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Abstract
We present a pragmatic approach to image reconstruction for data from the MiCES fully-3D mouse
imaging PET scanner under construction at the University of Washington. Our approach is modeled on
fully-3D image reconstruction used in clinical PET scanners, which is based on Fourier rebinning
(FORE) followed by 2D iterative image reconstruction using ordered-subsets expectation-
maximization (OSEM). The use of iterative methods allows modeling of physical effects (e.g.,
statistical noise, detector blurring, attenuation, etc.), while FORE accelerates the reconstruction process
by reducing the fully-3D data to a stacked set of independent 2D sinograms. Previous investigations
have indicated that non-stationary detector point-spread response effects, which are typically ignored
for clinical imaging, significantly impact image quality for the MiCES scanner geometry. To model the
effect of non-stationary detector blurring (DB) in the FORE+OSEM(DB) algorithm, we have added a
factorized system matrix to the ASPIRE reconstruction library. Initial results indicate that the proposed
approach produces an improvement in resolution without an undue increase in noise and without a
significant increase in the computational burden. The impact on task performance, however, remains to
be evaluated.
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1. Introduction
Mouse imaging in positron emission tomography (PET) is increasing in significance due to its
usefulness as a tool for biological research into disease processes and efficacy of therapeutic
interventions. One of the main advantages is that small animal PET scanning allows investigating
spatio-temporal changes of biological processes with serial and noninvasive measurements on the same
animal (Chatziioannou 2002, Cherry 2004).

The micro crystal elements system (MiCES) is a fully-3D mouse imaging PET scanner (Miyaoka et
al 2001) under construction at the University of Washington. This paper presents the initial results of a
'pragmatic' approach to image reconstruction for data from the MiCES scanner. Our method is
modeled on the hybrid approach to fully-3D image reconstruction used in clinical PET scanners
(Comtat et al 1998), which is based on Fourier rebinning (FORE) (Defrise et al 1997) followed by 2D
iterative image reconstruction, such as ordered-subsets expectation-maximization (OSEM) (Hudson
and Larkin 1994). In human scanners the dominant effect on image noise was determined to be
attenuation, and so only this effect was included in the Poisson model used by OSEM as an attenuation
weighting (AW). This lead to the FORE+(AW)OSEM algorithm, which is now implemented in many
clinical PET scanners for routine 3D clinical PET imaging (Comtat et al 1998). By using Fourier
rebinning and only considering attenuation, that is, neglecting to model other physical effects in the
data statistics, the computation time of the image reconstruction remains clinically feasible without
significantly degrading image quality (Liu et al 2001).

The limiting factor in image quality for many PET studies is the high levels of statistical noise. This
is potentially even more of an issue for imaging studies of mice, as only small volumes (typically 100
µl or less) of radio-labeled tracers can be injected due to the small blood volume of mice (typically on
the order of 2 ml).

One method of reducing statistical noise is to increase the sensitivity of the scanner. This can be
done by operating the scanner in fully-3D acquisition mode (Chatziioannou et al 1999). This
acquisition mode increases the sensitivity by a factor of approximately five- to ten-fold, but increases
the computational demands for data storage and image reconstruction.

An alternate method of reducing statistical noise in the reconstructed image is to use a model of the
Poisson-distributed imaging statistics in the reconstruction algorithm. However, the resulting set of
equations describing the forward-problem becomes very large and non-linear, and solving for the
tracer distribution by direct inversion of the forward-problem becomes intractable. In this case the
equations must be solved using iterative methods.

Several methods of image reconstruction for small animal PET scanners that combine fully-3D
imaging and iterative reconstruction have been developed (e.g. Johnson et al 1997, Qi et al 1998,
Leahy and Qi 2000, Reader et al 2002, Frese et al 2003). Among these works, the studies by Qi and
Leahy et al. (1998, 2000) proposed an accurate fully-3D method made tractable by using a
factorization of the system matrix into independent matrices corresponding to approximations of
sequential physical effects that occur in the data stream of a PET scanner.

In previous studies (Lee et al, 2004) we have determined that for 18F-labeled tracers the most
significant physical effect for mice imaging is the non-stationary detector blurring. This is due to the
unknown depth of interaction of the individual annihilation photons in the detector system as
illustrated in figure 1.
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.
Figure 1. Illustration of physical effects leading to non-stationary detector response for PET

scanners.
Anti-collinear photons from a positron-electron annihilation that are detected in time-coincidence

form a line of response. Compton scatter and other processes lead to uncertainty in the true locations of
the line of response endpoints in both the transverse and axial directions (for multi-ring scanners). As
the line of response is moved to the edge of the field of view, however, the annihilation photons enter
the detectors at a more oblique angle, thus passing through more material and broadening the PSF. In
addition the probability of interaction decreases along the initial photon path through the scintillator,
leading to an asymmetry in the PSF. Similar effects occur in the axial direction.

We therefore combined FORE+OSEM with a detector blurring (DB) model using a factorized
system matrix to the ASPIRE (Fessler 2001, 2002 and 2003) reconstruction library. A similar approach
was studied by Liang (1994). We also included the first-order effect of FORE rebinning on sinogram
variance. This approach  (termed FORE+OSEM(DB)) trades off some accuracy in the reconstructed
image relative to the gold standard methodology of Leahy and Qi (2000) in favor of reducing
computation time. The use of the ASPIRE library, however, allows for potential utilization of more
sophisticated algorithms with proven convergence, which OSEM does not have.

The proposed FORE+OSEM(DB) algorithm was used to reconstruct simulated data and measured
data from a single-ring MiCES evaluation system (Miyaoka et al 2003) at the University of
Washington. These results were also compared with FORE+FBP and FORE+OSEM. In the
FORE+OSEM implementation attenuation weighting was not used due to the small amount of
attenuation in a mouse scan. For both the simulated and measured data the PSF was two-dimensional
on the detector surface for each end of the line of response. In the image reconstruction, however, only
the transverse effect was modeled. The simulation studies were used to test the basic efficacy of the
approach where we have perfect knowledge of the detector blurring. For the measured data from the
evaluation system we did not attempt to simulate the detector PSF, but rather used an estimate of the
transverse PSF blurring derived from line source measurements.
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2. Methods
2.1 Simulation Studies

The MiCES scanner and a simplified model

The full MiCES machine will consist of 4 rings (12 cm diameter), with each ring comprised of 18
position sensitive photomultiplier tube (PMT) detector module blocks, see figure 2 (a). The scanner
utilizes a total of 72 PMTs (18 blocks x 4 rings), each coupled to a 22 x 22 array of 0.8 x 0.8 x 10 mm
discrete mixed lutetium silicate (MLS) crystals. There is 0.1 mm inter-crystal gap between adjacent
crystals. In modeling the scanner for this study, the target detector modules were simplified into figure
2 (b). In the simplified model, a ring was divided into 396 equally spaced discrete crystals (22 crystals
x 18 blocks) along the circumference of the ring. In the axial direction, 4 rings were split into 88
crystals (22 crystals x 4 blocks). Keeping the same detector ring diameter, the crystal cross-sections
were 1x1 mm2. No gap was considered between adjacent crystals and the length of the crystals was 10
mm. The model does not exactly replicate the anticipated geometry of the MiCES scanner, as the goal
of the simulation is to evaluate the general efficacy of including at least the transverse component of
the PSF detector blurring in the image reconstruction process.

Figure 2. (a) Detector module arrangement for the MiCES scanner, (b) simplified model used for the
simulation studies.

Detector point spread function generation

Spatially-varying detector point-spread functions (PSFs) in the projection (sinogram) domain were
simulated using SimSET for the simplified model of MiCES described above. The simulation tracked
annihilation photon interactions in the detectors, but did not consider the effects of optical photon
transport from the scintillation sites (Mumcuoglu et al. 1996, Lee et al. 2004). By simulating
collimated beams of annihilation photons at every radial position, detector PSFs were obtained for
each transverse sinogram bin. These results were then used to model the detector blurring  in the image
reconstruction. We note that this PSF modeling does not account for blurring in the axial direction, or
for non-stationary effects in the axial direction for oblique lines of response. Stationary and non-
stationary axial blurring effects, however, were included in the simulations.

Reconstructed point sources

A point-source phantom that spans most of the volume of the FOV was generated to investigate the
performance of the FORE+OSEM(DB) algorithm within the FOV. The sources were spheres 2 mm in
diameter positioned 0, 12, and 24 mm from the transaxial center and 0, ±10, and ±20 mm from axial
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center of the FOV. A water equivalent, cylindrical attenuation object was generated to cover the entire
field of view. The test phantom is illustrated in figure 3. Fully-3D listmode data was generated for the
test objects by SimSET including all annihilation photon transport effects. The listmode data were
binned into oblique sinograms with a maximum ring difference of 44  (axial acceptance angle of 19
degrees). The oblique sinograms were then rebinned into a stacked set of 2D sinograms using SSRB
and FORE.

Figure 3. Test phantom used for simulation studies.

The system matrix was generated based on parallel strip-integrals with a 0.3 mm strip width. Images
were reconstructed with FORE+FBP, FORE+OSEM and FORE+OSEM(DB). In addition we also
considered single-slice rebinning  (SSRB), which is a very fast and compact method (Daube-
Witherspoon and Muehllehner, 1987). As shown by Matej et al. (1998), however, SSRB introduces
severe distortions of data in both transverse and coronal planes while FORE produces data with similar
quality throughout the whole FOV area. As discussed in the Results section below, SSRB was not
explored further in this study. All OSEM images were reconstructed with four iterations of nine
subsets. The detector blurring was incorporated following the factorized system matrix approach of
Leahy and Qi (2000) where the non-stationary detector blurring is applied in the projection domain as
a separate after the forward projection operation in each of the OSEM iterates.

2.2. Measured data from the MiCES evaluation system

The FORE+OSEM(DB) image reconstruction method was applied to measured data acquired from the
single ring MiCES evaluation system called QuickPET II (Miyaoka et al 2003) shown in figure 4. It
has 1 ring (12.65 cm diameter) of 18 detector arrays each coupled to a position sensitive PMT block.
PMT and crystal specifications are same as those described in section 2.1. The transverse FOV
diameter is 5.76 cm and the axial length of the FOV is 1.98 cm.
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Figure 4.  Single ring MiCES evaluation system (QuickPET II)

The full MiCES scanner with 4 rings will rotate continuously around its major axis for gap
compensation. The current evaluation system, however, provides computer-controlled rotation of ±10
degrees.

Data Processing

For the prototype evaluation, all coincident data are acquired in listmode format and then
histogrammed into fully-3D sinograms for quantitative corrections and image reconstruction. A second
listmode data set is acquired after rotating the detector ring 10 degrees between the acquisitions. This
is to measure those regions in the first sinogram that are unmeasured due to the gaps between adjacent
detector modules. The data processing procedures for the current evaluation system, from collecting
data through image reconstruction, are illustrated in figure 5.

Figure 5. Data processing of measured listmode data for the QuickPET II scanner.

The first procedure was to estimate the true detector positioning offsets before histogramming the
data into sinograms. These offsets were estimated by comparing simulations and measurements of two
axially oriented line sources (described below) located 0 and 14 mm radially from the center of the
field of view. The 18 detector blocks were considered as 9 opposed pairs of detectors. For each pair of
detectors noise-free sinograms were simulated with each of the two detectors in a 5 × 5  grid of
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transverse offsets in the x and y directions, thus resulting in 625 simulated sinograms for each pair of
detectors. The grid points for the detector locations were separated by 0.225 mm, or 1/4 of the center-
to-center detector element spacing. The minimum root mean square error (RMSE) between the
corresponding region of the measured sinogram and the non-zero regions of the simulated sinograms
were computed, and the transverse offsets corresponding to the minimum RMSE were chosen as the
locations of the detector block. This was repeated for each of the 9 detector pairs. We note that these
corrections do not account for z-axis (scanner axis) offsets of the detector blocks or rotational offsets.
Methods for these calibrations are currently under development. We also note, however, that the
transverse offsets of the detector blocks are likely to be the most important positional offsets. The
estimation of the detector block offsets was only performed once.

With the transverse detector offsets accounted for, both listmode data sets are binned into fully-3D
sinograms with equi-spaced projection rays. In other words there is no detector arc-effect in the
sinogram data from the detector ring curvature, unlike sinograms that directly map detector pair
combinations (Defrise and Kinahan, 1998, pg 17). This binning, however, introduces a systematic bias
in the sinogram due to the variable number of detector pair combinations that contribute to each
sinogram bin. This bias is easily estimated (and then corrected for) by generating a listmode data file
with one coincident event per detector pair combination. The next phase would normally be to correct
for variations in individual detector efficiencies. However, we have not yet implemented a robust
procedure for implementing detector efficiencies, so no efficiency corrections were applied.

The second sinogram is then rotated (shifted in azimuthal coordinate) by 10 deg to match the
orientation of the first sinogram, and then added to the first sinogram. This compensates for the
missing data due to the detector gaps, but necessitates a second normalization to compensate for the
varying additions to each sinogram bin. Other quantitative corrections for attenuation and scattered and
random coincidences are currently not implemented due to limitations of the current experimental
environment. The fully-3D sinograms are then rebinned into a stack of 2D sinograms, which are then
reconstructed as described in section 2.1 with FBP, OSEM, or OSEM(DB).

Detector blurring point-spread functions

A requirement for the proposed reconstruction approach is to estimate the spatially varying detector
PSFs. Since collimated point source measurements are difficult to perform, we instead acquired line
source data to estimate only the transverse detector blurring PSFs. The line sources were 0.3 mm inner
diameter capillary tubes 6 cm in length.  Two tubes were each filled with ~16 µCi (592 KBq) of 18F.
The tubes were placed parallel to one another and 14 mm apart on a thin, stiff board. The two capillary
tubes were oriented axially and positioned at 0 mm (tube 1) and 14 mm (tube 2) radial distance from
FOV center. A total of 600,000 coincident events (2000 counts/sec x 5 minutes) were acquired. The
tubes were stepped out radially in seven increments of 2 mm. This procedure was used to allow fitting
parametric profiles to the tranverse profiles in the sinograms down to the tenth-maximum level.  If we
had simultaneously acquired 14 line sources separated by 2 mm, the tails of each profile would have
overlapped. A total of 600,000 coincident events were collected for each acquisition. The detector ring
was then rotated 10 degrees and the acquisitions were repeated,

The listmode data were binned into fully-3D sinograms and processed as described above up to the
point prior to FORE rebinning, resulting in seven fully-3D sinograms. Some signal averaging was
found to be necessary to alleviate the noise in the profiles. This was done with SSRB rebinning  with
±5 ring difference (±2 deg) and axial summing of the central 10 (out of 43) 2D sinograms. The 1D
projection at azimuthal angle of zero (perpendicular to the line sources) was extracted from each
averaged sinogram. Each profile contained two peaks that were separately fit to a parametric function
as described next.
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Parameterization of detector blurring PSF

After acquiring profiles from line source sinograms, the PSFs were fit with an asymmetrical Gaussian-
Lorentzian curve to allow robust interpolation for all transverse sinogram bins according to

f (x) =

a wexp −
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where w is a weight representing contribution of the Gaussian term and µ  is the estimated peak
location of f(x). The (1-w) contribution of the Lorentzian curve allows for the presence of broad tails in
the PSF. Since the PSFs are potentially asymmetric, the shape of the function was divided into two
halves centered on the peak value of x ( µ=x ) and fitted with different Gaussian ( 1σ , 2σ ) and

Lorentzian (b1, b2) half-width parameters, i.e. 1σ , b1  for the broader half toward the FOV center and

2σ , b2  for the narrower half toward the FOV boundary. The curve-fitting results of equation (1) were
then plotted as a function of transverse position µ=x . Detector PSFs at intermediate transverse
positions were then generated by estimation from linear fits to these parameters as a function of
position.

Image reconstruction of line source measurements

The combined line source listmode acquisitions were histogrammed into fully-3D sinograms and
rebinned into a stacked set of 2D sinograms by FORE rebinning with a maximum ring differences of
±21 (±8.5 deg acceptance angle).  Images were reconstructed by FORE+FBP (with a ramp filter),
FORE+OSEM, and FORE+OSEM(DB) with detector blurring .

Reconstruction of mouse cardiac images

The measured detector blurring was incorporated into the system model as described above to
reconstruct acquired mouse sinogram data.

A p53 heterozygote female mouse on an NIH background with chemically induced skin tumors was
imaged with FDG.  The mouse was injected with 240 µCi (8.88 MBq) of FDG via tail vein injection.
Imaging began approximately one hour post-injection. To reduce uptake in the background tissues, the
mouse was kept under light anesthesia (0.5-2.0% isoflurane) during radiopharmaceutical uptake. A
five field of view scan was acquired over ~90 minutes. A total of 21.3 million events were acquired
during the study. Images were reconstructed with FORE+FBP (with a ramp filter), FORE+OSEM, and
FORE+OSEM(DB) and sections of the images through the left ventricle were evaluated.
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3. Results
3.1 Simulation studies

Detector point spread function generation

Figure 6 shows detector PSFs at the locations of 0, 12, and 24 mm radially off-center from the field of
view (FOV) center. As the source position approaches the FOV boundary, the shape of the
corresponding PSF becomes wider and more asymmetric.

Figure 6. Transverse component of detector point spread functions (PSF) at center, 12 and 24 mm off-
centered position in projection domain.

Reconstructed point sources

Figures 7(a) and 8(a) are central transverse and coronal sections of SSRB+FBP images while (b)-(d)
are sections for FORE+FBP, FORE+OSEM and FORE+OSEM(DB) incorporating detector blurring
PSFs (FORE+OSEM(DB)). Based on the results of figures 7 and 8, SSRB was not explored further in
this study. The results in figures 7 and 8 also indicate that incorporating detector blurring PSFs
improves resolution recovery, while FBP and OSEM yield similar resolutions for this test object.
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(a) (b)

(c) (d)

Figure 7. Transverse sections of reconstructed point source images with different methods.  (a)
SSRB+FBP, (b) FORE+FBP, (c) FORE+OSEM, (d) FORE+OSEM(DB).
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(a) (b)

(c) (d)

Figure 8. Coronal sections of reconstructed point source images shown in figure 7.  (a) SSRB+FBP, (b)
FORE+FBP, (c) FORE+OSEM, (d) FORE+OSEM(DB).

Radial profiles along the transverse axis in FORE reconstruction images (figure 7 (b)-(d)) are shown
in figure 9.
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Figure 9. Radial profiles of reconstructed point sources in figure 7 (b)-(d).

Full-width-and-half-maximum (FWHM) values of those profiles are also displayed in table 1. Both
results indicate that OSEM(DB) produces an improvement in resolution in terms of contrast and
FWHM. Resolution is recovered more significantly at the FOV boundary.

Table 1. FWHMs of reconstructed point sources in figure 7

Reconstruction
method

Center
(mm)

12 mm
offset
(mm)

24 mm
offset
(mm)

FBP 2.0 2.3 2.7

OSEM 1.9 2.1 2.6

OSEM(DB) 1.7 1.5 1.6

3.2. Measured data from the MiCES evaluation system

Figure 10(a) shows the sinograms of measured line source data without block alignment corrections
for the (0,14) mm radial offset line sources. The sinogram indicates significant distortion due to the
misalignment of detector modules. Figure 10(b) shows the sinogram after block alignment correction,
figure 10(c) shows the sinogram after sampling pattern normalization, and figure 10(d) shows the
sinogram after gap compensation by adding rotated acquisitions. Some residual error in the block
alignment is clearly visible.
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(a) (b) (c) (d)
Figure 10. Intermediate sinograms corresponding to correction steps outlined in figure 5. (a) before
block alignment correction, (b) after block alignment correction, (c) after interference pattern
normalization, (d) after adding second sinogram after 10 deg rotation.

Detector blurring point-spread functions

Figure 11(a) illustrates the change of 1σ  and 2σ  parameters estimated from fitted curves to
transverse sinogram profiles (e.g. figure 10(d)) from off-centered positions (0, 14) to (14, 28) mm. A
least-squares fit, which is represented by straight lines in figure 11(a), to the measured data indicates
that the asymmetric property becomes more significant as the distance from the sinogram center
increases. The same trend was observed in the Lorentzian parameters (b1, b2) in equation (1). In
addition, as shown in figure 11(b), the Gaussian weight w also varied with position. The increasing
strength of the Gaussian term with transverse position implies narrower tails for the PSF at the
transverse edges of the sinogram.

(a) (b)
Figure 11. Estimated and least-squares linear fits to parameters in equation (1) as a function of radial
distance from FOV center. (a) Estimated and linear fits to Gaussian half-width parameters as a function
of transverse position. (b) Estimated and linear fit to Gaussian weight term w in equation (1).

Figure 12 displays comparisons between sinogram PSFs acquired by measurements and those
generated by parameterization at the center and 12 mm radial positions. Comparisons at all positions
showed good agreement between measured and fitted PSFs.
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(a) (b)
Figure 12.  Experimentally measured detector PSFs and corresponding fitted-curves. (a) PSFs at
center. (b) PSFs at 12mm offset.

Figure 13 shows three PSFs generated by parameterization of off-centered positions 0, 12 and 24 mm.
As implied in figure 11, the FWHM of the PSF becomes wider and more asymmetric as the source
position moves away from center.

Figure 13. Experimental detector point spread functions at FOV center, 12 and 24 mm off-centered
position in sinogram.

Image reconstruction of line source measurements

Figure 14 shows a sinogram and reconstructed images (transverse and coronal sections) of the
combined line source listmode acquisitions. Images reconstructed by FORE+FBP (with a ramp filter),
FORE+OSEM, and FORE+OSEM(DB) are shown in figures 14 (b)-(d). As also noted in the
simulation studies, the proposed FORE+OSEM(DB) approach results in a more consistent resolution.
In addition, the improvement is more conspicuous for line sources near the FOV boundary.
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(a) (b)

(c) (d)
Figure 14. (a) sinogram and images of line sources rebinned with FORE and reconstructed with
different method: (b) FORE+FBP, (c) FORE+OSEM, (d) FORE+OSEM(DB)

Radial profiles (figure 15) through the line source images also illustrate those improvements. FWHMs
of the line sources at center were calculated from the reconstructed images by FORE+FBP,
FORE+OSEM, and FORE+OSEM(DB). The FWHM values of reconstructed point sources at the
center were 1.3, 1.1, and 0.7 mm for the three methods, implying a potential for resolution
improvement by the proposed method.

Figure 15. Radial profiles through reconstructed point sources shown in figure 15 (b)-(d)
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Reconstruction of mouse cardiac images
Figure 16 shows transverse and coronal sections of mouse heart images reconstructed with the three

different reconstruction techniques.

FORE+FBP FORE+OSEM FORE+OSEM(DB)
Figure 16. Transverse and coronal mouse heart images from three different reconstruction methods:
FORE+FBP (left) FORE+OSEM (middle), and FORE+OSEM(DB) (right).

The images on the left were reconstructed with FORE+FBP. The middle images used FORE+OSEM.
As shown in the figure, OSEM suppresses low-level noise as expected. The images on the right are
results obtained by FORE+OSEM(DB) with incorporated detector blurring. The FORE+OSEM(DB)
images are sharper than the others, which implies that the inclusion of non-stationary detector blurring
PSFs within the system matrix can significantly improve image resolution.

4. Discussion

The proposed method (FORE+OSEM(DB)) is modeled on fully-3D image reconstruction used in
clinical PET scanners, which is based on FORE rebinning followed by 2D OSEM iterative image
reconstruction. In addition, we also used a factorized system model that incorporated resolution-
sensitive physical effects in PET, in particular non-stationary detector blurring. This approach makes
approximations that will reduce some measures of image quality as compared to those produced by a
Bayesian model of the complete acquisition process (Qi et al 1998, Leahy and Qi 2000). In particular
the effects of positron range and detector efficiencies are not modeled, as well as blurring in the axial
direction. Including these effects in the modeling of the system could improve the tradeoffs between
noise and contrast or resolution. The benefit, however, in concentrating on the most significant effects
is a simplified model and decreased image reconstruction time. The relative merits of these two
approaches, which will be the subject of further study, is a complex issue that depends on several
factors including scanner design, choice of radioisotope, imaging task, and scanner throughput.

The simulation studies were used to test the basic efficacy of the approach where we have perfect
knowledge of the detector blurring. For the measured data from the evaluation system we did not
attempt to simulate the detector PSF, but rather used an estimate of the transverse PSF blurring derived
from line source measurements. For the full four-ring MiCES scanner our plan is to also measure the
detector blurring PSF directly.
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Since the imaging study so far has been based on 18F, the detector blurring effect is a more dominant
effect on resolution recovery than positron range (Lee et al, 2004). Therefore positron range is not
included in the current system model. For higher energy positron emitters, however, the range effect is
important, albeit potentially difficult to model in inhomogeneous media.

For both the simulated and measured data the PSF was two-dimensional on the detector surface for
each end of the line of response. In the image reconstruction, however, only the transverse effect was
modeled.
5. Conclusions
Reconstructions using the proposed method were presented from point source simulations and
measured data from the QuickPET II system that were compared with images reconstructed by
traditional methods in clinical imaging (FORE+FBP and FORE+OSEM). The results indicate that the
proposed FORE+OSEM(DB) approach, which incorporated detector blurring PSFs, improved image
resolution in terms of both contrast and FWHM without undue increases in noise. This apparent
performance however, remains to be demonstrated with estimation of true noise behavior across
multiple realizations, and is currently under study.
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