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Abstract— We present two types of globally convergent
relaxed ordered subsets algorithms for penalized-likelihood
image reconstruction in emission tomography: modified
BSREM (block sequential regularized expectation maxi-
mization) and relaxed OS-SPS (ordered subsets separable
paraboloidal surrogates). The global convergence proof of
the existing BSREM [1] required a few “a posteriori” as-
sumptions. By modifying the scaling functions of BSREM,
we are able to prove the convergence of the modified BSREM
under realistic assumptions. Our modification also makes
stepsize selection more convenient. In addition, we intro-
duce relaxation into the OS-SPS algorithm [2] that otherwise
would converge to a limit cycle. We prove the global conver-
gence of diagonally-scaled incremental gradient methods of
which the relaxed OS-SPS is a special case; main results of
the proofs are from [3] and [4]. Simulation results showed
that both new algorithms achieve global convergence yet re-
tain the fast initial convergence speed of conventional unre-
laxed ordered subsets algorithms.

Index Terms— Image reconstruction, maximum likeli-
hood estimation, positron emission tomography, single pho-
ton emission computed tomography.

I. INTRODUCTION�
TATISTICAL image reconstruction methods have shown
improved image quality over conventional filtered backpro-

jection (FBP) methods (e.g., [5] for maximum likelihood recon-
struction in emission tomography, and [6] for the analysis of
lesion detectibility). They use accurate physical models, take
the stochastic nature of noise into account, and easily enforce
object constraints like nonnegativity. However, iterative algo-
rithms for achieving maximum likelihood (ML) or penalized-
likelihood (PL) reconstruction require considerable computation
per iteration; so there has been ongoing efforts to develop fast
algorithms.

A class of ordered subsets (OS) algorithms, also known as
block-iterative or incremental gradient methods, has shown sig-
nificantly accelerated “convergence.” The ordered subsets idea
is to use only one subset (or block) of the measurement data for
each update instead of the total data. Usually, cyclic passing
through every subset constitutes one iteration.

The classical “algebraic reconstruction technique” (ART) [7,
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8] can be considered to be a type of “ordered subsets” method in
which each subset consists of a single measurement. However,
most ART methods formulate the reconstruction problem as one
of finding the solution to a system of equations that involves the
imaging physics but not the measurement statistics. Some ART
algorithms can be made to converge by introducing relaxation,
but the limiting solution has a geometric interpretation in terms
of distances to hyperplanes, rather than arising from statistical
considerations [9–11]. Here we focus on OS algorithms that
are designed to maximize an objective function that captures the
statistical properties of the measurements.

The ordered subsets principle was applied to the classical ex-
pectation maximization (EM) algorithm [12–14] to yield sev-
eral ordered subsets expectation maximization variants. ML
reconstruction algorithms include the ordered subsets expecta-
tion maximization (OS-EM) algorithm [15], the rescaled block-
iterative expectation maximization maximum likelihood (RBI-
EMML) algorithm [16], the row-action maximum likelihood
algorithm (RAMLA) [17], and the complete-data OSEM (C-
OSEM) [18]. PL reconstruction algorithms include the block
sequential regularized expectation maximization (BSREM) al-
gorithm [1] (BSREM has RAMLA as a special unregularized
case). The paraboloidal surrogates (PS) methods [19, 20] also
adopted the ordered subsets idea to construct the ordered sub-
sets separable paraboloidal surrogates (OS-SPS) [2], originally
named the ordered subsets transmission (OSTR) algorithm in
the context of transmission tomography.

The OS algorithms, including OS-EM, RBI-EMML, and OS-
SPS, were successful in speeding up “convergence”; however,
they are not globally convergent—not even locally convergent—
in general. (An algorithm is said to be globally convergent if for
any starting point the algorithm is guaranteed to generate a se-
quence of points converging to a solution [21, p. 182].) They
usually exhibit limit-cycle like behavior. For each update, OS
algorithms use an “approximate gradient” computed from only a
part of the data. The approximation is quite reasonable far from
a solution if the subset gradients are reasonably “balanced”; the
algorithms show acceleration in the early iterations. However,
OS algorithms, particularly with a constant stepsize, usually do
not converge to a solution, e.g., a stationary point, since the gra-
dient approximation is not exact. Fig. 1 illustrates this typical
behavior of OS algorithms.

One method for making OS algorithms globally convergent is
relaxation, i.e., using diminishing stepsizes. This modification
comes from the intuition that the size of a limit cycle should
be proportional to the stepsize. BSREM and RAMLA use di-
minishing relaxation parameters [1, 17]. De Pierro and Yamag-
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ishi [1] provided a global convergence proof for BSREM after
imposing a few “a posteriori” assumptions: the convergence of
the objective sequence, and the positivity and boundedness of
each iterate. In this paper, we relax these assumptions by mak-
ing some modifications to BSREM.

Kudo, Nakazawa, and Saito [22, 23] also used a relaxation
scheme in their block-gradient method applied to penalized
weighted least-squares image reconstruction for emission to-
mography; however, they ignored the nonnegativity constraint.
Their method appears to be a special case of incremental gradi-
ent methods [3, 24, 25]. Nedić and Bertsekas analyzed the in-
cremental gradient methods and obtained many useful results
about their convergence properties [3, 24]. Observing that OS-
SPS is a special case of diagonally-scaled version of incremen-
tal gradient methods with a constant stepsize, in this paper we
prove the global convergence of diagonally-scaled incremental
gradient methods with diminishing stepsizes, thereby establish-
ing global convergence of relaxed OS-SPS.

An alternate method for ensuring convergence would be to
run an OS algorithm for several iterations, then switch to a non-
OS algorithm known to be globally convergent. In the same
spirit, one could decrease the number of subsets over itera-
tions, or continuously decrease parameterized incrementalism
as in [27]. The incremental EM [28] can also be considered;
this method achieves convergence by applying the incremen-
tal (ordered subsets) idea block-coordinatewise in an alternating
maximization scheme [18, 29].

We focus on relaxed algorithms in this paper. We present two
types of relaxed OS algorithms [30]: modified BSREM and re-
laxed OS-SPS, and we prove the global convergence of the algo-
rithms. Both of them use diagonally-scaled gradient ascent for
each update to maximize a penalized-likelihood objective func-
tion. Although the main difference between these two methods
is the form of scaling functions, the approaches of the global
convergence proofs are quite different. These algorithms are
parallelizable, i.e., able to update all pixels simultaneously and
independently, so they are computationally convenient.

In Section II, we formulate the problem for emission tomog-
raphy. In particular, we establish object constraints as a closed
and bounded set instead of the usual unbounded nonnegative or-
thant. More importantly, we modify the PL objective function
without changing the final solution, so that its gradients are Lip-
schitz continuous on the constraint including the boundary. This
plays an essential role in subsequent convergence proofs. Sec-
tion III defines our modified BSREM and relaxed OS-SPS algo-
rithms. Section IV gives simulation results including discussion
of relaxation parameters as related to convergence rate.

II. EMISSION TOMOGRAPHY PROBLEM

A. Penalized-Likelihood Image Reconstruction

We focus on the linear Poisson statistical model that has been
used extensively for emission computed tomography, including
positron emission tomography (PET) or single photon emission
computed tomography (SPECT), as well as for photon-limited
optical applications like fluorescence confocal microscopy [31].

Assuming usual Poisson distributions, the measurement model1

for emission scans is as follows:

����� Poisson

�� �	�
�
����� � ������������ ��� � � !"$#&%('*)�#,+-# .�. ./#10
where �2�4365 is the number of photons counted in the % th bin,� �7������ 385 is the activity at the 9 th pixel, � �:3;5 is the mean
number of background events such as scatters, random coinci-
dences and background radiation, and < '>= � � ��? is a system
matrix (incorporating scanning time, detector efficiencies, at-
tenuation, scan geometry, etc.) such that � � � 3@5 . The goal is to
estimate the unknown activity A �7��� � 'CB � �7�7���� # � �7��� �D # .�.�. # � �7��� ��FEHG
based on the measurement I 'JB � � # � D #�. .�./# �2K EHG with < andL 'MB � � # � D # .�. ./# � K E G being known where G denotes matrix trans-
pose. We assume that the sensitivity factors, N K� ��� � � � , are non-
zero for all 9 , which is reasonable in practice.

The log-likelihood of A given I can be written, ignoring con-
stants independent of A , as follows:

OQP ASR '
K
 � ����T � P�U � P ASRVR (1)

where T � P7U R ' � �XWZY�[ U]\$U
and

U � P ASR ' N ��
��� � � � � � �^� � . The
following properties of T � can be easily shown:2

(i) T � P�U R`_ T � P � � R #&a U 3@5 . (2)

(ii) T � is monotone increasing on B 5 # �2� E #
and monotone decreasing on B �b� #/c R . (3)

(iii) T � is concave on B 5 #dc R . (4)

For penalized-likelihood (PL) reconstruction, one must find a
maximizer of the following objective function over its domaine

: f P AgR ' OhP ASR \jikP ASR (5)

where e l' = Anm&o � prq f P ASRsmto ?' = Anm&o � prq U � P ASR`u 5 or �2� ' 5 #va�% ?
with o � p 'w= Anmxo � q ��� 3@5 #]a 9 ? #
and

i
is a regularization term. The reason for taking the do-

main
e

instead of o � p is that the gradient of the log-likelihood
is infinite on o � p^y e

. The use of the feasible domain
e

facili-
tates subsequent analyses. Although the methods described here
can be easily generalized, for simplicity we assume that

i
is the

following type of roughness penalty function:ikP ASR '{z +
�
�
��� 
|~} �g��� � |�� P � � \ ��| R (6)�

For randoms-precorrected PET scans, a shifted Poisson model can be
used [32]. An extension to that case is straightforward.�

For convenience, we adopt the convention that ���d��������� and �v�����d������ .
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where z 3 5 is a regularization parameter that controls the
smoothness of the reconstructed image,

� � denotes the neigh-
borhood of the 9 th pixel, � is a potential function, and � � | u 5
is a weighting factor such that � � | ' � | � . Viewing the pix-
els of an image as nodes of a graph with neighboring pixels
(say,

� � for the 9 th pixel) connected by an edge, we assume
that the graph is connected in the sense that it is always possi-
ble to find some sequence of edges leading from any pixel to
any other pixel [33]. We assume that � P�� R is nondecreasing
in � � � , convex, continuously differentiable, and symmetric, i.e.,� P�� R ' � P \�� R , and that � P 5 R ' 5 . Then

i
is nonnegative and

convex. If
i ' 5 , the problem becomes maximum likelihood

(ML) reconstruction.

A.1 Existence and Uniqueness

One can verify that the level set = A m e q f P ASR 3 f P�� R ?
is compact (bounded and closed) where

�
is a column vector

of ones, using the coerciveness3 of
f

(i.e., W
	
�
��������� f P ASR '\ c ) and the continuity of
f

on
e

. Then, by the Weierstrass’
Theorem [26, p. 654], there exists a (possibly non-unique) PL
solution A�� m e

such that
f P A�� R ' ����� � }�� f P ASR .

If the objective function
f

is strictly concave on
e

,
then there exists a unique PL solution [26, p. 685], �A '���1[������ � }�� f P ASR . We assume strict concavity for proving con-
vergence of the modified BSREM algorithms in Section III-A.
However, we will allow a concave objective function (possibly
having multiple solutions) for the relaxed OS-SPS algorithm, or
for more general diagonally-scaled incremental gradient meth-
ods, in Section III-B. The following Lemma (cf. Theorem 1
of [34] and Lemma 1 of [33]) provides a simple sufficient con-
dition for the strict concavity of

f
with a strictly convex and

twice differentiable potential function � . Such potential func-
tions include the quadratic function � P�� R ' � D! + and many
others suggested by Lange [33].

Lemma 1: If I G < �#"' 5 , then
f

in (5) (with (6) for z u 5 ) is
strictly concave on

e
for any � that is strictly convex and twice

differentiable.
Proof: The (negative) Hessian of

f
can be computed as

follows: \%$ D f P AgR ' < G
& P AgRV< � $ D ikP AgR
with & P ASR ' diag

' ���U D� P ASR)( (7)

for A	m e
, where we interpret �2�  U D� P ASR as 5 if �2� ' 5 . For any* m&o � , using the symmetry of � and � � | , we obtain:

* G $ D ikP AgR * '{z +
�
�
��� 
|~} �g�-� � |,+� P � � \ � | R P�� � \-� | R D .

Since +� u 5 and the neighborhood system is connected by as-
sumption, for z u 5 , * G $ D ikP ASR * ' 5 only if * '/. or * '10 �
for some 0 "' 5 . But 0 � G < G
& P ASRV< 0 � '20 D43 & �65 D P ASRV< � 3�D "'5 by assumption. So * G $ D f P ASR *87 5 #Va * "'/.�.9

This can be easily shown by the assumption of non-zero sensitivity factors.

Since ��� and � � � are nonnegative, the assumption I G < �8"' 5
is equivalent to < G I "':. . In other words, the backprojection
of the data must be a non-zero image, which is reasonable in
practice.

A.2 Boundedness

It is clear that a PL solution set; � l'w= A � m e q f P A � R 3 f P ASR #�a Anm e ? (8)

is bounded by the coerciveness of
f

. In fact, for given data I ,
one can compute an upper bound < ' < P I(R m P 5 #dc R on the
elements of

; � such that; �,=?> l' = A^mto � q 5 _ �-� _2< #va 9 ? . (9)

See Appendix A for a method of determining < . Thus, one can
search for a solution over the bounded set >A@ e

instead of overe
. This property helps ensure that the (scaled) gradient of the

objective function is bounded on a set of interest, which is one
of essential ingredients of our global convergence proofs. For
example, the gradient of a quadratic penalty with � P�� R ' � D� +is not bounded on

e
whereas it is bounded on >B@ e

.

A.3 Differentiability

The objective function
f

is not differentiable on the setC l' o � p$y e 'w= Anmto � p q U � P ASR ' 5 for some % mED ?
where D l'r= %�'*)�#,+-# .�. ./#10 q � � ' 5 and � � u 5 ? . (10)

One can see that
3 $ f P ASR 3 'rc for A^m C . If a gradient-based

algorithm took a point in
C

, it would collapse. Note that D 'GFand thus
C 'HF for the case of nonzero backgrounds, � � u 5 #�a�% .This means that zero backgrounds, � � ' 5 , can be problematic

for some gradient-based algorithms. The EM algorithm for ML
reconstruction avoids this problem due to its intrinsic positiv-
ity; however, regularization complicates the situation. To cir-
cumvent the problem, we slightly modify the log-likelihood,
yet without changing the final solution set. We replace the
log-likelihood near the problematic region

C
with well-behaved

functions, e.g., quadratic approximations. We consider the fol-
lowing modified objective function:If P AgR '

K
 � ��� IT � P7U � P AgRVR \jikP ASR
whereIT � P7U R l'

�� �KJL!MONQPSRD P7U�\UT R D �WVT � P�T R P7U�\UT R � T � P�T Rfor
U _ T and % mEDT � P7U R otherwise,

(11)

for some
T u 5 . The modified marginal log-likelihood

IT � is a
strictly concave real-valued function defined on o for % m/D .
Note that

f P ASR ' If P ASR for X ';= A m e q U � P ASR u T #`a�% mD ? and that
If

is well-defined on o � p . The modified objective
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function
If

preserves the (strict) concavity of
f

.4 Remarkably,
one can compute

T u 5 such that; � ' I; � l'r= A � m > q If P A � R 3 If P ASR #]a A m > ? # (12)

meaning that this modified objective function has the same max-
imizer(s) as the original. See Appendix B for a method of de-
termining

T
. With such

T
in Appendix B, the modified objective

function
If

is real-valued on the compact set > , and it has a
nice property that its gradient

$ If
is Lipschitz continuous5 on> . We will henceforth take

If
as our objective function but re-

vert to the notation
f

for simplicity; likewise, T � will denote
IT �for % mAD . One should be cautioned that the

T
provided by Ap-

pendix B could be too small to be practical in finite precision
computers; nevertheless, at least we can proceed to develop the-
ory. For the more physically realistic case,6 where � � u 5 , we
have D 'HF and we need not modify the objective function.

B. Ordered Subsets (OS) Algorithms

Most iterative algorithms for finding a maximizer of a
penalized-likelihood objective function use its gradient

$ f
.

For objective functions of the form (1), the gradients in-
volve a sum over sinogram indices, i.e., backprojection.
Many “parallelizable” algorithms—able to update all the pixels
simultaneously—can be written in the following form7:

��� p �� ' � �� ��� � � � P A � R �� � � f P A � R # 9 'M)X#,+�#�. .�./# � # (13)

where � � u 5 is a relaxation parameter (or stepsize), and
� � P ASR

is a nonnegative scaling function. We call the nonnegative func-
tion

� � P ASR a scaling function to emphasize that it scales the
derivative. Likewise, in vector form,A � p � ' A � ��� � �	P A � R $ f P A � R # (14)

we call the �
	�� matrix
�@P ASR a scaling matrix or simply a

scaling function. The partial derivative of
f

is given by:�� � � f P ASR '
K
 � ��� � � � VT � P7U � P AgRVR \ �� � � ikP AgR . (15)

For example, (13) becomes the ML-EM algorithm if we choose� � 'M) and
� � P AgR ' ���  N K� ��� � � � with

i ' 5 .�
For strict concavity, Lemma 1 still applies to 
� . If ������� ����� , then its

corresponding diagonal element of ����� � in (7) would change to �"!#%$ �'&(�`�) $+* & � ; which leads to the same conclusion.,
A function - is called Lipschitz continuous on . if there exists some /�0 �

such that 12-3�54�� �6-3��78�91;:�/<194 �=7 1 for all 4?>+7@�A. . A differentiable
function is Lipschitz continuous if its derivatives are bounded. Conversely,
the derivatives of a Lipschitz continuous function are bounded when they ex-
ist. Therefore, Lipschitz continuity conditions on the gradients of a function
imply that the curvatures of the function, if any, are bounded.B

Any PET scan will have nonzero randoms and any real SPECT scan will be
contaminated by a scattered component and by a nonzero (but possibly quite
small) component from background radiation.C

Although for some algorithms we need to enforce nonnegativity each itera-
tion, we ignore this detail in this subsection to simplify explanation of ordered
subsets principles. We do consider this important detail in the convergence
proofs, however.

Ordered subsets (OS) algorithms are obtained by replac-
ing the sum N K� ��� in (15) with a sum N � }EDGF over a sub-
set H?I of =�)X#,+�#�. .�.d#10 ? . Let = H?I ?%JI ��� be disjoint subsets of=-)�#,+�#�.�. .d#10 ? such that K JI ��� HLI 'r=�)X#d+-#�. .�.d#,0 ? , and letM I P ASR l' 
� }ED F:T � P�U � P ASRVR \ON I ikP AgR (16)

be a sub-objective function, resulting inf ' 
 I M I # (17)

where the regularization term is included in one or more of theM I ’s by choosing
N I 3 5 and N I N I ' ) . (Typically we

choose
N I ' )  QP .) Suppose that the following “subset gradi-

ent balance” conditions hold:$ M � P AgR �' $ M D P ASR �'�RSRTR �' $ M J P AgR (18)

for A far from the solution set, or, equivalently,$ f P ASR �' P $ M I P ASR #&a U . (19)

Then an ordered subsets version of (13) is obtained by substitut-
ing

P VVXW � M I P AgR for
VVYW � f P ASR , as follows:8

� �[Z I� ' � �[Z I]\ �� ��� � � � P A �[Z I]\ � R �� ��� M I P A �[Z I]\ � R # (20)

for U8' )X#d+-#�. .�.d# P where the factor
P

is absorbed into
� � (or� � ), and we use the convention that� �[Z ^� ' � �� and � � p �� ' � �[Z J� .

We refer to each update in (20) as the U th subiteration of the_ th iteration. In the tomography context, the partition = H I ? JI ���
is naturally chosen so that projections within one subset corre-
spond to projections with downsampled projection angles. It is
desirable to order the subsets such that projections correspond-
ing to one subset are as “perpendicular” as possible to previously
used angles at each subiteration [8]. This strategy has a long his-
tory; Hamaker and Solomon [35] analyzed quantitatively the re-
lationship between the convergence rate of ART and ordering in
terms of the angles between the null spaces of each projection.

Fig. 1 illustrates the behavior of an OS algorithm for a toy
example with the following objective function:f P * R ' `
 � ��� a \ )+ * Gcb � * ��d G� *fe
where b � ' g ) )) +@h , b D ' g + \ )\ ) )ih , b ` 'gkj 55 ) h , d � ' g )�.�+El+-.ml h , d D ' g \ )X. +%l5 . +%l h , d ` 'n

One could use a relaxation sequence o8pGq r which depends on s . In this
case, for global convergence, the variations of o�pXq r over each cycle must be
sufficiently small asymptotically (as t goes to � ). For example, see [25].
However, to avoid undue complexity in convergence analysis, we focus on re-
laxation parameters that are held constant during each iteration, as is widely
used [1, 3, 17, 22].
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g j\ 5 .�� l@h , and the maximizer is �* ' g 5 .ml5 .ml@h . We compare

an ordinary gradient ascent method:* � p � ' * � ��� $ f P * � R
where � '*. 5 l , and its ordered subsets version with j subsets:* �[Z I ' * �[Z I]\ � � j � $ M I P * �[Z I]\ � R for U8'M)X#,+�# j
where

M I ' \ �D * G b I * � d GI * . As can be seen in the figure,
the OS algorithm is about three times faster initially far from the
optimal point, but it converges to a limit cycle.

OS algorithms have been successful in speeding up “conver-
gence.” However, they generally exhibit limit cycle behavior
particularly with a constant stepsize � � ' � . Although it is
hard to prove the existence of such a limit cycle, one can ex-
pect that a set of limit points = A � Z I ?%JI ��� of a sequence = A �[Z I ?
generated by (20), if any, would satisfy:

� � Z I� ' � � Z I]\ �� ��� � � P A � Z I]\ � R �� � � M I P A � Z I]\ � R #&a U� � Z J� ' � � Z ^� .
These conditions generally differ from the true optimality con-
ditions, e.g.,

VVXW � f P A � R ' N JI ��� VVXW � M I P A � R ' 5 for uncon-
strained optimization. One may need to use a diminishing step-
size such that W
	
� � � � � � ' 5 to suppress the limit cycle. Even
if an algorithm with such relaxation converges to some A � , we
must still ensure that the limit A�� is a solution that belongs to; � . The next section describes appropriate choices of

� � P R R and� � that ensure global convergence.

III. GLOBALLY CONVERGENT OS ALGORITHMS

The preceding section focused on the properties of the
penalized-likelihood objective function

f
for the specific appli-

cation of emission tomography. We now turn to the compu-
tational problem of maximizing such objective functions. The
algorithms described in this section (and the accompanying con-
vergence proofs in the appendices) are applicable to a broad
family of objective functions that have the same general proper-
ties as the emission tomography case considered in the previous
section. Specifically, the properties that we exploit are the fol-
lowing: (i)

f
is concave (or strictly concave) and differentiable,

(ii) its maximizers lie in a bounded set defined by 5 _ � � _ <
where < is a computable upper bound, and (iii)

f
has the sum-

mation form (17) where each
M I is concave. In addition, in

the convergence proofs we assume that the gradients of the
M I

functions are Lipschitz continuous. Collectively these are fairly
unrestrictive assumptions so the algorithms should have broad
applicability.

To achieve the goal of maximizing
f

over > , we present two
types of relaxed OS algorithms that are globally convergent:
modified BSREM methods and diagonally-scaled incremental
gradient methods of which relaxed OS-SPS is a special case.
For both of these OS algorithms, we use the sub-objective func-
tions given in (16). The main difference is in the form of

� � P R Rin (13).

A. Modified BSREM

De Pierro and Yamagishi [1] presented the block sequen-
tial regularized expectation maximization (BSREM) algorithm
and proved its global convergence under the following assump-
tions: the sequence = A � ? generated by the algorithm is positive
and bounded; and the objective sequence = f P A � R ? converges.
These conditions are not automatically ensured by the form of
the original BSREM. We eliminate those assumptions in our
convergence analysis by modifying the

� � P R R functions.
The basic idea of the modification is to ensure that all iterates

lie in the interior of the constraint set > by choosing suitable
scaling functions

� � P R R and relaxation parameters � � . For EM-
like algorithms including BSREM, we observe that using the
form

� � P ASR ' (some term) 	 ��� can help each iterate keep
positivity, i.e., avoid crossing the lower boundary � � ' 5 . We
enforce the upper bound < similarly. Consider the following
algorithm called modified BSREM-I in vector notation:A �[Z I ' A �[Z I]\ � ��� � �@P A � Z I \ � R $ M I P A �[Z I]\ � R (21)

for U>' )X#,+�#�. .�.d# P where � � u 5 and
�	P ASR ' diag = � � P ASR ?

with � � P AgR l' ' �-�  � � for 5 _ �-� 7�� DP < \ �-� R  � � for � D _ ��� _1< (22)

for some � � u 5 . (The original BSREM used
� � P ASR ' � � .)

The convergence analysis of this type of algorithm for a
strictly concave objective function is given in Appendix C. The
first part (Lemma 2) of the analysis states that if (i) the relax-
ation sequence is bounded by a sufficiently small value and (ii)
the starting point belongs to the interior of > , then the iterates
generated by (21) automatically stay in the interior of > . The
second part (Lemma 3–5) is about convergence: the iterates gen-
erated by (21) converge to the solution �A ' � �
[ ����� � }�� f P ASR
if (iii) N �� � ^ � � ' c , (iv) N �� � ^ � D� 7 c , and (v) A �[Z I m���
	 > # a _ #2U where

����	 > denotes the interior of > . But the first
part says that (v) is guaranteed if (i) and (ii) hold. So, combining
two parts, one can conclude (Theorem 1 and Corollary 2) that
the modified BSREM-I is globally convergent if (i)–(iv) hold.

A practical and critical issue is how small the relaxation pa-
rameter should be in (i) for ensuring (v). If an iterate hits the
boundary, then all subsequent iterates remain stuck at the bound-
ary because the scaling function is zero on the boundary. As
shown in Lemma 2, one may compute a bound ensuring (v) and
use relaxation parameters smaller than the bound. However, a
conservatively small bound will adversely affect convergence
rate. So the convergence theorem for BSREM-I still leaves
users with practical dilemmas. To overcome these limitations
of BSREM-I, we propose to add the following step after (21)
for each update:

A �[Z I ' '
��� P A �[Z I R for A �[Z I  m ����	 >A � Z I otherwise
(23)

where
� � P ASR is the projection9 of Anmto � onto � l'w= Anmxo � q� _ � � _ < \ � #Qa 9 ? for some small

� u 5 . Consider this�
For a Hilbert space � , a projection ���]�'4 � of 4 ��� onto a nonempty

closed convex subset ����� is defined by � � �548���������! #" $ 7&% � 1 4 �;7?1
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modified algorithm (21) with (23), called modified BSREM-II,
and suppose that conditions (iii) and (iv) hold. Then (v) is al-
ways satisfied by (23) regardless of whether (i) and/or (ii) hold.
Since (iii) implies [36, p. 70] that W
	
� � � � � � ' 5 , there ex-
ists 0 m�� such that � � satisfies (i) for _>3 0 . TreatingA K m ����	 > as a “new” starting point, one can see that the it-
erates after 0 iterations never hit the boundary by the first part
of the analysis mentioned in the previous paragraph. This im-
plies that the step (23) becomes vacuous and in subsequent iter-
ations the modified BSREM-II becomes equivalent to the mod-
ified BSREM-I. So by the second part of the analysis the modi-
fied BSREM-II is globally convergent. The addition of step (23)
removes the conditions (i) and (ii) while retaining global conver-
gence.

In (22), any � � u 5 can be used for global convergence. But
we want to choose � � such that stepsize selection becomes con-
venient, akin to the appropriateness of a unity stepsize in New-
ton’s methods due to the scaling by the Hessian’s inverse. Moti-
vated by the EM algorithm for emission tomography, a reason-
able choice for � � is:

� � '
K
 � ����� � �  P . (24)

If
P ' ) (one subset), � � ' ) (unrelaxed), and

i ' 5 (un-
regularized), then (21) with (24) reduces to ML-EM except the
term < \ � � in (22). Although (24) ignores the regularization
term, it seems to work well for the regularized case unless the
regularization term is too large compared to the log-likelihood
part. This is verified experimentally in Section IV.

If we take larger and larger < , then >�� o � p and
� � P ASR ����  � � . So the modified BSREM should behave quite similarly

to the original BSREM for large < in practice except for our
scaling by � � . The upper bound < seems to be more important
for convergence analysis than for practical implementation.

B. Diagonally-Scaled Incremental Gradient Method

As an alternative to the BSREM methods, we consider next a
family of OS algorithms with constant scaling functions

� � P R R '� � as follows:A �[Z I ' � ��� A �[Z I]\ � ��� � � $ M I P A �[Z I]\ � R�� (25)

for U ' )X#d+-#�. .�.d# P where � � u 5 and
� ' diag = � � ?with

� � u 5 # a 9 , and
� � P ASR is the projection10 of A m o �

onto > . We call these algorithms diagonally-scaled incremen-
tal gradient methods since if we choose

� '	� , the algorithm
(25) becomes an incremental gradient method [3]. Appendix D
presents the convergence analysis of this type of algorithm for a
concave objective function (possibly having multiple solutions).
The iterates generated by (25) converge to a maximizer if (i)N �� � ^ � � 'wc and (ii) N �� � ^ � D� 7 c as shown in Theorem 2

Here the projection ��
 �5� � is easily calculated componentwise as � ��
 ��� ��
 ��� ��
for ����� � , � ��
 ��� ��
 ��� ��� � � for ��� 0���� � , and � ��
 �'� ��
 ��� �����

otherwise. So (23) can be written componentwise as � pGq r� � � � for � pGq r� � � ,� pGq r� � ��� � � for � pXq r� 0 � , and � pGq r� � ��� pGq r� otherwise.�"!
The projection is readily computed componentwise as � ��# �5� ��
 � � �$&% " � $(',�Y>)���G>*�,+ .

and Corollary 3. The global convergence holds regardless of
�

as long as it is diagonal with positive elements.
A practical issue is how to choose

�
for fast convergence rate

and easy stepsize selection. Fortunately, some hints are given
by observing that the ordered subsets separable paraboloidal
surrogates (OS-SPS) method, which showed fairly fast conver-
gence [2], is a special case of (25). In particular, (25) becomes
quadratically-penalized OS-SPS for a likelihood of the form (1)
if � � '*) and the scaling constants are chosen as follows:

� � ' P.-/ K
 � ��� � � � � �"0 � � + z 
|~} �g�-� � |213
\ �

#&a 9 (26)

where � � l' N ��
��� � � � ,
P

is the number of subsets, and

0 � ' ' \ +T � P � � R for � � u 55 otherwise.

Paraboloidal surrogates (PS) methods from which OS-SPS is
derived are optimization techniques that, for each iteration, op-
timize computationally tractable paraboloidal surrogates instead
of original objective functions. Those surrogates are character-
ized by their curvatures; one can optimize such curvatures that
ensure monotonicity and fast convergence under certain condi-
tions [20]. In OS version, OS-SPS, an accelerated convergence
speed is obtained at the expense of convergence; in this case,
the curvatures can be precomputed [2]. The terms in the paren-
thesis in (26) come from “precomputed curvatures” which are
the approximated constant curvatures of separable paraboloidal
surrogates [2]. For non-quadratic penalties, the second term in
the parenthesis of (26) could be substituted with the curvatures
of the penalty function at an initial point or at a uniform image.
Although OS-SPS is not globally convergent in general, by al-
lowing a diminishing stepsize, we obtain a relaxed OS-SPS that
is readily shown to be globally convergent as a special member
of the family (25). Interestingly, whereas the original PS meth-
ods [19] for emission tomography required � � u 5 for mono-
tonicity and convergence, we eliminate this requirement here by
the modification (11) of the penalized-likelihood.

One of required conditions for the global convergence proofs
of diagonally-scaled incremental gradient methods is the bound-
edness of

$ M I on > . If the gradient
$ i

of the penalty part
is bounded on o � p , then we can take > ' o � p while retain-
ing global convergence since the gradient of the (modified) log-
likelihood is bounded on o � p . Such penalties include the Huber
penalty:

� P�� R ' ' � D� +-# for � � � _�44 � � � \ 4 D! +-# otherwise,

for some 4 u 5 .

C. Regularization into OS Algorithms

There are two typical ways of distributing the regularization
term into sub-objective functions, i.e., how to choose

N I in (16).
One way is to include regularization in every

M I as in [2]:N I ' � H I �  0t#&a U (27)
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where � H?I � is the number of elements in HLI . (
N I ' )  P for

equally sized subsets.) Another way is to take the regularization
term as a separate sub-objective function as in [1]:N I ' 5 for U8'M)�#,+�#�.�. .d# P # and

N J p � ' ) (28)

where we have
P P � ) R sub-objective functions and takeH J p � ' F . Both cases satisfy the condition

f ' N I M I .
However, the convergence rates of the two choices can differ
if the regularization parameter z is not so small. Recalling
the motivations of OS algorithms, (18) and (19), one can ex-
pect that (27) will yield faster convergence since (28) may cause
poor “subset gradient balance.” In other words, the amplitude
of a limit cycle that is supposed to be suppressed by relaxation
is larger for (28) due to significant dissimilarities between the
sub-objective functions. On the other hand, (27) requires more
computation since the gradient of the regularization part should
be computed every subiteration. This additional computational
cost is proportional to the number of subsets; however, it is usu-
ally relatively small compared to the computation of the log-
likelihood part. In experiments not shown, we have observed
that the choice (27) usually makes algorithms faster and more
stable, so we focus on (27) in Section IV. Nevertheless, our
convergence results apply to any choices for the

N I ’s.

D. Subiteration-Independent Scaling Matrices Are Essential

Both algorithms, (21) and (25), belong to the class (20) where
the functions

� � P R R are independent of subiteration index U .
Classical OS-EM does not belong to this class. As pointed out
by Browne and De Pierro [17], OS-EM in general does not con-
verge to a solution even if relaxed. We generalize their argu-
ment. One could write a more general form of OS algorithms
by allowing different scaling matrices over subiterations:A �[Z I ' A �[Z I]\ � �A� � � I P A �[Z I]\ � R $ M I P A � Z I \ � R #�a U (29)

where � � u 5 #sa _ and
� I P ASR is some nonnegative definite

diagonal matrix (function). When we choose � � ' ) and� I P ASR ' diag = ���  N � }EDGF � � � ? # the algorithm (29) becomes
OS-EM for

i ' 5 . Now consider a relaxed version by assum-
ing W
	 � � ��� � � ' 5 and11 N �� � ^ � � ' c . Following [17],
one can write the following expression for A � p � :
A � p � ' A � ��� � J
I ��� � I P A �[Z I]\ � R $ M I P A �[Z I]\ � R

' A ^ � �
| � ^ � | J
I ��� � I P A | Z I]\ � R $ M I P A | Z I]\ � R .
Now suppose that the sequence = A � Z I ? generated by (29) con-
verges to some A�� . Assuming that

� I $ M I is continuous, we
have:W
	
�| � � � I P A | Z I]\ � R $ M I P A | Z I]\ � R ' � I P A � R $ M I P A � R .� �

If we take a diminishing stepsize ( � "  p�����o�p � � ), we need the
assumption:

� �p�� ! o p � � . Suppose that
� �p�� ! o p � � . Since�� � p � � �6� p �� �	�"��o p � (by assuming that 
 r�� - r is bounded), we will

never get to the optimum point if an initial point is sufficiently far from it.

If N JI ��� � I P A � R $ M I P A � R "' . , then = A � ? diverges sinceN �� � ^ � � 'wc	. So it must be the case that:J
I ��� � I P A � R $ M I P A � R '/.v. (30)

However, if the
� I ’s are different, then (30) is generally dif-

ferent from the true optimality conditions, e.g.,
$ f P A ��R 'N JI ��� $ M I P A��~R ' . for unconstrained optimization. So, in

general, OS algorithms with subiteration-dependent scaling ma-
trices, including OS-EM and rescaled block-iterative expecta-
tion maximization (RBI-EM) [16], do not converge to the de-
sired optimum point even if they become convergent due to re-
laxation.

IV. RESULTS

In this paper, we focused on global convergence analysis.
The outline of modified BSREM and relaxed OS-SPS algo-
rithms for a Poisson penalized-likelihood in emission tomog-
raphy are summarized in Table I and II. In addition to those
conditions in Table II, for a general objective function, modi-
fied BSREM requires that

f
is strictly concave, and

$ M I P ASR
and

�	P ASR $ M I P ASR are Lipschitz continuous on > . Diagonally-
scaled incremental gradient methods including relaxed OS-SPS
require that

$ M I is bounded on > and
M I is concave. Local

convergence rate analysis will be future work. A critical issue in
practice will be how to determine relaxation parameters to get
close to a solution within a few iterations. We focus on modified
BSREM-II rather than modified BSREM-I in this section. The
sufficient conditions on a relaxation sequence for global conver-
gence are the following: N �� � ^ � � '{c and N �� � ^ � D� 7 c .
One may try to optimize a finite number of relaxation param-
eters by training [1, 8, 17] if a reasonable training set is given
for a particular task. The relaxation parameters obtained thus
might not seem to satisfy those conditions. However, it may not
be relevant since those conditions are sufficient and, moreover,
asymptotic.

One simple choice of relaxation parameters satisfying those
conditions is: � � ' � ^N _ � ) # a _ (31)

for
N u 5 and � ^ u 5 . We run simulations using these simple

relaxation parameters. Our goal here is not to try to find the best
relaxation but to get some insight into the effects of relaxation
parameters on convergence rate through some experiments. By
design, our modified BSREM and relaxed OS-SPS are properly
scaled, meaning that even a constant � � ' ) works fairly well.
So we could obtain reasonably good results by setting � ^ '8)and tuning experimentally only

N
.

We performed image reconstruction using two-dimensional
SPECT simulation data generated with the Shepp-Logan dig-
ital phantom. The projection space was )�+ 
 radial bins withj . � mm ray spacing and )~+ 5 angles over j � 5 degrees, and the
reconstructed images were )�+ 
 	 )~+ 
 with j . � mm pixel size.
The distance from the center of rotation to the detector plane
was + 
�
 mm. The system matrix < was generated by AS-
PIRE 3.0 [37] and it assumed a Gaussian shaped point spread
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function with the following model for the depth-dependent full-
width at half-maximum (FWHM):

������� ' � P 5 . 5 
���
 5 l � R	� R D � P j � � R D
where 
 is the distance from a pixel’s center to the detector.
We did not consider attenuation in this simulation. The total
counts were l 	 ) 5�� , and � � corresponded to a uniform field
of ) 5�
 of background events, a very crude approximation of
the effects of scatter. We regularized the log-likelihood using
the first-order quadratic penalty � P�� R ' � D  + with z ' )X.ml ,
and we took a FBP reconstruction as a starting image for PL
reconstruction. Because the relaxed OS algorithms are additive
updates, the scaling of the initial image can affect the initial con-
vergence rate, so we implemented the FBP algorithm carefully
with respect to the global scale factor. In contrast, the classi-
cal ML-EM and OS-EM methods for emission tomography are
multiplicative, so the initial scaling is unimportant.

Fig. 2 compares two non-OS algorithms: SPS with optimum
curvature [20] and De Pierro’s modified EM [38]; and two unre-
laxed OS algorithms, unrelaxed OS-SPS and unrelaxed mod-
ified BSREM with � � ' ) and with



subsets and � 5 sub-

sets. The OS algorithms initially increase the objective function
much faster than the non-OS ones, but they get stuck at sub-
optimal points. The figure shows the normalized

f
differenceP f P �ASR \ f P A � R
R  P f P �A`R \ f P A ^ R
R versus iteration number where�A is the solution estimated by l-# 525�5 iterations of De Pierro’s

modified EM, a globally convergent method [38]. One can see
that the scaling factors (22) with (24), and (26) for the OS
algorithms are reasonable since the stepsize of unity worked
fairly well. For both unrelaxed OS-SPS and unrelaxed modi-
fied BSREM, using more subsets accelerated “convergence” but
made the algorithms reach a limit cycle earlier. Roughly speak-
ing, in early iterations more subsets are desirable but in later
iterations fewer subsets would be preferable in the unrelaxed
case.

Now we see how relaxation improves convergence. Fig. 3
compares unrelaxed modified BSREM and relaxed modified
BSREM. As can be seen in the figure, the unrelaxed modi-
fied BSREM algorithms converged to a limit cycle whereas the
relaxed ones showed better performance in increasing the ob-
jective function by suppressing the amplitude of the cycle (note
the logarithmic scale). We chose � � 'J)  P �� � _ � ) R for re-
laxed modified BSREM-8, and � � ' )  P _ � ) R for relaxed
modified BSREM-40. In this experiment the second part of the
scaling function in (22) was never invoked due to the very large
bound < used; the scaling matrix we used was effectively the
same as that of original BSREM except for � � . Fig. 4 shows
results for relaxed OS-SPS that are similar to those for modified
BSREM. We chose � � ' )  P �� _ � ) R for relaxed OS-SPS-8,
and � � ' )  P _ � ) R for relaxed OS-SPS-40. Fig. 5 summa-
rizes Fig. 3 and Fig. 4. We also plotted distance to the solution3 A � \ �A 3 versus iteration number; although not shown in this
paper, the plots showed similar results. The reconstructed im-
ages are shown in Fig. 6.

We observed, from experiments with relaxation parameters,
that applying relaxation (less than unity) before an algorithm
reaches a limit cycle far from the optimum point does not im-
prove convergence rate because it slows down the algorithm’s

progress toward the optimum point. Apparently relaxation is
most helpful when an algorithm is nearing a limit cycle. Gen-
erally speaking, rapidly diminishing stepsizes are preferable for
an algorithm using many subsets since such algorithms tend to
reach a limit cycle quickly. But relaxation should be applied
gradually in cases where it takes many iterations for an algo-
rithm to reach a limit cycle, e.g., unregularized ML reconstruc-
tion or when few subsets are used.

V. CONCLUSION

We presented two types of globally convergent relaxed OS
algorithms: modified BSREM and relaxed OS-SPS which dif-
fer in their scaling functions

� � P R R . We proved global conver-
gence of both algorithms without “a posteriori” assumptions. A
natural subsequent question is about convergence rate. This is
related to how to determine the relaxation parameters. For re-
laxation parameters, we showed through experiments that relax-
ation improves the OS algorithms convergence rates when the
algorithms are approaching a limit cycle. Hopefully, future work
on quantitative convergence rate analysis will provide more use-
ful rules for determining relaxation parameters, perhaps adap-
tively.

The practical question of whether it is preferable to achieve
convergence by using relaxation or by reducing the number of
subsets with iteration remains open, and may simply be a matter
of preference. When iterative algorithms become implemented
in special purpose hardware, the consistent data flow provided
by the relaxation approach may be beneficial.

In this paper, we have not tried to evaluate the relative merits
of modified BSREM and relaxed OS-SPS. Both algorithms are
globally convergent, and simulation results showed that appro-
priate relaxation accelerates convergence similarly for both of
them. Finding better scaling functions in terms of convergence
speed and computational efficiency could also be interesting fu-
ture work.

The algorithms presented in this paper are easily adapted to
transmission tomography for zero backgrounds ( � � ' 5 ). How-
ever, for a nonzero background case, the penalized-likelihood
objective function can become nonconcave [20]. It will also be
interesting future work to investigate whether the relaxed OS
algorithms can be proved to converge to local maxima in non-
concave cases.

APPENDIX A

In this Appendix, we construct an upper bound < that makes
(9) hold. Define

< l' ������
�� � ���� 	 ���� � M ���� ^ � � � � !" . (32)

Suppose A is a vector in
e

for which the set of “too large” el-
ements � '>= 9 ' )X# .�. ./# � q ��� u < ? is nonempty. DefineIA by clipping as

I��� ' ' < # 9:m��� � # 9  m�� . It suffices to show thatf P AgR 7 f P IASR _ ����� � f
. First, note that, for each % , if there
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exists 9 � m�� such that � � � M u 5 , then:U � P ASR ' � � � M ��� M � 
� ���� M � � �~�-� � � �
u � � � M < � 
� ���� M � � � I�-� � � � ' U � P IASR (33)3 � � � M < 3$��� (34)

where in (33) we used the fact that � � 3 I��� , a 9 and that��� M u < ' I��� M , and (34) is due to our construction (32)
of < . So T � P�U � P ASRVR 7 T � P�U � P IAgRVR by (3). Second, if such 9 �
does not exist for some % , then T � P�U � P ASRVR ' T � P�U � P IASRVR sinceU � P ASR ' U � P IASR . Third, one can verify that there exists some %for which such 9 � exists by the assumption of non-zero sensitiv-
ity factors. Combining these, we have

OhP ASR ' N K� T � P7U � P ASR
R 7N K� T � P7U � P IAgRVR ' OhP IA�R . One can also show that “clipping” all
elements of A greater than < will always decrease the roughness
penalty

i
in (6) due to our assumption that the potential func-

tion � P�� R is nondecreasing in � � � . Now we have established that� P ASR ' OhP ASR \jikP ASR 7 OQP IAgR \ ikP IA�R ' f P IASR .
One can also construct an upper bound for a broader family of

penalty functions more general than those based on differences
of neighboring pixels with a nondecreasing potential function,
although not shown in this paper.

APPENDIX B

In this Appendix, we determine
T u 5 such that (12) holds.

Pick any �$m e
, e.g., � ' �

. DefineTQl' � 	 �� }�� ' � � #�� ��� a f P � R \ N | �� � T | P � | R�2� e ( (35)

where D was defined in (10). For % mGD , the condition
T _� � , implies that the modified marginal log-likelihood

IT � defined
by (11) satisfies (2)–(4). The second inequality impiled by (35)
ensures that �2� WZY�[ T _ f P �(R \ N | �� � T | P � | R for % mED , which is
used below.

First, we show that
; � = X 'M= A	m e q U � P ASR u T #�a�% m D ?

where
; � was defined in (8). Suppose that D "' F (a nontrivial

case) and that �*m e y X , i.e.,
U � P � Rh_ T

for some % m�D . Then
one can obtain:f P � R '

K
| ��� T | P7U | P � RVR \jikP � R
_ T � P�U � P �sR
R � 
 | �� � T | P � | R (36)

_ T � P�T R � 
 | �� � T | P � | R (37)

7 ��� W Y2[ T � 
 | �� � T | P � | R (38)

_ f P � R`_
	�� �� }�� f P ASR . (39)

where (36) is a consequence of (2) and the assumption that
i

is
nonnegative; in (37) we used (3) with the fact that

U � P � Rh_ T _� � ; (38) is from the definition, T � P�U R ' � ��W Y2[ U�\ U
; and (39) is a

consequence of (35). This implies that �
 m ; � for �Mm e y X ;

that is,
; � = X .

Similarly, one can verify that
I; � � l' = A�� m$o � p q If P A�� R 3If P AgR #�a A^m o � p ? = X . But since
f P ASR ' If P ASR for A	m
X , we

have
I; � � ' ; � . Now since

; � = > by Appendix A, we haveI; � � ' I; � � @ > ' I; � where
I; � was defined in (12).

APPENDIX C

In this Appendix, we prove that the modified BSREM-I (21)
with (22) is globally convergent. The required assumptions on
the objective function are the following:

f P ASR is strictly concave
on > ; and

$ M I P ASR and
�	P ASR $ M I P ASR are Lipschitz continuous

(and thus bounded) on > . They are satisfied by our (modified)
Poisson penalized-likelihood.

Lemma 2: Suppose that = A � Z I ? is a sequence generated
by (21) with A ^ m ���
	 > . Then there exists � ^ u 5 such that if5 7 � � _ � ^ #]a _ , then A �[Z I m ���
	 > #va _ # U .

Proof: Since
VVYW � M I P ASR is bounded over > for all 9 and U ,

one can choose � ^ u 5 such that� ^ 



 )� � �� ��� M I P ASR 



 7 )X# a Anm > and a 9 # U .
Suppose that 5 7 � � _ � ^ #�a _ and A �[Z I]\ � m ���
	 > . If 5 7� �[Z I]\ �� 7 <  +-# one can show that 5 7 � � Z I� 7 < , using the
following expression for � � Z I� :

� � Z I� ' � �[Z I]\ �� ��� � � �[Z I]\ �� � � �� ��� M I P A �[Z I]\ � R
' � �[Z I]\ �� a ) ��� � )� � �� ��� M I P A �[Z I]\ � R e .

If <  + _ � �[Z I]\ �� 7 < # one can also show that 5 7 � �[Z I� 7 < ,
using the following expression for � �[Z I� :

< \ � �[Z I� ' P < \ � � Z I \ �� R a ) \ � � )� � �� ��� M I P A �[Z I]\ � R e .
This implies that A �[Z I m ���
	 > .

Lemma 3: Suppose that = A � ? is a sequence generated
by (21) with � � u 5 such that N �� � ^ � � 'wc and N �� � ^ � D� 7c . If A �[Z I m > # a _ #2U , then = f P A � R ? converges in o
and there exists a limit point A � m > of = A � ? such that�	P A���R $ f P A�� R '2. .

Proof: Using the definition of the sequence = A � ? , we have:A � p �
' A � ��� � J
I ��� �@P A �[Z I]\ � R $ M I P A � Z I \ � R
' A � ��� � �	P A � R $ f P A � R �� � J
I ��� � �@P A �[Z I]\ � R $ M I P A �[Z I]\ � R \@�@P A � R $ M I P A � R �
' A � ��� � �	P A � R $ f P A � R ��� P � D� R (40)

where the last equality is obtained as follows by Lipschitz con-
tinuity and boundedness of

�@P AgR $ M I P ASR on > . In particular,
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for some positive
O mto , we have:����� J
I ��� � � P A �[Z I]\ � R $ M I P A �[Z I]\ � R \ �	P A � R $ M I P A � R � �����

_ J
I ��� �� �@P A �[Z I]\ � R $ M I P A �[Z I]\ � R \ �@P A � R $ M I P A � R ��
_ O J
I ��� �� A �[Z I]\ � \ A � ��
_ � � O J
I ��� I]\

�
| ��� �� �	P A �[Z | \ � R $ M | P A � Z | \ � R ��
_ � � O P D �����I Z � }�� 3 �	P ASR $ M I P ASR 3 .
Now consider the objective sequence = f P A � R ? . Since

$ f P ASR
is Lipschitz continuous on > , we have [39, p. 6]:f P A � p � R ' f P A � R � $ G f P A � R P A � p � \ A � R � � P �� A � p � \ A � �� D R .(41)
Using (40) and (41), for large _ , we establish:f P A � p � R ' f P A � R ��� � $ G f P A � R �	P A � R $ f P A � R ��� P � D� R .(42)
Now, in view of (i) N �� � ^ � D� 7 c (ii) the boundedness of

f P ASR
on > and (iii) the nonnegative definiteness of

�@P A � R , using (42),
one can show that:|
 � ��� � � $ G f P A � R �	P A � R $ f P A � R 7�� 7 c	#&a � u U
for some � m o and some large

U
. This im-

plies that N �� � ^ � � $ G f P A � R �	P A � R $ f P A � R 7 c	. Given
any

T u 5 , suppose that there exists
�

such that$ G f P A � R �	P A � R $ f P A � R u T #^a _ u �
. Then sinceN �� � ^ � � 'wc , we have N �� � ^ � � $ G f P A � R �	P A � R $ f P A � R 'c , which is a contradiction. So it must be the case

that there exists a subsequence = A ��� ? of = A � ? such thatW
	
� | � � A ��� ' A�� m > with
$ G f P A�� R � P A�� R $ f P A�� R ' 5 ,

i.e.,
� P A � R $ f P A � R ' . since

�@P A � R is a nonnegative definite
diagonal matrix.

On the other hand, from (42), one can show that = f P A � R ?
is a Cauchy sequence in o in view of N �� � ^ � D� 7 c andN �� � ^ � � $ G f P A � R � P A � R $ f P A � R 7 c	. This implies that= f P A � R ? converges [36, p. 46].

Lemma 4: Suppose that = A � ? is a sequence generated
by (21) with � � u 5 such that W
	
� � � � � � ' 5 . If A �[Z I m> #va _ # U , then W
	 � � ��� P A � Z I \ A � R '/.v#va U .

Proof: Since
�@P ASR $ M I P ASR is bounded on > #Sa U , usingW
	
� � � � � � ' 5 , we have:

A � Z I \ A � ' � � I
| ��� �	P A �[Z | \ � R $ M | P A �[Z | \ � R � .
as _ � c .

Corollary 1: W
	
� � � � P A � p � \ A � R 'H.�.
Lemma 5: The limit point A�� m > in Lemma 3 such that�	P A���R $ f P A�� R ' . is a maximizer of

f P ASR over > if A � Z I m���
	 > #va _ # U .

Proof: We extend the proof of Proposition 3 of [17]. It is
clear that

VVXW � f P A�� R ' 5 if 5 7 � �� 7 < . Considering the op-
timality conditions [39, p. 203], we need to prove that � �� ' 5
implies

VVXW � f P A � R:_ 5 , and � �� ' < implies
VVXW � f P A � R 3 5 .

Define � ' � �	� � D where � � ' = 9 ' )X# .�.�.�# � q � �� '5 and
VVYW � f P A�� R*u 5 ? and � D ' = 9 ' )�#�. .�./# � q � �� '< and
VVXW � f P A��~R 7 5 ? . We show that � 'HF .

Since
$ f

is continuous on > , there exists 5 7 4 7 <  + such
that if A{m >�
 then

VVXW � f P ASR:u 5 #Sa 9jm � � and
VVXW � f P AgR 75 #]a 9km � D where >�
 ' = Anm > q 3 A \ A�� 3 7 4 ? .Suppose that A � m > 
 where _ is sufficiently large. Then,

using Lemma 4, we have A �[Z I m > 
 # a U since _ is large. For9:m�� D , since
� � P A �[Z I R ' P < \ � � Z I� R  � � #�a U , one can show:

< \ � �[Z I� ' P < \ � �[Z I]\ �� R a ) \ � �� � �� � � M I P A �[Z I]\ � R e .
Then using the boundedness and Lipschitz continuity of

$ M I ,
we have:< \ �8� p ��

' P < \ � �� R J
I ��� a ) \ � �� � �� � � M I P A �[Z I]\ � R e
' P < \ � �� R�� ) \ � �� � J
I ��� �� � � M I P A � Z I \ � R ��� P � D� R��
' P < \ � �� R a ) \ � �� � �� ��� f P A � R � � P � D� R e .

Now we have < \ � � p �� u < \ � �� , i.e., � � p �� 7 � �� sinceVVXW � f P A � R 7 5 . Similarly, one can show that � � p �� u � �� for9:m�� � .
Let = A ��� ? be a subsequence of = A � ? such that W 	
� | ��� A ��� 'A�� . Let

� | ' ����� = � 7 _ | q A��  m > 
 ? . If A�� m > 
 #(a ��7 _ |
for some

�
, set

� | ' 5 . Then = � | ? is a monotone increas-
ing sequence of nonnegative integers such that A�� m >�
 for� | � ) _ � _ _ | for large

�
. Suppose that W
	 � | � � � | ' � 7 c ,

i.e., A � stays in > 
 for large _ . Then � |� u � �� u 5 # a � uU #sa 9^m � � and � |� 7 � �� 7 < #sa � u U #sa 9^m � D for some
large

U
. This is a contradiction since we have assumed that= A � ? has a limit point A�� such that � �� ' 5 #ha 96m � � and� �� ' < #va 9:m�� D . So it must be the case that W
	 � | ��� � | 'rc .

Now we have � � �� u ��� � p �� 3 5 #�a 9 m � � and � � �� 7 ��� � p �� _< # a 9	m � D for large
�

. Since W 	
� | � � � ���� ' 5 # a 9	m � �
and W
	
� | � � � ���� ' < #sa 9@m � D , we have W
	
� | ��� � � � p �� '5 #]a 9 m�� � and W
	
� | ��� � � � p �� ' < #va 9km � D . By Corollary 1,W
	
� | � � ��� �� ' 5 #Sa 9jm � � and W
	 � | � � ��� �� ' < #Sa 9jm � D .
Now one can construct a subsequence = A � ��� ? of = A � � ? , which
is also a subsequence of = A � ? , such that W
	
� � � � A � ��� ' A�� �
with � � �� ' 5 # a 9tm � � and � � �� ' < # a 9tm � D but A�� � "' A��
(since A � �  m > 
 and thus A�� �  m > 
 ). Then

f P A���R ' f P A�� � R by
Lemma 3. We have two different maximizers A � and A�� � of

f
over = A m > q ��� ' 5 # a 9&m � � and ��� ' < #�a 9tm � D�? . This
is a contradiction since

f
is strictly concave. So it must be the

case that � '/F .
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Theorem 1: A sequence = A � ? generated by (21) with suffi-
ciently small � � u 5 such that N �� � ^ � � 'wc and N �� � ^ � D� 7c , converges to �A ' ���1[ ����� � }�� f P AgR .

Proof: By Lemma 2, 3, and 5, the maximizer �A is a limit
point of = A � ? . Suppose that A�� � is a limit point of = A � ? . Thenf P A�� � R ' f P �ASR by Lemma 3. This implies that A�� � is also a
maximizer. By the uniqueness of the maximizer, A � � ' �A . So= A � ? has a unique limit point �A . This implies that the bounded
sequence = A � ? converges to �A by Proposition A.5 of [26, p.
652].

Corollary 2: W
	
� � � � A �[Z I ' �A #�a U .
Proof: Use Lemma 4 and Theorem 1.

APPENDIX D

In this Appendix, we prove the global convergence of the
diagonally-scaled incremental gradient method (25). The re-
quired assumptions on the objective function are the following:$ M I is bounded on > ; and

M I is concave. They are satisfied
by our (modified) Poisson penalized-likelihood. Define a norm3 R 3�� ��� on o � by

3 A 3�� ��� ' P A G � \ � ASR ��5 D for A*m�o � . Sup-
pose that

f � ' 	 � � � }�� f P ASR .
Lemma 6: Let = A � ? be a sequence generated by (25). Then

for any A^m > , one can show:�� A � p � \ A �� D� ��� _ 3 A � \ A 3 D� ��� \ + � � P f P ASR \ f P A � RVR � � D� �
for all _ and some

� u 5 .
Proof: One can verify that the algorithm (25) is equivalent

to the following:* �[Z I ' � ��� � * �[Z I]\ � ��� � $
	 I P * �[Z I]\ � R �
for U ' )X#,+�#�. .�./# P , where * �[Z I ' � \ �65 D A � Z I ,

	 I P * R 'M I P � �65 D * R , and > G ' = * m$o � q 5 _ � � _ < � \ ��5 D� ? . Then
use Lemma 2.1 of [3].

Lemma 7: Suppose that = A � ? is a sequence generated
by (25) with � � u 5 such that W
	
� � � � � � ' 5 andN �� � ^ � � 'wc . Then W
	 � 	�� � � � � f P A � R ' f � .

Proof: The proof is due to Proposition 1.2 of [4]. Assume
for contradiction that there are 4 u 5 , 0 m � , and �	m > such
that

f P �(R`u f P A � R � 4 for all _�3 0 . Since W
	
� � � � � � ' 5 ,
one can assume that 0 is so large that � � � 7 4 where

� u 5
is a constant from Lemma 6. Using Lemma 6, one obtains:�� A � p � \ � �� D� ��� _ 3 A � \ � 3 D� ��� ��� � P � � � \ + 4XR_ 3 A � \ � 3 D� ��� \ � � 4
for all _ 3 0 . Summing up, this gives:

5 _ 3 A � \ � 3 D� ��� _ �� A K \ � �� D� ��� \ 4 � \ �
| � K � �
for all _ u 0 . This is a contradiction since N �� � ^ � � ' c .

Theorem 2: Let = A � ? be the sequence generated by (25) with� � u 5 such that N �� � ^ � � '8c and N �� � ^ � D� 7 c . Then= A � ? converges to some A��wm ; � ' = � m > q f P �(R 3f P AgR #�a Anm > ? .

Proof: Using Lemma 6 with some � m ; � , we have:�� A � p � \ � �� D� ��� _�� A ^ \ � �� D� ��� \ + �
| � ^ � | P f � \ f P A | R
R � �
| � ^ � D | � (43)

for all _ . Since N �� � ^ � D� 7 c , we have

+ �
| � ^ � | P f � \ f P A | RVRs_ �� A ^ \ � �� D� ��� � �
| � ^ � D | � 7 � 7 c
for all _ and some � where

�
is a constant from Lemma 6. This

implies that N �| � ^ � | P f � \ f P A | RVR 7 c since
f � \ f P A | R 35 # a � . Therefore, (43) implies that = A � ? is bounded. By

Lemma 7, there exists a subsequence = A ��� ? of = A � ? such thatW
	
� | � � f P A ��� R ' f � . Since = A ��� ? is bounded, there ex-
ists a subsequence = A ����� ? of = A ��� ? such that = A ����� ? con-
verges to some A�� m > [26, p. 652]. By the continuity
of

f
, we have

f P A�� R ' f � , that is, A�� m ; � . We have
obtained a limit point A�� m ; � of = A � ? . Now we fol-
low the line of the proof of Proposition 1.3 of [4]. For any4 u 5 , take 0 m � such that

�� A K \ A�� �� D� ��� _ 4  + andN �| � K � \ + � | P f � \ f P A | R
R ��� D | � � _�4  + . Using Lemma 6,
one obtains:�� A � p � \ A � �� D� ��� _�� A K \ A � �� D� ��� � �
| � K � \ + � | P f � \ f P A | R
R ��� D | � � _�4
for all _ 3 0 .

Corollary 3: W
	
� � � � A �[Z I ' A�� m ; � #�a U .
Proof: Use W
	
� � � � � � ' 5 with the assumption that

$ M I
is bounded on > .
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Fig. 1. Toy example of OS algorithms. (a) Trajectory of iterates of a (non-OS)
gradient method with a constant stepsize and its OS version with

�
subsets. The

optimal point is �4&� � ��� �Y>���� � � and the initial point is 4 ! �
���Y>�� � . (b) Nor-
malized

�
difference � � ���4�� � � �54 pGq r � � *
	 � ���4�� � � �54 ! �
� versus iteration

number. For the OS method, each subiterate is denoted.
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difference � � � ��L��� � �'� pGq r � � * � � � �� � �� �'� ! � � versus iteration number for unrelaxed modified BSREM and relaxed
modified BSREM with � and �/� subsets. For relaxed modified BSREM-8 (top)
and relaxed modified BSREM-40 (bottom), o p ��� * � �� , t���� � and o p �
�
* ��t���� � are used, respectively. This figure shows every subiterate.
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Fig. 4. Comparison of normalized
�

difference � � � �� � � � ��� pXq r � � * � � � ��L���� �'� ! �+� versus iteration number for unrelaxed OS-SPS and relaxed OS-SPS
with � and �/� subsets. For relaxed OS-SPS-8 (top) and relaxed OS-SPS-40
(bottom), o p �	� * � �, t
��� � and o p ��� * �'t
��� � are used, respectively. This
figure shows every subiterate.
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Fig. 5. Comparison of normalized
�

difference � � � ��L��� � �'� p �+� * � � � ��?���� �'� ! � � versus iteration number for unrelaxed OS algorithms and relaxed ones.
(a) Unrelaxed modified BSREM and relaxed modified BSREM. This figure is
the same as Fig. 3 except that it shows only each iterate. (b) Unrelaxed OS-SPS
and relaxed OS-SPS. This figure is the same as Fig. 4 except that it shows only
each iterate.

(a) (b)

(d)(c)

Fig. 6. (a) Shepp-Logan digital phantom (true image). (b) FBP reconstruction
(starting image). (c) PL reconstruction using �d� iterations of relaxed modified
BSREM with � subsets. (d) PL reconstruction using �d� iterations of relaxed
OS-SPS with � subsets.
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TABLE I

ALGORITHM OUTLINE FOR THE ALGORITHMS PRESENTED IN THIS PAPER

Compute a bound < on a solution by (32) in Appendix A.
Compute

T
by (35) in Appendix B if D "'HF , that is, � � ' 5 but ��� u 5 for some % .

Precompute � � ' N K� ��� � � �  QP for modified BSREM,
or precompute

���� for relaxed OS-SPS. Use (26) for quadratic penalty.
for each iteration _ ' )X# .�.�. ,niter

for each subset U8' )X#�. .�./# P�U � ' N ��
��� � � � ��-� � � � for % m HLIVT � ' ' VT � P�T R � +T � P�T R P �U � \-T R for % mED and �U � _ T # where T � P7U R ' �2� WZY�[ U�\jUP ���  �U � R \ ) otherwiseA ��� � ' �A
for 9 '*)�#�.�. ./# �Vf � ' N � }ED F � � � VT � \ z N |~} � � � � | V� P � ��� �� \ � ��� �| R  QP

Update ��-� . (See Table II.)
end

end
end

TABLE II

COMPARISON OF ALGORITHMS

Algorithm Update in Table I Sufficient conditions for convergence
(i) N � � � ' c (ii) N � � D� 7 c

Modified BSREM-I
���� ' ' ����  � � for ���� 7 <  +P < \ �� � R  � � for �� � 3 <  + (iii) � � is sufficiently small

(vi) �A 	�

� � � � � m ����	 >�� � q ' �� � ��� � ���� Vf � or, instead of (iii) and (iv),
(v) All iterates lie in the interior of >�� � q ' �� � ��� � ����#Vf � same as above

Modified BSREM-II ���� q ' ' �
if ��-� _ 5< \ �

if ���� 3 < N � � � ' c and N � � D� 7 c�� � q ' �� � ��� � ���� Vf �
Relaxed OS-SPS ���� q ' ' 5 if ���� _ 5< if ���� 3 < N � � � ' c and N � � D� 7 c
�

is a small value, say, 5 . 5�5 ) ����� � ���� ���� .


