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Intensity-based Image Registration using Robust
Correlation Coefficients
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Abstract— The ordinary sample correlation coefficient is a
popular similarity measure for aligning images from the same or
similar modalities. However, this measure can be sensitive to the
presence of “outlier” objects that appear in one image but not
the other, such as surgical instruments, the patient table, etc.,
which can lead to biased registrations. This paper describes an
intensity-based image registration technique that uses arobust
correlation coefficient as a similarity measure. Relative to the
ordinary sample correlation coefficient, the proposed similarity
measure reduces the influence of outliers. We also compared the
performance of the proposed method with the mutual information
based method. The robust correlation-based method should be
useful for image registration in radiotherapy (KeV to MeV X-
ray images) and image-guided surgery applications. We have
investigated the properties of the proposed method by theoretical
analysis, computer simulations, a phantom experiment, and with
fMRI data.

Index Terms— Image registration, robustness, outlier, robust
correlation coefficient, mutual information.

I. I NTRODUCTION

Image registration is a useful technique for aiding diagnosis,
performing patient set-up estimation for radiation therapy
[1] and for image-guided surgery [2], [3], etc. For the set-
up estimation problem, a pre-operative image (usually a CT
volume) is transformed geometrically to align with measured
radiographs. Intensity-based registration methods work by
maximizing a similarity measure based on the intensity values
of the two images. Therefore, designing an effective similarity
measure is very important. This paper proposes a robust
similarity measure for intra-modality image registration.

One fundamental design criterion is that a similarity mea-
sure should be maximized at the true registered position in the
absence of noise. Establishing this characteristic analytically
is challenging since the behavior of the objective function
depends on the nature of the images being registered. Another
important criteria is the statisticalefficiencyof the registration
method,i.e., the variability that would result from repeating
the registration with identical images except for noise. In
addition, registration methods can differ in theirrobustness
to the presence of unexpected objects in images.

Many intensity-based image registration methods implicitly
treat the intensity pairs taken from corresponding spatial
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locations in two images as i.i.d. (independent and identi-
cally distributed) samples of two random variables. With
that assumption, statistical concepts such as correlation, joint
entropy and mutual information (MI) are used as similarity
measures by estimating those statistical properties from the
i.i.d. samples.

The correlation coefficient is a particularly popular similar-
ity measure, and is a natural choice when registering two im-
ages from the same modality [4], [5]. Although correlation is
poor similarity measure for multi-modality image registration,
in terms of statistical efficiency and computational efficiency,
the correlation coefficient is one of the best similarity measures
for intra-modality image registration. Since image registration
for set-up estimation in radiation therapy and image-guided
surgery often involves images from the same (or similar)
modality, the correlation coefficient can be useful for those
applications.

The sample correlation coefficient has been used widely
to estimate the correlation coefficient due to its simplicity.
However, a drawback of the sample correlation coefficient
is its sensitivity to outliers [6, p. 199]. Even a few outliers
can affect the sample correlation coefficient greatly and thus
degrade image registration performance. A significant number
of “outliers” may be present in the image-guided surgery
application due to the presence of operating instruments and
in the radiation therapy application due to the effect of
radiotherapy table [1]. For X-ray CT images, differences in
contrast agents also occur. Although a bias in estimating the
correlation coefficient need not directly imply a bias in image
registration, we have observed such biases empirically when
outliers are present [7].

The MI similarity measure is used widely for multi-modality
image registration since it does not assume any functional
relationship between the two image values [8]–[10]. In this
sense, the MI method has an inherent degree of robustness.
However, as illustrated by our empirical results in Section III
and analyses in the Appendices, for intra-modality image
registration, the robustness of the MI method depends on the
particular images being registered. Moreover, the MI method
can be statistically inefficient,i.e., the registration variability
due to noise can exceed that of the sample correlation coeffi-
cient.

To overcome the drawbacks of the sample correlation
method and the MI method, we have investigated an image
registration method that uses robust correlation coefficients [6,
p. 204] as a similarity measure, thereby improving the robust-
ness without compromising the statistical efficiency much.

Robust estimation of mean and covariance has been studied
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extensively in statistics [6], [11]–[13]. The basic idea of robust
estimation is to weight the measured samples in a way that
reduces the effect of outlier samples, or even removes them
completely.

For example, one may compute the statistical distance of
each sample value from the mean, theMahalanobis distance,
evaluate a weighting function based on that distance, and
determine a new weighted mean and covariance and iterate
until convergence [12]. Alternatively, one may estimate the pdf
after trimming out the outliers by determining the minimum
volume ellipsoidal pdf [13] or minimum covering ellipsoidal
pdf [11]. A robust mean and covariance may then be estimated
from the estimated pdf.

There were also several investigations that applied the robust
statistics for image registration. For example, robust similarity
measures such as weighted square error and non-quadratic
error were applied for registering MRI and other modality
images [14], [15]. The performance of such robust methods
were compared with other methods empirically [16].

In this study, we focused onM-estimation methods for
robust correlation estimation [6, p. 211]. This framework helps
to explain why the sample correlation coefficient is sensitive
to outliers and provides insight into how to design a method
with improved robustness. Moreover, we can explain some
properties of the MI method within the same framework.

Investigating the advantages and disadvantages of using
alternative robust correlation estimation methods for image
registration in the presence of outliers is deferred to future
research. Such a study should consider the sample distributions
of representative images in a particular context.

The paper is organized as follows. Section II reviews
the image registration problem and describes the proposed
similarity measure. Section III compares the image registra-
tion accuracies of the proposed robust correlation similarity
measure, the conventional sample correlation coefficient and
the mutual information similarity measure. Three comparisons
are reported: 1D simulation, 2D fMRI image registration, and
3D/2D registration of an X-ray CT volume to orthogonal
radiographs of an anthropomorphic chest phantom.

The appendices present analyses of the statistical properties
of the correlation-based and MI-based image registration meth-
ods by approximating the mean and the variance using first-
order Taylor series expansions [17]. Since image registration
is highly nonlinear and the objective function is an implicit
function of the images, it is challenging to obtain concise and
insightful results from such approximations. Nevertheless, we
summarize some theoretical arguments that complement the
empirical results.

II. T HEORY: SIMILARITY MEASURES

The goal of image registration is to find a geometric
transformation (rigid or non-rigid), denotedT , that aligns
two given images, denoteds1

(
~t
)

and s2

(
~t
)
, where~t denotes

the spatial coordinates1. Intensity-based image registration

1We focus on image-to-image or volume-to-volume registration, but the
general approach applies equally to volume-to-projection registration,e.g.,
[1]. Also, we treats1

�
~t
�

and s2

�
~t
�

as continuous-space functions in the
presentation; in practice, sampling and interpolation are essential [9].

methods achieve this goal by maximizing a similarity measure
based on the image intensity values. If we parameterize the
transformationT using θ (e.g., three translation and three
rotation parameters for rigid transformation), the image regis-
tration becomes a parameter estimation problem:

θ̂ = arg max
θ

Φ(s1(Tθ(·)) , s2(·)), (1)

whereΦ(s1, s2) is some measure of thesimilarity between the
imagess1 ands2. In practice, registration is performed using
finite number of samplesXi andYi as follows:

Xi = s1(Tθ(~ti)) (2)

Yi = s2(~ti), i = 1, . . . , N,

where
{
~ti

}
denotes the sample locations, and wheres1(Tθ(·))

denotes a spatially transformed (and interpolated) version of
s1

(
~t
)
. Since Xi depends on the parameterθ, all statistical

quantities computed usingXi are functions ofθ. However, for
simplicity of notation, often we leave this dependence implicit.

Considering the sampling, a more precise expression for the
registration problem is

θ̂ = arg max
θ

Φ(X(θ),Y ), (3)

whereX = (X1, . . . , XN ) andY = (Y1, . . . , YN ).
A variety of similarity measuresΦ have been proposed

for image registration. Many of these are statistical quan-
tities such as the correlation coefficient, joint entropy and
mutual information. For such metrics, there is an underly-
ing assumption that the(Xi, Yi) pairs are i.i.d. samples of
jointly distributed random variables with some (unknown)
joint probability density function (pdf)fXY (x, y). This i.i.d.
assumption is somewhat artificial, but nevertheless leads to
useful similarity measures so we continue in this tradition in
this paper.

Next we review the usual correlation coefficient similarity
measure and contrast it with our proposed robust correlation
coefficient approach.

A. Correlation coefficient estimates

For two random variablesX andY with joint pdf fXY (x, y),
the correlation coefficientρ(X, Y ) is defined as follows:

ρ(X, Y )
4
=

C(X,Y )√
σ2

Xσ2
Y

, (4)

where the covariance is

C(X,Y )
4
=

∫
(x− E[X])(y − E[Y ]) fXY (x, y) dx dy (5)

and whereE[X] andE[Y ] denote the means, andσ2
X andσ2

Y

denote the variances of the random variables. Note that (un-
der mild regularity conditions onfXY (x, y)), the correlation
coefficientρ is well-defined even if the pdffXY (x, y) is not
parameterized in terms of it.

GivenN i.i.d. sample pairs(Xi, Yi), there are several ways
to estimate the correlation coefficientρ. For example, one
could first use the samples to compute an estimated joint pdf
f̂XY (x, y), and then substitutêfXY (x, y) into (4) to estimate
ρ. The following subsections describe two other approaches.
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1) Sample correlation coefficient:Perhaps the most popular
way to estimateρ is the sample correlation coefficient, defined
as follows:

ρ̂s(X, Y ) =
Ĉs(X, Y )√

σ̂2
X σ̂2

Y

, (6)

where the sample means, sample variances, and sample co-
variance are defined in the usual way as follows:

Ĉs(X, Y )
4
= 1

N−1

∑N
i=1(Xi − X̄)(Yi − Ȳ ) (7)

X̄
4
= 1

N

∑N
i=1 Xi

Ȳ
4
= 1

N

∑N
i=1 Yi

σ̂2
X

4
= 1

N−1

∑N
i=1(Xi − X̄)2

σ̂2
Y

4
= 1

N−1

∑N
i=1(Yi − Ȳ )2.

Relative to alternative methods for estimating the correlation
coefficient, the sample correlation method has the advantage
of simplicity since ρ̂s(X, Y ) is an explicit function of the
data samples(X, Y ). Furthermore, on the surface it appears
not to require any specific model for the joint pdffXY (x, y).
A minor drawback is that̂ρs(X,Y ) is not unbiased, even
for normal distributions although it is asymptotically unbiased
in that case [18, p. 90]. More importantly,̂ρs(X, Y ) is not
robust to outliers [6, p. 199], as explained intuitively in the
next sub-section.

2) Maximum likelihood estimates ofρ : An alternative
approach to estimatingρ is the following: (i) hypothesize a
parametric form for the joint distributionfXY (x, y) of X and
Y that depends onρ, (ii) find the maximum likelihood (ML)
estimate of the parameters given the dataX = X(θ) and
Y , and (iii) determineρ = ρ(θ) from the ML parameter
estimates. Usually we will have to compute the ML estimates
numerically, so the estimator̂ρ will be an implicit function
of X andY . To our knowledge, previous similarity measures
used in image registration have all beenexplicit functions of
the two images, so the proposed approach departs from that
convention.

We propose to adapt the spirit of this ML approach for the
purpose of robust image registration. However, since the joint
pdf fXY (x, y) is a somewhat artificial concept in this context,
we do not expect to model the pdffXY (x, y) precisely. We
consider the model forfXY (x, y) to be a function chosen by
the algorithm designer to impart desirable properties on the
resulting estimates, such as robustness.

Let Zi = (Xi, Yi) denote the pairs of corresponding image
intensity values. As usual, we consider theZi’s to be i.i.d.
samples of a two-dimensional random vectorZ = (X, Y ).
Following Huber [6, p. 211], we construct a model for the pdf
of Z having elliptical contours as follows. First we choose
a nonnegative functionf0 for which the corresponding 2D
circularly symmetric densityf0(‖z‖) integrates to unity over
IR2, where‖z‖ =

√
x2 + y2. Then we consider an (unknown)

non-degenerate transformationz 7→ V (z − µ) that leads to
the following density:

fZ(z; µ, V ) = |detV | f0(‖V (z − µ)‖). (8)

Under this parametric model,µ denotes the mean ofZ and
the2×2 covariance matrix ofZ is (V T V )−1. In other words,
V = (Cov{Z})−1/2

. For example, if one were to choose

f0(r) =
1
2π

e−r2/2, (9)

then (8) would become the bivariate normal distribution.
Having chosen somef0, one may estimate the meanµ and

the covariance termV from the sample pairsZi in the spirit
of ML estimation as follows:

(µ̂, V̂ ) = arg max
(µ,V )

N∏

i=1

|detV | f0(‖V (Zi − µ)‖). (10)

Usually there is no closed-form expression for the estimates
µ̂ and V̂ , so (10) is animplicit definition.

In classical estimation theory, ideallyf0 would be chosen
so that the pdffZ in (8) agrees with the actual distribution of
the Zi’s. However, since the notion that theZi’s are i.i.d. is
somewhat artificial in the context of image registration, it is
more useful to think off0 as a user-selectable function.

To help understand the “ML estimates” (10), we differenti-
ate (10) with respect toµ and V . Zeroing these expressions
yields the following two necessary conditions [6, p. 212]:

µ̂ =

∑N
i=1 w

(∥∥∥V̂ (Zi − µ̂)
∥∥∥
)

Zi

∑N
i=1 w

(∥∥∥V̂ (Zi − µ̂)
∥∥∥
) (11)

(V̂ T V̂ )−1 =
N∑

i=1

w
(∥∥∥V̂ (Zi − µ̂)

∥∥∥
)

(Zi−µ̂)(Zi−µ̂)T , (12)

wherew(·) denotes the followingweighting function:

w(r)
4
= − f ′0(r)

rf0(r)
. (13)

Huber proposed a simple iterative procedure for solving these
two nonlinear equations to obtain the ML estimates [6, p. 215].

After estimating the covariance term̂V , we can extract an
estimateρ̂ of the correlation coefficient as follows:

(V̂ T V̂ )−1 =
[

σ̂2
X ĈXY

ĈXY σ̂2
Y

]

ρ̂ =
ĈXY√
σ̂2

X σ̂2
Y

, (14)

where σ̂2
X and σ̂2

Y denote the ML estimated variances ofX
andY under the assumed model (8).

After finding the estimateŝµ and V̂ , one can compute the
weighting functionw

(∥∥∥V̂ (z − µ̂)
∥∥∥
)

to examine the relative
influence of different data valuesz on the estimates. (See
Fig. 3(b) for an example.) The weighting function is plotted in
the joint pdf domain for illustrative purposes only. In practice,
one estimates the robust correlation coefficient by solving (11)
and (12)without estimating the joint pdf explicitly.

If we were to choose (9) forf0, then the weighting function
in (13) simplifies tow(r) = 1. In this special case, there is an
explicit solution for the ML estimates:̂µ is simply the sample
mean of theZi’s, and V̂ is the square root of the inverse
of the sample covariance of theZi’s. This corresponds to the
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well-known result that the sample correlation coefficient is the
ML estimator forρ under a bivariate normal density. However,
using constant weightingw(r) = 1 means thatall data points
are weighted equally, even outliers. As a result, the sample
mean, sample covariance, and sample correlation coefficient
are all sensitive to outliers [6].

B. Robust correlation coefficient

The non-robustness of the sample correlation coefficient can
be explained by considering that it is the ML estimator for an
assumed normal distribution, which has “light tails” so outliers
are modeled as being extremely unlikely. Conversely, if an ML
estimate is based on a model distribution that has “heavy tails,”
then data values that are far from the mean have less effect
on the likelihood function. Thus, to design a robust estimator,
we choose a model pdffZ that has “heavy tails.” One choice
would be the Laplacian distribution, which would correspond
to using f0(r) = ce−|r| for some constantc. However, that
f0 is not differentiable atr = 0, so the expression (13) is
inapplicable. Instead, we have chosen the following function:

f0(r) = ce−δ2
h√

1+r2/δ2−1
i
, (15)

wherec is the constant that ensures that (8) integrates to unity.
The constantδ > 0 is a design parameter. For smallδ, this
model approaches the Laplacian distribution, and for largeδ,
it approaches the normal distribution.

For the choice (15), the weighting functionw(r) in (13)
becomes the following:

w(r) =
1√

1 + r2

δ2

. (16)

Unlike with the normal choice (9), for this model the weight-
ing of a given data pointw

(∥∥∥V̂ (z − µ̂)
∥∥∥
)

will decrease with
increasing statistical distance from the meanµ̂. This has the
desirable effect of reducing the influence of outliers that are,
by definition, data points that are far from the mean.

We can make no claim of optimality of the choice (15).
Indeed the optimal choice would depend on the actual “dis-
tribution” of the Zi’s, which is unknown in practice. The
function f0 is simply a design parameter for our robust
estimator. For example, one could try to increase robustness
relative to (16) by using the following weighting:

w(r) =
1√

1 + r4

δ4

. (17)

One may use many different weighting functions to compute
robust correlation coefficients. Although it may be challenging
to compare relative robustness among different weighting
functions, any underlying pdf with heavier tails than a normal
distribution should improve robustness relative to the conven-
tional sample correlation coefficient.

Huber’s algorithm for solving (11) and (12) is the following
iteration:

µ̂n+1 = µ̂n +

∑N
i=1 w

(∥∥∥V̂n(Zi − µ̂n)
∥∥∥
)

(Zi − µ̂n)
∑N

i=1 w
(∥∥∥V̂n(Zi − µ̂n)

∥∥∥
) , (18)

(V̂n+1V̂n+1)−1 =

N∑

i=1

w
(∥∥∥V̂n(Zi − µ̂n)

∥∥∥
)

(Zi − µ̂n)(Zi − µ̂n)T . (19)

We initializeµ̂0 using the sample median and̂V0 using the ma-
trix square root of the inverse of the sample covariance of the
Zi’s. We then continue to iterate until two stopping criteria are
satisfied:

∥∥∥V̂ −1
n+1V̂n − I

∥∥∥ < δV and
∥∥∥V̂n+1(µ̂n+1 − µ̂n)

∥∥∥ <

δµ. User-specified constantsδV and δµ control the precision
of solutions.

Unfortunately, Huber’s algorithm for solving (11) and (12)
has been proven to converge only when estimatingone of
the two parameters,i.e., µ or V , but not necessarily both [6,
p. 237]. However, in practice, the algorithm converged every
time in our simulations and experiments.

In summary, our robust registration method works as fol-
lows. For the similarity measureΦ described in (3), we
propose to use the robust correlation coefficient:

Φ(X(θ),Y ) = ρ̂(X(θ), Y ), (20)

whereρ̂ was defined in (14) for the weighting function defined
in (16) or (17). To maximizeΦ with respect toθ, one must
use some type of search algorithm such as the simplex method
[19]. For each trial value of the registration parameterθ, one
must computeX(θ) by interpolation, and then computêρ by
applying Huber’s algorithm. So there are “iterations within
iterations” in this approach; fortunately, the inner iteration
converges quite quickly.

C. Mutual Information

Another similarity measure that has robust characteristics
is mutual information(MI). MI is a measure of the statistical
dependence between two random variables. The MII(X, Y )
is defined in terms of marginal and joint entropies as follows:

h(X) = −
∫

fX(x) log fX(x) dx

h(X, Y ) = −
∫

fXY (x, y) log fXY (x, y) dxdy

I(X, Y ) = h(X) + h(Y )− h(X, Y ). (21)

Usually MI is estimated by first estimating the joint pdf
fXY (x, y), and then computing the MI using (21). Two popular
pdf estimation methods are the kernel density approach2 [20]
and the histogram approach. Kernel density estimates are
smooth and differentiable but can require considerable compu-
tation. Histogram estimates are usually faster to compute but
yield pdfs that are discontinuous functions of the registration
parameterθ. As a practical compromise, we have used the
interpolated joint histogram method in which the effect of a
sample is distributed to four adjacent histogram bins using
bilinear interpolation; this approach remedies the discontinuity
problem of the histogram with modest computation. Methods
for estimating MI directly from the samples without first
estimating a pdf are also under development [21], [22].

2This is often called theParzen windowmethod.
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D. Analytical comparisons

Most previous studies of image registration methods have
focused on empirical comparisons. The appendices of this
paper describe approximate analyses of the statistical proper-
ties of image registration methods using mean and variance
approximations presented in Appendix A. We used these
approximations because exact analytical expressions are un-
available since the estimator for image registration is defined
implicitly as the maximizer of an objective function. Even if an
analytical expression were available, finding exact expressions
for the mean and variance would still remain difficult since the
estimatorθ̂ is a nonlinear function of the images.

Our approximation method uses a first-order Taylor series
expansion of the estimator about the mean data, an approach
that has been used successfully for image reconstruction
problems [17]. By comparison, the estimators used for image
registration are more nonlinear, but we proceed with lineariza-
tion nevertheless, hoping for insights.

For simplicity we focus on the asymptotic case as the
number of image samples increases to infinity,i.e., the images
are continuous-space functions. In addition, if there are no
outliers, we assume that two images being registered are the
same images except for the geometric transformation and
additive white Gaussian noise.

The main points of the analyses can be summarized as
follows. First, if there are no outliers, the sample correlation
based estimator is unbiased and is the most efficient (i.e., the
estimator that has the smallest variance) among unbiased esti-
mators. We argued that the sample correlation based estimator
is unbiased since the sample correlation coefficient without
noise is maximized attrue registered position3. Regarding
efficiency, the sample correlation based estimator is the most
efficient one among unbiased estimators since it is the MLE
[23], if there are no outliers. The variance approximation of
the sample correlation based estimator matches theCramer-
Raobound (See Appendix C). However, the sample correlation
based estimator can be significantly biased due to outliers as
argued in Appendix B. In summary, the sample correlation
based estimator has good properties such as unbiasedness and
efficiency, but poor robustness to outliers.

For the robust correlation based estimator, if there are no
outliers, we argue that it is also unbiased using the similar
approximation as for the sample correlation based estimator
(See Appendix B). Moreover, even in the presence of outlier
samples, the robust correlation based estimator is more robust
than the sample correlation based estimator since the effects
of the outlier samples are reduced by smaller weighting (See
Appendix B). However, for data without outliers, the variance
of the robust correlation based estimator is larger than the
sample correlation based estimator as argued using Cauchy-
Shwarz inequality [24] (See Appendix C).

For the MI-based estimator, it is not easy to argue analyti-
cally that the estimator is unbiased even if there are no outliers.
Instead, we explain qualitatively why the MI is maximized at
the true registered position. At thetrue registered position, the

3In our approximation, if the gradient of an objective function without noise
is zero attrue registered position, it is unbiased estimator (See Appendix A).

estimated joint pdf is the most clustered along theY = X line
in the joint pdf domain, thereby making the values of the joint
pdf around theY = X line maxima and values elsewhere
minima. Therefore, the gradient of the estimated joint pdf
is zero almost everywhere, which implies that the MI is
maximized since the gradient of the MI is zero. Nevertheless,
due to the smoothing effect of kernel function4, it is difficult
to prove the unbiasedness analytically except for some special
cases [25].

We also argue qualitatively that the MI based estimator has
a certain degree of robustness. Suppose that the portion of
the estimated pdf from inliers is the most clustered at the
true registered position but that from outliers is not the most
clustered5. In that case, the estimated MI is maximized at a
position where the entire pdf is the most clustered in average
sense. Since the portion of the pdf from inliers is usually much
larger than that from outliers, the entire pdf is likely to be the
most clustered around the true position. Nevertheless, since
the robustness of the MI method is due to the behavior of the
joint pdf rather than explicit reducing the influence of outliers,
the robustness can depend greatly on images being registered.

Another interesting perspective is to express MI as a gen-
eralized weighted correlation coefficient as follows:

Iθ(X, Y ) =
∫

(x−E[X])(y−E[Y ])wI(x, y)f̂XY (x, y) dx dy,

(22)

wherewI(x, y) = log f̂Y |X(y|x)

(x−E[X])(y−E[Y ]) is a kind of generalized
weighting. The robustness characteristics and statistical effi-
ciency of MI can depend on the images being registered since
the weighting depends on the estimated joint pdf. For example,
if the estimated pdf is normally distributed, the weighting is
almost constant and the MI method is almost the same as
the sample correlation method. In that case, the MI method
can be very efficient, like the sample correlation method.
In fact, joint entropy and the correlation coefficient have a
one-to-one relationship for bivariate normal distributions [26].
For most intra-modality images with non-constantwI(x, y),
the MI method is less efficient than the sample correlation
coefficient for Gaussian noise.

In summary, both the robust correlation method and the
MI method have improved robustness but larger variance
compared to the sample correlation method, when noise is
Gaussian. Direct analytical comparisons of the statistical prop-
erties of the robust correlation method and the MI method
are difficult since the properties depend not only on design
parameters (such as the underlying pdf for robust correlation
method and the pdf estimation method for MI method), but
also on the images being registered.

III. E XPERIMENTAL RESULTS

To evaluate the statistical properties of the proposed image
registration method, we performed three studies: simulations
using a synthetic 1D signal, affine 2D-to-2D registration of

4We consider the kernel density approach since the histogram approach is
not differentiable.

5Apparently, if pdf from outliers is also the most clustered at true position,
there should be no bias due to outliers.
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fMRI images, and rigid 3D-to-2D registration of a torso
phantom.

A. 1D simulation

We first consider a 1D “registration” problem where the
only unknown parameter is the translation of the signal. (This
is called delay estimationin communications.) This study
illustrates the statistical properties of the registration methods
in the simplest possible setting. Fig. 1(a) shows the reference
signal s1

(
~t
)

that must be translated for registration with the
signal s2

(
~t
)

shown in Fig. 1(b) that includes both additive
Gaussian noise and a segment of “outlier” signal values.

0 200 400 600 800 1000
0
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8

t

(a) s1

�
~t
�

0 200 400 600 800 1000
−2

0

2

4

6
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12

t

(b) s2

�
~t
�

Fig. 1. Reference signals1

�
~t
�

(signal being translated to achieve registration)
and observed signals2

�
~t
�

with outliers and Gaussian noise (STD = 0.3).

Using these signals, we computed three similarity measures
as a function of the translation parameterθ: the sample
correlation coefficient, the robust correlation coefficient using
weighting (17) withδ = 2 and the estimated MI using a 32×32
interpolated joint histogram.

Fig. 2 shows the two correlation coefficients versusθ, where
the true value isθ = 0. Due to the presence of the outliers,

the sample correlation coefficient is maximized at an incorrect
translation (≈ −4.8 pixel). This type of systematic offset is
observed for most noise realizations. In contrast, the robust
correlation coefficient is maximized near the true translation
(≈ −0.1 pixel), illustrating the robustness of this similarity
measure. This robustness can be understood by considering the
joint histogram shown in Fig. 3(a) and the weighting function
w

(∥∥∥V̂ (z − µ̂)
∥∥∥
)

shown in Fig. 3(b) (at the registered position
where θ = 0). Although most of the histogram mass lies
along theY =X line, there is a group of outliers (nearY =8)
that degrade the conventional correlation coefficient estimate.
Fig. 3(b) shows that the weighting function decreases the
influence of those outliers, particularly those that are far from
the primary linear ridge, thereby providing robustness.
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Fig. 2. Sample and robust correlation coefficients vs 1D translation.

Fig. 4 shows that the estimated MI is maximized at more
correct translation (≈ −0.8 pixel) than the sample correlation
coefficient. This robustness of MI based method is expected
as argued in the preceding section.

The preceding results were for a single noise realization,
so they do not fully characterize the bias and variance of the
translation estimates. We performed 1000 noise realizations
at each of several noise levels and computed translation
estimatesθ̂ using each of the three similarity measures for
each realization.

Fig. 5(a) shows the empirical translation estimation biases
caused by the presence of the outliers for all three methods.
As expected, the sample correlation coefficient method based
registration technique was the most sensitive to outliers, as
argued in Appendix B.

The robust correlation based method showed almost zero
biases for low noise levels but increased biases for high noise
levels. The MI based method had the similar characteristics
to the robust correlation based method. However, the bias of
the MI method was larger than the robust correlation based
method for all noise levels.

Fig. 5(b) shows the standard deviations of the three estima-
tors. As expected, the sample correlation coefficient method
had the smallest variance as argued in Appendix C. Also,
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Fig. 4. MI similarity measure (32×32 interpolated joint histogram) vs 1D
translation.

shown for reference is theCramer-Rao bound computed
for a “no outlier” model. In general, one would not expect
the sample correlation method to match this bound for data
containing outliers. However, for the particular signals in
Fig. 1(a), Fig. 1(b), the standard deviation of the sample
correlation method happened to match theCramer-Raobound.
The standard deviation of the robust correlation method was
almost the same as that of the MI method.
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Fig. 5. Biases and standard deviations of the translation estimators vs
Gaussian noise levels.

Since one may trade off robustness and efficiency by
changing design parameter (i.e., δ for the robust correlation
coefficient method and the number of bins for the MI method),
we investigated bias-variance trade-off of the estimators to
evaluate the performance of each method.

Fig. 6 shows bias-variance plots of low noise case (lower
part) with noise STD=0.2 and high noise case (upper part) with
noise STD=0.4. Design parameters for the robust correlation
method wereδ = 2, 3, 4, 5, 6, 8, 10 and for the MI method
were bin size8× 8, 10× 10, 12× 12, 16× 16, 20× 20, 24×
24, 28× 28.

For the robust correlation method, smallerδ yielded smaller
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Fig. 6. Standard deviations vs bias of the translation estimators (upper part
for noise STD=0.4, lower part for noise STD=0.2).

bias but larger variance. This is consistent with our analytical
results, since smaller values forδ correspond to a pdf model
with “heavier tails.” The robust correlation coefficient was
almost the same as the sample correlation coefficient when
δ was very large, as expected. For the MI method, there was a
trend that larger number of bins (i.e., less smoothing) yielded
smaller bias but larger variance. However, for low noise signal,
the bias-variance characteristic of the MI method was very
irregular. The performance of the robust correlation method
was better than the MI method in the sense that the bias was
smaller at the same variance or the variance was smaller at
the same bias.

The better performance of the robust correlation method
was achieved at the expense of computation time. Table I
summarizes computation time requirement for evaluating each
similarity measure one time on 3GHz Intel Pentium 4 machine
and the average number of iterations required for computing
robust correlation coefficient one time. The computation time
for the sample correlation coefficient was the smallest while
the computation time requirement for the robust correlation
coefficient was the most intensive. The computation time for
the robust correlation coefficient depends greatly on the design
parameterδ and the stopping criteria. Note that the robust
correlation coefficient for largerδ was computed more quickly.

For the signals in Fig. 1(a) and Fig. 1(b), the MI method
showed a certain degree of robustness to outliers. However,
in that example, the “outliers” in the observed signal had a
constant intensity value. To investigate the behavior of each
similarity measure for a different outlier distribution, we also
generated the reference and observed signal shown in Fig. 7. In
this case, the outliers corresponded to shifting a small portion
of the reference signal.

Fig. 8 shows the three similarity measures as a function of
the translation parameter. The sample correlation coefficient
as well as the MI were maximized at incorrect positions due
to outliers. However, the robust correlation coefficient was
maximized at correct translation. This example partly supports
the argument that the robustness of the MI based method

depends on the particular images being registered.
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Fig. 7. Reference signal and measured signal with outliers and additive noise.
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B. 2D MRI image registration

We investigated the three similarity measures for the prob-
lem of registering two functional MRI images acquired with a
spiralk-space trajectory. Both images were reconstructed from
the same raw data but one image was reconstructed with field
inhomogeneity correction [27] while the other was without
correction, so the true registered geometric transformation is
identity.

Because of field inhomogeneity, there are signal voids in
portions of the uncorrected images. We chose these images to
test the registration methods since the true registered position
(i.e., identity transformation) is known, yet the voids act as
outliers. The robustness of the MI method for occluded images
has been investigated previously [9].

Fig. 9(a) and Fig. 9(b) show the reference image and the
target image. The anterior of the brain shows signal void in
target image that is corrected in the reference image.
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TABLE I

COMPUTATION TIME FOR EVALUATING EACH SIMILARITY MEASURE ONE TIME.

(The unit for computation time is second.)

similarity measure Computation time Iterations Note
sample correlation 3.50·10−4

MI(16×16 interpolated histogram) 1·10−3

robust (δ = 2) 1.76·10−2 21.5 δV = 1 · 10−3, δµ = 1 · 10−3

robust (δ = 4) 6.9·10−3 7.6 δV = 1 · 10−3, δµ = 1 · 10−3

(a) Reference image

(b) Target image

Fig. 9. Reference fMRI image with field inhomogeneity correction and target
fMRI image without field inhomogeneity correction.

We plotted the change of each similarity measure as a
function of vertical translation and scale. Fig. 10(a) shows that
the sample correlation coefficient is maximized at incorrect po-
sition since if we translate the reference image down, brighter
pixels in the reference image correspond to brighter pixels
in target image better. Moreover, if we shrink the reference
image, the correlation coefficient increases more since the
brighter pixel region in Fig. 9(a) is larger than Fig. 9(b).
As a result, the sample correlation coefficient is maximized
at around 5% scaling down and -0.9 pixel translation. As
expected from the analysis, the sample correlation based

method was biased due to the outliers.
Fig. 10(b) and Fig. 10(c) show that the registration errors

of both MI and robust correlation based estimators are smaller
than the sample correlation based estimator.

We tested the bias and variance of each estimator using
100 noise realizations. We added Rician noise since noise
in reconstructed magnitude images is Rician [28], whereas
noise in MRI raw data is complex Gaussian. Table II shows
the empirical means and standard deviations based on 100
registration trials of the three cost functions, for the case case
of a horizontal (tx) and vertical (ty) translation and vertical
scaling (ky). The sample correlation method had the smallest
variance but the largest bias due to the outliers. The robust
correlation method had the best robustness (i.e., the smallest
bias due to the outliers) and had smaller variance than the MI
method. The MI method was more robust than the sample
correlation method. The robustness of the MI method was
improved as the number of histogram bins increased while
the statistical efficiency was degraded. These trade-offs are
consistent with the 1D simulations.

C. 3D/2D Phantom Study

Previously we conducted an anthropomorphic phantom ex-
periment to evaluate the performance of the set-up estimators
using 3D/2D image registration [1]. We estimated six param-
eters, rotations and translations along the X,Y,Z axes, from
two orthogonal cone-beam projection views. For this study we
used only one lateral view to estimate one rotation parameter
and two translation parameters that are associated with in-
plane motion. We chose this approach to better illustrate the
effects of outliers since only the lateral image had noticeable
outliers caused by the radiotherapy table. For this study, we
held the other three parameters fixed at the “ground truth”
values that were established by the most accurate marker-based
method using eleven 1mm diameter lead markers attached to
the phantom’s surface [1].

One could estimate the three parameters using 2D/2D
registration of DRR (Digitally Reconstructed Radiograph) and
the radiograph that geometrically transforms the DRR in 2D
plane to achieve registration. We did not follow this approach.
Instead, we chose 3D/2D registration that computes DRR at
each optimization step from transformed 3D CT image. We
chose this approach to demonstrate that general principles
explained in this investigation are also applicable for volume-
to- projection registration.

A 512×512×398 voxel CT image with 0.9375×0.9375×1
mm spacing was acquired on a GE CT/i scanner with a 140
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TABLE II

MEAN (AND STD) OF ESTIMATED REGISTRATION PARAMETERS FOR2D-2D MRI REGISTRATION.

(The unit for translation parameter is pixel and for scaling parameter is unitless.)

similarity measure tx ty ky Computation time Iterations SNR
sample 0.41 (0.07) -2.82 (0.10) 0.05 (0.01) 5.99·10−4

MI (16×16 interpolated histogram) 0.14 (0.14) -1.10 (0.17) 0.01 (0.01) 2.3·10−3 27.7 dB
MI (24×24 interpolated histogram) 0.07 (0.21) -0.10 (0.24) 0.01 (0.01) 2.4·10−3

robust (δ = 2) 0.03 (0.10) 0.03 (0.12) 0.01 (0.01) 1.48·10−1 35.9
sample 0.12 (0.05) -2.89 (0.28) 0.05 (0.01) 5.99·10−4

MI (16×16 interpolated histogram) 0.41 (0.21) -1.90 (0.69) 0.02 (0.01) 2.3·10−3 13.8 dB
MI (24×24 interpolated histogram) 0.07 (0.34) -1.41 (0.90) 0.02 (0.02) 2.4·10−3

robust (δ = 2) 0.10 (0.21) -0.10 (0.52) 0.01 (0.01) 1.05·10−1 49.9

kv x-ray source. Tattoos were drawn on the phantom where
three alignment laser planes crossed the phantom to facilitate
consistent set-up in a treatment room. Next, the phantom was
moved to the treatment room and it was set up at the isocenter
by manually aligning tattoos to three laser planes in the
treatment room. Four radiographs were obtained from different
angles by rotating the x-ray source and Varian Portal Vision
amorphous silicon active matrix flat panel image detector
in 30◦ increments. For 90◦ view, we acquired 10 repeated
radiographs without realignment for evaluating the effect of
noise on the estimator. The x-ray source voltage was 6 MV and
the detector size was 512×384 pixels with 0.78mm×0.78mm
spacing. We used only the 90◦ radiograph (i.e., the lateral
image) for the correlation-based methods and the MI-based
method. However, to enhance the accuracy of the “ground
truth”, we used all four radiographs for the fiducial marker-
based method. For all other methods except for the marker-
based method, the planning CT image was down-sampled by
four along each axis to reduce computation time and memory
usage.

For image registration, while geometrically transforming the
CT image, we computed DRR of the transformed CT from the
same angle as the radiograph. The registration is achieved by
maximizing the similarity measure between such DRR and
radiograph. We used only the central 400×300 sub-image
of the DRR and the radiograph to avoid the effect of the
markers which are not usually used in clinical practice. We
have established the geometry of the EPID imaging systems
by determining radiation field edges using simple thresholding
method [29].

Fig. 11(a) shows the radiograph and Fig. 11(b) shows the
DRR at the registered position. The radiotherapy table causes
pixels along the rightmost part of the radiograph to be brighter
than the corresponding DRR pixels.

Fig. 12(a) shows the estimated joint histogram from the
registered DRR and radiograph. The histogram has a dominant
distribution along theY =X line and an outlier distribution
caused by the radiotherapy table. Fig. 12(b) shows the weight-
ing function the results from the robust correlation estimate.
This weighting clearly reduces the influence of the outliers.

We repeated 10 estimations using 10 acquisitions of the
radiograph. Table III summarizes the experimental results.
Since a small rotation error may result in a large registration

error depending on the location of the rotation center, we
evaluated TRE (Target Registration Error) values [30] in
addition to parameter estimation error values. We computed
TRE values at the spatial locations along the bottom row of
in Fig. 11(a), locations that are far from the rotation center.
The average TRE values are shown in Table III for each
method. The experimental results were consistent with the
previous simulation results. The robust correlation coefficient
using (17) withδ = 2 had the smallest bias due to outliers
(i.e., the most robust to outliers). The sample correlation based
method was the worst in terms of the robustness but the best
in terms of the variance. Interestingly, the MI method showed
small variance and small bias as well. We think that this was
because the shape of the estimated joint pdf was close to a
normal distribution and the number of samples from outliers
was small.

IV. D ISCUSSION

Statistical properties such as bias, robustness, efficiency
are very important in designing image registration methods.
In previous investigations, the bias of the sample correlation
method for intra-modality image registration and that of the
MI method for multi-modality registration have been studied
extensively empirically6 [1], [4], [5], [8], [9]. Some authors
also reported that the MI method is more robust to outliers
than the sample correlation coefficient method [1], [31].

The sample correlation is a natural similarity measure for
intra-modality image registration [4], [5], [31] and the MI
method performs well for both intra-modality [28], [31] and
multi-modality image registrations [8]–[10]. Considering only
intra-modality image registration, we point out that those two
most well known similarity measures have drawbacks such as
non-robustness to outliers of the sample correlation method
and statistical inefficiency of the MI method. Moreover, even
though the MI method has a certain degree of robustness for
many cases, it may not be very robust for some cases since the
MI method does not reject nor reduce the influence of outliers
directly.

We have proposed a robust correlation coefficient based
image registration method to improve the robustness of the

6Since many previous studies ignored the effect of noise, bias was called
registration error.
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TABLE III

MEAN (AND STD) OF ESTIMATED SET-P PARAMETERS FOR3D-2D REGISTRATION.

(The unit for rotation parameter is degree, for translation parameter and for TRE is mm.)

Similarity measure φx ty tz average TRE Computation time Iterations
sample 1.39 (0.02) -2.06 (0.03) 2.11 (0.03) 5.61 0.014
robust (δ = 2) 0.95 (0.08) -0.09 (0.09) 0.58 (0.23) 2.54 1.36 15.1
robust (δ = 4) 1.19 (0.10) -1.52 (0.07) 1.74 (0.13) 4.65 0.43 4.12
MI (32×32 interpolated histogram) 0.98 (0.08) -0.55 (0.09) 0.81 (0.14) 3.05 0.043
MI (64×64 interpolated histogram) 0.86 (0.07) -0.44 (0.07) 0.73 (0.13) 2.65 0.045
MI (64×64 histogram w/o interpolation) 0.90 (0.36) -0.37 (0.16) 0.63 (0.38) 2.66 0.024

sample correlation method without compromising statistical
efficiency very much. We showed analytically and experi-
mentally that the robust correlation method has improved
robustness but larger variance compared with the sample
correlation method.

The statistical properties of the robust correlation method
are controlled by underlying pdf model. More specifically, one
may improve the robustness by using “heavier tail” underlying
pdf modelf0 in (10) at the expense of the efficiency.

For the MI based method, it is difficult to relate the
design parameters (i.e., joint pdf estimation method) to its
statistical properties analytically. Instead, if we summarize
empirical observations in our simulations and experiments, the
MI method become more robust but less efficient when more
bins were used. Roughly speaking, increasing the number of
bins is equivalent to the narrowing the Parzen window,i.e., to
less smoothing. We also observed that using joint histograms
without interpolation increased variance, and increasing the
number of bins excessively led to many local maxima. More
analysis is needed to relate the statistical properties of the MI
based method to the joint pdf estimation method. One method
for designing kernel functions was proposed in a different
point of view [8].

Even when qualitative relationships between design pa-
rameters and statistical properties are available, automatic
determination of the design parameters remains challenging.
In our simulations and experiments, we determinedδ for the
robust correlation based method and the number of bins for the
MI based method empirically. More investigations are required
to automate this selection. Such studies should consider image
sample distributions and noise characteristics in a particular
context.

It is challenging to compare the performance of one image
registration method with another since the performances de-
pend both on design parameters and on the images being reg-
istered. Despite the difficulty, if we compare the performance
of the robust correlation method with the MI method based on
our simulations and experiments, the robust correlation method
performed better than the MI method in our 1D simulation
and 2D MRI simulation in the sense that the variance of the
robust correlation method was smaller at the same bias or the
bias was smaller at the same variance. Interestingly, the MI
method was very efficient in the 3D/2D phantom experiments.
We suspect that this was because the estimated pdf shape was
close to the normal distribution as argued in Section II-D.

We believe that there exist several advantages of the robust
correlation method over the MI method. First of all, the robust
correlation method always has robustness to outliers since it
reduces or rejects the effects of the outlier samples based
on the statistical distances. In contrast, the robustness of the
MI method depends on the behavior of estimated pdf without
explicitly excluding the effects of outlier samples. Therefore,
its robustness can be very image dependent. We suspect that
the MI method may not be very robust for some images,
as illustrated in Fig. 7. Another advantage is that the design
parameters of the robust correlation method relate directly to
the statistical properties, whereas the relationship of the MI
method is less clear analytically.

The disadvantage of the robust correlation method is in-
creased computation time. In our simulations and experi-
ments, computation time for the robust correlation coeffi-
cient increased when ”heavier tail” underlying pdfs were
assumed. Since the robust correlation coefficient by M-
estimation method requires numerical optimization, the com-
putation time depends not only the images being registered and
the underlying pdf but also on the stopping criteria. However,
for nonrigid registration problems, computing the warping
interpolations is likely to outweigh the cost of evaluating the
similarity measure.

Conceivably the performance of the MI method could be
improved by designing different MI estimation methods and/or
using more generalized Rényi entropy [9], [26]. Similarly, one
might improve the robust correlation method using different
robust techniques for estimating the correlation coefficient
[11]–[13].

The sample correlation based estimator is the most efficient
estimator among unbiased estimators when noise is i.i.d.
Gaussian and there are no outliers (See Appendix C). Even
though the noise was not Gaussian in practice (Rician for MRI
simulation, Poisson for 3D/2D experiment) and outliers were
present, the sample correlation method was the most efficient
in all of our simulations and experiments. We suspect that
this is because Rician and Poisson noise are approximately
Gaussian, although the variance at each pixel is not the same.

Analysis using mean and variance approximations provided
qualitative arguments about the statistical properties of the
intensity based image registration methods. By choosing the
M-estimation method for robust correlation estimation, we
were able to analyze the robust correlation and the sample
correlation within the same framework. In addition, we were
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(a) Sample correlation coefficient
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(b) Robust correlation coefficient
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(c) MI

Fig. 10. Contour plots of the three similarity measures vs vertical scaling
and translation.

(a) Measured lateral radiograph

(b) Lateral DRR computed from 3D CT volume

Fig. 11. Measured lateral radiograph and computed DRR from 3D CT image
for 3D/2D registration.

able to analyze the MI based method by representing estimated
MI as a type of weighted correlation. Beyond the analysis
carried out in this investigation, it would be desirable if the
statistical properties of estimators can be related analytically to
design parameters. For example, if one can approximate the
bias and variance of the MI based estimator as a function
of Parzen window width, that approximation can be very
useful. Since the statistical properties of the image registration
methods have not been analyzed much, we expect that our
analysis can be a first step for further investigations.

V. CONCLUSION

We have introduced a novel intensity based similarity mea-
sure, a robust correlation coefficient, to design an image reg-
istration method that is robust to outliers. Using the proposed
image registration technique, we achieved improved robustness
relative to the sample correlation coefficient based method
without compromising statistical efficiency much. Moreover,
in 1D simulation, 2D and 3D experiments, the proposed
method performed better than the well-known MI based image
registration method. We believe that the robust correlation
coefficient is an effective similarity measure for intra-modality
image registration task where the presence of the outliers is
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Fig. 12. Estimated joint pdf using64×64 interpolated joint histogram
and weighting function corresponding to the proposed robust correlation
coefficient, displayed over the domain of the histogram shown in Fig. 12(a).

unavoidable such as set-up estimation for radiotherapy and
image-guided surgery.

APPENDIX A
MEAN AND COVARIANCE APPROXIMATION

This appendix presents approximations for the mean and
variance of implicitly defined estimators such as (1). Let
Φ(θ, Z) be an objective function depending on unknown
parameterθ and noisy measurementZ. We assume that the
objective function has a unique maximum for anyZ and that
one can find the maximum by zeroing the partial derivatives
of Φ(·, Z) to determine the estimateŝθ:

0 =
∂

∂θj
Φ(θ, Z)

∣∣∣
θ=θ̂

, j = 1, ..., p. (23)

Since θ̂ is an implicit function of Z, it is difficult to
determine its exact mean and variance. To approximate its
mean and variance, we linearize the gradient ofΦ.

Define the column gradient of the objective function as
follows:

Ψ(θ, Z)
4
= ∇10Φ(θ, Z), (24)

where thejth element ofp×1 operator∇10 is ∂
∂θj

. Linearizing

Ψ(θ̂, Z) around thetrue parameter̃θ by the first-order Taylor
series expansion yields:

Ψ(θ̂, Z) ≈ Ψ(θ̃, Z) +∇20Φ(θ̃, Z)(θ̂ − θ̃), (25)

where the(j, k)th element ofp×p operator∇20 is ∂2

∂θj∂θk
. We

assume that[−∇20Φ(θ̃, Z)] is a positive definite symmetric
matrix so that its inverse is well defined. SinceΨ(θ̂, Z) = 0
by (23), the estimator̂θ can be approximated as follows:

θ̂ ≈ θ̃ + [−∇20Φ(θ̃, Z)]−1Ψ(θ̃, Z). (26)

Rearranging (26) yields the following bias approximation:

E
[
θ̂
]
− θ̃ ≈ E

[
[−∇20Φ(θ̃, Z)]−1Ψ(θ̃, Z)

]

≈ H−1Ψ(θ̃, E[Z]), (27)

where possible approximations forH matrix include:

H = −∇20Φ(θ̃, E[Z]). (28)

The covariance of the estimator is approximated as follows:

Cov
{

θ̂
}

≈ Cov
{

[−∇20Φ(θ̃, Z)]−1Ψ(θ̃, Z)
}

≈ H−1 Cov
{

Ψ(θ̃, Z)
}

H−1. (29)

One may approximate the mean and covariance further by
linearizing Ψ(θ, Z) with respect to the measurementsZ as
developed previously [17].

APPENDIX B
BIAS AND ROBUSTNESS OF CORRELATION BASED

METHODS

This appendix uses the general results from Appendix A
to analyze the bias and robustness of correlation-based
registration methods. Define the noisy measurementZ =
[s1(·) , s2(·)]. We represents1(Tθ(~t)) = s1(θ,~t) for notational
convenience andzθ(~t) = [s1(θ,~t), s2

(
~t
)
]T . Without loss of

generality, we assume that the volume of the field of view is
unity, and the image empirical means are zero:

∫
s1(θ,~t)d~t = 0

and
∫
s2

(
~t
)
d~t = 0.

The empirical variances are thusσ2
X(θ) =∫

w(
∥∥Vθzθ(~t)

∥∥)s2
1(θ,~t) d~t andσ2

Y (θ)=
∫

w(
∥∥Vθzθ(~t)

∥∥)s2
2(~t)d~t.

We analyze the robust correlation method having fixed zero
mean and the following objective function:

Φ(θ, Z) =
CXY (θ)

σX(θ)σY (θ)
, (30)

whereCXY (θ) =
∫

w(
∥∥Vθzθ(~t)

∥∥)s1(θ,~t)s2(~t) d~t. The gradi-
ent of the objective function is evaluated as follows:

Ψ(θ, Z) =
1

σ2
X(θ)σ2

Y (θ)

[
C
′
XY (θ)σX(θ)σY (θ)

−CXY (θ)(σX(θ)σ
′
Y (θ) + σ

′
X(θ)σY (θ))

]
, (31)
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where C
′
XY (θ) = ∇θCXY (θ), σ

′
X(θ) = ∇θσX(θ) and

σ
′
Y (θ) = ∇θσY (θ).
If s1(θ̃,~t) = k s2

(
~t
)

with a constantk, (i.e., the two
images are linearly related at true registered position), then
Ψ(θ̃, E[Z]) = 0 sinceσX(θ̃)σY (θ̃) = CXY (θ̃) andC

′
XY (θ̃) =

σ
′
X(θ̃)σY (θ̃)+σX(θ̃)σ

′
Y (θ̃). Therefore, the bias approximation

using (27) is zero. This holds not only for the constant
weighting function but also for any weighting function.

Next, we consider bias due to outliers. Suppose that there
are additive outlier componentso(~t) and noisen(~t) such that
s̃2

(
~t
)

= ks1(θ̃,~t) + o(~t) + n(~t). In this caseΨ(θ̃, E[Z]) does
not equal zero due to the outliers, in general. For simplicity,
we assume7 that σ

′
X(θ) = σ

′
Y (θ) = 0 for all θ. With this

assumption, we approximate the Hessian matrix at the true
registered position as follows:

H ≈ ∇20Φ(θ̃, E[Z]) =
1

σ2
X(θ̃)σ2

Y (θ̃)
[C

′′
XY (θ̃)σX(θ̃)σY (θ̃)].

(32)
Plugging (32) andΨ(θ̃, E[Z]) into (27) yields the following
bias approximation:

E
[
θ̂
]
− θ̃ ≈ [C

′′
XY (θ̃)]−1C

′
XY (θ̃) =

[ ∫
w(

∥∥Vθ̃zθ̃(~t)
∥∥)

·
(
∇10s1(θ̃,~t)[∇10s1(θ̃,~t)]T −∇20s1(θ̃,~t)o(~t)

)
d~t

]−1

·
[∫

w(
∥∥Vθ̃zθ̃(~t)

∥∥)[∇10s1(θ̃,~t)]o(~t) d~t
]

. (33)

For constant weighting, such as in the sample correla-
tion method, the estimator can be biased by outliers since∫

[∇10s1(θ̃,~t)]o(~t) d~t is nonzero in general. For the robust
correlation method, the bias can be reduced significantly by
the weighting in the final bracketed term in (33).

APPENDIX C
EFFICIENCY

The sample correlation coefficient based method is the
MLE if the two images have constant backgrounds and are
identical except for geometric transformation and additive
i.i.d. Gaussian noise [32]. Thus, the covariance of the sample
correlation based estimator asymptotically equals the inverse
of the following Fisher information matrix [23]:

Iθ̃ =
1

2σ2
n

E

[
−∇2

θ̃

∫
(s2

(
~t
)− s1(θ̃,~t))2 d~t

]

=
1
σ2

n

∫ [
∇10s1(θ̃,~t)

] [
∇10s1(θ̃,~t)

]T

d~t,

whereσ2
n is the noise power.

For robust correlation based estimators, we use the co-
variance approximation developed in Appendix A. First, we
approximate the covariance matrix ofΨ(θ̃, Z) as follows:

7If the backgrounds of the images have constant values, then this assump-
tion holds for constant weighting (i.e., the sample correlation coefficient).

Cov
{

Ψ(θ̃, Z)
}

≈ 1
σ2(θ̃)

Cov

{
C
′
XY (θ̃)−

(
σ
′
X(θ̃)

σX(θ̃)
+

σ
′
Y (θ̃)

σY (θ̃)

)}

≈ 1
σ2(θ̃)

E

{ ∫
w(

∥∥Vθ̃zθ̃(~t)
∥∥)n(~t)[∇10s1(θ̃,~t)] d~t

·
∫

w(
∥∥Vθ̃zθ̃(~τ)

∥∥)n(~τ)[∇10s1(θ̃, ~τ)]T d~τ

}

=
σ2

n

σ2(θ̃)

∫
w(

∥∥Vθ̃zθ̃(~t)
∥∥)2[∇10s1(θ̃,~t)][∇10s1(θ̃,~t)]T d~t,

(34)

whereσ2(θ̃)
4
= σX(θ̃)σY (θ̃). We approximate theH matrix

without outliers using (32):

H ≈ 1
σ2(θ̃)

∫
w(

∥∥Vθ̃zθ̃(~t)
∥∥)[∇10s1(θ̃,~t)][∇10s1(θ̃,~t)]T d~t.

(35)
Finally, the covariance is approximated by plugging (34),

(35) into (29):

Cov
{

θ̂
}
≈ σ2

nC−1
1 C2C

−1
1 , (36)

whereC1 =
∫

w(
∥∥Vθ̃zθ̃(~t)

∥∥)[∇10s1(θ̃,~t)][∇10s1(θ̃,~t)]T d~t and
C2 =

∫
w2(

∥∥Vθ̃zθ̃(~t)
∥∥)[∇10s1(θ̃,~t)][∇10s1(θ̃,~t)]T d~t.

By the vector Cauchy-Schwarz inequality [24], one can
prove the following inequality:

Cov
{

θ̂
}
º I−1

θ̃
, (37)

where A º B means the positive semi-definiteness of
matrix A − B, and equality holds iffw(·)[∇10s1(θ̃,~t)] =
α[∇10s1(θ̃,~t)] for a constantα. Thus, any non-constant
weighting function will yield larger covariance than the ordi-
nary sample correlation based estimator, whereas the sample
correlation coefficient method achieves (asymptotically) the
Cramer-Rao bound (the inverse of the Fisher information
matrix). However, this analysis assumeds2(~t) = ks1(θ̃,~t) +
n(~t), which is unrealistic in the presence of outliers. When
outliers occur, the noise variance is not uniform. One may
also approximate the covariance matrix of each estimator in
the presence of outliers. However, it is challenging to find an
inequality such as (37) for this case.
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