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Abstract— Resolution and covariance predictors have
been derived previously for penalized-likelihood estimators.
These predictors can provide accurate approximations to
the local resolution properties and covariance functions for
tomographic systems given a good estimate of the mean
measurements. Although these predictors may be evalu-
ated iteratively, circulant approximations are often made
for practical computation times. However, when numer-
ous evaluations are made repeatedly (as in penalty design
or calculation of variance images), these predictors still re-
quire large amounts of computing time. In [1], we discussed
methods for precomputing a large portion of the predictor
for shift-invariant system geometries. In this paper, we gen-
eralize the efficient procedure discussed in [1] to shift-variant
single photon emission computed tomography (SPECT) sys-
tems. This generalization relies on a new attenuation ap-
proximation and several observations on the symmetries in
SPECT systems. These new general procedures apply to
both 2D and fully-3D SPECT models, that may be either
precomputed and stored, or written in procedural form. We
demonstrate the high accuracy of the predictions based on
these methods using a simulated anthropomorphic phantom
and fully-3D SPECT system. The evaluation of these pre-
dictors requires significantly less computation time than tra-
ditional prediction techniques, once the system geometry
specific precomputations have been made.

Index Terms—Tomography, Local impulse response, noise,
variance, image quality.

I. Introduction

In the analysis of tomographic systems and their recon-
struction algorithms, one would often like to be able to
predict the noise and resolution properties of the recon-
structed images. Much of the literature discussing noise
and resolution properties investigates the image properties
as a function of specific algorithm and iteration [2–4]. Here
we focus on the noise and resolution properties of estima-
tors that maximize penalized-likelihood objective functions
using algorithms that have been iterated to a nearly con-
verged solution. Equations for predicting the mean and
variance of such estimators have been derived in [5] and
for resolution properties in [6]. These predictions have been
applied to several applications including penalty design for
uniform resolution [1, 6, 7], contrast optimization [8], and
for computer observer models [9,10]. While resolution and
noise prediction has potential uses across a range of appli-
cations, calculation of the predictions is computationally
expensive. This paper investigates a number of approxi-
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mations that make these evaluations more practical when
many evaluations need to be made for a particular SPECT
geometry.

Approximations based on local space-invariance have
been used [1, 9, 11] to provide good noise and resolution
predictions with reasonable computation times. However,
when very many estimates are required (e.g.: when resolu-
tion estimates are made for every pixel position, or noise
estimates are made repeatedly for different reconstruction
parameters or objects), the computational burden is still
high. Generally the dominant computation is the calcu-
lation of repeated weighted backprojections of projection
data. In some cases, as in an idealized positron emission
tomography (PET) system where the system response is
space-invariant, computation time can be reduced through
an appropriate factorization and precomputation (see [1]).
Qi [11] has used such a factorization and identified a num-
ber of system symmetries in 3D PET to greatly reduce
computation and storage requirements for resolution and
covariance prediction. (Similar techniques will be adopted
here for use in the context of 3D SPECT.) However, the
previously investigated factorization approaches used in
PET rely on a shift-invariant geometric system model and
are not directly applicable to space-variant systems, such as
for SPECT with a depth-dependent detector response. We
have previously investigated fast methods for cases where
the space-variant system may be modeled with a precom-
puted system matrix [7]. Such methods are generally im-
practical for three-dimensional systems models, where the
system model is too large to be precomputed and stored.
Other attempts at reducing the calculation time have been
made in [12,13] using the frequency-distance principle [14]
and the approximation developed in equations (30–32) in
[6].

In this paper, we discuss an alternative technique for
making noise and resolution estimates for both 2D and
fully 3D SPECT systems. These methods are appropri-
ate for systems where the system matrix must be com-
puted “on-the-fly”, and apply generally to systems that
include noncircular orbits, nonuniform attenuation, and
depth-dependent detector response. The approach pre-
sented here is an extension of the linear operator approach
discussed in [1] for space-invariant PET systems. Sec-
tion II reviews the resolution and covariance predictors for
penalized-likelihood SPECT reconstruction. Sections III
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and IV identify various approximations that allow us to
precompute and store portions of the resolution and covari-
ance predictors that are object-independent. We show how
to use these precomputations to arrive at rapid predictions
once the object-dependencies (i.e., the attenuation map
and an estimate of the mean measurements) are known.
This section also includes a discussion of the computation
and storage requirements. In section V, we validate our
approximations using a simulated 3D SPECT system and
digital phantom. We show that our approximate resolution
predictions are very close to iteratively calculated predic-
tions. Similarly, we demonstrate that our covariance ap-
proximations agree well with sample covariances calculated
from an ensemble of 3D reconstructions.

II. Background

Consider the following SPECT model. Let Y =
(Y1, . . . , YN ) denote the vector of N measurements. We
parameterize the emission image using a pixel or voxel ba-
sis where λ = (λ1, . . . , λP ) denotes a vector of nonnegative
emission densities. Let x, y, and, z denote image coor-
dinates and Px, Py, and Pz, denote the number of voxels
along each direction of the discretized volume. The x and
y terms denote the in-plane coordinates, the z term rep-
resents the axial coordinate, and P = PxPyPz. The mea-
surements means are related to the emission image through
the following linear model,

Ȳi(λ) =
P∑

j=1

hijλj + ri,

Ȳ (λ) = Hλ + r, (1)

where H is the N × P system matrix that contains the
{hij} terms that model the projection operation. The vec-
tor r = (r1, . . . , rN ) is assumed to be a known quantity
that represents the mean contribution of random events
like background and scatter. The system matrix, H, mod-
els all projection effects including detector responses, the
detector orbit, and object-dependent effects like attenua-
tion. This matrix can be precalculated, or defined implic-
itly as in the case of projectors and backprojectors that are
implemented in a procedural form.

We reconstruct the emission densities from the mea-
surements using a penalized-likelihood estimator, which is
written as the implicit maximizer of an objective function
(which we assume to be strictly convex to ensure a unique
solution),

λ̂ = arg max
λ

Φ(λ, Y ),

Φ(λ, Y ) , L(λ, Y )−R(λ), (2)

where the objective function, Φ(λ, Y ), is the difference of a
log-likelihood term, L(λ, Y ), and a roughness penalty term,
R(λ). We consider log-likelihoods of the following form,

L(λ, Y ) =
∑

i

Li(Yi, Ȳi(λ)), (3)

where Li(u, v) is a function that represents the log-
likelihood for the ith measurement, u, and its mean, v.
The general form of (3) accommodates a wide range of
noise models with independent measurements.

A. Resolution Properties

Resolution properties for converged solutions of implic-
itly defined estimators have been discussed in [6, 7]. One
can quantify local resolution properties by finding the local
impulse response. The local impulse response was derived
in [6] and can be written as follows,

lj =
[
−∇20Φ

(
λ̆, Ȳ (λ)

)]−1

∇11Φ
(
λ̆, Ȳ (λ)

) ∂

∂λj
Ȳ (λ), (4)

where∇20 is an operator that yields a matrix whose (j, k)th
element is ∂2

∂λj∂λk
, ∇11 is an operator that yields a matrix

whose (j, i)th element is ∂2

∂λj∂Yi
, and λ̆ , λ̂(Ȳ (λ)), the

estimate of λ using the mean data. Here, lj is a vector that
represents the 2D or 3D local impulse response function for
a perturbation of the jth voxel.

Plugging (1) and (3) into (4), we find that the formula-
tion for the local impulse response can be written as

lj =
[
H ′D1H + R(λ̆)

]−1

H ′D2Hej , (5)

where ′ denotes the transpose operation, ej denotes the jth
unit vector, R(λ) is the Hessian of the penalty, and D1

and D2 are diagonal matrices whose elements are defined
as follows,

[D1]ii = −L02
i

(
Ȳi(λ), Ȳi(λ̆)

)
(6)

[D2]ii = L11
i

(
Ȳi(λ), Ȳi(λ̆)

)
, (7)

where L02
i (u, v) = ∂2

∂v2 Li(u, v) and L11
i (u, v) =

∂2

∂u∂v Li(u, v). We will assume throughout the paper that
(5) is a well-behaved function. This is true for sufficiently
regularized image reconstruction problems; however, for
unregularized maximum-likelihood estimation (5) is often
not well-behaved and is not a good way to predict resolu-
tion properties.

In cases where the mean measurements are unavailable,
it is common to approximate responses by simply plug-
ging the noisy measurements, Y into D1 and D2. This
does not change the basic form for the local impulse re-
sponse and typically yields good approximations. Non-
quadratic penalties will require some kind of estimate of
λ to evaluate R(λ̆), if λ is unknown. However, the Hessian
of quadratic penalties can be represented by a constant
matrix, R, which is object-independent.

Direct evaluation of (5) is often difficult due to the size
of the matrices and the presence of the matrix inverse.
While one may approximate the local impulse response
using iterative techniques1, for many applications this is

1Recall that (5) represents the solution to a linear system of equa-
tions ([H′D1H + R(λ)]x = H′D2Hej) which may be solved itera-
tively using a number of different approaches such as the conjugate
gradient algorithm.
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too computationally expensive. However, since H ′D1Hej

and H ′D2Hej are approximately locally space-invariant
for varying j, one can use a circulant approximation to (5)
[1, 8, 11]. Specifically, we may approximate2 (5) as

ljcirc = F−1

 F
{
ej
}
�F

{
H ′D2Hej

}
F
{

H ′D1Hej + R(λ̆)ej
}
 , (8)

where F{·} represents the 2D or 3D (as appropriate)
Fourier transform of its vector argument, the division is an
element-by-element division, and � represents an element-
by-element multiplication. This approximation relies on
the fact that the 3D (or 2D) Fourier transform can be used
to diagonalize a triply (doubly) block-circulant matrix and
the eigenvalues of that matrix may be formed by Fourier
transforming a row of that circulant matrix. Also note the
inclusion of the F{ej} term that incorporates the appro-
priate shift3 to ensure the response is “centered” at loca-
tion j. Thus, (8) can be calculated relatively quickly using
fast Fourier transforms. Generally the most computation-
ally expensive part of calculating (8) lies in the calculation
of the weighted projection/backprojections. For fully-3D
SPECT systems the computational burden of the projec-
tions and backprojections greatly outweighs the burden due
to the Fourier transform operations.

B. Covariance Estimation

In [5], an approximation for the covariance of implicitly
defined estimators was derived. We restate that approxi-
mation here.

Cov{λ̂} =
[
−∇20Φ

(
λ̆, Ȳ (λ)

)]−1

∇11Φ
(
λ̆, Ȳ (λ)

)
·Cov{Y }

[
∇11Φ

(
λ̆, Ȳ (λ)

)]′ [
−∇20Φ

(
λ̆, Ȳ (λ)

)]−1

(9)

Plugging in (1) and (3), yields

Cov{λ̂} =
[
H ′D1H + R(λ̆)

]−1

H ′D2Cov{Y }

D2H
[
H ′D1H + R(λ̆)

]−1

, (10)

with D1 and D2 as defined in (6) and (7). Under the
assumption of independent measurements Cov{Y } is a di-
agonal matrix, thus we may write,

Cov{λ̂} =
[
H ′D1H + R(λ̆)

]−1

H ′D3H[
H ′D1H + R(λ̆)

]−1

, (11)

where D3 = D2Cov{Y }D2. As with the resolution predic-
tor, we will assume that (11) is a well-behaved function.

2Additionally, we must assume that R(λ̆)ej is also locally space-
invariant.

3In practice, shifting near the edge of the field-of-view (FOV)
presents some problems due to truncation effects. Typically, re-
sponses must be “filled in” using symmetry arguments or other meth-
ods. We have found that by using a system model that intentionally
models a FOV that is larger than the actual physical FOV, one can
obtain highly accurate resolution (and covariance) estimates.

As in the case of the local impulse response, computing
(11) is usually impractical. Iterative techniques were de-
scribed in [5] for evaluating columns of (11), but they still
require considerable computation. One may use a circulant
approximation [11] to (11), so that the covariance for the
jth pixel position is approximated as

Covj
circ{λ̂} = F−1

 F
{
ej
}
�F

{
H ′D3Hej

}∣∣∣F {H ′D1Hej + R(λ̆)ej
}∣∣∣2
 . (12)

Again, calculations are dominated by the evaluation of
terms of the form H ′DHej , where we have taken D to
denote a generic diagonal weighting. (That is, D could
be any one of {D1,D2,D3}.) This term is commonly re-
ferred to as the Fisher information matrix, since D often
represents an inverse of the measurement covariance, and
the same form arises from estimation bounds on variance.
This form can be found in a number of applications in-
cluding resolution and variance prediction. Therefore, it
would be very helpful to find efficient ways of calculating
H ′DHej .

Fast calculation of H ′DHej has been previously ex-
plored for resolution [6] and variance [15] predictors for
space-invariant systems, where H ′DHej ≈ D∗G′GD∗ej .
In this case G′G represents a space-invariant operator and
is premultiplied and postmultiplied by a diagonal weighting
matrix. While this method yields fairly good variance esti-
mates, the approximation often poorly models anisotropy
in the local impulse response [1] and the covariance func-
tion.

III. Efficient Calculation of H ′DHej

We have previously investigated a better approxima-
tions for efficient for calculation of H ′DHej , when H
can be factored such that H ≈ DPETG, where G′G is
approximately circulant (i.e., a space-invariant operator)
and DPET is a diagonal matrix [1]. In this case, all object-
dependence enters through the diagonal term, and G rep-
resents the geometric system model. Such factorizations
are possible for idealized PET systems, and the methods
in [1] allow one to precalculate many of the operations nec-
essary for the evaluation of H ′DHej . Due to attenua-
tion, this kind of factorization is inappropriate for SPECT.
Nevertheless, we can generalize the ideas used in [1] and
apply them to the SPECT model. This section describes
a series of approximations that allow many operations to
be precomputed for the evaluation of H ′DHej , when the
system matrix fits a SPECT model. Similarly, these meth-
ods can be used for resolution and covariance prediction in
shift-variant PET systems. In the special case of a space-
invariant system and a PET-style attenuation model the
results here simplify to the methods presented in [1].

A. Linear Operators

One important property of H ′DHej used in [1] is that
it is linear in terms of the diagonal elements of D. That



4 FOR SUBMISSION TO IEEE TRANS. MED. IMAGING: VERSION September 9, 2003

is, we may write

H ′DHej =
N∑

i=1

mj
i [D]ii = M jd, (13)

where mj
i are position-dependent vectors that are related

to H. Similarly, we may write this linear combination in
terms of a P ×N matrix, M j = [mj

1 . . .mj
N ], and a vector

of the diagonal elements of D, which are denoted as d with
[d]i = [D]ii.

One could construct M j using the superposition princi-
ple. Specifically, mj

i may be found by applying diagonal-
ized unit vectors for each measurement such that

mj
i = H ′diag

{
ei
}

Hej . (14)

In principle, if {M j}P
j=1 could be precalculated, then

H ′DHej can be evaluated for different diagonal matrices
using about one half the computation of an ordinary eval-
uation. (Later, we will identify a series of approximations
that rely on this precomputed form to drastically reduce
computation time.) Unfortunately, there are several prob-
lems with this kind of precomputation. Perhaps the most
significant problem is that, even if one were to calculate
all {M j}P

j=1 operators, these linear operators are object-
dependent because the SPECT system matrix depends on
the attenuation properties of the object. Thus, any such
“precalculation” would need to be performed for every ob-
ject. While one might be able to use a generic attenuation
model in cases like brain imaging where there is less vari-
ability, we would like to develop an efficient technique that
applies to a wide range of attenuating objects.

Another problem is the sheer size of {M j}P
j=1. One must

be able to store these precomputed linear operators to ex-
ploit any computational speed-up. Recall that each opera-
tor M j is P ×N in size. Generally it would be unfeasible
to store all P operators since they have a similar degree of
sparsity as the system matrix, H.

We address these issues in the following sections.

B. Attenuation Approximations

To use the linear operator technique effectively we must
eliminate the object-dependence from the precomputed
portions of H ′DHej . In SPECT, attenuation is typically
modeled as both a pixel-dependent and ray-dependent ef-
fect4 such that

Ȳi(λ) =
P∑

j=1

bigijaijλj + ri (15)

where the gij terms incorporate the geometric response
including all detector effects like the depth-dependent re-
sponse. The bi terms denote ray-dependent factors like uni-
formity correction factors to compensate for differences in
sensitivity across the detector face. The aij terms incorpo-
rate the attenuation effects due to the object and generally

4For comparison, in PET, it is usual for attenuation effects to be
modeled as a purely ray-dependent effect.

reflect a “survival” probability for a photon emitted at the
jth location and detected at the ith detector. These terms
are often formed by approximating the attenuation using a
central ray approximation in combination with Beer’s Law,

aij = exp

(∫
Lij(x,y,z)

−µ(x, y, z) dl

)
, (16)

where µ(x, y, z) denotes the attenuation coefficient distri-
bution for the object and Lij(x, y, z) represents the line
segment connecting the jth pixel with the ith detector.

Thus, we can write a factorization of the SPECT system
matrix as

H = B (A�G) (17)

where B is a diagonal matrix of bi terms and A and G,
are collections of the attenuation terms, aij , and geomet-
ric terms, gij , respectively. (We do not require that geo-
metric operator G′G be a shift-invariant operator.) This
factorization isolates all of the object-dependence in the
A term. Since the same factorization applies to PET sys-
tems with A = 1 and with PET attenuation factors in B,
the following prediction techniques may also be used for
space-variant PET systems.

Let F = H ′DH denote the entire weighted projection-
backprojection operator. Using the factorization in (17),
we make the following sequence of observations regarding
the (k, j)th element of F ,

[F ]kj = (ek)′F ej

= (ek)′H ′DHej

= (ek)′ [B(A�G)]′ D [B(A�G)] ej

=
[
(Aek)′ � (Gek)′

]
BDB

[
(Aej)� (Gej)

]
= (Gek)′diag

{
Aek

}
BDBdiag

{
Aej

}
Gej

= (ek)′G′DjkGej (18)

where the diagonal matrix, Djk, has the following elements[
Djk

]
ii

= [Aek]i[D]ii[B]2ii[Aej ]i
= b2

i aijaik[D]ii. (19)

The equalities in (18) are the key to the method developed
in this paper.

Because Aek generally varies relatively smoothly with
changing k and H ′DHej is fairly concentrated about the
pixel position j, we utilize (18) and (19) to make the fol-
lowing approximation,

F ej = H ′DHej ≈ G′DjGej , (20)

with elements of the diagonal matrix, Dj , defined as[
Dj
]
ii

=
[
Djj

]
ii

= b2
i a

2
ij [D]ii. (21)

Thus we approximate H ′DHej using the geometric model
G and a position-dependent diagonal weighting Dj . This
approximation is exact at location j and yields very good
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results for the neighborhood around j. Because the atten-
uation terms, {aij}, are formed from the integral in (16),
there is an implicit smoothing in going from an attenua-
tion map to {aij}. Thus, the above approximation tends
to work well even for discontinuous attenuation maps.

The approximation for H ′DHej shown in (20) is impor-
tant since all object-dependence enters through the “inner”
diagonal term. In contrast, the approximation methods
for 2D and 3D PET described in [1, 6, 11, 15] move the
object-dependence to the “outside” of the equation such
that H ′DHej ≈ D∗G′GD∗ej , where D∗ is a diagonal
term that incorporates object-dependence. Xing [12, 13]
has used a variation on these “outer” diagonal approxi-
mations to make weighted projection-backprojection esti-
mates for shift-variant SPECT systems.

Since the righthand side of (20) is a linear function of
the diagonal elements of Dj , we may now calculate ap-
proximate precomputed operators, M j , whose columns are
given by

mj
i = G′diag

{
ei
}

Gej . (22)

Since these mj
i vectors depend only on the system geometry

G, but not on the object itself, we can precompute the
object-independent portion of H ′DHej . These operators
may be applied to form the approximation given in (20) as

H ′DHej ≈ M jdj , (23)

where dj is a vector constructed from the elements of Dj

in (21).
It is reasonable to include aij terms in the calculation

of dj , since these factors generally must be computed for
the reconstruction method that is chosen to estimate the
SPECT image. In fact, while G is often too large to pre-
compute and store for 3D-SPECT, if A is modeled with
the central ray approximation and the simple line integral
model of (16), A is very sparse with only a single value per
voxel per projection angle. Thus in some situations, it may
be possible to compute and store A for a given object for
both estimation of the SPECT image, and for evaluation of
H ′DHej . (This storage is not required for our technique.
The aij terms may instead be computed on-the-fly.)

Equation (23) represents an approximation that allows
for precomputation of a portion of H ′DHej using the lin-
ear operator technique of [1]. However, unlike the shift-
invariant PET case described in [1], because the geometric
response is space-variant for SPECT, it appears that one
needs to calculate very many linear operators. Specifically,
without further simplifications, one would need to com-
pute, store, and use one P × N matrix for each voxel. In
the following sections we demonstrate ways to reduce both
storage requirements and computation time.

C. Image-Domain Simplifications

There are a number of observations and approxima-
tions that allow us to reduce the computation and stor-
age requirements to practical levels. We break these sim-
plifications into two groups: 1) Image-domain simplifica-
tions, that reduce either the number of operators that are

stored, or the number of rows in each of the matrices.
2) Projection-domain simplifications, that reduce the num-
ber of columns required for each M j , and consequently
the number of diagonal weighting elements (i.e., a smaller
D). We discuss the image-domain simplifications in this
section, and discuss projection-domain simplifications in
Section III-D.

For each approximation, we first describe the basic prin-
ciple in words, and then give an explicit mathematical rep-
resentation. Since matrices in the following sections repre-
sent operations on 3D projections or images, care should
be taken in interpreting the mathematical forms. A sum-
mary of simplifications and approximations can be found
in Table I at the end of this section.

C.1 Single Slice Sampling

Because H is object-dependent due to attenuation, there
are generally few symmetries that would allow one to re-
duce computation and storage requirements. However, be-
cause we are utilizing (22), which requires only the geomet-
ric model, G, we can take advantage of symmetries in the
SPECT geometry.

For many SPECT systems there are a number of sym-
metries in the imaging system that can simplify our goals.
For most parallel and fan collimators, the detector response
is essentially shift-invariant for axial shifts of the detector,
excluding magnitude scaling factors (i.e., the bi terms in
(15)). Thus, if one varies j only in the axial direction,
G′Gej only changes by a axial shift (with the exception of
truncation effects at the edge of the field of view). Simi-
larly, for the same j, the columns of our precalculated M j

in (22) would only differ by axial shifts.
Therefore it is not necessary to compute (22) for all j.

A single slice is sufficient. Thus, we let

m
(xj ,yj)
i = G′diag

{
ei
}

Ge(xj ,yj ,z0), (24)

where xj and yj denote the x and y-coordinates of the jth
voxel, and z0 reflects the axial coordinate of the center slice.
Consequently,

H ′DHej ≈ Szj M (xj ,yj)[Szj

P ]−1dj (25)

where Szj shifts an image from the center slice to the z-
coordinate of the j voxel, M (xj ,yj) is formed from columns
of (24), and S

zj

P is the projection domain analogue of Szj ,
which shifts projection values along the axial direction. In
terms of storage, we may now store Px·Py operators instead
of P = Px · Py · Pz.

C.2 Partial Orbital Sampling

We can also take advantage of symmetries in the SPECT
detector orbit. Consider the 360◦ elliptical orbit SPECT
system shown in Figure 1. Suppose that we may only
compute weighted projection-backprojections for points in
quadrant IV. If one has obtained the projections for the
black point in quadrant IV, one can obtain the projections
for the gray point in quadrant I simply by reordering the
projection images. Similarly, if one may only backproject
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III

II I

IV

Normal Orbit

Reverse Orbit + 180      o

Fig. 1. Symmetries in elliptical orbit SPECT.

projections obtained from points in quadrant IV, one can
obtain projection-backprojections for points in the other
quadrants using simple flips about the axes. In this way,
we need to precompute only a single quadrant of linear
operators. (For circular system geometries, only a single
radial line of operators is required.)

While such symmetries can reduce storage requirements,
position-dependent change of coordinates operations are re-
quired to calculate responses at all positions. (For exam-
ple, there is a quadrant dependence for these operations
for the elliptical orbit in Figure 1.) For a system geometry
with generic symmetries, we can represent the projection-
domain reordering operation for the jth voxel by P j , and
the image-domain change of variables for the jth voxel by
V j . Incorporating this calculation technique into (25), we
write the approximation of the weighted response as

H ′DHej ≈ V jSzj M (xj ,yj)[Szj

P ]−1P jdj , (26)

where the M (xj ,yj) operators are still calculated via (24),
but only over a subset of locations appropriate for the spe-
cific system symmetries.

C.3 Small Volume of Support

Because H ′DHej is fairly concentrated about voxel j,
many calculations involving H ′DHej are also very concen-
trated about j. Specifically, the resolution and covariance
functions generally go to zero far from j, and can be well-
approximated using relatively small regions of support. [7]

Thus, it is not necessary to store all the rows of M j .
Choosing a small η× η× η volume5 about voxel j, reduces
the dimension of each M j to η3×N . For a typical SPECT
system where P = 1282 · 64, a choice of η = 30 represents
a decrease in storage by a factor of almost 40.

Thus, (24) and (26) become

m
(xj ,yj)
i = T jG′diag

{
ei
}

Ge(xj ,yj ,z0), (27)

and

T jH ′DHej ≈ V jM (xj ,yj)[Szj

P ]−1P jdj , (28)

5There is no fundamental reason why the subvolumes must be
cubes. We choose a cubical subvolume for simplicity.

where T j represents a position-dependent η3 × P matrix
that represents a truncation function that selects a small
volume about pixel j. The image-domain shift operation in
(25) is no longer necessary due to the truncation function
T j , since there is an implicit “centering” of the subvolume.
Moreover, we note that V j now operates on η × η × η
subvolumes instead of the entire image volume.

C.4 Spatial Subsampling

The weighted responses, H ′DHej , typically vary
smoothly with position. Because this is the case, we have
found that one can subsample the image domain over a grid
of every ndth voxel and evaluate H ′DHej over a subset of
positions and find the remaining positions using interpola-
tion [7]. Using the single slice approximation, this reduces
storage requirements by 1/n2

d.

D. Projection-Domain Simplifications

Just as one can approximate H ′DHej using image-
domain simplifications, one can make projection-domain
approximations that reduce dimensionality, storage re-
quirements, and computation times. Specifically, in the
following subsections, we describe approximations that will
reduce the number of columns required for the linear oper-
ators, M j .

D.1 Projection-Constant Weightings

One approximation investigated in [1] relies on the ob-
servation that projections of a point are highly localized.
That is, for individual projection angles, Hej yields a rela-
tively narrow response. Figure 2a shows several projections
of a point. The diagonal term, D, simply scales each ele-
ment of the projection and is typically a smoothly-varying
function over each projection. Recall from (6) and (7), ele-
ments of D are often defined as functions of the mean mea-
surements, which are themselves relatively smooth due to
the blur of the projection operator. Because these weight-
ings are relatively smooth for each projection angle and
the point projections are localized, we can approximate D
with a new diagonal weighting which scales projections for
individual angles by a single value.

Let [H]′(i,1:P ) denote the ith row of H, and Pa denote
the set of measurements in the projection at angle a. We
make the approximation,

H ′DHej ≈
na∑

a=1

∑
i∈Pa

[H]′(i,1:P )[d̃
j ]a[H](i,1:P )e

j

= H ′diag
{

C ′
P d̃

j
}

Hej

= H ′D̃jHej , (29)

where [d̃j ]a represents the position-dependent, projection-
constant weighting for the ath angle, and the vector d̃

j

denotes the collection of all projection-constant weightings
over all na angles. The na ×N matrix CP combines mea-
surements within a single projection angle into a single
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Fig. 2. Approximation of the weighted point projection-backprojection, H′DHej , using a projection-constant weighting. Figure a) shows a
particular point within the imaging volume and a few of its projections, Hej . Figure b) shows several projection weightings in the diagonal
weighting D, and a cross-section of the associated weighted response, H′DHej (shown at the center). We identify the approximate
positions of the point projection using a small black circle in each projection. Because the point projections are highly localized, we
may approximate the projection weighting using a position-dependent projection-constant weighting, D̃j , shown in the Figure c). The

associated weighted response, H′C′
PD̃jCPHej , is nearly identical to the unapproximated response, H′DHej .

value, and is used to form the new diagonal matrix, D̃j .
This combination matrix can be written as

CP =
[

IP1
· · · IPna

]′
, (30)

where IPa
is an indicator vector where the ith element of

the vector is one if the element belongs in the projection
at angle a, and is zero otherwise.

While there are many ways to calculate d̃
j
, elements of

this vector can generally be approximated by some form
of position-dependent weighted average. For example, one
simple technique that weighs elements of D by the intensity
of a point projection is

[d̃
j
]a =

I ′Pa
DĤej

I ′Pa
Ĥej

, (31)

where Ĥ is some form of the system matrix, H. Because
we have found that the approximation in (29) is relatively
insensitive to the exact weightings, it is often sufficient to
use an approximate Ĥ. In fact, we find using a simple line
integral model without attenuation is often sufficient for
Ĥ. Thus, it is straightforward to precompute and store
the necessary weightings to compute D̃j .

Figure 2 demonstrates the efficacy of this technique. Fig-
ure 2a shows a few unweighted projections of a single point.
Figure 2b shows sample projection weights and a transaxial
cross-section of the associated weighted response. Approx-
imate positions of the point projection are indicated with
small black circles. We find an approximate projection-
constant weighting based on (31), with Ĥ equal to a simple

line integral model with no attenuation. Thus (31) is sim-
ply a bilinear interpolation for each projection. (We sus-
pect that even simple nearest-neighborhood interpolation
would also be adequate.) Figure 2c shows the projection-
constant weights and a cross-section of the weighted re-
sponse. The two transaxial cross-sections are nearly indis-
tinguishable.

Before we discuss the resulting linear operator form of
the approximation, we discuss one additional approxima-
tion that further reduces the the size of the diagonal weight-
ing.

D.2 Angular Subsampling

Rather than computing the projections, Hej , over all
angles, we further approximate the projection (and back-
projection) by reducing the number of projection angles
involved. We will divide projection angles into K contigu-
ous blocks, where a single block combines a neighborhood
of ns angles. Letting Sk denote the set of angles belonging
to the kth block, we write

H ′DHej ≈
K∑

k=1

∑
a∈Sk

∑
i∈Pa

[H]′(i,1:P )[ď
j
]k[H](i,1:P )e

j

= H ′diag
{

C ′
SC ′

P ď
j
}

Hej

= H ′diag
{

C ′
PS ď

j
}

Hej

= HĎjHej , (32)

where the combination matrix is defined as

CS = [IS1
· · · ISK

]′. (33)
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TABLE I

Methods used in reducing the computation and storage requirements∗ for the calculation of H′DHej .

Mechanism Approximation/Exact Purpose
Linear Operators Exact Speedup via precalculation
SPECT Attenuation Approx. Approximation Ability to use precomputed operators in SPECT
Single Slice Sampling Nearly Exact (most systems) Storage: 1/Pz Computation: same
Partial Orbital Sampling Exact (symmetric orbits) Storage: 1/4 Computation: slight increase
Small Support Volume Approximation Storage: η3/P Computation: η3/P
Spatial Subsampling Approximation Storage: 1/n2

d Computation: 1/n2
d + fast interp.

Projection Constant Weights Approximation Storage: na/N Computation: na/N + eq. (31) calcs.
Angular Subsampling Approximation Storage: 1/ns Computation: 1/ns + eq. (34) calcs.

∗All stated storage and computational reductions are relative to the case of unapproximated precomputed linear operators in (13).

where the indicator vector, ISk
, indicates membership of

an angle in the set Sk. We also define CPS , CPCS .
We choose approximate position-dependent weights, ď

j
,

by simply averaging over angles in each set, Sk. Specifi-
cally,

[ď
j
]kk =

1
ns

∑
a∈Sk

I ′Pa
DĤej

I ′Pa
Ĥej

. (34)

The diagonal matrix, Ďj , represents a significant decrease
in the dimension from the original weighting, D. Recall
that D is N × N , where N is the product of the number
of measurements per projection (i.e.: the number of pixels
in each projection), and the number of projection angles,
na. In comparison, Ďj is K ×K, where K is the number
of projection angles, na, divided by the number of angles
in each subset, ns.

E. Simplified Linear Operators

We now combine the simplifications discussed in the pre-
vious sections to obtain a set of linear operators that is
practical to implement and store.

Section III-D discussed two approximations that reduce
the dimension of D from N to K = na/ns. We may cal-
culate the reduced dimension linear operator by applying
the approximations in Section III-D to (27) to obtain

m
(xj ,yj)
k = T jG′diag

{
C ′
PSek

}
Ge(xj ,yj ,z0). (35)

For each position where (35) is evaluated a single point
projection must be performed, followed by ns (truncated)
partial backprojections, which collectively have the same
complexity as a single (truncated) backprojection.

The projection-constant weighting discussed in Sec-
tion III-D.1 eliminates the need for the projection-domain
shift operation introduced in (25). Thus, we may now
write6

T jH ′DHej ≈ V jM (xj ,yj)P j ď
j
. (36)

6Note that the P j operator has the same function as was described

in Section III-C.2, but now operates on the smaller vector, ď
j
, which

contains projection weights for blocks of angles. Similarly, V j now
operates on η × η × η subvolumes.

The vector ď
j

is formed from joining (34) with the attenu-
ation approximation in (21). Specifically, the kth element
of ď

j
is

[
ď

j
]

k
=

1
ns

∑
a∈Sk

I ′Pa

[
B2diag

{
Aej

}2
D
]
Ĥej

I ′Pa
Ĥej

. (37)

In terms of storage, we now have matrices, M (xj ,yj), that
are η3×K. From Section III-C, we need to store these ma-
trices within only a single slice, or a single-quadrant of a
single slice for orbits with two-fold symmetries. We may
further subsample this quadrant to reduce computational
costs. Thus for elliptical orbit SPECT, using all these sim-
plifications in conjunction means we must store

1
4

PxPy

n2
d

η3 na

ns
(38)

floating point numbers. Consider a sample SPECT sys-
tem that incorporates a 128× 128× 64 image volume and
projections over 110 angles. For a sampling of every 4th
image pixel in x and y, a subvolume of 30 × 30 × 30, and
blocks of 10 angles, we must store about 76 million floating
point numbers. If stored as standard single precision float-
ing point numbers, this represents about 290 Mb of storage
space.

All of the computation and storage reductions we have
discussed are summarized in Table I. This table specified
whether or not a given technique is exact or an approxi-
mation and the level of reduction in computations and/or
storage.

Equations (35), (36), and (37) represent a set of precom-
putations and the necessary operations for approximating
H ′DHej . While this weighted projection-backprojection
may be of interest for some applications, additional simpli-
fications can be made when resolution or covariance pre-
diction is the goal. The following section discusses such
simplifications.

IV. Additional Simplifications for Resolution
and Covariance Prediction

To predict resolution or covariance, one can plug the
approximation of the weighted projection-backprojection
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in (36) directly into the resolution or covariance predictors
in (8) and (12). However, further investigation allows us
to make additional simplifications that reduce storage and
computation time.

Both (8) and (12) are based on using a circulant ap-
proximation to H ′DH. Because circulant matrices can be
diagonalized using Fourier bases, we may find the eigen-
values of the circulant approximation using Fourier trans-
forms, which allows one to avoid the full matrix inverse
computations in (5) and (11). Because D is a diagonal
matrix composed of nonnegative elements, the eigenvalues
of H ′DH are necessarily real and nonnegative. It is com-
mon to enforce these constraints when Fourier transform-
ing the weighted response H ′DHej . The real constraint
is typically enforced by ensuring point symmetry through
the center of the response7 (i.e., voxel j). An equivalent
approach is to only use the real part of the Fourier trans-
formed image. The nonnegativity constraint is often en-
forced simply by zeroing any negative components. The
same constraints are applied to the penalty terms in (8)
and (12). Thus, the resolution and covariance predictors
may be written as follows:

ljcirc = F−1

F
{
ej
}
� f̃

j

2

f̃
j

1
+ r̃j


Covj

circ = F−1

F
{
ej
}
� f̃

j

3∣∣∣f̃ j

1
+ r̃j

∣∣∣2
 , (39)

where

f̃
j

n
, max

{
re
{
F{H ′DnHej}

F {ej}

}
, 0
}

(40)

r̃j , max

{
re

{
F{R(λ̆)ej}
F {ej}

}
, 0

}
, (41)

and the F{ej} are applied to shift the local impulse
response or covariance measurement to the jth voxel.
(Equivalently, this may be applied as an image-domain
shifting operation.)

Since the approximation to H ′DHej discussed in Sec-
tion III is eventually plugged into the above expressions,
it would be advantageous to include as many of the oper-
ations in (40) in the precomputation step as possible. Be-
cause the Fourier transform is a linear operation, it is nat-
ural to incorporate these operations in M j as well. Specif-
ically, we may now redefine the operators specified in (35)
as

m
(xj ,yj)
k = re

{
F
{

T jG′diag
{
C ′
PSek

}
Ge(xj ,yj ,z0)

}}
. (42)

Noting that the change of coordinates represented by V j

is invertible, approximation (36) becomes

re
{
F
{
(V j)−1T jH ′DHej

}}
≈ M (xj ,yj)P j ď

j
. (43)

7In general, SPECT responses can be asymmetric. Future work
should include investigations of how best to handle cases such as
180◦ SPECT where responses can be highly asymmetric.

The transformation (V j)−1 appears inside the Fourier
transform, which appears to complicate our task. Fortu-
nately, because the transformation V j is only a renaming
of image coordinates, we may apply the transformation in
either image domain. That is, either before the F opera-
tion or after the F−1 operation. Therefore we may rewrite
the circulant approximation to the predictors as

ljcirc ≈ V jF−1

 f̌
j

2

f̌
j

1
+ řj

 (44)

Covj
circ ≈ V jF−1

 f̌
j

3∣∣∣f̌ j

1
+ řj

∣∣∣2
 (45)

with

f̌
j

n
, max

{
M (xj ,yj)P j ď

j
, 0
}

(46)

řj , max
{

re
{
F{(V j)−1T jR(λ̆)ej}

}
, 0
}

. (47)

Because of the truncation operators, T j , in (42) and (47),
there is an implicit “centering” about location j and the
F{ej} terms of (39) are no longer needed. Consequently,
the predicted local impulse response in (44), and the covari-
ance prediction in (45) are evaluated over a smaller support
defined by T j . Thus, in order to form even an approximate
equality with (8) and (12), these small support approxima-
tions must be embedded into the larger image space. (We
have ignored this embedding in (44) and (45).)

We have found that M (xj ,yj) generally contains nega-
tive values that are important for prediction. Thus we
cannot apply the negative thresholding in the precomputa-
tion step. It must be applied after the operator is applied
to P j ď

j
, as shown in (46).

Equations (44-47) represent the final form of the approx-
imate predictors developed in this paper. These predictors
require storage of a set of matrices, {M (xj ,yj)}, which con-
sist of

1
4

PxPy

n2
d

(η/2 + 1)η2 na

ns
(48)

floating point numbers. The storage requirements are
roughly one-half of that which is stated in (38) since the
Fourier transform of a real signal results in coefficients
whose real part is symmetric.

Once the linear operators have been precomputed, the
following set of calculations are required for resolution and
covariance prediction: 1) The ď

j
term is calculated via (37).

Using a simple line integral model requires approximately
25na floating point operations (flops). 2) Calculation of
(46), which takes about 2η3na/ns due to the application of
the linear operator. (We concentrate on the case when f̌

j

1
=

f̌
j

2
= f̌

j

3
, which is a realistic assumption8 for most SPECT

8Moreover, we have concentrated on a Poisson noise model which
is appropriate for SPECT. However, these fast methods may be ap-
plicable to other systems with similar forms of shift-variance under
other noise models as well.
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Fig. 3. The above figure shows the 3D digital phantom used in the simulation studies. The anthropomorphic phantom simulates a 99mTc
bone scan, with high activity in the bones and kidneys. A central slice of the emission image and the attenuation map is shown in the
two images at the left. The orbit of the SPECT camera is indicated by the black ellipse. Additionally, five positions are indicated with
+ marks for the investigation of resolution and covariance predictors.

systems.) 3) Computation of the resolution or covariance
prediction using (44) and (45), respectively. This entails
a single inverse Fourier transform plus roughly 2η3 flops
for a local resolution prediction and 3η3 flops for a local
covariance estimate.

In many cases (47) can be computed once, such as el-
liptical orbit systems with penalties for which T jR(λ̆)ej

exhibits three-fold planar symmetry9 across each coordi-
nate axis. For example, such is the case if the penalty is
isotropic. For anisotropic penalties, one can decompose the
penalty into symmetric and asymmetric portions, which
can be formed from a small set of bases precomputed from
řj terms. Thus (47) generally involves relatively little com-
putation.

The remaining computation is in applying a linear opera-
tor and a single η×η×η inverse Fourier transform for each
position j of interest. In comparison, recall the original
expressions for the predictors in Section II, which require
multiple Px×Py×Pz Fourier transform operations, a point
projection, and a full backprojection for every position.

For some prediction tasks, even the single inverse Fourier
transform may be eliminated. For example, for variance
prediction one needs only to calculate the peak of the co-
variance function. Thus, one can eliminate both leading
transform operations in (45), and simply sum over the η3

Fourier coefficients and perform an appropriate normaliza-
tion. Similar simplifications can be made to (44) for the
contrast recovery coefficient studied in [8].

V. Results

This section illustrates the predictors discussed in Sec-
tion IV. We compare the performance of our resolution
and covariance predictors versus more traditional predic-
tors and estimators on a simulated fully-3D SPECT sys-
tem.

9It is important not to confuse the orbital symmetries associated
with the V j transformations, with the point symmetry through the
origin, which is imposed by the real constraint on the Fourier coeffi-
cients.

A. SPECT system and object model

The SPECT model includes 128 projection angles and
128 × 30 pixel projection views with 4.5 mm pixels. The
image volume is discretized into 128×128×30 voxels, where
each voxel is a 4.5 mm cube10. The SPECT camera fol-
lows an elliptical orbit with a 283 mm radius on the x-axis
and a 220 mm radius on the y-axis. The SPECT detec-
tor model includes a depth-dependent Gaussian response
that is 1.75 mm FWHM at the face of the collimator and
increases linearly with a slope of 0.044 as the distance to
the collimator is increased. When the camera aims along
the x-axis, this slope corresponds to a FWHM of about
14.2 mm at the center of the field of view.

We chose to simulate a 99mTc bone scan using the Zubal
phantom [16, 17]. We modified this digital phantom to in-
clude an attenuating patient bed and resampled the data
onto a 4.5 mm grid. Figure 3 displays this phantom data.
We assigned relative emission rates of 3.0 to the spine, rib
cage, and kidneys, 1.5 to the long bones in the arms, 3.0 to
the long bone marrow, and 0.5 to the remaining soft tissue
background. The attenuation map used attenuation coeffi-
cients appropriate for 140 keV photons with 0.23 cm−1 for
bone, 0.15 cm−1 for all soft tissues, and 0.18 cm−1 for the
table.

We generated simulated SPECT measurements from
the above phantom and system model. All studies used
pseudo-random Poisson measurement data with a mean of
500,000 counts per slice, including a 20% known uniform
background level (the ri terms in (1)) to approximate the
effects of scatter.

B. Reconstruction

We applied the penalized-likelihood estimator in (2) for
reconstructing the emission images from the measurement
data. The penalized-likelihood objective was maximized
using an ordered-subsets paraboloidal surrogates iterative
approach [18–20]. The algorithm was initialized with a fil-
tered backprojection reconstruction. Following many iter-
ations using 16 subsets, we applied convergent single sub-

10The fast methods presented here do not required matched sizes
for image voxels and projection pixels.
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Fig. 4. A comparison of local impulse responses using the predictors of Section IV and an iterative calculation for four locations in the image
volume. The left column compares transverse, sagittal, and coronal images of the 3D local impulse response at the rib location using
the iterative method (top row) versus the fast predictor (middle row). The bottom row shows profiles through each axis of the response
for the iterative method (dashed line) and the fast predictor (solid line). The right column shows the axial profiles for three more image
locations.

set iterations, to ensure a nearly converged solution For
the penalty function we use a shift-invariant first-order
quadratic penalty with the regularization parameter cho-
sen to yield a spatial resolution of about 2 cm at the center
of the field of view. For this penalty, the resolution at the
edge of the object was about 4.5 mm. The reconstruction
model matches the projection model exactly and used the
true attenuation map.

C. Resolution Prediction

For the above SPECT system with Poisson measure-
ments, the local impulse response of the penalized-
likelihood estimator is given in (5) with diagonal compo-
nents11,

D1 = D2 = diag
{

1
Ȳi(λ)

}
. (49)

The “traditional” slow approach to computing the local
impulse response is to evaluate (5) iteratively. We initial-
ized iterations with an impulse at the response position
and used 500 conjugate gradient iterations to estimate the
response. This yields a well-converged estimate. We com-
pare this approach to the fast predictions described in Sec-

11For the diagonal in (49), we have assumed that the blur due to the
system model is much greater than the blur induced by regularization

of the estimator. Thus, Ȳ (λ) ≈ Ȳ (λ̆).
Moreover, when the true projections, Ȳi, are unknown, one can

often obtain good estimates via a simple plug-in approach using the
noisy data Yi.

tions III and IV. For all fast predictions, we used the pre-
computed linear operators given in (42). The predictors
were applied using the modified diagonal elements in (37).

Because the resolution properties of SPECT systems are
space-variant, we investigated the resolution at several po-
sitions in the object. These positions are identified with
+ marks in the left two central slice images in Figure 3.
From left to right, we label these positions: “Rib,” “Left
kidney,” “Center,” “Soft tissue,” and “Right elbow.”

For the first resolution investigation, we used precom-
puted operators with a 30×30×30 subvolume (i.e., η = 30
in (48)) and 32 blocks of 4 angles. We stored operators
within a single quadrant of the elliptical orbit and used a
spatial subsampling with nd = 6. Operators for unsampled
positions are formed using bilinear interpolation. Thus, the
precomputed and stored operators may be stored as single
precision floating point numbers in approximately 125 Mb.

Figure 4 compares the local impulse responses at four
different locations. The left set of figures compares local
impulse responses calculated at the “Rib” position. Trans-
verse, sagittal, and coronal slices of the 3D response are
shown for the iteratively calculated response (top row) and
for our fast prediction (middle row). The bottom row shows
profiles through each axis of the iteratively calculated re-
sponse (dashed line) and the fast prediction (solid line).
The right set of figures shows axial profiles for three more
points. (None of these locations coincide with operator
sampling positions. Thus all fast predictions are based on
interpolated operators.) The local impulse responses are
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Summary of Normalized Prediction Errors

Support
Size
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Time

Center Left
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603 871 ms 4% 4% 5% 7% 5%
303 109 ms 5% 4% 5% 8% 7%
203 32 ms 7% 4% 5% 12% 8%
143 13 ms 8% 7% 5% 13% 10%

Fig. 5. Resolution prediction with varying support size. The plots at left show profiles through the X and Y axes of the 3D local impulse
response at the center voxel with a support size of 603 voxels (+), 303 voxels (◦), 203 voxels (2), and 143 voxels (4). The iteratively
computed response is also shown (dashed line). The table on the right summarizes normalized error and computation time for resolution
predictions at various locations and support sizes.
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Angular
Blocks

Comp.
Time

Center Left
Kidney

Right
Elbow

Rib Soft
Tissue

128 109 ms 5% 4% 5% 8% 7%
16 55 ms 6% 5% 5% 8% 7%
8 52 ms 9% 7% 5% 8% 7%
1 48 ms 21% 15% 15% 19% 20%

Fig. 6. Resolution prediction with varying angular sampling. The plots at left show profiles through the X and Y axes of the 3D local
impulse response at the center voxel with 128 blocks (+), 16 blocks (◦), 8 blocks (2), and a single block (4). The iteratively computed
response is also shown (dashed line). The table on the right summarizes normalized error and computation time for resolution predictions
at various locations and angular samplings.

space-variant and anisotropic with coarser resolution near
the center of the field of view. Despite the multiple approx-
imations and subsampling, our predictions are very close
to the iteratively calculated responses. This is true even
for the “Rib” position where the attenuation map changes
rapidly near the evaluation position.

Assuming the A and Ĥ matrices have been precomputed
and loaded, the Matlab implementation of the resolution
predictor used to compute the above predictions, takes
roughly 1/15 of a second to compute a single local impulse
response on an 800 Mhz Pentium III computer. For com-
parison with the “traditional” slow iterative approach, we
note that a single projection operation, Hλ, implemented
as an “on-the-fly” procedure in an efficient compiled C pro-
gram takes more than a minute on the same computer.

The required size of the precomputed operators depends
on a number of factors including the desired accuracy of
the approximation, available storage, desired computation
speed, the space-variance of the system, and the space-
variance due to the object. We present two studies where
the size of the operators are varied and briefly discuss the
associated trade-offs.

We first studied the local impulse responses at the five
positions shown in Figure 3 using operators computed with
a range of support sizes. Specifically, cases where 603, 303,
203, and 143 voxels are stored. All angles are stored (i.e.,
128 blocks) and the locations are sampled positions (there-
fore no interpolation of operators is performed). The re-

sults of this investigation are presented in Figure 5.
Most support sizes give remarkably similar predictions

across the supported pixels, even for the smaller support
sizes where there is significant truncation of the local im-
pulse response function. However, there are some notice-
able differences for the smaller support sizes. Specifically,
with additional truncation there are growing mismatches
in the sidelobe behavior shown in the X and Y profiles for
the center pixel’s response. Similarly, for the smallest sub-
volume, a mismatch in the peak value of the local impulse
response begins to be evident. We quantify this local im-
pulse response mismatch for the five locations in the table
in Figure 5, where we have defined the normalized error as

maxk

∣∣∣l̂jk − ljk

∣∣∣
maxk

∣∣∣ljk∣∣∣ · 100%, (50)

where ljk denotes elements of the local impulse response at
the jth location, as calculated by the “traditional” iterative
approach, and l̂jk denotes elements of the response as cal-
culated by the fast approach. We also list the computation
time for a single local impulse response evaluation for each
support size. Since it appears that relatively good approx-
imations can be made within the stored support, one may
only need to store voxels over a region slightly larger than
the desired portion of the response. This not only saves
storage space for the precomputed operators, but also de-
creases prediction computation time by greatly reducing
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Fig. 7. A comparison of covariance functions calculated using the predictors of Section IV and estimates the sample covariance from 500 noisy
reconstructions for four locations in the image volume. The left column compares transverse, sagittal, and coronal images of the 3D
covariance function at the elbow location calculated from the 500 reconstructions (top row) versus the fast predictor (middle row). The
bottom row shows profiles through each axis of the response for sample covariance (dashed line) and the fast predictor (solid line). The
right column shows the axial profiles for three more image locations.

the dimension of the matrix multiplications.

We performed a second study, where the support size is
held constant using 303 voxels and the angular subsampling
is varied with 128 blocks, 16 blocks, 8 blocks, and a single
block. Figure 6 summarizes these results. For the coarser
angular sampling, there are significant differences in the
sidelobe behavior. These differences are most noticeable in
the negative sidelobes in the X profile for the two coarsest
samplings. These mismatches should be most pronounced
in locations that differ from the geometric response in a
very anisotropic fashion. The degree of mismatch will of
course depend on the particular angular sampling and the
properties of the object and system geometry. For this
particular object and geometry, using only 8 blocks still
yields approximations with less than 10% normalized error.
We note that the “Rib” location generally has higher errors
than the other locations. This is most likely due to the
rapid local changes in attenuation, which are less likely to
fit the approximation made in (20).

One other adjustable value is the coarseness of the oper-
ator position sampling represented by nd. We have found
that one can use a fairly coarse sampling (nd = 6), since
the (unweighted) geometric response varies very smoothly.
Finer sampling helps reduce interpolation computations.
However, the required sampling is quite coarse, and ulti-
mately depends on the particular system geometry.

D. Covariance Prediction

We also investigated local covariance predictions. We
compared the fast predicted covariance functions versus
empirical covariance functions estimated from 500 noisy
reconstructions. As with the resolution predictors, we use
the precomputed operators given in (42) in conjunction
with the modified diagonal elements stated in (37). We
use the covariance equation given in (45) and the diagonal
weighting D3 = D1, as in (49). We used the same opera-
tor dimensions and subsamplings as in the initial resolution
investigation.

Figure 7 presents the empirical covariance functions and
the predicted covariance functions for four positions in the
digital phantom. The variation in the sample covariances
is quite evident in the image slices and the profiles. Thus,
we have included error bars on the sample covariance esti-
mates (based on an assumption of a Gaussian distribution
of the reconstructed image values). These error bars indi-
cate plus and minus one standard deviation of the covari-
ance estimate. The covariance predictions appear quite ac-
curate over these four positions, lying within the error bars
for most locations. It seems likely that these predictions
would be sufficiently accurate for typical applications such
as making variance images or evaluating computer observer
performance.

We performed one final investigation of the accuracy and
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Fig. 8. A comparison of central slice standard deviation images created from calculating the sample standard deviation of 500 3D recon-
structions, and from the fast variance predictor discussed in Section IV. A horizontal profile is shown at left showing the sample standard
deviation values (dashed line) and the predicted values (solid line).

speed of the predictions. We calculated a variance image
for the central slice of the 3D phantom. We used precom-
puted operators with 123 voxels and 16 blocks of 8 an-
gles. We stored operators with nd = 1 over a single quad-
rant (within the elliptical orbit). This takes approximately
160 Mb of storage space.

We used the variance predictor discussed in Section IV,
which eliminates the inverse Fourier transforms. We also
applied the scaling technique developed by Qi in [11] to
account for the effects of nonnegativity constraint on the
reconstructed images. Figure 8 shows the predicted and
empirical standard deviation images. Sample standard de-
viations were calculated using the 500 noisy reconstruc-
tions (left image) and the fast predictors (center). We also
show a central horizontal profile of the standard deviations,
which have been normalized to be a percentage of the warm
background in the phantom. Plus and minus single stan-
dard deviation error bars on the sample variance estimates
are also shown. The predictions agree very well with the
sample variance estimates laying within the error bars for
almost all positions.

Given the precomputed matrices specified by (42) and
the precomputed bilinear interpolator, Ĥ in (37), the entire
(single slice) standard deviation image was computed in
less than 20 seconds using a Matlab implementation on an
800 MHz Pentium III processor. Thus, the variance of the
entire volume can be predicted in less than 10 minutes.
We expect that efficient routines written in a compiled C
program would be significantly faster.

VI. Discussion

This paper has presented extensions of the techniques
discussed in [1] to allow for rapid calculation of the local
noise and resolution properties of penalized-likelihood im-
age estimates. These techniques are appropriate for 2D
or 3D SPECT systems with nonuniform attenuation and
are based on precomputing portions of the predictors that
are independent of the object being scanned. The projec-
tion and backprojection operators for SPECT system need

not be available in precomputed form. Of course, the at-
tenuation factors represented by aij must be readily avail-
able to provide rapid predications. The predictions based
on these methods are very accurate and can be evaluated
with very practical computation times, once the precompu-
tations have been performed for a given SPECT geometry.

Shift-variant PET systems can also use the methods pre-
sented here. Similarly, some of the general principles may
apply to other shift-variant statistical reconstruction prob-
lems such as x-ray computed tomography and magnetic
resonance imaging.

The prediction speed is a function of the size and sam-
pling of the precomputed operators, M j . Thus the speed
is directly related to how many precomputations one is
willing to store. We have demonstrated that accurate pre-
dictions can be made for practical storage sizes (e.g., bet-
ter than 10% error with 125 Mb of storage for the sam-
ple SPECT system we have investigated), but the exact
trade-off must be specified by the user’s requirements on
the accuracy and speed of the predictions.

The fast predictors we have developed are most appro-
priate for situations that require repeated predictions for
a static system geometry. Such situations include object-
dependent penalty design as in [1] and [8], where predic-
tions are required for every voxel. Without fast techniques
for resolution and noise prediction, these penalty designs
methods would be too slow for practical implementations.
Such fast predictors are also important for the study of
computer observers [9], where repeated covariance esti-
mates may be required.

Future work should compare other fast methods like
those discussed in [12] to the methods presented here. Ad-
ditionally, the methods presented here may not be appro-
priate for 180◦ SPECT, where responses may be highly
asymmetric. Future fast resolution and covariance pre-
dictor studies should try to accommodate such operating
modes.
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