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ABSTRACT

In magnetic resonance imaging (MRI), magnetic field
inhomogeneities cause distortions in images that are re-
constructed by conventional FFT methods. Several non-
iterative image reconstruction methods are used currently
to compensate for field inhomogeneities, but these meth-
ods assume that the field map that characterizes the off-
resonance frequencies is spatially smooth. Recently, itera-
tive methods have been proposed that can circumvent this
assumption and provide improved compensation for off-
resonance effects. However, straightforward implementa-
tions of such iterative methods suffer from inconveniently
long computation times. This paper describes a tool for
accelerating iterative reconstruction of field-corrected MR
images: a novel time-segmented approximation to the MR
signal equation. We use a min-max formulation to derive
the temporal interpolator. Speedups of around 60 were
achieved by combining this temporal interpolator with a
nonuniform fast Fourier Transform with NRMS approxi-
mation errors of 0.07%. The proposed method provides
fast, accurate, field-corrected image reconstruction even
when the field map is not smooth. Keywords:magnetic
resonance imaging, image reconstruction, iterative meth-
ods, field inhomogeneity correction, time segmentation,
temporal interpolation.

I. I NTRODUCTION

Differences in the magnetic susceptibility of adjacent
regions within an object, which occur for example near
air/tissue interfaces in the brain, cause image distortions in
MR images formed by conventional reconstruction meth-
ods. In spin-warp imaging, off-resonance effects cause
spatial shifts and intensity variations [1], whereas spatial
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blur is induced in non-cartesian k-space MRI (using spi-
rals, etc.) [2]. Many image reconstruction methods have
been proposed to correct for the field distortions [3–7].
We focus on algorithms appropriate for conventional com-
puters; optical implementations may also be feasible [8].
There are two components to most methods for field-
corrected MR image reconstruction. The first procedure
is to obtain an estimate of the field map that quantifies
the spatial distribution of main magnetic field inhomo-
geneities. The second procedure is to use that field map
to form a reconstructed image of the transverse magne-
tization. This paper focuses on the second procedure;
like many methods, we assume that an accurate, spatially
undistorted field map is available. This simplification un-
derlies most of the field-corrected MR image reconstruc-
tion methods. However, in many cases it may be necessary
or desirable to couple the field-map estimation and image
reconstruction procedures. In such cases, the methods de-
scribed in this paper could be one component of an overall
joint estimation procedure [9].

After a field map is obtained, one method of field-
corrected image reconstruction, the conjugate phase
method [3,6,7], seeks to compensate for the phase accrual
at each time point due to the off-resonance. This method,
like most noniterative methods, relies on the assumption
of a smooth field map. Time-segmented and frequency-
segmented approximations exist for this method to speed
image reconstruction [3, 7]. Recent work has suggested
that the failure of the conjugate phase method in regions
where the field map is not smooth may be due to incor-
rect density compensation coefficients. Spatially varying
density compensation may be necessary in those cases,
restricting the application of methods to speed computa-
tion [10]. Iterative reconstruction methods do not require
density compensation coefficients and are immune to dis-
cussions on how to calculate accurate density coefficients.

Schomberg [6] provides a rigorous analysis of the fam-
ily of conjugate-phase methods for off-resonance cor-
rection of MR images, and concludes that segmented
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conjugate-phase methods are preferable to SPHERE
methods [5], at least for spiral imaging. Therefore, in this
paper we focus on comparing our proposed iterative meth-
ods to the conjugate-phase method as thede factostandard
for non-iterative off-resonance correction. Schomberg’s
analysis assumes existence of a “time map” relating each
k-space point to a unique acquisition time. Our proposed
iterative methods do not require any such assumption, and
are therefore applicable to self-intersecting k-space trajec-
tories such as rosettes [11]. Nor are any assumptions about
regularity of a time map required for iterative methods.

Model-based iterative reconstruction methods have the
potential to account for field maps that violate smooth-
ness assumptions. Mungeret al. [12] reported that it-
erative conjugate-gradient methods based on Fourier re-
constructed echo-planar images outperform the conjugate-
phase approach. Their sparsified system model is specific
to cartesian trajectories like echo-planar, whereas the con-
jugate gradient (CG) approach considered here is appli-
cable to any trajectory. Manet al. [13] described an it-
erative algorithm to remove the residual blur left over af-
ter conjugate phase reconstruction in regions with rapidly
varying inhomogeneity. The iterative reconstruction algo-
rithm proposed in [14] was shown to provide significant
improvements in image quality over noniterative methods
even for field maps with discontinuities. Their method
also can be used in an extended form to estimate more ac-
curate field maps. Unlike standard reconstruction schemes
that directly map the k-space data to a reconstructed im-
age, (we will call this a back-projector), most iterative re-
construction methods require a forward-projector (given
an estimate of the object and field map, form k-space data)
as well as the adjoint of the forward projector.

Interest in iterative reconstruction methods has in-
creased recently due to its utility in multiple coil non-
cartesian k-space sensitivity encoding (SENSE) problems
[15]. Due to the complex aliasing pattern associated with
undersampling k-space trajectories such as spirals, itera-
tive methods that include coil sensitivity patterns in the
projectors are necessary to reconstruct artifact-free images
in practice [15]. Although this paper will focus on field in-
homogeneities, one can also apply iterative image recon-
struction methods to compensate for other physical phe-
nomena such as deviations in k-space trajectory and re-
laxation effects, such asR∗

2 [16].

The principal drawback of iterative reconstruction
methods has been computation time, with reported val-
ues of computation time per iteration ranging up to eight
minutes [14]. Recently, accurate and fast non-uniform
fast Fourier Transform (NUFFT) methods have been de-

veloped [17–19] and these methods have been applied to
MRI data with spiral k-space trajectories [20, 21]. The
MR reconstruction problem is closely related to the prob-
lem of reconstructing a band-limited signal from nonuni-
form samples. Strohmer argued compellingly for us-
ing trigonometric polynomials (complex exponentials) for
finite-dimensional approximations in such problems, and
proposed to use an iterative conjugate gradient reconstruc-
tion method with the NUFFT approach of [22] at its core
[23, 24]. In the MR context, this is essentially equiva-
lent to the finite basis expansion we use in (3). In [25],
an NUFFT-like algorithm, referred to as ‘reverse grid-
ding,’ was applied in combination with the CG algorithm
to speed up SENSE image reconstructions. These NUFFT
methods have reduced the computation time per iteration
to that of noniterative reconstruction methods.

However, the standard NUFFT method by itself does
not allow for the compensation of field inhomogeneity ef-
fects because the integral signal equation for MR is not
a Fourier transform when field inhomogeneities are in-
cluded. This paper describes several tools for accelerat-
ing iterative reconstruction of field-corrected images. In-
spired by the time-segmented conjugate-phase reconstruc-
tion approach [3], we propose a fast time-segmented for-
ward projector, and its adjoint, that accounts for field ef-
fects and uses the NUFFT. The possibility of combin-
ing “conventionally used [time or frequency] segmenta-
tion approaches” with NUFFT-type methods to correct for
field inhomogeneities was noted by Pruessmanet al. [25].
However, as we show in this paper, the conventional tem-
poral interpolators (linear, Hanning, etc.) are signficantly
suboptimal since they fail to capture the oscillatory na-
ture of phase modulations caused by off-resonance ef-
fects. Instead, in this paper we present a temporal inter-
polation method that is optimal in the min-max sense of
minimizing worst-case interpolation error, and compare
its accuracy to the “conventional” temporal interpolators.
We show that accurate temporal interpolation combined
with the NUFFT results in a fast, accurate iterative recon-
struction algorithm for field-corrected imaging. We evalu-
ate the accuracy of our time-segmentation interpolator by
comparing it to the result of the exact (but slow) evaluation
of the signal equation.

This paper starts with an introduction to iterative im-
age reconstruction for MRI in Section II, then we present
the derivation of our min-max temporal interpolator for
time segmentation in Section II-A. Section II-B describes
various ways to compute the interpolator. Section II-C ex-
amines the effect of the initial image and preconditioning
on the image reconstruction. Simulation and human data
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experiments are described in Section III with the results
given in IV.

II. THEORY

In MRI, ignoring relaxation effects, the signal equation
is given by [26],

s(t) =
∫

f̃(r)c(r)e−iω(r)(t+TE)e−i2π(k(t)·r)dr, (1)

wheres(t) is the complex baseband signal at timet dur-
ing the readout,TE is the echo time,̃f(r) is a continuous
function of the object’s transverse magnetization at loca-
tion r immediately following the spin preparation step,
c(r) is the sensitivity map of the receiver coil,ω is the field
inhomogeneity present atr, andk(t) is the k-space trajec-
tory. For convenience, we letf(r) = f̃(r)c(r)e−iω(r)TE .
Accurate estimation off(r) yieldsf̃(r) assuming the sen-
sitivity and field maps are known. In an MR scan, the raw
measurements are noisy samples of the signal in (1):

yi = s(ti) + εi, i = 1, . . . ,M, (2)

where theεi’s denote complex Gaussian noise. From these
samples we would like to reconstructf(r). The conven-
tional approach for image reconstruction is to interpolate
the yi’s onto a cartesian grid in spatial frequency space,
after applying sample density compensation, and to then
use an inverse FFT to estimate samples off(r) [27]. This
gridding method, when combined with time segmenta-
tion of the field inhomogeneity effects, is a fast conjugate
phase approach [3].

The combination of (1) and (2) form a continuous-to-
discrete (CD) mapping. This is clearly an ill-posed prob-
lem since there is an infinite collection of solutions,f(r),
that exactly match the datay = (y1, . . . , yM ). In [28], the
pseudoinverse of this CD mapping was investigated for
minimum-norm least-squares image reconstruction with-
out field-correction. Although their approach was com-
putationally intensive, the pseudoinverse calculation was
object-independent and could be performed once for a
given trajectory. However, in the case of field-corrected
imaging, the CD mapping is object-dependent because of
the specific field map of the slice of interest. This prohibits
precalculation of the SVD of the CD operator, so we seek
more practical methods.

Instead of finding the pseudoinverse of the CD map-
ping, we restrict the number of unknowns to be estimated
by parameterizing the object and field map in terms of ba-
sis functions,φ(r), assuming that

f(r) ≈
N−1∑
n=0

fnφ1(r − rn)

ω(r) ≈
N−1∑
n=0

ωnφ2(r − rn). (3)

For this paper, we will use the voxel indicator function
φ1(r) = φ2(r) = rect(r1/∆1) · · · rect(rP /∆P ) for the
P -dimensional problem. This choice is somewhat natural
for display devices that use square areas of nearly con-
stant luminance. However, this parameterization does not
model within-voxel field gradients. Regardless of what
basis one chooses, (3) is only an approximation and we
plan to explore other choices, such as triangle functions,
in our future work. Triangle basis functions would allow
us to model first order gradients of the field map and voxel
intensities, which may help reduce within-voxel suscepti-
bility effects. Substituting (3) in (1) yields

s(t) ≈ Φ(k(t))
N−1∑
n=0

fne−iωnte−i2π(k(t)·rn), (4)

whereΦ(u) denotes the Fourier Transform ofφ(r). We
express the noisy measured samples of this signal in
matrix-vector form as follows

y = Af + ε, (5)

wheref = (f0, . . . , fN−1) and the elements of theM×N
matrixA are

ai,j = Φ(k(ti))e−iωjtie−i2πk(ti)·rj . (6)

In the discrete-to-discrete formulation (5), our goal is to
estimate the imagef from the k-space datay, accounting
for the statistics of the noiseε. This will still be an ill-
posed problem ifN > M , and is usually ill-conditioned
even ifN ≤ M for non-cartesian trajectories.

Since the dominant noise in MRI is white Gaussian
[29], we estimatef by minimizing the following penal-
ized least-squares cost function,

Ψ(f) =
1
2
‖y −Af‖2 + βR(f) so that,

f̂ = arg min
f

Ψ(f). (7)

The second term in the equation forΨ(f) is a regular-
ization function,R(f), that penalizes the roughness of
the estimated image. This regularization can decrease
the condition number of the image reconstruction prob-
lem and, therefore, speed convergence. We choose the
parameterβ by examining the point spread function of
the reconstructed image [30], preferably by choosingβ
small enough to not significantly degrade the spatial reso-
lution relative to the natural resolution associated with the
k-space trajectory.
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The least-squares cost function used here is appropriate
for Gaussian measurement noise. If non-Gaussian error
“spikes” are present, then one could use a non-quadratic
cost function to provide robustness to those outliers [31],
at the expense of increased computation. Alternatively,
one could use other methods to detect those spikes,e.g.,
[32], then exclude the corresponding measurement sam-
ples from the iterative reconstruction process; no “inter-
polation” of samples is needed.

We apply the iterative conjugate gradient (CG) algo-
rithm for minimization of (7). The algorithm is given be-
low for reference. For simplicity, we have used quadratic
regularization:R(f) = 1

2‖Cf‖2 for a matrixC that takes
differences between neighboring pixels. The algorithm
may also include a data weighting matrixW for perform-
ing weighted least squares,i.e. replace‖·‖2 with ‖·‖2

W in
(7). One can also include a preconditioning matrixM to
speed convergence of the CG algorithm. Section II-C dis-
cusses the weighting and preconditioner matrices in more
detail. In the algorithm below,gnew denotes the negative
gradient ofΨ(f) from (7),r is the residual,d denotes the
step direction, andα denotes the step size. The algorithm
is started with an initial estimate of the image,f = f0.
Section II-C discusses the choice of this initial estimate.

CG Algorithm

Initialize

r = y −Af0 (residual)

Iteration Steps

gnew = A?Wr − βC?Cfn

γ =

{
0 1st iteration
gnew

?Mgnew

gold
?Mgold

else

d := Mgnew + γd

q = Ad

α =
d?gnew

q?Wq + βd?C?Cd

fn+1 = fn + αd (update image)

r := r − αq (update residual)

gold = gnew

The dominant computation in each iteration of the CG
algorithm is computingAd and A?r, where the super-
script ? denotes complex conjugate transpose. Comput-
ing Af corresponds to evaluating (4). For cartesian k-
space trajectories, one can evaluate (4) quickly via the
Fast Fourier Transform (FFT) if the field inhomogeneity
is ignored. However, for noncartesian k-space trajectories
(spirals, etc.) direct evaluation of (4) is very time con-
suming. When field inhomogeneity is ignored, a NUFFT

[17,19] can be used to rapidly and accurately evaluate the
discrete signal equation (4) even for non-cartesian trajec-
tories. However, the NUFFT method is not directly ap-
plicable when the field inhomogeneity is included because
(1) is not a Fourier transform integral. We propose to com-
bine the NUFFT and a version of time segmentation [3]
(but with min-max temporal interpolation) to compute (4)
rapidly and accurately. We first derive the min-max inter-
polator and then discuss some approaches to computing
it. This section concludes with a discussion of proposed
methods to speed convergence of the CG algorithm for it-
erative MR imaging.

A. Time Segmentation

In (4), the problem is in the terme−iωnt, wheret is not a
constant. Ift were a constant, then the terme−iωnt could
be absorbed intofn and (4) could be evaluated quickly
by the NUFFT. The idea of “time segmentation” is to use
small time segments over whicht is approximately con-
stant [3]. For a time-segmented approximation of the term
e−iωnt, we partition the acquisition window intoL time
segments of widthτ and compute the term at theL + 1
break points. We then interpolate between these break
points to evaluate an approximation at intermediate time
points as follows:

e−iωnt ≈
L∑

l=0

al(t)e−iωnτl, (8)

whereal(t) is the interpolation coefficient for thelth break
point for timet. Replacing the terme−iωnt in (4) with its
time-segmented approximation (8) gives:

ŝ(t) = Φ(k(t))
L∑

l=0

al(t)

·
N−1∑
n=0

[
fne−iωnτl

]
e−i2π(k(t)·rn). (9)

The key property of (9) is that it is a weighted sum of
discrete-space Fourier transforms of the term in brackets,
weighted by the coefficientsa(t) = (a0(t), . . . , aL(t))′.
We can perform these inner FT’s quickly and accurately
using an NUFFT [19]. Our goal here is to choose thea(t)
to minimize the error of approximation (9). In the spirit
of [18, 19], we propose to adopt a min-max criterion to
optimize the temporal interpolation coefficients,a(ti) for
i = 1, . . . ,M , i.e., for every point in the k-space readout.
For any timet, we choose the coefficientsa(t) using the
following criterion:

min
a(t)

max
f∈CN :‖f‖=1

∣∣∣∣ ŝ(t)− s(t)
Φ(k(t))

∣∣∣∣ . (10)
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That is, we seek the interpolation coefficientsa(t) that
will minimize (min) the interpolation error for the object
vector,f , that causes the largest (max) error of all pos-
sible signals. Note that ifΦ(k(t)) = 0, then the error
in the approximation (9) would be zero regardless of the
interpolator.

The error in the approximation (9) can be expressed as,

ŝ(t)− s(t)
Φ(k(t))

=
N−1∑
n=0

fne−i2π(k(t)·rn)

·

[
e−iωnt −

L∑
l=0

al(t)e−iωnτl

]

=
N−1∑
n=0

gn(t)fne−i2π(k(t)·rn),

=
√

N〈g(t), q(t)〉, (11)

whereg(t) = (g0, . . . , gN−1), q = (q0, . . . , qN−1), and

gn(t) =
1√
N

[
e−iωnt −

L∑
l=0

al(t)e−iωnτl

]
qn(t) = fn

?ei2π(k(t)·rn). (12)

Definebn(t) =
(
1/
√

N
)

e−iωnt, and letG be anN by

L + 1 matrix withGnl =
(
1/
√

N
)

e−iωnτl, then,

g(t) = b(t)−Ga(t). (13)

From (12),‖f‖ = ‖q(t)‖ and‖q(t)‖ is independent of
time. Therefore, using (11), we can rewrite our min-max
estimation problem from (10) as follows

min
a(t)

max
q∈CN :‖q‖=1

√
N |〈g(t), q〉|. (14)

By the Cauchy-Schwarz inequality, for a given timet, the
worst-caseq is g?(t)/‖g(t)‖, i.e.,

max
q∈CN :‖q‖=1

|〈g(t), q〉| = ‖g(t)‖. (15)

Note that this is the approximation error in (8). Inserting
this worst-caseq into the min-max criterion (14) and ap-
plying (13) reduces the min-max problem to,

min
a(t)

‖b(t)−Ga(t)‖. (16)

The solution to this least-squares problem yields the min-
max interpolator:

a(t) = (G?G)−1G?b(t), (17)

where

[G?G]l,l′ =
1
N

N−1∑
n=0

e−iωnτ(l′−l)

[G?b(t)]l =
1
N

N−1∑
n=0

e−iωn(t−τl), (18)

for l, l′ = 0, . . . , L. To compute the min-max interpolator,
we form the(L + 1)× (L + 1) matrixG?G and multiply
its inverse by the(L + 1) × 1 vectorG?b(t). Typically
L � N so this is feasible.

B. Computing the Min-Max Interpolator

The interpolator in (17) is object dependent since it is
a function of the field map,ω = (ω0, . . . , ωN−1), and
therefore must be computed after an initial estimate of the
field map is formed. To computeG?G efficiently, first
form the column sums ofG as follows:

γl ,
1√
N

N−1∑
n=0

Gn,l. (19)

Then using (18), we evaluate the elements ofG?G as fol-
lows:

[G?G]l,l′ =
{

γl′−l l′ − l ≥ 0
γ?

l−l′ otherwise.
(20)

This is a very fast way to computeG?G for the min-max
interpolator.

The sums in (18) do not depend on the spatial arrange-
ment of the field map. This independence suggests that
we could compute these sums using simply a histogram of
the field map values. We have investigated approximating
the computation of (18) by forming the histogram of the
field map usingNB equal-sized bins covering the range of
offset frequencies induced by the field inhomogeneity. Let
mp be the number of field map values that fall into binp
with a center off-resonant frequency offp. Then we can
approximate (18) by

[G?G]l,l′ ≈ 1
N

NB∑
p=1

mpe
−i2πfpτ(l′−l),

[G?b(t)]l ≈ 1
N

NB∑
p=1

mpe
−i2πfp(t−τl). (21)

We compute (21) efficiently via a FFT ofmp, since we
use equally-spaced histogram bins. We call this approach
the histogram approximationto the min-max interpola-
tor. This quantization of the field map into a histogram is
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somewhat akin to the frequency-segmentation method for
reducing computation in the conjugate-phase approach for
field inhomogeneity correction [33,34].

The expression for this interpolator bears a striking re-
semblance to the “multifrequency interpolator” proposed
by Man et al. [7]. However, the use of the two interpo-
lators is quite different. The multifrequency interpolator
is applied to a set of images that have each been recon-
structed by a constant demodulation approximation to the
conjugate-phase approach for field inhomogeneity correc-
tion. In contrast, our min-max interpolator is applied to
predicted k-space signals. The multifrequency interpola-
tion approach inherits the fundamental limitations of the
conjugate-phase approach (in particular the requirement
of a spatially smooth field map) which are illustrated in
the figures in Sections IV.

The min-max interpolator (17) depends on the field map
and should be recomputed if the field map changes. To
avoid recalculating the interpolator coefficients when a
field map is updated, we also investigated the use of an
object-independent histogram for the field map values. A
generic histogram for field maps was used to calculate the
interpolator coefficients in (21) and we will refer to this
approach as thegeneric histogram approximation. Several
shapes and ranges for generic histograms were examined.

C. Speeding Convergence of the CG Algorithm

It has been suggested that a weighted-least squares ap-
proach be used to speed convergence of the CG algo-
rithm for iterative MR image reconstruction and that the
weights be the coefficients of the sampling density com-
pensation function [25]. However, there has been some
discussion on how to calculate optimal density compen-
sation factors [35–39] and the iterative image reconstruc-
tion algorithm does not require and is not dependent upon
these weights if an unweighted (i.e. weighting is unity)
least squares approach is used instead. Also, assuming
the noise in MRI is white Gaussian, usingnonuniform
weighting would be suboptimal statistically according to
the Gauss-Markov Theorem. Using nonuniform weight-
ing may appear to provide faster convergence in the initial
steps of the algorithm for some choices of initial image,
but would prevent convergence to the minimum variance
solution. Although, Pruessmannet al. [25] state that the
SNR penalty is negligible when the density compensation
function is used as the weights, we will next discuss how
to benefit from this approach without risking any SNR.

Consider the CG algorithm in (8) when an initial esti-
mate of the image of zeros is used:f0 = 0. Then the first

iteration gives,

f1 = αA?Wy. (22)

If the data weighting matrixW were just the identity ma-
trix, then this first iteration would simply give the conju-
gate phase reconstruction without density compensation.
If W were instead equal to the density compensation fac-
tors, then the first iteration yields a density-compensated
conjugate phase reconstruction. Therefore, rather than us-
ing an inappropriately weighted CG algorithm, we use the
conjugate phase image (reconstructed via a fast, density-
compensated, time-segmented approach) as the initial es-
timate, f0. As noted in [40], initializing with a good
density-compensated conjugate phase image ensures that
subsequent iterations will improve on this initial guess.

Convergence of iterative algorithms can be accelerated
by the use of an appropriate preconditioner,e.g., M in
(8). Circulant preconditioners have been shown to be ef-
fective in shift-invariant problems in tomographic imag-
ing [41]. These preconditioners attempt to undo the blur-
ring induced by applying the forward projector and its ad-
joint. A circulant preconditioner should be particularly
helpful for MR reconstruction with small off-resonance
effects, where the point spread function (PSF) is nearly
shift invariant, but may also be of some benefit in regions
of higher off-resonance effects. Our results to date with
circulant preconditioners have shown mild improvements
in convergence rate. Preconditioners have also been de-
signed for shift-variant problems [42] and such methods
will be investigated for MRI in our future work.

III. METHODS

Three sets of studies were performed to evaluate the
accuracy and utility of our min-max interpolated iterative
reconstruction algorithm. All three studies used a single-
shot spiral k-space trajectory with aTE of 25 ms, matrix
size of 64×64, and FOV of 22 cm×22 cm, giving 3770
k-space points. The length of the readout interval was
18.9 ms, so 100 Hz off resonance causes 3.8π extra spin
phase accrual during the readout.

A. Interpolator Accuracy

We performed a simulation study to evaluate the max-
imum interpolation error,‖g(t)‖ in (15), over a finely
sampled range of times,t, for several temporal interpo-
lators. We used the field mapω shown in Figure 1. We
observed empirically that, for many field maps, the min-
max optimal temporal interpolator could have a significant
imaginary component, and this imaginary component con-
tributes to the overall accuracy of the min-max interpola-
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tion method. Conventional temporal interpolators used in
MRI have been real valued, so to simplify comparisons
between the proposed min-max approach and the conven-
tional approaches, we shifted the field map values to a
range where the min-max interpolator had a very small
imaginary component, as illustrated in Figure 3. We com-
pared the following interpolation methods: linear interpo-
lation of the two nearest endpoints to the time sample of
interest, a Hanning window interpolation using only the
two nearest endpoints (similar to that used in [3] for the
back-projector problem), the ideal min-max interpolator
(17), the histogram approximation to the min-max inter-
polator calculated using (21) with 1000 bins, and an in-
terpolator using a generic histogram also calculated using
(21). Various shapes (flat and triangular) and ranges were
used for the generic histogram to determine the effect of
accuracy of the histogram on the error of the interpolator.

B. Simulation Study

We performed a series of simulation studies using the
same field map and a simulation object shown in Fig-
ure 1. The simulation data was formed by constructing
a simulation phantom at a matrix size of 256×256 and
then applying (4) to compute the signal at the desired k-
space locations. To avoid intravoxel effects from gradi-
ents of the field map inside our larger reconstructed vox-
els (matrix size of 64×64), we constructed the simulated
field map at a size of 64×64 and zero-order-hold inter-
polated it up to 256×256 to create the simulation field
map. (We also present one case that includes intravoxel
dephasing for comparison.) Noise-free simulation stud-
ies were conducted to examine the effect of iteration on
the interpolation error by computing the normalized root-
mean-squared (NRMS) difference in the reconstructed im-
age of the interpolated, time-segmented approach versus
using the exact (slow) signal equation (4) at convergence.

For the rest of the simulation studies, zero-mean com-
plex Gaussian noise was added to the k-space data to give
an SNR of approximately 100, calculated as the ratio of
the norms of the k-space data vector and the noise vec-
tor: ‖s‖/‖ε‖. We examined the normalized root-mean-
squared error (NRMSE) between the reconstructed image
and the known simulation object. This measure was used
to examine accuracy and convergence rate of our proposed
iterative algorithm. In the simulation and human studies,
the NUFFT was used with the following parameters: 2
times oversampling, a neighborhood size of5× 5, and an
optimized Kaiser-Bessel window and scaling factors [18].

C. Human Study

The time-segmented, NUFFT reconstruction scheme
was applied to a human data set collected on a 3.0T GE
Signa Scanner in accordance with the Institutional Re-
view Board of the University of Michigan. For the hu-
man data, the field inhomogeneity map must be measured
by acquiring 2 gradient echo images with slightly differ-
ent echo times [43]. To minimize field inhomogeneity
distortions in the images used to estimate the field map,
we acquired a pair of 4-shot gradient echo images with
TE ’s of 5 and 7 ms. This fieldmap was used to reconstruct
field-corrected images of the same slices with single-shot
spirals at aTE of 25 ms. The proposed fast, iterative re-
construction scheme was compared to the conjugate phase
method and an uncorrected gridding reconstruction. Since
the exact object is not known in a human data set, we at-
tempted to match the full conjugate phase and iterative re-
construction times and qualitatively compare the resulting
images.

IV. RESULTS

A. Interpolator Accuracy

Figure 2 shows the maximum interpolation error for
L = 1 throughL = 13 time segments for the five in-
terpolators described in Section III-A. The error given,
maxt ‖g(t)‖, is the maximum error in interpolation as
given in (15) over a range of timest. The generic his-
togram used was flat over the range of [-75, 75] Hz. The
min-max interpolators (ideal min-max, histogram min-
max, and generic histogram min-max) have been plotted
until the condition number of the(G?G) matrix becomes
too large for inversion. ForL = 8 the maximum error
for the min-max and histogram interpolator is more than
4 orders of magnitude lower than that of the linear and
Hanning “conventional” interpolators.

Figure 3 shows the Hanning and min-max interpolators
for L = 5. The real and imaginary parts of the min-
max interpolator are oscillatory, a property not found in
the conventional interpolators. The histogram interpola-
tors looked very similar to the ideal min-max interpolator,
even though the generic histogram had a different range of
off-resonance frequencies and different histogram shape
(flat). Even though it was not explicitly required in our
formulation, the min-max interpolators appear to sum to
unity at every time point, a property expected of interpo-
lators.

When a histogram of the field map is used that differs
from the actual field map (generic histogram), the max
error in Figure 2 showed a slightly higher level of error
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compared to the ideal min-max interpolator and required
a larger number of time segments. We investigated several
generic histograms, rectangular and triangular shapes, and
several different ranges of off-resonance, 75, 100, 150,
200, and 250 Hz. All the generic histograms were centered
around 0 Hz, to agree with the simulated field map. Fig-
ure 4 shows the maximum NRMSE for various numbers
of time segments. As seen in this figure, the interpolator
is relatively immune to moderate changes in the histogram
of the field map. At values ofL of 11 and12, the rectan-
gular histograms with ranges of 150, 200, and 250 Hz and
triangular histograms with ranges of 150 and 200 Hz all
provide maximum interpolation errors below10−4. Given
the independence on spatial arrangement in the formula-
tion of the ideal min-max interpolator, we need only have
a range of off-resonance in our histogram that is similar to
that of the exact field map.

B. Simulation Study

As described in Section II-C, we examined the conver-
gence of the CG algorithm under various conditions using
the simulation object and field map shown in Figure 1.
Considering the max error in Figure 2, we selectedL = 6
to give a low error for the min-max interpolator, and ex-
amined the error of time segmentation versus using the
exact (slow) signal equation (4) over iteration to see how
the error propagates through the iterative process. Fig-
ure 5 shows the NRMS difference betweenfapprox

k and
f exact

100 wherefapprox
k denotes thekth iteration of CG algo-

rithm with the fast approximation (9) using various inter-
polators andf exact

100 denotes the 100th iteration (i.e.essen-
tially at convergence) of CG using the exact (slow) signal
equation (4). As shown in Figure 5, interpolation errors
can cause the CG algorithm to converge to a different im-
age. The linear and Hanning interpolated iterative meth-
ods converge to a final image that differs from the exact
final image by more than 10% NRMS.

To choose a value forL that gives fast computation
yet retains good reconstruction accuracy, we examined
the NRMS difference between the interpolated and ex-
act iterative methods for various values ofL. Figure 6
shows the NRMS difference betweenf exact

100 andfapprox
k

over 20 iterations using the ideal min-max interpolator for
L = 1, 3, 4, 5. Computation time for the min-max inter-
polated iterative method is approximately proportional to
L + 1. On a 2 GHz Xeon workstation using Matlab (The
Mathworks, Natick MA), our implementation of the ex-
act (slow) iterative method, using (4), took≈12.7 s per
iteration to evaluate. The min-max interpolation method,
took approximately(0.019 + 0.030(L + 1)) s per itera-

tion for values ofL = 1, . . . , 13. The linear interpolated
method took approximately the same computation time as
the min-max interpolated method and is shown for refer-
ence in Figure 6. Depending on the noise level expected
in our reconstructed images, a value ofL = 4 might be
reasonable for the min-max interpolator. We chose to use
L = 5 for the ideal min-max interpolator for our simula-
tion and human data studies with a time per iteration of
0.2 sec., a speed-up of around 60 over the exact iterative
method.

Next, given the exact field map, we ran a simulation
study with noise to compare the errors in the reconstructed
images under five different reconstruction schemes: no
correction for field inhomogeneities, a conjugate-phase re-
construction with density compensation, a fast conjugate
phase reconstruction using time segmentation according
to [3], the exact (slow) evaluation of the signal equation
used in combination with the CG algorithm (the slow it-
erative method), and the NUFFT with min-max temporal
interpolation used in combination with the CG algorithm
(the fast iterative method,L = 5). The results of NRMSE
and computation time are shown in Table 1. The NRMSE
was calculated over a mask defined by the true object’s
support. Figure 7 shows the reconstructed images. The
full iterative and fast iterative methods give virtually the
same results with a NRMS difference between the two
reconstructions of 0.07%, but the fast iterative method
takes only 2.2 s for 10 iterations as compared to 128 s
for the slow iterative method. The unsegmented, density-
compensated conjugate-phase reconstruction takes 4 s and
both conjugate phase reconstructions produce serious arti-
facts in regions where the field map is not smoothly vary-
ing, and these artifacts propagate to nearby regions.

To verify that interpolator accuracy is important in re-
constructing field-corrected images, we compared recon-
structions from the CG algorithm using NUFFT with lin-
ear, Hanning, and ideal min-max intepolators. Figure 8
shows the reconstructions usingL = 5 and ten iterations
of the CG algorithm. The standard interpolators are in-
sufficiently accurate and the algorithm converges to a dis-
torted image, whereas the min-max method yields a nearly
undistorted image. This behavior agrees with the quanti-
tative comparison shown in Figure 5.

As mentioned in Section III, the simulated field map
was purposefully constructed to avoid intravoxel dephas-
ing due to within-voxel field inhomogeneities. To show
the effects of such dephasing on the field-corrected re-
constructions of Figure 7, we simulated a field map at
a 256×256 matrix size that allowed gradients across the
voxels when reconstructed at a matrix size of 64×64.
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Figure 9 shows the reconstructed images. As this figure
shows, by assuming basis functions ofrect(r), we are un-
able to model the field gradients across the voxel and the
result is signal loss where the field gradient is high. In the
iterative reconstruction, this degradation is localized pri-
marily in the pixels where the high gradient occurs. In
the conventional field correction, the artifacts are more
widespread. We plan to implement triangular basis func-
tions in our future work to model linear intravoxel suscep-
tibility gradients, or to use over-sampled field maps.

C. Human Data

As a final comparison, we reconstructed real data col-
lected from a slice of the brain using both the proposed
iterative method and a full conjugate phase method. Al-
though the proposed iterative method can be used in an
extended form to estimate an undistorted field map, in this
case we focused on comparing computation time, so both
reconstructions used a field map obtained in the standard
way from two shortTE (5, 7 ms) 4-shot gradient echo im-
ages. For convenience in the iterative method, we used
the generic histogram (flat, [0,150] Hz) since it does not
depend on the specific field map and can be computed in
advance for a given trajectory (depends only on number
of time points and a chosen range of off-resonance fre-
quencies). The range of the generic histogram, [0, 150]
Hz, was chosen to agree with our routinely acquired field
maps from the slice of interest. The NUFFT used the pa-
rameters given in Section III-B and the min-max interpo-
lator usedL = 8. The reconstruction time for the full
conjugate phase was about 4 s, the time for ten iterations
of the proposed fast iterative method was 3.6 s. Figure 10
shows the reconstructed images for 2 slices. Artifacts in
regions of high off-resonance are reduced significantly by
the iterative approach. The conjugate phase reconstruction
suffers from ringing and piling-up artifacts near the region
of field inhomogeneity. Residual signal loss in the itera-
tive reconstruction could be due to a high in-plane gradi-
ent in the field map as discussed in Section IV-B, or may
be due to through-plane susceptibility gradients. We plan
to incorporate models of both phenomena in our future
work. Also, the iterative method can be used to simulta-
neously estimate an undistorted field map and provide a
better field-corrected image [14,44].

V. DISCUSSION

We have presented a method that allows fast, iterative
reconstruction of field-corrected MR images. By combin-
ing the NUFFT with time segmentation using a min-max
temporal interpolator, a computation speed up of a factor

of around 60 is achievable with NRMS error in the re-
constructed image of 0.07%. We have also developed an
approximation to the min-max interpolator that depends
on the object-specific field map only through the range
of off-resonant frequencies yet provides accuracies near
those of the ideal min-max interpolator. For a given tra-
jectory, this interpolator can be precomputed and stored.
We have shown that this approximation is relatively robust
to small changes in the shape or range of the histogram of
the field map. This method should easily be adaptable to
other forms of iterative reconstruction in MRI, including
SENSE to allow fast, field-corrected SENSE reconstruc-
tions [45].

We envision the iterative reconstruction algorithm in the
general case to proceed as follows: first, an initial field
map is formed via a gridding reconstruction on data at two
different echo times. This initial estimate of the field map
is used to derive an interpolator for the min-max time in-
terpolation. The estimate of the field map is also used,
via a fast conjugate phase reconstruction, to give an ini-
tial estimate to the iterative reconstruction. The iterative
reconstruction is then run in extended mode with simulta-
neous estimation of field map and image either by explicit
joint estimation [44] or by alternating updates [6,14]. Af-
ter several loops of updating the image and field map, we
are left with an undistorted estimate of the image and field
map.

If the field map has a strong linear component, then it
may be possible to adapt the method of Irarrazabalet al.
[34] to reduce the number of segments required for a given
accuracy.

The ability to accurately compensate for off-resonance
effects as demonstrated here may increase the feasibil-
ity of using other acquisition methods with long readout
times, such as echo-volume imaging [46].

Although this paper has focused on MR image recon-
struction in the presence of field inhomogeneities, the
general approach is also applicable to image reconstruc-
tion with compensation for other sources of undesired
(but known) spin phase accrual, such as eddy currents
and concomitant gradient effects [47, 48]. An iterative
method based on an explicit signal model like (1) should
yield more accurate images compared to conventional ap-
proaches to compensating for such effects.

We have ignored spin-spin relaxation during the signal
readout in our signal model (1). However, many aspects
of the algorithms we have described are also applicable to
problems where both spin density and spin relaxation are
estimated from multi-echo measurements [9, 16, 49, 50].
The framework for the min-max time interpolation pro-
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vided by (16) can be extended to include relaxation ef-
fects, such asR∗

2. The simplifications that resulted in (18)
are not available in this case and computation of the inter-
polator may be more expensive. Preliminary testing shows
that the high accuracy of the time segmentation method
can still be achieved without knowing the exact field and
R∗

2 maps. This work will be included in a future paper.
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VI. F IGURES AND TABLES

Figure 1: Simulation object and field map in Hz.

Figure 2: Maximum interpolation error over a range of
time points for each interpolator for various numbers of
time segments. Error given is the maximum error in inter-
polation over a range of times as given in (15).

Figure 3: Real (solid lines) and imaginary (dashed lines)
parts of interpolators usingL = 5 for the Hanning and
min-max interpolators for the field map given in Figure 1.
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Reconstruction Method Time (s) NRMSE of complex NRMSE of magnitude
No Correction 0.06 1.35 0.22
Full Conjugate Phase 4.07 0.31 0.19
Fast Conjugate Phase 0.33 0.32 0.19
Fast Iterative (10 iters) 2.20 0.04 0.04
Exact Iterative (10 iters) 128.16 0.04 0.04

Table 1: Computation time and NRMSE betweenf̂ andftrue for simulation study

Figure 7: Reconstructed images from the simulation study.
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Figure 8: Effect of temporal interpolator on fast iterative reconstructions.

Figure 9: Reconstructed images from a simulation study with intravoxel field effects.
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Figure 10: Distorted image, its field map, conjugate phase and iterative image reconstructions for 2 slices. The time
for the field-corrected reconstructions were about 4 s each.

Figure 4: Comparison of maximum interpolation error of
various generic histogram approximate min-max interpo-
lators.

Figure 5: NRMS difference betweenfapprox
k andf exact

100

for L = 6 in simulation study.
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Figure 6: NRMS difference betweenfapprox
k using the

ideal min-max interpolator forL = 1, 3, 4, 5 andf exact
100

over 20 iterations. The time to compute the exact itera-
tive method, using (4), was≈12.7 s per iteration while the
time to compute the fast, interpolated iterative method, us-
ing (9), was(0.019 + 0.030(L + 1)) s per iteration.


