
-parameter

mapping using multi-image EPI,”Mag. Res. Med., vol. 40, pp. 243–8,
1998.

[29] S. Lee, J. A. Fessler, and D. Noll, “A simultaneous estimation of field
inhomogeneity and R2* maps using extended rosette trajectory,” in Proc.
Intl. Soc. Mag. Res. Med., 2002, p. 2327.

[30] B. P. Sutton, S. J. Peltier, J. A. Fessler, and D. C. Noll,“Simultaneous
estimation ofI0, R∗

2
, and field map using a multi-echo spiral acquisi-

tion,” in Proc. Intl. Soc. Mag. Res. Med., 2002, p. 1323.
[31] S. J. Peltier, B. P. Sutton, J. A. Fessler, and D. C. Noll,“Simultaneous

estimation ofI0, R∗

2
, and field map using a multi-echo spiral acquisi-

tion,” in Hum. Brain Map., 2002, pp. 95–6, in NeuroImage 16(2 S1):95-
6, 2002.

[32] H. Eggers, T. Schaeffter, B. Aldefeld, and P. Boesiger,“Combined∆B0
and T2∗ correction for radial multi-gradient-echo imaging,” inProc. Intl.
Soc. Mag. Res. Med., 2003, p. 478.

[33] D. B. Twieg, “Parsing local signal evolution directly from a single-shot
MRI signal: A new approach for fMRI,”Mag. Res. Med., vol. 50, no. 5,
pp. 1043–52, Nov. 2003.

[34] S. Lee, D. Noll, and J. A. Fessler, “EXTended Rosette ACquisition Tech-
nique (EXTRACT): a dynamic R2* mapping method using extended
rosette trajectory,” inProc. Intl. Soc. Mag. Res. Med., 2004, p. 2128.

[35] V. Olafsson, J. A. Fessler, and D. C. Noll, “Dynamic update of R2* and
field map in fMRI,” in Proc. Intl. Soc. Mag. Res. Med., 2004, p. 45.

[36] B. P. Sutton, J. A. Fessler, and D. Noll, “Iterative MR image reconstruc-
tion using sensitivity and inhomogeneity field maps,” inProc. Intl. Soc.
Mag. Res. Med., 2001, p. 771.

[37] D. C. Noll, “Reconstruction techniques for magnetic resonance imag-
ing,” Ph.D. dissertation, Stanford, CA, 1991.

[38] K. P. Pruessmann, M. Weiger, P. Börnert, and P. Boesiger, “Advances
in sensitivity encoding with arbitrary k-space trajectories,” Mag. Res.
Med., vol. 46, no. 4, pp. 638–51, Oct. 2001.
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