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The expectation-maximization (EM) algorithm for maximum-likelihood image

recovery, although it provides the guarantee of convergence, has a slow convergence

rate. Its ordered subset version (OS-EM), widely used in image reconstruction for

tomography due to an order-of-magnitude acceleration over the EM algorithm, how-

ever, is not able to guarantee convergence. The recently proposed ordered subsets,

separable paraboloidal surrogates (OS-SPS) algorithm with relaxation has been

shown to converge to the optimal point while providing fast convergence. In this

paper, we adapt the relaxed OS-SPS algorithm to the problem of image restoration.

Because data acquisition is different in image restoration than in tomography, we

employ a different strategy for choosing subsets using pixel location rather than

projection angles. Simulation results show that the relaxed OS-SPS algorithm can

achieve the same order-of-magnitude acceleration in restoration as in tomography.

This new algorithm now provides image restoration with the speed and guaranteed

convergence necessary for efficiency and improved resolution in image restoration.
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1. Introduction

Statistical techniques have been shown to improve image quality in image restoration. Statistical

methods can incorporate physical models of imaging systems, thus improving restoration. Moreover,

object constraints, such as nonnegativity, can be easily enforced. Since closed form solutions for these

techniques are usually unobtainable, iterative algorithms are needed.1–5 Fast converging algorithms

are desirable to quickly recover the original image. However, there are some drawbacks of existing

algorithms, such as convergence, computation time, and parallelizability.

Expectation-maximization (EM) algorithms6,7 and their ordered subset (OS) versions8 are
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among the most commonly used algorithms; however, they have limitations either of speed or

convergence. The EM algorithms are guaranteed to converge; however, they converge very slowly.

The OS-EM algorithm8 has become very attractive to image reconstruction in tomography due

to its fast convergence rate compared with the EM algorithms. It “converges” approximately M

times faster than the EM algorithms, where M is the number of subsets. However, the OS-EM

algorithm is not guaranteed to converge. After many iterations, the OS-EM algorithm oscillates

rather than converges to an ML solution. Therefore, many approaches have been proposed to

solve the convergence problem of the OS algorithm, such as the row-action maximum likelihood

algorithm (RAMLA)9 and its regularized version, the block sequential regularized EM (BSREM)

algorithm.10 Although the RAMLA and BSREM algorithms were proved to converge, they require

a strong assumption that the objective sequence is convergent.

Recently, the relaxed ordered subsets separable paraboloidal surrogates (OS-SPS) algorithm11

has been shown to converge under practical assumptions. This algorithm is derived from the sepa-

rable paraboloidal surrogates (SPS) algorithm,12,13 which is closely related to the EM algorithms.

Like the EM algorithms, the OS version of the SPS (OS-SPS) algorithm14 was introduced for trans-

mission tomography. Even though the OS-SPS algorithm converges very fast, it is not guaranteed

to converge. To fix the convergence problem of the OS-SPS algorithm, the relaxed OS-SPS algo-

rithm11 was proposed by introducing the relaxation parameter into the algorithm. This algorithm

not only retains the fast convergence rate of the OS-SPS algorithm but is guaranteed to globally

converge as well. Unlike the relaxed OS-SPS algorithm, the relaxed version of the OS-EM algorithm

is not guaranteed to converge to the optimal point. Therefore, in this paper, we will implement the

relaxed OS-SPS algorithm for image restoration.15 Most existing OS methods have been applied

to image reconstruction in tomography only, but not to image restoration; therefore, a different

strategy for choosing subsets must be developed.

Since data acquisition necessary for image reconstruction in tomography is based on projection

angles, the subsets obtained are not suitable for the pixel-based image restoration. Bertero and

Boccacci applied the OS-EM method to the restoration of the large binocular telescope (LBT)

images.16 However, the structure of the LBT imaging is similar to that of the computed tomography

(CT): multiple views of the same object have been observed at different angles. Thus, this technique

cannot be applied to typical image restoration problems. In this paper, we focus on the more

traditional image restoration problem of recovering a scene from a single blurred, noisy measured

image under the simplifying assumption that the point spread function (PSF) is known. Instead of

choosing subsets by downsampling projection angles as in tomography, for restoration, we choose

subsets by downsampling pixels.

This paper is organized as follows. Section 2. describes the measurement model and the ob-

jective function. The relaxed OS-SPS algorithm for image restoration is presented in Section 3..

Subset design for restoration problems is discussed in Section 4.. In Section 5., we develop some

efficient implementation strategies, and quantify the computational complexity for the relaxed OS-

SPS algorithm. Simulation results and performance of subset designs are presented in Section 6..

Finally, conclusions are given in Section 7..
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2. Measurement Model

In image restoration problems, the measurements are usually degraded by blur and noise. To recover

the original image, one can use the statistical characteristics of the measurement system to specify

an objective function that is to be maximized. Since image restoration is an ill-posed problem, we

focus on penalized likelihood (PL) estimation using an objective function of the following form:

Φ(x) = L(x)− βR(x), (1)

where x denotes the image parameter vector to be estimated, L denotes the log-likelihood function

of the measurement, R denotes the roughness penalty function, and β denotes a parameter that

controls the degree of smoothness in the restored image.

For photon limited imaging (such as confocal microscopy), the noisy measurement Y can be

modeled (approximately17,18) as follows:

Yi ∼ Poisson{[Ax]i + bi}, i = 1, . . . ,N,

where A is the system matrix which is assumed to be known, bi represents the background noise

and dark current, and N is the number of pixels. The corresponding log-likelihood function is given

by

L(x) =
N∑
i=1

ψi(li), (2)

where li =
∑P
j=1 aijxj and ψi(l) = yi log(l+ bi)− (l+ bi), ignoring irrelevant constants independent

of x.

To reduce noise, we penalize the differences between neighboring pixels using a roughness

penalty function of the form

R(x) =
r∑
i=1

ψR([Cx]i),

where ψR is the potential function and C is the penalty matrix. For the first-order neighborhood,

the matrix C consists of horizontal and vertical cliques. For example, with a 2×2 image, the matrix

C can be written as follows:

Cx =



−1 1 0 0

0 0 −1 1

−1 0 1 0

0 −1 0 1






x1

x2

x3

x4


 =



x2 − x1

x4 − x3

x3 − x1

x4 − x2




We assume that each potential penalty function ψR(t) satisfies the following conditions:13,19, 20

• ψR is symmetric.

• ψR is everywhere differentiable (and therefore continuous).

• ψ̇R(t) = d/dtψR(t) is convex.
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• ω(t) = ψ̇R(t)
t is non-decreasing for t ≥ 0.

• ω(0) = limt→0
ψ̇R(t)
t is finite and nonzero.

With proper regularization, the objective function has a unique global maximum. Thus, our

goal is to estimate x by finding the maximizer of the objective function:

x̂
4
= argmax

x≥0
Φ(x).

Because closed form solutions are unavailable for the maximizer, iterative algorithms are needed.

3. The Algorithms

Due to an order-of-magnitude acceleration over the EM algorithms, the OS-EM algorithm has been

widely used in image reconstruction for tomography; however, the application to conventional image

restoration has not been explored yet to our knowledge. The OS-EM algorithm is not guaranteed to

converge even if relaxed.11 Since the OS-SPS algorithm with relaxation is guaranteed to converge,

our ordered subsets algorithm for image restoration will be based on the relaxed OS-SPS algorithm.

A. OS Technique

The objective function in (1) can be decomposed into sub-objective functions fm as follows:

Φ(x) =
M∑
m=1

fm(x),

where M is the total number of subsets. Let {Sm}Mm=1 be a disjoint partition of {1, . . . ,N}. Then

fm’s are obtained by replacing a sum over all pixel indices in the likelihood function of (2) with a

sum over a subset of data Sm as follows:

fm(x)
4
=
∑
i∈Sm

ψi(li(x))−
β

M
R(x).

Suppose the “subset-balance”-like conditions8 hold for the gradient of each sub-objective function:

∇f1(x) ∼= ∇f2(x) ∼= · · · ∼= ∇fM(x).

Then the gradient of the objective function Φ(x) can be approximated as follows:

∇Φ(x) ∼=M∇fm(x), ∀m. (3)

Using (3), one can replace ∇Φ(x) with M∇fm(x) in any gradient-based algorithm to construct an

OS-version of that algorithm. As previously discussed, the OS-EM is not guaranteed to converge

even in the relaxed version.

4



B. OS-SPS

The separable paraboloidal surrogates (SPS) algorithm is based on paraboloidal surrogate func-

tions12,13 and the concavity technique developed by De Pierro.7 The pixel update for the SPS

algorithm can be summarized as follows:

xn+1j =

[
xnj +

∇jΦ(xn)∑m
i=1 aijγic

n
i + βpj

]
+

, (4)

where, in the PL estimation,

∇jΦ(x) =
N∑
i=1

aijψ̇i(li(x))− β
r∑
i=1

cijψ̇R([Cx]i). (5)

In (4), γi =
∑P
j=1 aij , and c

n
i is the following optimal curvature which guarantees convergence of

SPS13

cni =



[
2
(lni )

2

(
ψi(l

n
i )− ψi(0)− l

n
i ψ̇i(l

n
i )
)]
+
, lni > 0[

−ḧi(0)
]
+
, lni = 0.

By using the nonquadratic penalty function, its curvature pj in (4) is given by

pj =
r∑
i=1

cijνiω(0),

where νi =
∑p
j=1 cij , and ω(t) =

ψ̇R(t)
t .

Erdoğan and Fessler14 introduced to the OS version of the SPS algorithm for transmission

tomography. Based on (3), the gradient of the objective function in (5) is replaced by the sub-

objective function multiplied by the number of subsets. We define x(n+1,0) = x(n,M). Then the pixel

update xj for the OS-SPS algorithm is

x
(n,m)
j =

[
x
(n,m−1)
j +M

∇jfm(x(n,m−1))

dj + βpj

]
+

, m = 1, . . . ,M, (6)

where

∇jfm(x) =
∑
i∈Sm

aijψ̇i(li(x))−
β

M

r∑
i=1

cijψ̇
R([Cx]i).

In (6), the curvature of the likelihood dj is precomputed as follows:

dj =
N∑
i=1

aijγici,

where ci = −ψ̈i(yi − bi). Although the OS-SPS algorithm converges faster than SPS in early

iterations, it is not guaranteed to converge.
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C. Relaxed OS-SPS Algorithm

To guarantee the convergence of the OS-SPS algorithm, Ahn and Fessler11 modified the OS-SPS

algorithm to include relaxation. From (6), the pixel update of the relaxed OS-SPS algorithm be-

comes

x
(n,m)
j =

[
x
(n,m−1)
j + αnM

∇jfm(xn,m−1)

dj + βpj

]
+

, m = 1, . . . ,M,

where a positive relaxation parameter αn is chosen such that
∑
n αn = ∞ and

∑
n α
2
n < ∞. We

use αn =
ξ

(ξ−1)+n , where ξ is a positive constant, a “tuning parameter” that affects the rate

of convergence and is chosen empirically. This algorithm is globally convergent.11 The algorithm

outline for relaxed OS-SPS algorithm is shown in Table 1.

D. Blind Restoration

Many blind restoration techniques have been applied to simultaneously restore the image and

estimate the PSF.21–24 The relaxed OS-SPS algorithm is applicable to blind restoration as well. In

blind restoration technique, the image can be estimated by using the relaxed OS-SPS algorithm,

whereas the PSF can be simultaneously estimated by using the ordinary SPS or EM algorithms

due to a small number of parameters in the PSF.

4. Subset Design

Since most OS algorithms have been used for image reconstruction to date, a different strategy

for choosing subsets in image restoration needs to be considered because of difference in data

acquisition. A good choice of subsets should satisfy the “subset-balance” condition stated in (3).

In tomography, the subsets are chosen from downsampling the projection angles. One possible

approach for choosing the subsets in restoration problem is to downsample the pixels in the image.

This approach seems to satisfy the “subset-balance” condition. Possible choices of four subsets for

a 2D image are shown in Fig. 1. “4×1” OS-SPS stands for a downsampling design with 4 subsets

along the row and 1 subset along the column as shown in Fig. 1a. We have found that dividing the

image into large contiguous blocks (Fig. 2) tends to be a poor choice of subsets since it violates the

“subset-balance” condition. “4×1B” OS-SPS stands for a block design with 4 subblocks along the

row and 1 subblock along the column as shown in Fig. 2a. The analysis of how the possible choices

of subsets may effect the convergence rate will be discussed in Section 6..

5. Implementation Techniques and Complexity

Because most computation time in the OS-SPS algorithm takes place in (11) and (12), in this

section, we discuss how to efficiently implement these two expressions in the code for both space-

variant and space-invariant systems.

A. Space-Variant Systems

A literal implementation of (11) and (12) in Table 1 would be appropriate for a shift-variant imaging

system whose collection of PSFs is tabulated as a sparse set of aij values. By using this technique,
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the computational complexity in the OS-SPS algorithm is indifferent from that in the nonordered

subsets (nonOS) algorithm.

B. Space-Invariant Systems Using Convolution

For shift-invariant systems, however, one would typically implement (11) and (12) using convolution

or FFT-based convolution in the conventional single-subset type of gradient-based iteration. Since

these operations dominate the algorithm, it is essential to formulate efficient implementation of

these two expressions. Computing all values of l̂ using ordinary convolution would be inefficient

when only some values of l̂ are being used. Therefore, we introduced the following technique for

computing (11) and (12) efficiently with convolution.

By assuming a space-invariant system, we rewrite (11) in the convolution form as follows:

l̂i =
P∑
j=1

hi−jxj , ∀i ∈ Sm, (7)

where h is the PSF. For illustration, 1D convolution is considered. Extension to 2D and 3D is

straightforward. To efficiently compute some values of l̂, we rewrite (7) using two summations:

l̂i =
M∑
m=1

∑
j∈Sm

hi−jxj , ∀i ∈ Sm. (8)

Using this expression, we can compute l̂i for i ∈ Sm by convolving the downsampled image and the

PSF according to subset Sm, and then summing all the subsets (Fig. 3).

Likewise, to compute (12) efficiently by convolution, we can rewrite that expression as follows:

L̇j =
∑
i∈Sm

hi−jψ̇i, (9)

For each j, L̇j can be computed by using ψ̇i and a downsampled PSF. Different j’s require a

different downsampling of the PSF, but use the same ψ̇i’s (Fig. 4).

If implemented carefully, computational complexity for this convolution technique does not

increase as the number of subsets increases.

C. Space-Invariant Systems Using FFT

For simultaneous update methods, such as the EM algorithms for image restoration, one can use

FFT to reduce computation, especially for large 3D problems. Similarly, a strategy for using FFTs

in the OS-SPS algorithm would be desirable to efficiently compute L̇j and l̂i. One possible solution

is to implement the partial FFT algorithm,25 where only a small number of frequencies are evalu-

ated. Since there is a specific pattern for computing l̂i and L̇j in each subset, rather than adapting

and implementing this partial FFT technique into our algorithm, we develop the following tech-

nique based on the ordinary FFT algorithm, which should yield the same complexity but avoids

implementing a new FFT code.
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For illustration of our technique, 1D data and 2 subsets (M = 2) are considered. Let spatial

indices be replaced by η to avoid confusion, H(k) be an N -point FFT of h, and X(k) be an N -point

FFT of x. To compute l̂ for 2 subsets using FFT, we reformulate the following expression:

l̂(η) =
1

N

N−1∑
k=0

H(k)X(k) exp

(
j
2πηk

N

)
, η ∈ Sm.

Let η = 0, . . . ,N/2 − 1. Then the even indices of l̂ belonging to subset 1 and the odd indices

belonging to subset 2 are computed as follows:

m = 1; l̂(2η) =
1

N

N/2−1∑
k=0

[H(k)X(k) +H(k +N/2)X(k +N/2)] exp

(
j
2πηk

N/2

)

m = 2; l̂(2η + 1) =
1

N

N/2−1∑
k=0

[H(k)X(k) −H(k +N/2)X(k +N/2)] exp
(
j
2πk

N

)
exp

(
j
2πηk

N/2

)

In this technique, full N -point FFT is performed for h and x, but N/M -point inverse FFT (IFFT)

is performed on l̂ for each subset. Therefore, the number of complex multiplications in the OS-SPS

using FFT for M subsets is given as follows:

MN

2
log2N +

N

2
log2

(
N

M

)
+MN +N −

N

M
, (10)

whereas the number of complex multiplications in the nonOS algorithm is N log2(2N) for computing

l̂. Table 2 shows the numerical comparison of complex multiplication between the OS and nonOS

algorithms using FFT.

Although the number of complex multiplications increases as the number of subsets increases,

it increases less rapidly than the number of subsets. Since the convergence rate increases roughly

by a factor of number of subsets,8,11, 15 there is still an advantage for using FFTs in the OS-SPS

algorithm, especially when N is large.

Similarly to l̂, to compute L̇j in (9) efficiently using FFT, we perform the following technique:

L̇(η) =
1

N

N−1∑
k=0

H(k)Ψ(k) exp

(
j
2πηk

N

)
, ∀η.

L̇ is obtained by performing an N -point IFFT of the product of H(k) and Ψ(k); however, H(k)

and Ψ(k) are computed from the reduced data given in each subset, i.e., even and odd sets of data

for a 2-subset case. Thus, for k = 0, . . . ,N/2− 1, N -point H(k) and N -point Ψ(k) for both subsets

are computed as follows:

m = 1; H(k) =

N/2−1∑
η=0

h(2η) exp

(
−j
2πηk

N/2

)
= H(k +N/2)

Ψ(k) =

N/2−1∑
η=0

ψ̇(2η) exp

(
−j
2πηk

N/2

)
= Ψ(k +N/2)
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m = 2; H(k) = exp

(
−j
2πk

N

)N/2−1∑
η=0

h(2η + 1) exp

(
−j
2πηk

N/2

)
= −H(k +N/2)

Ψ(k) = exp

(
−j
2πk

N

)N/2−1∑
η=0

ψ̇(2η + 1) exp

(
−j
2πηk

N/2

)
= −Ψ(k +N/2).

Thus N/2-point FFTs are performed to obtain the first halves of H(k) and Ψ(k). In this case, the

multiplication complexity for computing L̇ is the same as the complexity for computing l̂.

In the FFT technique described above, we only illustrate the techniques for radix-2 FFT. If the

data sizes are not powers of 2, then zero-padding should be applied to avoid large prime factors.26

6. Simulation Results

This section illustrates the proposed algorithm using a 2D simulated data in comparison with

existing algorithms. It also reports the characteristics of various subset choices as discussed in

Section 4..

A. 2D Results

A 256×256 cell image (Fig. 5a) was degraded by a 15×15 PSF, created from the XCOSM package1

(only the central xz plane is used to clearly show elongation of the PSF in the z direction),27 and

Poisson noise with PSNR2 of 40 dB, as shown in Fig. 5b. We assigned the relaxation parameter

αn = 11/(10 +n) and, for edge-preserving,
28 we used the nonquadratic roughness penalty function

ψR(t) = δ2
[∣∣ t
δ

∣∣− log (1 + ∣∣ tδ ∣∣)] , where δ controls the degree of edge preservation. Fig. 5c shows the
restoration with the relaxed OS-SPS algorithm (8 subsets) performed for 50 iterations.

Table 3 compares the elapsed time per iteration of different algorithms: De Pierro’s modified

EM (DPEM),7 SPS (with optimal curvature), and relaxed OS-SPS (with precomputed curvature)

algorithms. Theoretically, different subsets of the relaxed OS-SPS algorithm (using the convolution

technique described in Section 5.B.) should yield approximately the same computation time per

iteration as the nonOS version. Although, we were not able to achieve that due to MATLAB

overhead, the computation time per iteration increases less rapidly than the number of subsets.

A better way to compare the complexity of the OS-SPS algorithm with the nonOS version is

to calculate the number of floating point operations (FLOPs). Table 3 shows that the numbers

of FLOPs required in the OS-SPS algorithms are slightly different from the number of FLOPs

required in the SPS algorithm. This agrees with our discussion given in Section 5.B..

Fig. 6 shows the objective increase, Φ(xn)−Φ(x0), at each iteration of DPEM, SPS, ordinary

OS-SPS (8 subsets), and relaxed OS-SPS (8 subsets). In this figure, both ordinary OS-SPS and re-

laxed OS-SPS algorithms increase the objective function faster than the DPEM algorithm roughly

1pixel sizes 4x = 4y = 4z = 0.15µm, 40× /1.0 NA oil-immersion objective, and a fluorescent wavelength of 0.63

µm.
2The peak signal-to-noise ratio is defined as follows:

PSNR = 10 log10

(
maxi(yi−bi)

2

1
N

∑
i
(yi−E[yi])2

)
.
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by the number of subsets. However, the relaxed OS-SPS algorithm is guaranteed to eventually con-

verge to the optimal point, unlike the original OS-SPS algorithm. Fig. 7 compares the convergence

rates for different number of subsets. The relaxed OS-SPS-16 yields the fastest convergence rate.

B. Sebset Design

One’s choice of subsets can effect the convergence rate of the algorithm. Fig. 8 shows the plots

of objective increase versus number of iterations for different choices of subsets (Figs. 1-2) using

the relaxed OS-SPS algorithm. In this figure, the subsets with the subblock approach show a poor

unpredictable behavior at the beginning of iterations; however, the relaxed OS-SPS algorithm using

these subsets eventually converge to the optimal point. Without relaxation, they might get stuck

at some suboptimal point. This unpredictable behavior is due to the violation of the “subset-

balance” condition and it does not appear in the case of the downsampling approach. Therefore,

the downsampling approach is more desirable for obtaining a “well-behaved” objective function.

With the downsampling approach, different designs of subsets provide almost the same convergence

rate and similar number of FLOPs. Thus, the choice of subsets does not affect the convergence rate

much as long as the downsampling approach is used.

7. Conclusion

We demonstrated that the relaxed OS-SPS algorithm, conventionally used for tomography, can be

adapted to use in image restoration by choosing appropriate subsets. Essentially, we based this

choice on the pixel location. As long as the subsets are chosen from downsampling the pixels,

different choices of subsets hardly effect the convergence rate of the algorithm. Similarly to tomog-

raphy, we are able to achieve order-of-magnitude acceleration over the nonOS version algorithm.

The computational complexity of the OS-SPS algorithm using the convolution approach described

in Section 5.B. is theoretically the same for all the numbers of subsets. Although the FFT ap-

proach described in Section 5.C. increases the computational complexity of the algorithm when

the number of subset increases, the overall convergence rate is still faster than the nonOS algorithm.
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Fig. 1. These subsets tend to satisfy the “subset-balance” condition. The first number in

the quotation marks is the number of subsets along the row and the second number is the

number of subsets along the column. The total number of subsets is the product of these

two numbers. The pixel label m belongs to the respective set Sm.

Fig. 2. These subsets tend to violate the “subset-balance” condition. The first number in

the quotation marks is the number of subblocks along the row and the second number is

the number of subblocks along the column.

Fig. 3. Compute l̂i, ∀i ∈ Sm, using all information of x and h. The symbol * represents

convolution. The white blocks denote elements of x belonging to subset m = 1 and the

stripe blocks denote elements of x belonging to subset m = 2.

Fig. 4. Compute L̇j , ∀j, using some information of ψ̇i.

Fig. 5. Simulated images and restoration using the relaxed OS-SPS algorithm with β = 10−6

and δ = 100. The PSF in the noisy blurry image was simulated from the 2D PSF of the

confocal microscope in the xz direction, where x is along the horizontal axis and z is along

the vertical axis, to show elongation in the z direction. This elongation disappears in the

restored image.

Fig. 6. Comparison of objective function increase of DPEM, SPS, OS-SPS, and relaxed

OS-SPS algorithms. The nonrelaxed and relaxed OS-SPS algorithms have the order-of-

magnitude acceleration over the DPEM and SPS algorithms.

Fig. 7. Comparison of objective function increase versus elapsed time of relaxed OS-SPS

algorithms with different numbers of subsets. The 16-subset OS-SPS yield the fastest con-

vergence rate.
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Fig. 8. Comparison of different choices of subsets using relaxed OS-SPS algorithm. The

subset unbalance of the relaxed OS-SPS with the subblock design causes an unpredictable

behavior of the objective function increase at the beginning of iterations but the algorithm

eventually converges due to relaxation. The relaxed OS-SPS algorithms with downsampling

design converge almost at the same rate for different choices of subsets.
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a. Original image

b. Noisy blurry image

c. Restored image

Figure 5, Sotthivirat and Fessler
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Table 1. Relaxed OS-SPS Algorithm Outline.

Precompute:

dj =
∑N
i=1 aijγici

pj =
∑r
i=1 cijνiω(0)

for n = 1, . . . ,Niters

αn =
ξ

(ξ−1)+n

for m = 1, . . . ,M

l̂i =
P∑
j=1

aijx
(n,m−1)
j , ∀i ∈ Sm (11)

ψ̇i =
yi

l̂i+bi
− 1, ∀i ∈ Sm

for j = 1, . . . , P

L̇j =
∑
i∈Sm

aijψ̇i (12)

Ṙj =
∑r
i=1 cijψ̇

R([Cx(n,m−1)]i)

x
(n,m)
j =

[
x
(n,m−1)
j + αnM

L̇j−
β
M
Ṙj

dj+βpj

]
+

end

end

end
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Table 2. Comparison of multiplication complexity ratio between OS-SPS and nonOS algo-

rithms in computing l̂i (using FFT)

Number of data points Number of subsets Complexity ratio between OS and nonOS

2 1.57

64 4 2.68

8 4.91

2 1.55

512 4 2.62

8 4.79
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Table 3. Comparison of elapsed times per iteration and number of FLOPs for DPEM, SPS,

and OS-SPS algorithms.

Time/iter (s) Time comparison Number of FLOPs FLOPs comparison

DPEM 1.03 0.92 84,937,142 0.92

SPS 1.12 1 92,406,026 1

OS-SPS-2 1.23 1.10 92,522,010 1.00

OS-SPS-4 1.86 1.66 95,944,812 1.04

OS-SPS-8 3.65 3.26 102,919,258 1.11

OS-SPS-16 6.83 6.10 116,976,572 1.27
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