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ABSTRACT blur is induced in non-cartesian k-space MRI (using spi-
| i . . MR e f Ir Is, etc.) [2]. Many image reconstruction methods have
N magnetic resonance imaging (MRI), magnetic fie een proposed to correct for the field distortions [3-7].

|nhnor;:og:er:jegles Cri/usneti dr;stlolr:t:;)Tn smlntrl]mca;gesstr\\/atr a:rﬁ né focus on algorithms appropriate for conventional com-
constructed by conventiona €thods. - >everal g ters; optical implementations may also be feasible [8].

iterative image reconstruction methods are used currer&&ere are two components to most methods for field-
to compensate for field inhomogeneities, but these me&h

d that the field that ch eri th ﬁ'rrected MR image reconstruction. The first procedure
0ds assume that the field map that characterizes e afli, ,hiain an estimate of the field map that quantifies

resonance frequencies is spatially smooth. Recently, iteﬁé spatial distribution of main magnetic field inhomo-

tive methods have begn proposed that can cwc_umventt Sheities. The second procedure is to use that field map
assumption and provide improved compensation for off-

resonan tracts. However. straiahtforward implemen o form a reconstructed image of the transverse magne-
esonance efiects. However, straightforwa PIEMEN tion. This paper focuses on the second procedure;
tions of such iterative methods suffer from inconvenient

) . . ) tke many methods, we assume that an accurate, spatially
long computation times. This paper describes a tool for

C . : . ndistorted field map is available. This simplification un-
accelerating iterative reconstruction of field-corrected I\(Iﬁ?

. . : S rlies most of the field-corrected MR image reconstruc-
'mages. a nqvel tlme-segmeqted apprOX|mat|_on tothe . tion methods. However, in many cases it may be necessary
signal equatlo_n. We use a min-max formulation to de”voer desirable to couple the field-map estimation and image
the _temporal mterpqlator. . Speedups _Of around GO_Werreeconstruction procedures. In such cases, the methods de-
achieved by combining this temporal interpolator with

. . . &cribed in this paper could be one component of an overall
nonuniform fast Fourier Transform with NRMS appromioint estimation procedure [9)].

mation errors of 0.07%. The proposed method provides

fast, accurate, field-corrected image reconstruction everAfter a field map is obtained, one method of field-

when the field map is not smooth. Keywordsagnetic corrected image reconstruction, the conjugate phase

resonance imaging, image reconstruction, iterative meth- method [3,6,7], seeks to compensate for the phase accrual

ods, field inhomogeneity correction, time segmentation, ateach time point due to the off-resonance. This method,

temporal interpolation. like most noniterative methods, relies on the assumption

of a smooth field map. Time-segmented and frequency-

. INTRODUCTION segmented approximations exist for this method to speed

) _ _ o ~image reconstruction [3, 7]. Recent work has suggested
Differences in the magnetic susceptibility of adjacefa; the failure of the conjugate phase method in regions

regions within an object, which occur for example negfnere the field map is not smooth may be due to incor-
airftissue interfaces in the brain, cause image distortions iy density compensation coefficients. Spatially varying
MR images formed by conventional reconstruction metaénsity compensation may be necessary in those cases,
ods. In spin-warp imaging, off-resonance effects caus&tricting the application of methods to speed computa-
spatial shifts and intensity variations [1], whereas spatigh, [10]. Iterative reconstruction methods do not require
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ton@umich.edy ily of conjugate-phase methods for off-resonance cor-
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2 I INTRODUCTION

conjugate-phase methods are preferable to SPHERHoped [17-19] and these methods have been applied to
methods [5], at least for spiral imaging. Therefore, in thigRI data with spiral k-space trajectories [20, 21]. The
paper we focus on comparing our proposed iterative meMR reconstruction problem is closely related to the prob-
ods to the conjugate-phase method aginéactostandard lem of reconstructing a band-limited signal from nonuni-
for non-iterative off-resonance correction. Schombergerm samples. Strohmer argued compellingly for us-
analysis assumes existence of a “time map” relating eanl trigonometric polynomials (complex exponentials) for
k-space point to a unique acquisition time. Our proposédite-dimensional approximations in such problems, and
iterative methods do not require any such assumption, gsréposed to use an iterative conjugate gradient reconstruc-
are therefore applicable to self-intersecting k-space trajéion method with the NUFFT approach of [22] at its core
tories such as rosettes [11]. Nor are any assumptions a@adt 24]. In the MR context, this is essentially equiva-
regularity of a time map required for iterative methods. lent to the finite basis expansion we use in (3). In [25],

Model-based iterative reconstruction methods have thg@ NUFFT-like algorithm, referred to as ‘reverse grid-
potential to account for field maps that violate smootfling,” was applied in combination with the CG algorithm
ness assumptions. Munget al. [12] reported that it- tO speed up SENSE image reconstructions. These NUFFT
erative conjugate-gradient methods based on Fourier fe€thods have reduced the computation time per iteration
constructed echo-planar images outperform the conjugdfthat of noniterative reconstruction methods.
phase approach. Their sparsified system model is specifi¢jowever, the standard NUFFT method by itself does
to cartesian trajectories like echo-planar, whereas the c@at allow for the compensation of field inhomogeneity ef-
jugate gradient (CG) approach considered here is appécts because the integral signal equation for MR is not
cable to any trajectory. Maat al. [13] described an it- a Fourier transform when field inhomogeneities are in-
erative algorithm to remove the residual blur left over atluded. This paper describes several tools for accelerat-
ter conjugate phase reconstruction in regions with rapidhy iterative reconstruction of field-corrected images. In-
varying inhomogeneity. The iterative reconstruction alggpired by the time-segmented conjugate-phase reconstruc-
rithm proposed in [14] was shown to provide significanfon approach [3], we propose a fast time-segmented for-
improvements in image quality over noniterative metho@gard projector, and its adjoint, that accounts for field ef-
even for field maps with discontinuities. Their methofects and uses the NUFFT. The possibility of combin-
also can be used in an extended form to estimate more jagr “conventionally used [time or frequency] segmenta-
curate field maps. Unlike standard reconstruction schenmigs approaches” with NUFFT-type methods to correct for
that directly map the k-space data to a reconstructed ifield inhomogeneities was noted by Pruessmetal. [25].
age, (we will call this a back-projector), most iterative redowever, as we show in this paper, the conventional tem-
construction methods require a forward-projector (givgsbral interpolators (linear, Hanning, etc.) are signficantly
an estimate of the object and field map, form k-space dagaboptimal since they fail to capture the oscillatory na-
as well as the adjoint of the forward projector. ture of phase modulations caused by off-resonance ef-

Interest in iterative reconstruction methods has iffects. Instead, in this paper we present a temporal inter-
creased recently due to its utility in multiple coil nonpolation method that is optimal in the min-max sense of
cartesian k-space sensitivity encoding (SENSE) probleménimizing worst-case interpolation error, and compare
[15]. Due to the complex aliasing pattern associated wiis accuracy to the “conventional” temporal interpolators.
undersampling k-space trajectories such as spirals, itefée show that accurate temporal interpolation combined
tive methods that include coil sensitivity patterns in theith the NUFFT results in a fast, accurate iterative recon-
projectors are necessary to reconstruct artifact-free imagésiction algorithm for field-corrected imaging. We evalu-
in practice [15]. Although this paper will focus on field inate the accuracy of our time-segmentation interpolator by
homogeneities, one can also apply iterative image recé@®mparing it to the result of the exact (but slow) evaluation
struction methods to compensate for other physical pi-the signal equation.
nomena such as deviations in k-space trajectory and reThjs paper starts with an introduction to iterative im-
laxation effects, such a8; [16]. age reconstruction for MRI in Section II, then we present

The principal drawback of iterative reconstructiothe derivation of our min-max temporal interpolator for
methods has been computation time, with reported véilme segmentation in Section II-A. Section II-B describes
ues of computation time per iteration ranging up to eigkarious ways to compute the interpolator. Section II-C ex-
minutes [14]. Recently, accurate and fast non-uniforamines the effect of the initial image and preconditioning
fast Fourier Transform (NUFFT) methods have been den the image reconstruction. Simulation and human data



experiments are described in Section Il with the results Nl
given in IV. w(r) =~ Z wnd2(T —Tn). 3)
n=0

Il. THEORY For this paper, we will use the voxel indicator function
In MR, ignoring relaxation effects, the signal equatiom (r) = ¢2(r) = rect(r1/Aq)---rect(rp/Ap) for the
is given by [26], P-dimensional problem. This choice is somewhat natural
for display devices that use square areas of nearly con-
s(t) = /f(?‘)C(T')e_i“’(’")(HTE)e_m(k(t)"")dr, (1) stant luminance. However, this parameterization does not
model within-voxel field gradients. Regardless of what
wheres(t) is the complex baseband signal at timeur- pasis one chooses, (3) is only an approximation and we
ing the readout/ is the echo timef(r) is a continuous pjan to explore other choices, such as triangle functions,
function of the object’s transverse magnetization at locgr our future work. Triangle basis functions would allow
tion r immediately following the spin preparation stepys to model first order gradients of the field map and voxel
c(r) is the sensitivity map of the receiver cailis the field intensities, which may help reduce within-voxel suscepti-
inhomogeneity present af andk(t) is the k-space trajec- pjlity effects. Substituting (3) in (1) yields
tory. For convenience, we lgt(r) = f(r)c(r)e ("1Ee,
Accurate estimation of (r) yields f () assuming the sen-
sitivity and field maps are known. In an MR scan, the raw

measurements are noisy samples of the signal in (1):
, where®(wu) denotes the Fourier Transform ofr). We
yi=s(t) +ei, i=1...,M, (@) express the noisy measured samples of this signal in
where thes;’s denote complex Gaussian noise. From thesgatrix-vector form as follows
samples we would like to reconstruttr). The conven- A 5
tional approach for image reconstruction is to interpolate y=Af+e )
the y;'s onto a cartesian grid in spatial frequency spacgheref = (fo, ..., fv—1) and the elements of thel x N
after applying sample density compensation, and to thgyatrix A are
use an inverse FFT to estimate sampleg af) [27]. This . .
gridding method, when combined with time segmenta- aij = B(ko(t;))e st 2RI T, (6)
tion of the field inhomogeneity effects, is a fast CONjugalR the discrete-to-discrete formulation (5), our goal is to
phase approach [3]. _ estimate the imagg from the k-space datg, accounting
_The combination of (1) and (2) form a continuous-9, the statistics of the noise. This will still be an ill-
discrete (CD) mapping. This is clearly an ill-posed probs,geq problem itv > 7, and is usually ill-conditioned
lem since there is an infinite collection of solutiorf$r), even if N < M for non-cartesian trajectories.
that exactly match the daga= (y1, ..., ym). In[28], the gjnce the dominant noise in MRI is white Gaussian
pseudoinverse of this CD mapping was investigated fgg]’ we estimatef by minimizing the following penal-
minimum-norm least-squares image reconstruction wit

. . : ‘ed least-squares cost function,
out field-correction. Although their approach was com-

N-1
S(t) % B(k(t) Y fueTiortem 2RO (g)
n=0

putationally intensive, the pseudoinverse calculation was () — }Hy — Af|?>+ BR(f) sothat,
object-independent and could be performed once for a ) 2
given trajectory. However, in the case of field-corrected f = arg m}ﬂ W(f). (7)

imaging, the CD mapping is object-dependent because of
the specific field map of the slice of interest. This prohibitEhe second term in the equation fdr(f) is a regular-
precalculation of the SVD of the CD operator, so we se#@tion function, R(f), that penalizes the roughness of
more practical methods. the estimated image. This regularization can decrease
Instead of finding the pseudoinverse of the CD maghe condition number of the image reconstruction prob-
ping, we restrict the number of unknowns to be estimaté&m and, therefore, speed convergence. We choose the
by parameterizing the object and field map in terms of baarameter3 by examining the point spread function of
sis functionsg(r), assuming that the reconstructed image [30], preferably by choosihg
N1 small enough to not significantly degrade the spatial reso-
fr) =~ Z Fadr (7 — 10) lution relatlye to the natural resolution associated with the
e k-space trajectory.



4 II' THEORY

The least-squares cost function used here is appropridté, 19] can be used to rapidly and accurately evaluate the
for Gaussian measurement noise. If nhon-Gaussian em@@crete signal equation (4) even for non-cartesian trajec-
“spikes” are present, then one could use a non-quadrdtides. However, the NUFFT method is not directly ap-
cost function to provide robustness to those outliers [34licable when the field inhomogeneity is included because
at the expense of increased computation. Alternative(y,) is not a Fourier transform integral. We propose to com-
one could use other methods to detect those spikgs, bine the NUFFT and a version of time segmentation [3]
[32], then exclude the corresponding measurement sglimdt with min-max temporal interpolation) to compute (4)
ples from the iterative reconstruction process; no “interapidly and accurately. We first derive the min-max inter-
polation” of samples is needed. polator and then discuss some approaches to computing

We apply the iterative conjugate gradient (CG) algdt. This section concludes with a discussion of proposed
rithm for minimization of (7). The algorithm is given be-methods to speed convergence of the CG algorithm for it-
low for reference. For simplicity, we have used quadratarative MR imaging.
regularization:k(f) = 3||C f||? for a matrixC that takes
differences between neighboring pixels. The algorith
may also include a data weighting mat#¥ for perform- In (4), the problem is in the termT ™!, wheret is not a
ing weighted least squardse. replacel| - |* with || - [|3;, in  constant. Ift were a constant, then the teem®~* could
(7). One can also include a preconditioning maf¥ikto be absorbed intg,, and (4) could be evaluated quickly
speed convergence of the CG algorithm. Section 1I-C disy the NUFFT. The idea of “time segmentation” is to use
cusses the weighting and preconditioner matrices in mamall time segments over whighis approximately con-
detail. In the algorithm belowy,.,, denotes the negativestant [3]. For a time-segmented approximation of the term
gradient of¥( f) from (7), r is the residuald denotes the e~*!, we partition the acquisition window intd time
step direction, and denotes the step size. The algorithreegments of width- and compute the term at the + 1
is started with an initial estimate of the image,= fy. break points. We then interpolate between these break
Section II-C discusses the choice of this initial estimate points to evaluate an approximation at intermediate time

points as follows:

Ay Time Segmentation

CG Algorithm :
Initialize o~ iwnt o Z al(t)e—iwm, @8)
r = y—Afy (residual)
Iteration Steps whereq;(t) is the interpolation coefficient for tHén break
Jnew = AWr—pC*Cf, point for timet. Replacing the termm=%“= in (4) with its
{ 0 1st iteration time-segmented approximation (8) gives:
Y = gnew*Mgnew else L
Gotd* MGoia 5(t) = ®(k(t) a(t)
d = Mgpew+d 1=0
¢ = Ad S t| g2 (h(t) )
d* e —ilwn T —12m ) 9
o Gnew Z: |:f :| ( )
qgWq + 6d*C*Cd
for1 = fao+ad (update image) The key property of (9) is that it is a weighted sum of
r = r—agq (update residual) discrete-space Fourier transforms of the term in brackets,

weighted by the coefficients(t) = (ao(t),...,ar(t)).
Gold = Gnew We can perform these inner FT's quickly and accurately
The dominant computation in each iteration of the c&sing an NUFFT [19]. Our goal here is to choose dfe)
algorithm is computingAd and A*r, where the super- to minimize the error of approximation (9). In the spirit
script* denotes complex conjugate transpose. Comp@f-[18. 19], we propose to adopt a min-max criterion to
ing Af corresponds to evaluating (4). For cartesian RPtimize the temporal interpolation coefficiendsy;) for
space trajectories, one can evaluate (4) quickly via the= 1,---, M, i.e, for every point in the k-space readout.
Fast Fourier Transform (FFT) if the field inhomogeneitffOr any timet, we choose the coefficientg(t) using the
is ignored. However, for noncartesian k-space trajectori€dowing criterion:
(spirals, etc.) direct evaluation of (4) is very time con- .
suming. When field inhomogeneity is ignored, a NUFFT ‘alt) FecN lFl=1

4(t) — s(t) ‘

o(k(D) | (10)



II-B Computing the Min-Max Interpolator 5

That is, we seek the interpolation coefficient&) that where
will minimize (min) the interpolation error for the object

N-1
vector, f, that causes the largesh{x) error of all pos- GGy = 1 e~ iwn(l'=0)
sible signals. Note that i®(k(t)) = 0, then the error ’ N —~
in the approximation (9) would be zero regardless of the L N1
interpolator. Gb(t)], = — 3 e tnlt=D), (18)
The error in the approximation (9) can be expressed as, N n=0
3(t) — s(t) N-1 . fori,I’ =0,..., L. Tocompute the min-max interpolator,
o) > frem kD) we form the(L + 1) x (L 4 1) matrix G*G and multiply
n=0 its inverse by th& L + 1) x 1 vectorG*b(t). Typically
A L . L < N so this is feasible.
. [e—zwnt _ Z al(t)e—zwm—l]
1=0 B. Computing the Min-Max Interpolator
_ Nz_:lg 0 o i2m(k(t) ™) The i_nterpolator_in (17) is object dependent since it is
~ A ' a function of the field mapw = (wo,...,wny_1), and
\/_ﬁ 1 therefore must be computed after an initial estimate of the
- {g(t),a(t)), (11) " field map is formed. To comput&*G efficiently, first
whereg(t) = (4o, .-, gv-1) 4 = (qo,- - -, gn—1), and form the column sums afr as follows:
. | Nl
I i NE—=> G (19)
n(t = — e iwpt ar(Be iwn Tl N )
gn(t) ¢N[ ;;m> ] VN &
G(t) = - xgi2m(k(t) ) (12) Then using (18), we evaluate the element&6i= as fol-
lows:
Defineb, (t) = (1/\/N> e~nt and letG be anN by G*Glur = { e =120 0)
L + 1 matrix with G,,; = (1/\/ﬁ> e~ wnTl then, ’ Y*1—v  otherwise

This is a very fast way to comput@*G for the min-max

g(t) = b(t) - Ga(t). (13) interpolator.
From (12),||f]| = Ilq(t)|| and|/q(t)|| is independent of The sums in (18) do not _de_pend on the spatial arrange-
time. Therefore, using (11), we can rewrite our min-mdX€nt of the field map. This independence suggests that
estimation problem from (10) as follows we could compute these sums using simply a histogram of
the field map values. We have investigated approximating
min ~ max  VN|(g(t),q)]- (14) the computation of (18) by forming the histogram of the

a(t) qeC:lqll=1 field map usingV equal-sized bins covering the range of

By the Cauchy-Schwarz inequality, for a given timehe offset frequencies induced by the field inhomogeneity. Let

worst-casey is g*(t)/||lg(t)|, i.e. myp be the number of field map values that fall into bin
with a center off-resonant frequency §f Then we can
max —[(g(t),q)| = [lg(t)]- (15) approximate (18) by
qeCNl|qll=1
Np
Note that this is the approximation error in (8). Inserting G*Gly =~ v Zmpe—z%fm(l —l),

this worst-casey into the min-max criterion (14) and ap-
plying (13) reduces the min-max problem to,

p=1

Np
* 1 —i27fp (t—71)
~o7 . 21
min (1) — Gaft)]. (16) (G"B(), N;?%e ' (21)
a(t =

The solution to this least-squares problem yields the mi}e compute (21) efficiently via a FFT oh,, since we
max interpolator: use equally-spaced histogram bins. We call this approach

the histogram approximatiorio the min-max interpola-
a(t) = (G*G)"'G*b(t), (17) tor. This quantization of the field map into a histogram is



6 111 METHODS

somewhat akin to the frequency-segmentation method ftaration gives,
reducing computation in the conjugate-phase approach for .
field inhomogeneity correction [33, 34]. fi = aA"Wy. (22)

The expression for this interpolator bears a striking r¢rpe data weighting matri¥% were just the identity ma-
semblance to the “multifrequency interpolator” proposggy then this first iteration would simply give the conju-
by Manet al. [7]. However, the use of the two interpoyate phase reconstruction without density compensation.
lators is quite different. The multifrequency interpolatof y37 were instead equal to the density compensation fac-
is applied to a set of images that have each been recjys then the first iteration yields a density-compensated
structed by a constant demodulation approximation to thgnjygate phase reconstruction. Therefore, rather than us-
conjugate-phase approach for field inhomogeneity COI&Sq an inappropriately weighted CG algorithm, we use the
tion. In contrast, our min-max interpolator is applied t€onjugate phase image (reconstructed via a fast, density-
predicted k-space signals. The multifrequency interpo'@ompensated, time-segmented approach) as the initial es-
tion approach inherits the fundamental limitations of thl‘?mate, fo. As noted in [40], initializing with a good
conjugate-phase approach (in particular the requiremegiysity-compensated conjugate phase image ensures that
of a spatially smooth field map) which are illustrated ig,psequent iterations will improve on this initial guess.
the figures in Sections IV. Convergence of iterative algorithms can be accelerated

The min-max interpolator (17) depends on the field majy the use of an appropriate preconditioneg, M in
and should be recomputed if the field map changes. {®). Circulant preconditioners have been shown to be ef-
avoid recalculating the interpolator coefficients when factive in shift-invariant problems in tomographic imag-
field map is updated, we also investigated the use of iy [41]. These preconditioners attempt to undo the blur-
object-independent histogram for the field map values. g induced by applying the forward projector and its ad-
generic histogram for field maps was used to calculate §aént. A circulant preconditioner should be particularly
interpolator coefficients in (21) and we will refer to thisielpful for MR reconstruction with small off-resonance
approach as thgeneric histogram approximatioseveral effects, where the point spread function (PSF) is nearly
shapes and ranges for generic histograms were examingift invariant, but may also be of some benefit in regions

of higher off-resonance effects. Our results to date with
C. Speeding Convergence of the CG Algorithm circulant preconditioners have shown mild improvements
in convergence rate. Preconditioners have also been de-

It has been suggested that a weighted-least squaressigned for shift-variant problems [42] and such methods
proach be used to speed convergence of the CG algdH be investigated for MRI in our future work.
rithm for iterative MR image reconstruction and that the
weights be the coefficients of the sampling density com- ll. METHODS
pensation function [25]. However, there has been someThree sets of studies were performed to evaluate the
discussion on how to calculate optimal density compesecuracy and utility of our min-max interpolated iterative
sation factors [35-39] and the iterative image reconstrueconstruction algorithm. All three studies used a single-
tion algorithm does not require and is not dependent upshot spiral k-space trajectory withZg; of 25 ms, matrix
these weights if an unweightedg(. weighting is unity) size of 64«64, and FOV of 22 cm22 cm, giving 3770
least squares approach is used instead. Also, assunkiigpace points. The length of the readout interval was
the noise in MRI is white Gaussian, usimpnuniform 18.9 ms, so 100 Hz off resonance causes 28ra spin
weighting would be suboptimal statistically according tphase accrual during the readout.
the Gauss-Markov Theorem. Using nonuniform weight-
ing may appear to provide faster convergence in the initfl Interpolator Accuracy

StepS of the algorithm for some choices of initial image, We performed a simulation Study to evaluate the max-
but would prevent convergence to the minimum variang@um interpolation error/|g(¢)| in (15), over a finely
solution. AIthOUgh, Pruessmarat al. [25] state that the Samp|ed range of times, for several tempora| interpo_
SNR penalty is negligible when the density compensatigftors. We used the field map shown in Figure 1. We
function is used as the WeightS, we will next discuss h%‘bserved empirica”y that, for many field maps, the min-
to benefit from this approach without risking any SNR. max optimal temporal interpolator could have a significant
Consider the CG algorithm in (8) when an initial estitmaginary component, and this imaginary component con-
mate of the image of zeros is usef). = 0. Then the first tributes to the overall accuracy of the min-max interpola-



III-C  Human Study 7

tion method. Conventional temporal interpolators used @ Human Study

MRI have been real valued, so to simplify comparisons . .
L plity P The time-segmented, NUFFT reconstruction scheme
between the proposed min-max approach and the conven- .
: ) : was applied to a human data set collected on a 3.0T GE
tional approaches, we shifted the field map values to_a . . L
: . gna Scanner in accordance with the Institutional Re-
range where the min-max interpolator had a very sma . . L
. . . - view Board of the University of Michigan. For the hu-
imaginary component, as illustrated in Figure 3. We com- . .
N . L . man data, the field inhomogeneity map must be measured
pared the following interpolation methods: linear mterp%—

lation of the two nearest endpoints to the time sample of acquiring 2 gradient echo images with slightly differ-

. : . . : . ent echo times [43]. To minimize field inhomogeneity
interest, a Hanning window interpolation using only the. . . ) ) !

' o . istortions in the images used to estimate the field map,
two nearest endpoints (similar to that used in [3] for the

. . . : we acquired a pair of 4-shot gradient echo images with
back-projector problem), the ideal min-max interpolatqy, .
) o ) . r’'s of 5 and 7 ms. This fieldmap was used to reconstruct
(17), the histogram approximation to the min-max int

polator calculated using (21) with 1000 bins, and an ir’f;l_eld-corrected images of the same slices with single-shot

terpolator using a generic histogram also calculated usﬁ‘P'ralS at al of 25 ms. The proposed fast, iterative re-

(21). Various shapes (flat and triangular) and ranges wete struction scheme was compared to the conjugate phase

used for the generic histogram to determine the effectm thod and an uncorrected gridding reconstruction. Since

) . t?le exact object is not known in a human data set, we at-

accuracy of the histogram on the error of the interpolator. ) . .
témpted to match the full conjugate phase and iterative re-

construction times and qualitatively compare the resulting

: . images.

B. Simulation Study g

IV. RESULTS
We performed a series of simulation studies using the

same field map and a simulation object shown in Fig\ Interpolator Accuracy

ure 1. The simulation data was formed by constructing Figure 2 shows the maximum interpolation error for
a simulation phantom at a matrix size of 2886 and j _ { throughL = 13 time segments for the five in-
then applying (4) to compute the signal at the desired fgrpolators described in Section Ill-A. The error given,
space locations. To avoid intravoxel effects from gradi; lg(t)||, is the maximum error in interpolation as
ents of the field map inside our larger reconstructed VoXien in (15) over a range of times The generic his-
field map at a size of 6464 and zero-order-hold inter-min.max interpolators (ideal min-max, histogram min-
polated it up to 256256 to create theIS|muIat|o_n fieldmax. and generic histogram min-max) have been plotted
map. (We also present one case that includes intravoyglil the condition number of theG*G)) matrix becomes
dephasing for comparison.) Noise-free simulation stugh, large for inversion. Fof. = 8 the maximum error
ies were conducted to examine the effect of iteration @8 the min-max and histogram interpolator is more than
the interpolation error by computing the normalized rook orders of magnitude lower than that of the linear and
mean-squared (NRMS) difference in the reconstructed iManning “conventional” interpolators.

age of the interpolated, time-segmented approach versugg,re 3 shows the Hanning and min-max interpolators
using the exact (slow) signal equation (4) at convergengg, ;, — 5. The real and imaginary parts of the min-

For the rest of the simulation studies, zero-mean comax interpolator are oscillatory, a property not found in
plex Gaussian noise was added to the k-space data to dive conventional interpolators. The histogram interpola-
an SNR of approximately 100, calculated as the ratio tsfrs looked very similar to the ideal min-max interpolator,
the norms of the k-space data vector and the noise vewen though the generic histogram had a different range of
tor: ||s||/|le]]. We examined the normalized root-meareff-resonance frequencies and different histogram shape
squared error (NRMSE) between the reconstructed im&d@et). Even though it was not explicitly required in our
and the known simulation object. This measure was ugedmulation, the min-max interpolators appear to sum to
to examine accuracy and convergence rate of our proposidty at every time point, a property expected of interpo-
iterative algorithm. In the simulation and human studiegtors.
the NUFFT was used with the following parameters: 2 When a histogram of the field map is used that differs
times oversampling, a neighborhood siz&of 5, and an from the actual field map (generic histogram), the max
optimized Kaiser-Bessel window and scaling factors [183rror in Figure 2 showed a slightly higher level of error
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compared to the ideal min-max interpolator and requirgidn for values ofL = 1,...,13. The linear interpolated

a larger number of time segments. We investigated severathod took approximately the same computation time as
generic histograms, rectangular and triangular shapes, #mmin-max interpolated method and is shown for refer-
several different ranges of off-resonance, 75, 100, 15ce in Figure 6. Depending on the noise level expected
200, and 250 Hz. All the generic histograms were centeriedour reconstructed images, a valuelof= 4 might be
around 0 Hz, to agree with the simulated field map. Figeasonable for the min-max interpolator. We chose to use
ure 4 shows the maximum NRMSE for various humbers = 5 for the ideal min-max interpolator for our simula-
of time segments. As seen in this figure, the interpolation and human data studies with a time per iteration of
is relatively immune to moderate changes in the histograh® sec., a speed-up of around 60 over the exact iterative
of the field map. At values of of 11 and12, the rectan- method.

gular histograms with ranges of 150, 200, and 250 Hz andnext, given the exact field map, we ran a simulation

triangular histograms with ranges of 150 and 200 Hz af}dy with noise to compare the errors in the reconstructed
provide maximum interpolation errors beld@~*. Given jmages under five different reconstruction schemes: no
the independence on spatial arrangement in the formulgrrection for field inhomogeneities, a conjugate-phase re-
tion of the ideal min-max interpolator, we need only havgynstruction with density compensation, a fast conjugate
arange of off-resonance in our histogram that is similar ghase reconstruction using time segmentation according

that of the exact field map. to [3], the exact (slow) evaluation of the signal equation
. _ used in combination with the CG algorithm (the slow it-
B. Simulation Study erative method), and the NUFFT with min-max temporal

As described in Section II-C. we examined the convdfterpolation used in combination with the CG algorithm

gence of the CG algorithm under various conditions usitfj' fast iterative method, = 5). The results of NRMSE
the simulation object and field map shown in Figure fnd computation time are shown in Table 1. The NRMSE

Considering the max error in Figure 2, we selected 6 W8S calculated over a mask defined by the true object’s
to give a low error for the min-max interpolator, and ex3UPPOrt. Figure 7 shows the reconstructed images. The

amined the error of time segmentation versus using il iterative and_ fast iterative methods give virtually the
exact (slow) signal equation (4) over iteration to see hot@ e results with a NRMS difference between the two

the error propagates through the iterative process. ngg:onstructions of 0.07%, bqt the fast iterative method

ure 5 shows the NRMS difference betwegtf*™ and takes only 2.2 S for 10 iterations as compared to 12&_3 S

FEaet wheref2PP™* denotes théth iteration of CG algo- for the slow |terat|ye method. The unsegmgnted, density-
compensated conjugate-phase reconstruction takes 4 s and

polators andf&aet denotes the 100th iterationd. essen- both conjugate phase reconstructions produce serious arti-

tially at convergence) of CG using the exact (slow) signCts in regions where the field map is not smoothly vary-
equation (4). As shown in Figure 5, interpolation errof§9; @nd these artifacts propagate to nearby regions.
can cause the CG algorithm to converge to a different im-To verify that interpolator accuracy is important in re-
age. The linear and Hanning interpolated iterative metg@nstructing field-corrected images, we compared recon-
ods converge to a final image that differs from the exagftructions from the CG algorithm using NUFFT with lin-
final image by more than 10% NRMS. ear, Hanning, and ideal min-max intepolators. Figure 8
To choose a value fof. that gives fast computationShOWS the reconstructions usifig= 5 and ten iterations
yet retains good reconstruction accuracy, we examin@dthe CG algorithm. The standard interpolators are in-
the NRMS difference between the interpolated and esufficiently accurate and the algorithm converges to a dis-
act iterative methods for various values bf Figure 6 tortedimage, whereas the min-max method yields a nearly
shows the NRMS difference betwegigact and f2PPo* undistorted image. This behavior agrees with the quanti-
over 20 iterations using the ideal min-max interpolator fé@tive comparison shown in Figure 5.
L = 1,3,4,5. Computation time for the min-max inter- As mentioned in Section Ill, the simulated field map
polated iterative method is approximately proportional teas purposefully constructed to avoid intravoxel dephas-
L + 1. On a 2 GHz Xeon workstation using Matlab (Théng due to within-voxel field inhomogeneities. To show
Mathworks, Natick MA), our implementation of the exthe effects of such dephasing on the field-corrected re-
act (slow) iterative method, using (4), toekl2.7 s per constructions of Figure 7, we simulated a field map at
iteration to evaluate. The min-max interpolation method, 256<256 matrix size that allowed gradients across the
took approximately(0.019 + 0.030(L + 1)) s per itera- voxels when reconstructed at a matrix size ofx64.

rithm with the fast approximation (9) using various inte



Figure 9 shows the reconstructed images. As this figwwkaround 60 is achievable with NRMS error in the re-
shows, by assuming basis functions-eft(r), we are un- constructed image of 0.07%. We have also developed an
able to model the field gradients across the voxel and thgproximation to the min-max interpolator that depends
result is signal loss where the field gradient is high. In then the object-specific field map only through the range
iterative reconstruction, this degradation is localized pf off-resonant frequencies yet provides accuracies near
marily in the pixels where the high gradient occurs. Ithose of the ideal min-max interpolator. For a given tra-
the conventional field correction, the artifacts are mojectory, this interpolator can be precomputed and stored.
widespread. We plan to implement triangular basis funé/e have shown that this approximation is relatively robust
tions in our future work to model linear intravoxel suscepe small changes in the shape or range of the histogram of
tibility gradients, or to use over-sampled field maps.  the field map. This method should easily be adaptable to
other forms of iterative reconstruction in MR, including
C. Human Data SENSE to allow fast, field-corrected SENSE reconstruc-

As a final comparison, we reconstructed real data c8@NS [45]-
lected from a slice of the brain using both the proposed\We envision the iterative reconstruction algorithm in the
iterative method and a full Conjugate phase method. ,Qeneral case to proceed as follows: first, an initial field
though the proposed iterative method can be used in AP is formed via a gridding reconstruction on data at two
extended form to estimate an undistorted field map, in ttflgferent echo times. This initial estimate of the field map
case we focused on comparing computation time, so béttised to derive an interpolator for the min-max time in-
reconstructions used a field map obtained in the standigtpolation. The estimate of the field map is also used,
way from two shorl (5, 7 ms) 4-shot gradient echo im-via a fast conjugate phase reconstruction, to give an ini-
ages. For convenience in the iterative method, we udér] estimate to the iterative reconstruction. The iterative
the generic histogram (flat, [0,150] Hz) since it does négconstruction is then run in extended mode with simulta-
depend on the specific field map and can be computed@Pus estimation of field map and image either by explicit
advance for a given trajectory (depends only on numb@t estimation [44] or by alternating updates [6, 14]. Af-
of time points and a chosen range of off-resonance ff€r several loops of updating the image and field map, we
guencies). The range of the generic histogram, [0, 1%F left with an undistorted estimate of the image and field
Hz, was chosen to agree with our routinely acquired fiefdiap-
maps from the slice of interest. The NUFFT used the pa-If the field map has a strong linear component, then it
rameters given in Section I1I-B and the min-max interpanay be possible to adapt the method of Irarrazabaill.
lator usedL = 8. The reconstruction time for the full[34] to reduce the number of segments required for a given
conjugate phase was about 4 s, the time for ten iterati@gcuracy.
of the proposed fast iterative method was 3.6 s. Figure 10The ability to accurately compensate for off-resonance
shows the reconstructed images for 2 slices. Artifacts éffects as demonstrated here may increase the feasibil-
regions of high off-resonance are reduced significantly ity of using other acquisition methods with long readout
the iterative approach. The conjugate phase reconstructimes, such as echo-volume imaging [46].
suffers from ringing and piling-up artifacts near the region Ajthough this paper has focused on MR image recon-
of field inhomogeneity. Residual signal loss in the iteratryction in the presence of field inhomogeneities, the
tive reconstruction could be due to a high in-plane gradjeneral approach is also applicable to image reconstruc-
ent in the field map as discussed in Section IV-B, or mayn with compensation for other sources of undesired
be due to through-plane susceptibility gradients. We pl@sut known) spin phase accrual, such as eddy currents
to incorporate models of both phenomena in our futuggd concomitant gradient effects [47, 48]. An iterative
work. Also, the iterative method can be used to simultghethod based on an explicit signal model like (1) should
neously estimate an undistorted field map and providgjigid more accurate images compared to conventional ap-
better field-corrected image [14, 44]. proaches to compensating for such effects.

We have ignored spin-spin relaxation during the signal
readout in our signal model (1). However, many aspects

We have presented a method that allows fast, iteratiokthe algorithms we have described are also applicable to
reconstruction of field-corrected MR images. By combirproblems where both spin density and spin relaxation are
ing the NUFFT with time segmentation using a min-magstimated from multi-echo measurements [9, 16, 49, 50].
temporal interpolator, a computation speed up of a factbhe framework for the min-max time interpolation pro-

V. DISCUSSION
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parts of interpolators using = 5 for the Hanning and
min-max interpolators for the field map given in Figure 1.



Reconstruction Method | Time (s) | NRMSE of complex| NRMSE of magnitude
No Correction 0.06 1.35 0.22
Full Conjugate Phase 4.07 0.31 0.19
Fast Conjugate Phase 0.33 0.32 0.19
Fast Iterative (10 iters) 2.20 0.04 0.04
Exact Iterative (10 iters)| 128.16 0.04 0.04

Table 1. Computation time and NRMSE betwq%andftme for simulation study

Simulation Object
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Fast Conjugate Phase
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Figure 7: Reconstructed images from the simulation study.
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Figure 8: Effect of temporal interpolator on fast iterative reconstructions.
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Figure 9: Reconstructed images from a simulation study with intravoxel field effects.
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Figure 10: Distorted image, its field map, conjugate phase and iterative image reconstructions for 2 slices. The time
for the field-corrected reconstructions were about 4 s each.
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tive method, using (4), was12.7 s per iteration while the
time to compute the fast, interpolated iterative method, us-
ing (9), was(0.019 4 0.030(L + 1)) s per iteration.
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