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ABSTRACT

This paper describes a statistical image reconstruction
method for X-ray CT that is based on a physical model
that accounts for the polyenergetic X-ray source spectrum
and the measurement nonlinearities caused by energy-
dependent attenuation. We assume that the object consists
of a given number of non-overlapping materials, such as
soft tissue and bone. The attenuation coefficient of each
voxel is the product of its unknown density and a known
energy-dependent mass attenuation coefficient. We for-
mulate a penalized-likelihood function for this polyener-
getic model and develop an ordered-subsets iterative algo-
rithm for estimating the unknown densities in each voxel.
The algorithm monotonically decreases the cost function
at each iteration when one subset is used. Applying this
method to simulated X-ray CT measurements of objects
containing both bone and soft tissue yields images with
significantly reduced beam hardening artifacts.

keywords: X-ray CT, statistical reconstruction, beam
hardening, penalized likelihood.

I. INTRODUCTION

X-ray computed tomography (CT) provides images of
object attenuation characteristics. CT scanners record
‘projection’ measurements of the transmission of X-ray
photons through an object at different angles.

The linear attenuation coefficientµ(x, y, z, E) charac-
terizes the overall attenuation property of an object. It
depends on the spatial coordinates(x, y, z) and the beam
energyE , and has units of inverse distance. For a ray
Li of infinitesimal width, the projection measurementYi
recorded by theith detector would ideally be

Yi =

∫
Ii(E)e

−
∫
Li
µ(x,y,z,E)dl

dE . (1)
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The integral in the exponent is taken over the lineLi and
Ii(E) incorporates the energy dependence of both the inci-
dent ray source spectrum and the detector sensitivity. The
goal of any CT algorithm is to reconstruct the attenua-
tion mapµ from the the set of measured projection data
{Yi}Ni=1, whereN is the number of rays. In reality, the
measurements suffer from background events such as scat-
ter and from noise. Most reconstruction methods ignore
the polyenergetic nature of (1). This paper develops a sta-
tistical reconstruction method based on (1) [1].

The conventional method for reconstruction from pro-
jections is filtered back projection (FBP), which is used
widely in both X-ray CT and in emission tomography
modalities (PET and SPECT). FBP is based on the Fourier
Slice Theorem and can be implemented with FFT. FBP
is therefore fast and reliable. However, the technology
progress towards non-Radon scanning geometries, such as
cone-beam and multi-slice helical CT, is increasingly chal-
lenging the capabilities of FBP. Statistical methods natu-
rally address the shortcomings of FBP, and may become
viable alternatives.

Statistical techniques have several attractive features
[2–4]. They statistically model the data noise, offering
the potential for better bias-variance performance. They
can also model such phenomena as scatter and energy de-
pendence leading to more accurate and artifact-free re-
construction. Statistical methods also easily incorporate
the system geometry, detector response, object constraints
and any prior knowledge. They are well suited for arbi-
trary geometries and situations with truncated data. Their
main drawback (when compared to FBP) is longer compu-
tation times. For clinical CT images with typical sizes of
512 × 512 pixels or larger, conventional statistical meth-
ods require prohibitively long computation times which
hinder their use. In this work, we apply ordered subsets to
accelerate the algorithms [3,5,6].

Statistical techniques are more widely used for PET and
SPECT imaging than X-ray CT. Contributing to this suc-
cess is the fact that the maximum-likelihood expectation-
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maximization (ML-EM) algorithm has a closed-form ex-
pression for the emission case [7]. Also, PET and SPECT
typically have low counts. The emission modalities have
image sizes and resolution requirements such that the rel-
atively longer computational time of statistical methods is
fairly easily surmounted.

Statistical methods have also found their way into
transmission tomography applications. One example
is attenuation map reconstruction from monoenergetic,
radioisotope-based transmission scans for attenuation cor-
rection of emission images [5,8]. Statistical reconstruction
for X-ray CT was shown to outperform FBP in metal ar-
tifact reduction [9, 10], in limited-angle tomography [11]
and to have lower bias-noise curves [12].

A number of X-ray CT statistical reconstruction tech-
niques employ the EM algorithm [13]. The transmission
EM algorithm does not have a closed form, forcing the use
of mathematical approximations [7, 14, 15]. On occasion
the emission EM algorithm has been used to reconstruct
log-processed transmission data [10, 11]. This approach
uses a model that mismatches the data and therefore leads
to suboptimal results [5]. Other approaches include using
coordinate descent [16] or Gauss-Seidel [17] algorithms
to maximize a likelihood function or an approximation
thereof.

Nearly all prior statistical X-ray CT reconstruction al-
gorithms assume (either implicitly or explicitly [15]) mo-
noenergetic X-ray beams, and thus ignore the issue of
beam hardening artifacts. That statistical methods can cor-
rect for beam hardening was anticipated early on [14], but
little work appeared in this area.

Using monoenergetic photon sources would eliminate
beam hardening artifacts but is impractical for diagnostic
CT because of SNR considerations. Beam hardening cor-
rection methods are therefore necessary for reconstructing
artifact-free attenuation coefficient images from polyener-
getic measurements.

Many beam hardening correction methods are based on
classifying the object materials into two categories: low-
density (soft tissue) and high-density (bone). They also
involve some estimate of the nonlinear effects and are of-
ten implemented with a parallel or fan-beam geometry in
mind [18–20]. Recently, some of these methods were gen-
eralized to three base materials [21] and cone-beam geom-
etry [22].

There are a variety of schemes for eliminating beam
hardening artifacts in FBP images. Existing methods fall
into three categories: 1) dual-energy imaging, 2) prepro-
cessing of projection data and 3) post-processing of the
reconstructed image.

Dual-energy imaging has been described as the most
theoretically elegant approach to eliminate beam harden-
ing artifacts [23]. The approach is based on expressing the
spectral information by a few constants independent of en-
ergy [24] by writing the attenuation coefficient as a sum of
two basis functions, one modeling the photo-electric effect
and the other Compton scatter. This technique provides
complete energy dependent information for CT imaging.
An attenuation coefficient image can in principle be pre-
sented at any energy, free from beam hardening artifacts.
The method’s major drawback is the requirement for two
independent energy measurements. This has inhibited its
use in clinical applications, despite the potential diagnos-
tic benefit of energy information. Recently, multi-energy
X-ray CT has been used for imaging small animals [25]
with a CT scanner that was custom built with an energy-
selective detector. Dual-energy imaging is also an area
where statistical iterative reconstruction provides superior
results to analytical methods [26].

Preprocessing approaches are based on the assumption
that the energy dependence of soft tissue is similar to
that of water. Knowledge of the energy dependence of
the attenuation coefficient of water provides a one-to-one
mapping between monoenergetic and polyenergetic mea-
surements. In preprocessing, one simply maps (or pre-
corrects) the sinogram data to monoenergetic values and
then one reconstructs the image from the corrected sino-
gram. Preprocessing works well with soft-tissue objects,
but is poor when high Z materials, such as bone, are
present. Preprocessing is often the first step in bone cor-
rection algorithms [18,20].

The method described by Joseph and Spital (henceforth
referred to as JS) [18] is a post-processing technique that
corrects for soft tissue and high Z material (bone) distor-
tions. The method requires knowledge of the X-ray spec-
trum and involves an initial reconstruction, segmentation,
linearization and a final reconstruction. It has been gen-
eralized to correct for 3-substance beam hardening, the
third substance usually being a contrast agent such as Io-
dine [21]. A variation of that algorithm [22] corrects for
beam-hardening artifacts in cone-beam geometry. It uses a
tilted parallel geometry to correct the artifacts. The tilted
parallel geometry reduces the computational complexity
involved in the forward projection and back-projection re-
construction steps for the cone-beam geometry.

Yan et al. developed an iterative, but non-statistical,
beam hardening correction method [27]. It assumes the
attenuation coefficient at each pixel is a linear combination
of the attenuation coefficients of two base substances. The
algorithm iteratively computes the fraction of each base
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substance at each pixel. The algorithm requires a priori
knowledge of the two base substances at each pixel, in
addition to the X-ray spectrum.

The approach we propose for beam hardening correc-
tion is a statistical iterative reconstruction algorithm [1].
It requires knowledge of the X-ray spectrum and requires
a pre-segmented initial image (usually obtainable from a
good FBP image) like JS.The algorithm iteratively min-
imizes surrogate functions to the Poisson likelihood and
can use ordered subsets to accelerate convergence. De-
pending on the approximations used, one version of the
algorithm is monotonic. The algorithm can also take scat-
ter estimates into account.

Recently, De Manet al. suggested an alternative sta-
tistical iterative approach [28]. This technique models the
object as a linear combination of the spectral properties of
two base substances, usually water and bone. Knowledge
of the X-ray spectrum is necessary, but a pre-segmented
image is not required. There are differences in the object
models used in De Man’s approach and ours that would be
interesting to compare in the future. Our derivation uses
paraboloidal surrogates in a way that can guarantee algo-
rithm monotonicity even with nonzero scatter background
(ri in (39) below). The algorithm in [28] does not use
surrogate functions. It minimizes the Poisson likelihood
directly but is derived without taking scatter into account.
The ordered-subset versions of both approaches are not
monotonic and probably roughly equivalent other than the
differences in the object model.

This paper is organized as follows. The next section
discusses a physical model and summarizes a “conven-
tional” statistical algorithm based on a monoenergetic X-
ray beam assumption. Section III generalizes the model
and derives algorithms based on the more realistic polyen-
ergetic case. In Section IV we present simulation results
that compare uncorrected FBP, JS-corrected FBP, statisti-
cal monoenergetic reconstruction and statistical polyener-
getic reconstruction. Section V discusses the results and
outlines potential future work.

II. M ONOENERGETICTRANSMISSION

RECONSTRUCTION

In this section we describe the physical and statisti-
cal models for the problem of transmission image re-
construction with monoenergetic beams. The statistical
reconstruction method involves maximizing a penalized-
likelihood objective function. Presenting the monoener-
getic case illustrates our notation and some key ideas of
statistical iterative reconstruction before having to deal
with the complexities of polyenergetic physics.

A. Monoenergetic Model

Under the assumption of a monoenergetic beam, i.e.,
Ii(E) = Ii(Eo)δ(E − Eo), the measurement (under ideal
conditions) simplifies to Beer’s law:

Yi = Ii(Eo)e
−
∫
Li
µ(x,y,z,Eo)dl

. (2)

We parameterize the image in object space (attenuation
coefficient) using square pixels. The goal of the algorithm
becomes to estimate the value of the (discretized) atten-
uation coefficient at those pixels. Letµ = [µ1, . . . , µp]

′

be the vector of unknown attenuation coefficients hav-
ing units of inverse length, where′ denotes transpose.
We model the measurements as independently distributed
Poisson random variables [4] that are contaminated by ex-
tra background counts, caused primarily by scatter. Addi-
tive detector read-out noise can be accounted for in a sev-
eral ways [29]. We assume the following statistical model
for the measurements:

Yi ∼ Poisson{bie
−[Aµ]i + ri}, i = 1, . . . ,N (3)

where bi = Ii(Eo) is the blank scan factor andN is
the number of measured rays. The notation[Aµ]i =∑p
j=1 aijµj represents theith line integral. TheN × p

matrixA = {aij} is the system matrix which accounts
for the system geometry as well as any other significant
physical effects such as detector response. For rayi and
pixel j, aij is the area of overlap between the ray beam and
the pixel, normalized by the detector width, and has units
of length. The termri accounts for the mean number of
background events and read-out noise variance [29]. We
assume that{bi}, {ri} and{aij} are known non-negative
constants [4].

To estimate the attenuation coefficient vectorµ, we use
a likelihood-based estimation approach. The Poisson log-
likelihood for independent measurements is given by:

L(µ) =
N∑
i=1

{
Yi log(bie

−[Aµ]i + ri)

− (bie
−[Aµ]i + ri)

}
(4)

ignoring constant terms. WhenA has full column rank
and the data is noise-free, maximizing the likelihood
would give a perfect result. In reality, the data is noisy and
maximum likelihood (ML) will give a very noisy recon-
struction due to the ill-posedness of the problem, hence
the need for regularization.

We regularize by adding to the likelihood a penalty term
that penalizes difference in the values of neighboring pix-
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els. The regularizing penalty term is given by the follow-
ing:

R(µ) =
p∑
j=1

∑
k∈Nj

ψ(µj − µk) (5)

whereψ is a potential functions andNj is some neighbor-
hood of pixelj. We use the convex edge-preserving Huber
penalty

ψ(x; δ) =

{
x2

2 , x < δ

δ|x| − δ
2

2 , x ≥ δ.
(6)

Combining the likelihood with a penalty gives a
penalized-likelihood (PL) objective function:

Φ(µ) = L(µ)− βR(µ) (7)

whereβ is a scalar that controls the tradeoff between the
data-fit and the penalty terms. The goal of the reconstruc-
tion technique becomes to maximize (7) subject to certain
object constraints such as nonnegativity:

µ̂ =
argmax
µ ≥ 0

Φ(µ). (8)

The next section will discuss an iterative technique for ap-
proximately solving (8).

B. Penalized Weighted Least Squares with Ordered Sub-
sets

The algorithm is formulated using a quadratic approx-
imation to the Poisson likelihood, which leads to a sim-
pler objective function [17]. The quadratic approxima-
tion leads to a penalized weighted-least-squares (PWLS)
estimate. For high data SNR, PWLS leads to negligible
bias [30] and the simpler objective function can reduce
computation time.

For convenience, we write the negative log-likelihood
corresponding to (4) as follows

−L(µ) =
N∑
i=1

gi([Aµ]i), (9)

where

gi(l) = −Yi log(bie
−l + ri) + (bie

−l + ri). (10)

Applying a second-order Taylor’s expansion togi(l)
around an estimatêli of the line integral yields [17]:

gi(l) ≈ gi(l̂i) + ġi(l̂i)(l − l̂i) +
g̈i(l̂i)

2
(l − l̂i)

2 (11)

whereġi and g̈i are the first and second derivatives ofgi.
AssumingYi > ri, we can estimate the line integral with

l̂i = log

(
bi

Yi − ri

)
. (12)

Substituting this estimate into (11) gives the following ap-
proximation forgi:

gi(l) ≈ (Yi − Yi log Yi) +
wi
2
(l − l̂i)

2. (13)

The first term in (13) is independent ofl and can be

dropped. The weight iswi =
(Yi−ri)2

Yi
or zero for anyi

whereYi ≤ ri. The resulting PWLS cost function is

Φ(µ) =
N∑
i=1

wi
2
([Aµ]i − l̂i)

2 + βR(µ). (14)

The penalty term may be non-quadratic.
According to the optimization transfer principle [4, 31,

32], rather than minimizing the cost function (14), one can
replaceΦ(µ) with a surrogate functionφ(µ;µn) that is
easier to minimize. For monotonicity, the surrogate must
be chosen such thatφ(µn;µn) = Φ(µn) andφ(µ;µn) ≥
Φ(µ) [4]. A new surrogate function is used at each itera-
tion.

The surrogate we seek is one that will make the cost
function separable, so that all pixels can be updated si-
multaneously. Towards that end, we exploit the convexity
of the data-fit term in (14). Rewrite the line integral as
follows [31,32]

[Aµ]i =
p∑
j=1

aijµj

=
p∑
j=1

αij

{
aij
αij
(µj − µ

n
j ) + [Aµ

n]i

}
(15)

where
p∑
j=1

αij = 1, ∀i, αij ≥ 0. (16)

By convexity,

([Aµ]i−l̂i)
2 ≤

p∑
j=1

αij

(
aij
αij
(µj − µ

n
j ) + [Aµ

n]i − l̂i

)2
.

Applying this to (14) yields the following separable surro-
gate:

Q(µ;µn) =
N∑
i=1

p∑
j=1

αij
wi
2

(
aij
αij
(µj − µ

n
j )

+ [Aµn]i − l̂i

)2
. (17)
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A similar development can be pursued for the convex
penalty termR(µ) yielding a separable penalty surrogate
[32], denotedS(µ;µn). We now seek to minimize the new
separable global surrogate:

φ(µ;µn)
4
= Q(µ;µn) + βS(µ;µn). (18)

Since the surrogate is a separable paraboloid, it can be eas-
ily minimized by zeroing the first derivative. This leads to
the following simultaneous update algorithm:

µn+1j =


µ
n
j −

∂φ(µ;µn)

∂µj

∣∣∣∣∣
µ=µn

∂2φ(µ;µn)

∂µ2j

∣∣∣∣∣
µ=µn



+

, j = 1, . . . , p,

(19)
where [·]+ enforces nonnegativity. The first and second
derivatives of the surrogate are easily shown to be:

∂φ(µ;µn)

∂µj

∣∣∣∣∣
µ=µn

=
N∑
i=1

aijwi([Aµ
n]i − l̂i)

+ β
∂S

∂µj

∣∣∣∣∣
µ=µn

(20)

∂2φ(µ;µn)

∂µ2j

∣∣∣∣∣
µ=µn

=
N∑
i=1

a2ijwi

αij
+ β

∂2S

∂µ2j

∣∣∣∣∣
µ=µn

. (21)

To make the denominator in (19) small (and hence the step
size large), we want{αij} to be large, subject to (16). We
also want{αij} to be independent of the current iterate (so
that it can be pre-computed) [2]. One convenient choice is

αij =
aij∑p
j=1 aij

. (22)

Both the numerator and denominator in (19) involve
back-projecting over sinogram bins. In the spirit of sim-
ilar work [3, 5, 6] we use ordered subsets to accelerate
algorithm “convergence” by a factor proportional to the
number of subsets [6]. We call this method the penalized
weighted least squares ordered subsets (PWLS-OS) algo-
rithm for transmission tomography. WithM subsets, the
PWLS-OS update equation is:

µ̂j =


µ̂j −

M
∑
i∈S

aijwi([Aµ̂]i − l̂i) + β
∂S

∂µj

∣∣∣∣∣
µ=µold∑

i

a2ijwi

αij
+ β

∂2S

∂µ2j

∣∣∣∣∣
µ=µold



+

.

We have found that this algorithm works quite well
for moderate to high SNR monoenergetic measurements.
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Figure 1: Linear attenuation coefficient energy depen-
dence of water and bone

However, as shown in Fig. 3 and Fig. 6 below, when ap-
plied to polyenergetic data, it yields artifacts similar to
those of FBP, which is also based on a monoenergetic
model.

The next section presents a polyenergetic model and
substantially generalizes the iterative algorithm accord-
ingly. The useful concepts of optimization transfer, sep-
arability etc. also readily apply to the polyenergetic case.

III. POLYENERGETIC X-RAY CT

Algorithms such as the one derived in the previous sec-
tion ignore the polyenergetic nature of the X-ray beam and
the energy dependence of the attenuation coefficient. With
a polyenergetic source, the measurementYi along pathLi
is given by (1). Nonlinear beam hardening artifacts re-
sult if one ignores the energy dependence of the measure-
ments [18,23,33]. Fig. 1 shows the energy dependence of
the attenuation coefficients of water (density1.0gm/cm3)
and bone (density1.92gm/cm3) [34]. A hard X-ray beam
is one with higher average energy [35]. Beam hardening is
a process whereby the average energy of the X-ray beam
increases as the beam propagates through a material since
lower energy X-rays are preferentially attenuated. X-rays
traversing different paths through an object will emerge
with different spectra, leading to inconsistencies in the
data (in the Radon sense), hence the artifacts shown in
Fig. 3.

Beam hardening generally leads to a reduction in the re-
constructed attenuation coefficient [33]. Thick bones also
generate dark streaks [23]. In soft tissue, the values are
depressed non-uniformly, leading to what has been termed
‘cupping’. In addition, bone areas can ‘spill over’ into soft
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tissue, leading to a perceived increase in the attenuation
coefficient [18].

In this section we summarize a model for polyenergetic
X-ray CT and then develop an iterative reconstruction al-
gorithm based on it that overcomes the artifacts produced
by conventional methods.

A. Polyenergetic Statistical Model for X-ray CT

We assume that the object is comprised ofK known
non-overlapping material types. We also assume that the
material class of each voxel is known. These classes can
be determined by segmenting a FBP reconstruction that
has been “corrected” for beam hardening effects [18]. The
method of Joseph and Spital requires a similar kind of seg-
mentation, usually obtained from a soft-tissue corrected
image [18]. For thekth material type, we model the atten-
uation coefficient of thejth voxel as the product of the
(known) energy-dependentmassattenuation coefficient
mk(E) (cm2/g) and the (unknown) energy-independent
densityρj (g/cm3) [18,24,26]. Expressed mathematically
in the discrete domain,

µj(E) =
K∑
k=1

mk(E)ρjf
k
j (23)

wherefkj = 1 if the jth voxel belongs to thekth material
type andfkj = 0 otherwise.

We again denote the system matrix byA = {aij} and
make the following definitions:

akij
4
= aijf

k
j (24)

Ak = {akij} (25)

ski (ρ)
4
=

∫
Li

ρ(x, y)fk(x, y) dl

=
p∑
j=1

akijρj . (26)

si(ρ) = [s1i (ρ), s
2
i (ρ), . . . , s

K
i (ρ)]

′. (27)

We assume that the mass attenuation coefficients
{mk(E)}

K
k=1 of the K materials are known. From (1),

(23) and the definitions above, the mean of the measured
data along pathLi is

E[Yi] =

∫
Ii(E) exp

(
−
K∑
k=1

mk(E)s
k
i (ρ)

)
dE + ri

= Ȳi(si(ρ)) + ri (28)

where
Ȳi(s)

4
=

∫
Ii(E)e

−m′(E)sdE

andm′(E) = [m1(E), . . . ,mK(E)]. We have expressed
the measurements in terms of the vector functionsi which
has as its elements the line integrals of theK different ma-
terial densities. Given the X-ray spectrum, we tabulate the
values ofȲi(·) and its gradient∇Ȳi(·) = [

∂Ȳi
∂s1
, . . . , ∂Ȳi

∂sK
]

over the range of arguments[s1, . . . , sK ] that correspond
to representative objects.

The goal of the algorithm is to estimate the density coef-
ficient vectorρ = [ρ1, . . . , ρp]′. Rather than estimatingK
vector quantities of lengthp, each representing the density
of one material, the assumption of non-overlapping ma-
terials enables us to keep the number of unknowns equal
to p, as is the case in the monoenergetic model. This is
possible only if prior segmentation of the object is avail-
able. This segmentation is also necessary for the JS tech-
nique [18].

B. Polyenergetic Model Cost Function

We now express the Poisson negative log-likelihood in
terms of the vector densityρ and the vector functionsi.
To derive the algorithm, we use the optimization transfer
principle three times: first using the multiplicative con-
vexity property [31]; second using parabola surrogates [4]
and lastly De Pierro’s additive convexity trick [32]. The
successive applications of the optimization transfer prin-
ciple yield a separable and simple surrogate function that
is easier to minimize than the negative log-likelihood.

Recall that the function̄Yi(si(ρ)) in (28) represents the
ideal expected value of the measurementYi at theith de-
tector. UsingȲi in (4) gives the following negative log-
likelihood in the polyenergetic case:

−L(ρ) =
N∑
i=1

hi(Ȳi(si(ρ)) + ri) (29)

hi(t)
4
= −Yi log t+ t. (30)

The reconstruction problem now is to find an estimateρ̂

such that:

ρ̂ =
argmin
ρ ≥ 0

Φ(ρ) (31)

where
Φ(ρ) = −L(ρ) + βR(ρ). (32)

The regularization term can be treated exactly as in Sec-
tion 2.2 or it can be modified to avoid smoothing between
different tissue types. For simplicity in this presentation
we focus on the likelihood term. An iterative algorithm is
needed to perform the minimization (31).

The difficulty arises with the argument ofhi(·), which
is nonlinear in (29). Our first goal is to move the integral
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in (28) outside the (convex) functionhi. Towards that end,
define:

ti(E , s)
4
= e−m

′(E) s + r̄i (33)

r̄i
4
=

ri∫
Ii(E)dE

(34)

bni (E)
4
=

Ȳi(s
n
i )

ti(E , sni )
, (35)

wheresni = si(ρ
n). With the above definitions and (28):

Ȳi(s) + ri =

∫
Ii(E)ti(E , s) dE

=

∫
Ii(E)

bni (E)
ti(E, s)b

n
i (E) dE . (36)

Since, ∫
Ii(E)

bni (E)
dE = 1 (37)

Ii(E)

bni (E)
≥ 0, (38)

we can use the convexity of the functionhi(t) in (30) as
follows [31,36]:

hi(Ȳi(s) + ri) = hi

(∫
Ii(E)

bni (E)
ti(E , s)b

n
i (E) dE

)

≤
∫
Ii(E)

bni (E)
hi (ti(E , s)b

n
i (E)) dE .

Combining with (29) gives the following surrogateQ1 for
the negative of the polyenergetic log-likelihood:

−L(ρ) =
N∑
i=1

hi
(
Ȳi(si(ρ)) + ri

)
(39)

≤
N∑
i=1

∫
Ii(E)

bni (E)
hi (ti(E , si(ρ))b

n
i (E)) dE

4
= Q1(ρ; ρ

n). (40)

It is straightforward to verify thatQ1 satisfies the condi-
tions of the optimization transfer principle [37]. The sur-
rogateQ1 is simpler than the actual likelihood because the
energy integral is outside of the log operation. It is not,
however, quadratic. We next apply optimization transfer
toQ1 to derive a paraboloidal surrogate. Such a surrogate
is desirable because it is easily minimized. The first step
is to expresshi using a quadratic surrogate:

hi(ti(E , s)b
n
i (E)) = hi

(
bni (E)e

−m′(E) s + bni (E)r̄i
)

4
= gni (m

′(E) s, E)

≤ qni (m
′(E) s, E), (41)

where

qni (l, E) = gni (l
n
i , E) + ġ

n
i (l
n
i , E)(l − l

n
i )

+
1

2
Cni (E)(l − l

n
i )
2. (42)

We must choose the curvatureCni (E) to ensure that
qni (l, E) satisfies the conditions for a surrogate (if we seek
a monotone algorithm). Combining (41) and (40), the
overall paraboloidal surrogate is:

Q2(ρ; ρ
n) =

N∑
i=1

∫
Ii(E)

bni (E)
qni (m

′(E) si(ρ), E) dE . (43)

Next we derive a separable surrogate which, similar to
the monoenergetic case, lends itself easily to paralleliza-
tion. We apply De Pierro’s additive convexity trick that we
used in (15) with the monoenergetic case [31, 32]. First,
define

λij(E)
4
=

K∑
k=1

mk(E)a
k
ij

Λ(E)
4
= {λij(E)}.

We rewrite the density line integrals as follows

m′(E) si(ρ) =
p∑
j=1

K∑
k=1

mk(E)a
k
ijρj

=
p∑
j=1

λij(E)ρj

=
p∑
j=1

αij

(
λij(E)

αij
(ρj − ρ

n
j ) + [Λ(E)ρ

n]i

)
,

where theαij ’s satisfy (16). Using the convexity ofqni (in
its first argument) yields

qni (m
′(E)si(ρ), E) = qni


 p∑
j=1

αij

(
λij(E)

αij
(ρj − ρ

n
j )

+ [Λ(E)ρn]i

)
, E

)

≤
p∑
j=1

αijq
n
i

(
λij(E)

αij
(ρj − ρ

n
j )

+ [Λ(E)ρn]i , E

)
. (44)

The final separable paraboloidal surrogate to minimize is:

Q(ρ; ρn) =
p∑
j=1

N∑
i=1

∫
Ii(E)

bni (E)
αijq

n
i

(
λij(E)

αij
(ρj − ρ

n
j )

+ [Λ(E)ρn]i, E

)
dE . (45)
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C. Iterative Algorithm for Polyenergetic CT

To derive the actual algorithm, take the first derivative
of the surrogate and set it equal to zero. This gives an
update expression similar to that in (19) (ignoring regular-
ization):

ρn+1j =


ρ
n
j −

∂Q(ρ; ρn)

∂ρj

∣∣∣∣∣
ρ=ρn

∂2Q(ρ; ρn)

∂ρ2j

∣∣∣∣∣
ρ=ρn



+

, j = 1, . . . , p.

(46)
The derivatives of the surrogate, evaluated at the current
iterateρn are:

∂Q

∂ρj

∣∣∣∣∣
ρ=ρn

=
N∑
i=1

∫
Ii(E)

bni (E)
λij(E)ġ

n
i (m

′(E)sni , E)dE

=
N∑
i=1

(
Yi

Ȳi(sni )
− 1

)
×

∫
λij(E)Ii(E)e

−m′(E)sni dE

=
N∑
i=1

K∑
k=1

aijf
k
j

(
Yi

Ȳi(sni )
− 1

)
∇kȲi(s

n
i )

= −
∂L

∂ρj

∣∣∣∣∣
ρ=ρn

∂2Q

∂ρ2j
=

N∑
i=1

∫
Ii(E)

bni (E)

Cni (E)

αij
λ2ij(E) dE . (47)

The second derivative in (47) has two terms that are it-
eration dependent,bni (E) and the curvatureCni (E). The
curvature, in particular, influences the rate of convergence
of the algorithm [4]. We next explore some possibilities
for it.

D. Curvature

If one desires a monotonic algorithm, then it is neces-
sary to choose curvatures such that (42) satisfies the con-
dition of the optimization transfer principle. A simple
choice for the curvature is the maximum second deriva-
tive in the feasible region for the projections. The closed
form expression for the maximum curvature is [4]:

Cni (E) =
[
bni (E)−

Yir̄i
(1 + r̄i)2

]
+

≤ [bni (E)]+ . (48)

This inequality always holds sinceri ≥ 0 andYi ≥ 0.
We can use the simpler right hand side of (48) and still
have a monotonic algorithm. This is equivalent to using

the maximum curvature when the background termr̄i is
small.

The curvature affects the step size that the algorithm
takes towards the minimizer. The maximum curvature re-
sults in small steps, and hence a slowly converging algo-
rithm. Plugging the right hand side of (48) in (47) gives
the following:

∂2Q

∂ρ2j
=
N∑
i=1

∫
Ii(E)

αij
λ2ij(E) dE . (49)

The above equation has no iteration-dependent terms and
can be easily precomputed.

Another possible curvature, given in [4], is optimal in
the sense that it satisfies the conditions of optimization
transfer while keeping the step size as large as possible.
The optimal curvature must be computed at every iter-
ation. It therefore accelerates convergence, but requires
more computation per iteration.

E. Precomputed Curvature

By relaxing the monotonicity requirement, we can de-
velop faster algorithms. Since we use ordered subsets to
implement the algorithms, monotonicity is compromised
anyway.

We can choose a curvature in (42) such thatqni (l, E) ≈
gni (l, E), rather than requiring inequality. In this case
the paraboloids are quadratic approximations to the like-
lihood that are updated at every iteration (unlike (11)).
A reasonable curvature to use is the second derivative
of gni evaluated at the point that minimizes the function,
lmini = log(bni (E)/(Yi − bni (E)r̄i)). The curvature be-
comes:

Cni (E) = g̈ni

(
log

bni (E)

Yi − bni (E)r̄i
, E

)

≈ Yi. (50)

To simplify matters further, define

Eeff
4
=

∫
EIi(E)dE∫
Ii(E)dE

(51)

as the effective energy of the X-ray beam. We now make
the approximation of evaluatingλij(E) in (47) atEeff and
pull it out of the integral. The remaining energy terms
integrate to unity. With the assumption of non-overlapping
materials and

αij =

∑
k a
k
ij∑

k

∑
j a
k
ij

=
aij∑
j aij

=
aij
γi
,
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the second derivative reduces to:

∂2Q

∂ρ2j
≈

N∑
i=1

λ2ij(Eeff )

αij
Yi

≈
K∑
k=1

m2k(Eeff)
N∑
i=1

aijγiYi (52)

4
= dj.

This expression is completely independent of iteration. It
can be pre-computed and stored, further accelerating the
algorithm. Here is the overall ordered subsets version of
the algorithm:

• Precomputedj using (52).

• TabulateȲi(·) and∇Ȳi(·) over an appropriate range
of break points.

• initialize with ρ̂.

• for each iterationn = 1, . . . ,niter

– for each subsetS = 1, . . . ,M

∗ computeŝki =
p∑
j=1

akij ρ̂j for k = 1, . . . ,K.

Setŝi = [ŝ
1
i , . . . , ŝ

K
i ].

∗ computeȲi(ŝi) and∇Ȳi(ŝi) by interpola-
tion from the precomputed tables.

∗ evaluate

N̂j=
∑
i∈S

K∑
k=1

aijf
k
j

(
Yi

Ȳi(ŝi)
− 1
)
∇kȲi(ŝi)

∗ compute forj = 1, . . . , p

ρ̂j =


ρ̂j −

MN̂j + β
∂S

∂ρj

∣∣∣∣∣
ρ=ρ̂

dj + β
∂2S

∂ρ2j

∣∣∣∣∣
ρ=ρ̂



+

.

(53)

– end

• end

Recall thatS in (53) is the surrogate for the regulariza-
tion penalty, first introduced in (18).If the optimal curva-
ture [4] or maximum curvature (48) are used, this algo-
rithm will monotonically decrease the cost function each
iteration when one subset is used. Using ordered sub-
sets and the pre-computed curvature destroys monotonic-
ity, but significantly accelerates progress in the early iter-
ations.

0 50 100 150
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Figure 2: Energy spectrum

IV. SIMULATION RESULTS

We assess the effectiveness of our algorithm with sim-
ulated polyenergetic Poisson X-ray projections. We as-
sume a parallel beam geometry, but the algorithm applies
equally well to other geometries. The image FOV is 40
cm and the rotation range is180o. The simulated mea-
surements are free of scatter and detector readout noise.

We simulate polyenergetic transmission data with the
polyenergetic spectrum (mean67.12 keV and standard de-
viation 17.76 keV) shown in Fig. 2 and a blank scan of
4.87 × 106 counts/detector. The blank scan value is real-
istic and mimics a120 kVp, 170mAs scan protocol [38].
The spectrum was obtained from Monte Carlo simulations
of the setup in [39].

We reconstruct the simulated data with FBP, monoener-
getic statistical algorithm (PWLS-OS) and polyenergetic
statistical algorithm. We use the soft-tissue and JS meth-
ods to remove beam hardening artifacts in the FBP im-
age. We also pick the FBP reconstruction parameters to
give comparable resolution and noise properties to the sta-
tistical algorithms (the statistical algorithms can perform
better in this regard, but our purpose is to illustrate beam
hardening correction). All runs of the statistical algo-
rithms use a Huber penalty withβ = 1000, δ = 0.01
cm−1 for monoenergetic reconstruction, andδ = 0.1
gm/cm3 for polyenergetic reconstruction. The parame-
ter β is determined by trial and error and the parameterδ

is chosen to preserve the contrast between soft tissue and
bone.

The first phantom, shown in Fig. 3 is a256×256 density
phantom consisting of four high-density ‘bone’ disks (ρ =
2 gm/cm3) immersed in a water disk (ρ = 1 gm/cm3),
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which is surrounded by air (ρ = 0 gm/cm3). The pixel size
is1.6mm. The data were simulated over 500 angular steps
and 600 radial bins, 1.3 mm each. The colorbar adjacent
to Fig. 3 illustrates the gray scale window used to view all
the images in the figure. The iterative algorithms ran for
20 iterations and 20 subsets.

Fig. 3b-c show the reconstructed images (scaled to dsi-
play density values) when algorithms that do not correct
for beam hardening are used. Both FBP and PWLS-
OS exhibit typical beam hardening artifacts: reduction in
overall pixel values and dark streaks between high-density
regions. Fig. 3c shows the importance of developing iter-
ative algorithms based on polyenergetic physics.

Fig. 4a-b illustrate the image corrected by soft-tissue
preprocessing and by the JS technique. The soft-tissue
method, available on commercial scanners, leaves sub-
stantial artifacts. The JS technique post-corrects for most
of the artifacts, but some persist. Simple thresholding
(with threshold1.5 gm/cm3) of the soft-tissue corrected
FBP image provides the segmentation required by the JS
technique.

The iterative reconstruction based on the polyenergetic
model is shown in Fig. 4c. The algorithm, was initialized
with the JS corrected image. The object was classified into
bone or soft tissue by segmenting the JS corrected FBP re-
construction using a density threshold of1.5 gm/cm3. We
choose the segmentation threshold such that the number
of mismatched pixels with the true object classification is
minimum. In a more realistic setting the true object is not
available, and we hope to address the segmentation issue
in future work. The iterative algorithm significantly re-
duces artifacts, relative to JS, since it inherently accounts
for the effects of broad energy spectrum. The profile plots
in of the JS and the polyenergetic statistical algorithm im-
ages in Fig. 5 further delineate the difference in perfor-
mance between the two methods. Table 1 lists the root
mean squared (RMS) error of all the methods, relative to
the true object, and shows that the polyenergetic statisti-
cal reconstruction has the lowest error among all meth-
ods used. To compute the RMS error (and to display the
images) for FBP and monoenergetic statistical reconstruc-
tion, their images were scaled by the appropriate mass at-
tenuation coefficients to give density values.

Table 1
Reconstruction Method RMS Error

FBP 11.9 %
Soft Tissue 16.6 %

Joseph and Spital 4.9 %
Monoenergetic Iterative 9.6 %
Polyenergetic Iterative 2.2 %

60 80 100 120 140 160 180 200 220 240

1

1.2

1.4

1.6

1.8

2

2.2

true object
JS method
polyenergetic statistical method

Figure 5: Profile plots of reconstructed images

To gain more confidence in our approach, we performed
an additional experiment with this phantom where we sim-
ulated and reconstructed noise-free data (not shown). The
results showed that polyenergetic iterative reconstruction
was significantly more effective in reducing artifacts than
JS, even when there was no noise. This is due to the
fact that the iterative algorithm models the beam spectrum
completely, whereas the JS method is approximate, even
for noise-free data.

We also applied the different algorithms to the512×250
object shown in Fig. 6a. We created this “true” object by
manually segmenting a previously acquired real CT im-
age, then assigning density to each anatomical structure.
The density of the bones is in the range1.6 − 2 gm/cm3

and the soft tissue densities vary from0.9 to 1.1 gm/cm3.
The pixel size is0.8 mm and the sinogram has700 angu-
lar bins and500 radial bins,1.0 mm each. The statistical
algorithms ran for 10 iterations and 50 subsets. We use the
JS image to initialize the polyenergetic iterative technique
and the soft-tissue corrected image to determine the distri-
bution of bone and soft-tissue regions with a threshold of
1.6 cm/gm3. This threshold was chosen to minimize pixel
mismatch with the true object.
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The results are shown in Fig. 6 and Fig. 7. Uncorrected
FBP and monoenergetic iterative algorithm images (scaled
to display density values) suffer from beam-hardening ar-
tifacts, with streaks visible in the vicinity of bones. The
soft-tissue, JS and polyenergetic iterative results are also
shown, with the latter clearly yielding less artifacts. Table
2 also lists the RMS error for all methods, with polyener-
getic statistical reconstruction having smallest error.

For comparison, we also performed the polyenergetic
reconstruction (not shown) with bone and water classi-
fication obtained from segmenting the true object. This
yielded very similar results, so using the soft-tissue cor-
rected image to determine thefkj ’s appears to be a practi-
cal approach.

Table 2
Reconstruction Method RMS Error

FBP 8.2 %
Soft Tissue 17.1 %

Joseph and Spital 6.1 %
Monoenergetic Iterative 6.8 %
Polyenergetic Iterative 2.5 %

Like the JS method, the algorithm we propose requires
knowledge of the spectrum and a pre-segmented image,
but gives considerably improved density images. With
the knowledge of the mass attenuation coefficient, one can
scale the resulting density images to obtain attenuation co-
efficient information at any energy using (23).

V. DISCUSSION

We have introduced a statistical iterative reconstruc-
tion algorithm for energy dependent X-ray attenuation that
produces images with significantly reduced beam harden-
ing artifacts. The algorithm is applicable for an arbitrary
number of non-overlapping materials, and we demonstrate
its effectiveness for bone and soft tissue objects. Unlike
most other transmission CT iterative algorithms, our algo-
rithm is based on a realistic polyenergetic model. Fig. 3c
and Fig. 6c illustrate the severe artifacts that result when
an iterative algorithm based on a monoenergetic model re-
constructs an image from polyenergetic data.

The algorithm we present requires knowledge of the in-
cident spectrum and knowledge of the distribution of the
different types of materials in the object. The spectrum
can be measured [40] or determined through realistic sim-
ulations. Our results suggest that one can estimate the dis-
tribution of materials by segmenting a good FBP image,
corrected with the soft-tissue technique. One could pos-
sibly improve on this approach by regenerating the seg-
mentation after running one or more iterations of the pro-

posed algorithm. By successive applications of the opti-
mization transfer principle, the statistical algorithm mini-
mizes a separable paraboloidal surrogate, hence it is par-
allelizable and fairly simple to implement. We also use
ordered subsets and pre-computed surrogate curvatures to
accelerate convergence and reduce computation. When
one subset is used with appropriate curvatures, the algo-
rithm monotonically decreases the cost function. This is
about the most that can be said about convergence since
the cost function is inherently not convex.

When compared with the post-processing technique of
Joseph and Spital [18], the statistical algorithm yielded
fewer artifacts. The JS method estimates the line-integral
dependent nonlinearity for each sinogram bin and then re-
calculates the line integrals. The statistical method needs
no such post-processing since it inherently accounts for
the nonlinearities. This is likely the reason for its superior
performance.

Future work will include applying the polyenergetic ap-
proach to objects with three or more tissue types. The
bone/soft-tissue model is sufficient for most cases, but a
three-class model is necessary when contrast agents such
as Iodine are introduced [21] and possibly when metallic
implants are present. A further generalization of the algo-
rithm is to allow for pixels that contain mixtures of two
or more materials. This will enhance the accuracy of the
algorithm, especially at material boundaries. This implies
augmenting the set of variables with volume fractions to
be estimated at every pixel. A promising approach for
accomplishing this is to treat the material classes as ran-
dom variables with a Markov random field model and to
use joint likelihoods and penalties to jointly estimate pixel
density values and material distribution [41,42].

In reality, the X-ray CT detectors integrate over en-
ergy, and the actual distribution of the measurements is
not Poisson. In order to improve the accuracy of recon-
struction, a more realistic statistical model is necessary.
One possibility is a model that considers the total signal a
sum of scaled (by energy) Poisson processes each with a
different scale factor [38]. This model is potentially more
accurate because it accounts for the polyenergetic nature
of the incident beam in thedetectionprocess.

Future work will also address some of the challenges
posed by the penalized-likelihood approach. This ap-
proach has two important advantages. It improves the
conditioning of the problem and enables one to choose
penalty functions that control desired properties such as
edge preservation. One drawback, however, is the absence
of an intuitive method for choosing the values of the reg-
ularization parameters, which is often done by trial and
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error. This is inefficient and time consuming, and there
is a need for a more systematic method for choosing the
parameters. Another undesirable property of penalized-
likelihood image reconstruction is its non-uniform spa-
tial resolution [43]. A remedy for quadratic penalties ex-
ists [44]. For transmission imaging, we prefer to use the
edge-preserving Huber penalty, for which the non-uniform
resolution problem has not been addressed.
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a. True object

b. Unocrrected FBP

c. Monoenergetic statistical reconstruction

0.8 1  1.2

Figure 6: True object and uncorrected FBP and statistical
reconstruction

a. Soft−tissue corrected FBP

b. JS corrected FBP

c. Polyenergetic Statistical Reconstruction
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Figure 7: Soft-tissue and JS corrected FBP and polyener-
getic statistical reconstruction


