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Abstract

We present the results of utilizing aligned anatomical information from CT images to locally

adjust image smoothness during the reconstruction of 3D whole-body positron emission

tomography (PET) data. The ability of whole-body PET imaging to detect malignant neoplasms is

becoming widely recognized. Potentially  as useful, however, is the role of whole-body PET in

quantitative estimation of tracer uptake. The utility of PET in oncology is often limited by the high

level of statistical noise in the images. Reduction in noise can be obtained by incorporating a priori

image smoothness information from correlated anatomical information during the reconstruction of

the PET data. A combined PET/CT scanner allows the acquisition of accurately aligned PET and

X-ray CT whole-body data. We use the Fourier rebinning algorithm (FORE) to accurately convert

the 3D PET data  to 2D data to accelerate the image reconstruction process. The 2D data sets are

reconstructed with successive over-relaxation of a penalized weighted least squares (PWLS)

objective function to model the statistics of the acquisition,  data corrections, and  rebinning. A 3D

voxel label model is  presented that incorporates anatomical information via the penalty weights of

the PWLS objective function. This combination of FORE+PWLS+labels was  developed as it

allows for both reconstruction of 3D whole-body data sets in clinically feasible times, and also

inclusion of anatomical information in such a way that convergence can be guaranteed. Since

mismatches between anatomical (CT) and functional (PET) data are unavoidable in practice, the

labels are “blurred” to reflect the uncertainty associated with the anatomical information. Simulated

and experimental results show the potential advantage of incorporating anatomical information by

using blurred labels to calculate the penalty weights. We conclude that while the effect of this

method on  detection tasks is complicated and unclear, there is an improvement with the estimation

task.
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1. INTRODUCTION

The role of whole-body PET imaging with [18F]fluorodeoxyglucose (FDG) in oncology

research and patient care is increasing (Rigo et al 1996, Weber et al 1999), and the ability of

whole-body PET imaging to detect malignant neoplasms is becoming widely recognized.

Potentially  as useful, however, is the role of whole-body PET in quantitative estimation of tracer

uptake for purposes of patient management, including staging, monitoring for the effect of

therapeutic interventions and/or recurrence, and for therapy planning.

The utility of whole-body FDG PET scanning, however, is often limited by the high level of

statistical noise in the images. Incorporating a model of the data acquisition statistics can reduce

noise propagation into the reconstructed image, as discussed in the reviews by Ollinger and Fessler

(1997), and Leahy and Qi (2000). In addition, several studies have shown advantages to using

aligned anatomical information to guide the reconstruction of PET data (Fessler et al 1992, Gindi

et al 1993, Zhou et al 1993, Ouyang et al 1994, Ardekani et al 1996, Bowsher et al 1996). In other

words, reduction in noise can be obtained by incorporating a priori image smoothness information

from correlated anatomical information during the reconstruction of the PET data. For thorax or

abdomen imaging, however, it is difficult to accurately align anatomical information with PET

data. The combined 3D PET/CT scanner (Beyer et al 2000) resolves the alignment problem by

acquiring both functional (PET) and anatomical (CT) data in a single patient scan. The primary goal

of acquiring accurately aligned PET and CT data is to provide accurate anatomical localization of

the functional data, for example determining the precise location of a focal point of FDG

accumulation indicative of a malignant neoplasm. The CT data can be acquired as a rapid post-

injection transmission scan and used to correct the PET data for attenuation (Kinahan et al 1998),

which makes the PET/CT scanner ideal for the estimation of tracer uptake concentration. An

additional synergistic combination of the PET and CT data includes using the CT data for guiding

the reconstruction of whole-body PET data, with the goal of reducing statistical noise, improving

quantitation, and potentially improving lesion detectability.

The method we currently use clinically (without including anatomical information) to reduce the

effect of statistical noise in the PET images is the combination of Fourier rebinning (FORE)

(Defrise et al 1997) followed by reconstruction with the accelerated 2D ordered-subsets EM

reconstruction algorithm (OSEM) developed by Hudson and Larkin (1994), or the attenuation

weighted OSEM algorithm (AWOSEM) (Comtat et al 1998).
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ADDINIn these methods 3D PET data are accurately rebinned to a set of contiguous 2D

sinograms by applying the Fourier rebinning technique (FORE) prior to the iterative

reconstruction.ADDIN ADDINThis approach allows reconstructing 3D PET data in clinically

feasible computation times (Kinahan et al 1997) as the use of rebinning methods significantly

accelerate image reconstruction since the back- and forward-projection steps are much less

computationally demanding in 2D than in 3D. The FORE  algorithm causes a small spatially-

varying distortion of the reconstructed point spread function (PSF) (Defrise et al 1997). In whole-

body PET imaging with current scanner geometries, however, the effective image resolution is

dominated by the count-limited statistics, and there is no significant difference in image SNR

between FORE+AWOSEM and the more accurate fully-3D AWOSEM (Liu et al 2001).

The aim of this work is to investigate potential gains in image signal to noise ratio  by

incorporating anatomical information derived from aligned CT images in the reconstruction of 3D

whole-body PET data, with the constraint that the technique is routinely useable in a clinical

environment. An important consideration is to retain the fast reconstruction times of the

FORE+OSEM approach. To this end, we combine FORE-rebinning with minimizing a penalized

weighted least-squares (PWLS) cost function. The PWLS algorithm is used, rather than OSEM or

AWOSEM, as it straight-forward to include (i) anatomical information in such a way that rapid

convergence can be guaranteed and (ii) the 3D nature of the regularizing prior, as described below.

The “weighting” in the PWLS includes the statistics of the data acquisition and processing and the

FORE  algorithm (Comtat et al 1998). The PWLS objective function used in 2D image

reconstruction (Sauer and Bouman 1993, Fessler 1994) is given by:
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In equation (1), x  = {x i | i = 1,º ,n} is a vector of the n voxel values of the image,

y  = {y j | j = 1,º ,m } are the m projection values, ssss  = {s j | j = 1,º ,m } are the known (or

estimated) standard deviations for the projection data, A  = {A ji} is the m¥n system matrix such

that the expectation value for yj is given by Si Aji xi. The parameter b controls the influence of the

quadratic image roughness penalty function, U(x;l), which we modify to incorporate the 3D

anatomical information, termed labels, l = { li | i = 1,º ,n}, as described in the next section.

The images are reconstructed by minimizing F(x) while keeping l  constant. As F(x) is a quadratic

function it can be readily minimized by the successive over-relaxation (SOR) algorithm in 10-20
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iterations (Sauer and Bouman 1993, Fessler 1994). The PWLS method is based on the assumption

that the mean and variance of the sinogram data are known after the necessary quantitative

corrections are applied for effects such as detector efficiency variations, attenuation, and random

and scattered coincidences. If the data are Gaussian distributed, then the PWLS method converges

to a maximum-likelihood estimator. This avoids the complexity of accurately propagating the

Poisson distribution of the raw sinogram data through a data acquisition model, but requires a

separate estimate of the data variance.

In our implementation the 3D PET data are first rebinned with FORE to a set of transaxial 2D

sinograms. The effects on the sinogram data variance of all correction steps, including corrections

for attenuation, scattered and random coincidences, detector efficiencies and the effect of FORE ,

are included in ssss2 (Comtat et al 1998). To retain the 3D nature of the patient tracer distribution, the

regularizing term U(x;l) is estimated using a 26-voxel three-dimensional local neighborhood of

each voxel, as proposed by Mumcuoglu et al (1994).

An important aspect of any reconstruction method that incorporates anatomical a priori

information is the effect of positional and/or  signal mismatch between the anatomical and

functional data. We expect some level of positional mismatch between the PET and CT images due

to, for example, respiration or patient movement during the scan. By  signal mismatch we mean

that changes in the PET emission distribution are not matched with corresponding changes in the

anatomical image, or vice-versa. It is important to emphasize that positional and  signal mismatches

are fundamentally different effects,  as we show below.

There are two types of  signal mismatch. The first is where a change in the PET emission

distribution is not matched with a corresponding change in the anatomical image. In other words

there is no change in the labeling or classification of voxels that cross the change in emission

distribution, which corresponds to regularization without using anatomical information. This is

termed a missing label. The second type of  signal mismatch is the opposite situation where a truly

uniform emission region has two or more different label sub-regions. The introduction of such

false labels can lead to dramatic changes in the noise texture, as illustrated below. Both types of

signal mismatch are known to occur in practice, due to, for example, the heterogeneous uptake of

PET tracers within a single anatomical structure such as a tumor (Rigo et al 1996).

 Any improvement in task performance would necessarily depend on the type of study, such as

tracer uptake quantitation versus tumor detection. Estimating the effect on detectability is
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complicated by the availability of the aligned CT image. In this paper we do not try to answer these

questions, but rather focus on the estimation task by using simulations to investigate changes in

root-mean-square (RMS) errors and contrast/noise trade-offs by incorporating CT anatomical

information into the PET reconstruction. This is done by modifying the regularizing term, U(x;l),

and comparing the results to the standard PWLS method (Sauer and Bouman 1993, Fessler 1994,

Comtat et al 1998). Simulation studies allow the mean and standard deviation images to be

estimated from multiple independent realizations. The effects of both positional and  signal

mismatches between the PET and CT data, which are unavoidable in practice, are also evaluated.

We also evaluate a “blurred label” method (described in the next section) of including the CT data

in U(x;l) that attempts to reduce the deleterious effects of mismatches between the PET and CT

data. Finally, we demonstrate the efficacy of the blurred labels method with experimental phantom

data obtained from the PET/CT scanner.

2. INCLUSION OF ANATOMICAL INFORMATION

To include anatomical information we modify the regularizing term, U(x;l), which is a

quadratic roughness penalty based on a 3D voxel neighborhood (N3D) consisting of a voxel’s 26

closest neighbors. The penalty is defined by:

U
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where dik is the Euclidean distance between voxels i and k, and the penalty weights, wik(l), are

derived from the anatomical data by using voxel labels, l. Voxel labels have previously been used

to incorporate anatomical information into emission tomography reconstruction (Johnson et al

1995). In this approach two quantities are associated with an image voxel: the estimated emission

density and the class of material to which it belongs (e.g. lung, bone, or soft tissue). In the present

paper we define binary penalty weights with wik set to one if both voxels i and k belong to the same

class, and to zero otherwise. We refer to this as the binary label method. In other words, at the

boundary between voxels with different labels it is assumed that there is a potential change in the

underlying tracer concentration. In this case no smoothing is applied between these voxels,

allowing preservation of the edge in the tracer concentration image. With the use of an edge-

preserving penalty function (equation 2), the smoothing parameter, b (equation 1), can be

increased to reduce statistical noise in areas that are assumed to be  smoothly varying or uniform,

without any blurring of the edges.
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The use of binary penalty weights, however, may introduce unacceptable artifacts if there are

mismatches between the anatomical and functional images. Alternative methods of including

anatomical prior information include the joint estimation approach used with the “line-site” method

proposed by Geman and Geman (1984), where the line-sites reflect boundaries between voxels in

the emission image. The use of anatomical a priori information, such as CT or MRI images, to

“guide” the positions of emission boundaries, estimated jointly with the emission distribution, has

been investigated by Leahy and Yan (1991), Gindi et al (1993), and Bowsher et al (1996) and

others. Joint estimation can thus potentially compensate for alignment errors (Zhou et al 1993), as

the fixed anatomical a priori information is not used to force the position of functional boundaries,

but rather is combined with the PET emission data to determine the boundary locations. Joint

estimation of the anatomical and functional data has also been proposed (Hurn et al 1996). These

methods are computationally intensive in 2D image reconstruction, and are currently not suitable

for routine clinical processing, particularly for 3D whole-body PET imaging. In addition the use of

a full set of 3D regular and diagonal “plane”-sites between voxels for the 3D penalty term, U(x;l),

would lead to complex book-keeping.

Rather than compensating for positional or signal mismatch, a simpler (non-Bayesian) but less

precise alternative consists of degrading the resolution of the anatomical information before

incorporation into the PET image reconstruction as proposed by Fessler et al (1992) in his 2D

blurred weight method.  This has the effect of reducing the deleterious effects of

anatomical/functional mismatches, but at the same time limits the maximum achievable accuracy

(e.g. resolution recovery) that can be obtained by using the anatomical information. In contrast,

Bayesian approaches can potentially utilize the full accuracy of the anatomical information while

also circumventing the problems introduced by anatomical and functional mis-matches (as

demonstrated by Zhou et al 1993), albeit at the cost of increased computation time.

In the blurred weight method the binary penalty weights used for reconstructing a image plane

are  smoothed with a 2D kernel whose width corresponds to the uncertainty in  the anatomical

information. We have developed and implemented a 3D extension of the blurred weight method

that we refer to as the 3D blurred label method that is useable with any 3D topology. In our

implementation, rather than smoothing the binary weights wik, we introduce an intermediate

representation of 3D object labels, which are smoothed. The penalty weights in equation 2 are then

derived from the blurred labels, as described next.
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In the blurred label method, 3D label maps lc = { l ic | i = 1,º ,n ; 0 £  l ic £  1} are defined

for each class (or label) c of the C classes of material. An example with C = 5 could be c  = 1 for

voxels in the lung region, c = 2 for soft tissue, c = 3 for bone, c  = 4 for outside the body, and

c = 5 for voxels of  unknown type. In this case l1 = { l i1 | i = 1,º ,n ;  0 £  l i1 £  1} is an

image or support map of the lung, that is li1 = 1 if voxel i is considered to be in the lung, and is

li1 = 0 if not. The label maps are initialized with mutually exclusive binary values (only one label

is associated with each voxel) according to the CT image segmented into the C classes. Each label

map is then blurred with  the same 3D Gaussian kernel whose width corresponds to the PET-CT

alignment accuracy. Thus before and after smoothing the labels satisfy the relationship

S c=1,C lic = 1, for every voxel i. The labels, with or without smoothing, are used to define the

penalty weights between voxels as:

w ik ik kcc

C
l l=

=Â 1
, (3)

which have the desirable properties that 0 £  w ik £  1 and w ik = w ki. If w ik = 1 (from the

anatomical data) then voxels i and k are assumed to be related functionally in some sense, and the

full amount of smoothing, as determined by b in equation 1, is applied. If w ik < 1 then voxels i

and k are considered less likely to be related functionally, and a reduced level of local smoothing is

imposed. If w ik = 0, no roughness penalty is imposed between voxels i and k. Note that in the

case of un-smoothed labels, the weights are  binary, with w ik = 0 or 1, which we define as the

binary labels method. For the case of no labels, w ik = 1 for all voxels i and k, and we have returned

to the PWLS algorithm.  

Initial anatomical classification of the voxels can be obtained by segmenting the CT image with

thresholding or statistical methods, such as described by Karssemeijer (1990). For the studies

reported here, the voxel labeling was accomplished with simple thresholding. The CT image planes

are 512¥512, compared to 128¥128 for PET, for the same field of view of ~50 cm. To convert the

anatomical information to the larger PET voxel size, we set the label of the PET voxel to that of the

majority of the CT sub-voxels. Other initialization methods can be envisaged, however, such as

setting lic to the fraction of the sub-voxels belonging to tissue class c. We note that since wik are

fixed, F(x) (equation 1) is still a convex quadratic objective function, and so convergence to a

unique minimum solution is guaranteed.
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3. METHODS

3.1. Simulation Studies

The simulation studies use a technique that allows us to generate multiple realizations of 3D

sinogram data sets in a feasible computing time (Rowe and Dai 1992, Furuie et al 1994, Comtat et

al 1999). We do not simulate the detection of individual true, random, and scattered coincidences,

as is done with Monte Carlo methods, but rather simulate their effect on the noise of the emission

data. We assume that the measured data are accurately corrected for attenuation and random and

scattered coincidences. With the exception of the noiseless 2D simulation, all simulations with

statistical noise were performed in 3D and reconstructed with FORE+PWLS. For each of these

volume images, only the central  transverse image plane is displayed. In all simulation studies two

label classes were used: one for the cylinder background and one for the embedded disks.

3.1.1. Noiseless 2D data

We first investigated the effect of accurate and mismatched labels in a noiseless 128¥128 (2D

only) simulation. The simulation was of a large uniform disk (30-pixel diameter) with a smaller

disk (2-pixel diam.) in the center. The 2D image was reconstructed with a fixed b and the

following variations of the labels and penalty weights: (i) no labels, (ii) correct binary labels, (iii)

correct blurred labels, (iv) shifted binary labels, and (v) shifted blurred labels.

3.1.2. Noisy 3D data

A large uniform cylinder (30 cm diameter) with six embedded smaller disks of different sizes

and contrast levels was the basis for 100 realizations with added statistical noise. Figure 1 shows

the original object and the corresponding labels.

The size of the contrast disks ranged from 1 to 6 cm in diameter and were chosen such that the

disk area approximately doubled for each increase in diameter. The contrast levels of the disks

varied inversely with area, as proposed by Furuie et al (1994), with the smallest disk having the

maximum contrast level of 2.25 relative to the uniform disk. The inverse variation of contrast with

area results in the integrated contrast for each object being the same.

The statistical noise level was set to correspond to a total of 2¥107 coincident events (5.5¥106

true coincidences, 4.5¥106 scattered coincidences, and 10¥106 random coincidences), typical of

the detected counts (before data corrections) in a 10 min clinical scan with the PET/CT scanner.
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The effects of random and scattered coincidences and attenuation correction were included, with

the attenuation coefficient of all objects set to that of water.

The simulations studies were performed for three conditions:

1. with accurate alignment;

2. with the labels of the six contrast disks shifted, in different directions, by 5 mm relative to

the true source distribution using the displacements shown in figure 1(d);

3. with the emission source distribution set to a uniform activity distribution, but with the (un-

shifted) labels still included as “false” labels.

For each of the three label variations (accurate, shifted, and false), the 100 realizations were

reconstructed with five different types of penalty weights:

1. no labels (wik = 1);

2. binary labels (wik = 0 or 1);

3-5. blurred labels (0 £  w ik £  1), smoothed with a Gaussian kernel of full-width half-

maximum (FWHM) 4.0, 5.0, and 7.5 mm.

 The images were  reconstructed with a set of image smoothness parameters (b in equation 2) that,

when used with PWLS, roughly matched the range of cutoff frequencies used with standard

filtered-backprojection in clinical imaging (Comtat et al. 1998).

For each of the combinations of reconstruction parameters, voxel-wise mean and standard

deviation images were calculated from the N  = 100 realizations. Additionally, 2D region of

interest (ROI) figures of merit were calculated for each of the i = 1,º ,6 objects: the mean

estimated bias, the standard deviation, and the RMS error.

Mean       estimated        bias   : bi, of object i, is given by:

b
C C

Ci
i
T

i

i
T=

-
, (4)

where Ci
T  is the true contrast for object i. The mean contrast for each object is given by:

C
N

Ci ij
j

N

=
=

Â1

1

. (5)

The contrast for each realization of each object is given by:

C R Bij ij= - , (6)
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where B is the true background activity and Rij  is the mean ROI value of object i for realization j,

j = 1,º ,N .

Standard        deviation    : si, of object i, is given by:

si
i Bi=

+s s2 2

2
, (7)

where the object and background variances are given by:

s si i ij
j
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with mean background:
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N

R BB B j
j

N
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= ª

=
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. (9)

Here, RB ji
 is the mean ROI value in a background region of the same size as object i.  The standard

deviation figure of merit was chosen to include the effect of background noise, which can be

substantially affected by the use of anatomical a priori information, as changes in the background

noise can influence detection tasks.

The location and size of the ROIs for the mean estimated bias and the standard deviation

coincide with the true object, and their locations were  the same for all three cases of accurate

labels, shifted labels, and false labels . The mean estimated bias and standard deviation were

plotted for each object as a function of the smoothness parameter, b, and for each of the five types

of penalty weights listed above.

RMS      error   : RMSi, of object i, is given by:

RMS
N n

x ti
i

j k k
k

n

j

N i

= -( )
==

ÂÂ1 1 2

11
, , (10)

where xj,k is the value of voxel k for realization j and tk is the true voxel value. Because the use of

labels modifies the voxel values not only within, but also around the object i, the summation of the

squared difference (xj,k - tk)
2 was taken over the voxels k within a circular ROI centered on the true

location of object i and with a radius 1 cm larger than the object radius. The RMS errors were

plotted as a function of the smoothness parameter, b,  for four types of penalty weights (no labels,

binary labels, and labels blurred with a kernel FWHM of 5 and 7.5 mm).

3.2. Experimental Studies
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To evaluate the efficacy of the blurred label method in practice, we acquired CT and aqueous

[18F] PET scans of a 30 cm (major axis) elliptical torso phantom in the PET/CT scanner. The

phantom had a series of hot and cold contrast spheres, each of which also contained dilute iodine-

based CT contrast agent to aid the segmentation process. The volume of the spheres ranged from 1

to 15 ml. The CT scan was acquired in spiral mode, with an axial motion of 3 mm per scanner

rotation, and the images were reconstructed with a 3.4 mm axial spacing to match that of the PET

images. The PET scan, with a deadtime of 5% and random coincidence fraction of 20%, collected

~107 coincidences to match a typical 10 min clinical scan .

Precise alignment of the PET and CT images was obtained with two calibration procedures. In

the first procedure an array of parallel 18 gauge steel needles (< 0.5 mm diam.) filled with aqueous

[18F] was scanned in both CT and PET mode. From the reconstructed images a precise

determination of the pixel size of each modality was made. The residual translation and rotation

offsets in the transverse plane between modalities was also measured. For the second procedure,

an array of four point sources (each ~1.5 mm diam.) was attached to the top of the torso phantom

by means of glass capillary tubes (~0.5 mm diam.). The point sources were scanned in CT mode

with a 1 mm axial spacing. From the reconstructed PET and CT images the precise axial offset and

out-of-plane rotation of the torso phantom was measured.

Finally the CT image of the torso phantom was resampled to correct for the residual PET-CT

alignment errors, converted to voxel labels as described above, and incorporated in the PET image

reconstruction according to equations 1-3.

4. RESULTS

4.1. Simulation Studies

4.1.1. Noiseless 2D data

Figure 2 shows the noiseless 2D test object and the horizontal profiles through the

reconstructed images for the five different combinations of labels and reconstruction methods

described above in section III.A.1. Figure 2(i) shows a typical loss of resolution due to

regularization, while the inclusion of binary labels in figure 2(ii) allows for near-perfect contrast

recovery. The use of blurred label maps (figure 2(iii)) results in a small loss in the contrast

recovery, as expected. When mis-positioned labels are used, the reconstructed image is distorted
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(figure 2(iv)), which is  marginally mitigated by the use of blurred labels (figure 2(v), indicated by

the bold profile with reduced over- and undershoot around pixel 12 and 26).

4.1.2. Noisy 3D data

Two of the 100 realizations are shown in figure 3 for the three cases of: no labels, binary

labels, and blurred labels (FWHM of 5 mm). The corresponding mean and standard deviation

images are shown in figure 4 for each of the three label combinations. For comparison, the

individual realizations and the mean images shown below are scaled to the same maximum and

minimum display range as the original object shown in figure 1(a). Figure 4 illustrates increased

contrast recovery when binary labels are used. The noise is also increased, particularly around the

edges of the contrast objects, as expected for an edge-preserving prior. The use of blurred labels

results in contrast recovery and noise levels that lie between the cases of no labels and binary

labels. The measured noise levels are shown in figure 5, which plots the  standard deviation, s ,

(equation 7), relative to the no labels case, as a function of the object size. The relative standard

deviations are given for two representative amounts of smoothing, as controlled by the

regularization parameter b in equation (1).

The results from simulating the case where there is a 5 mm positioning error are shown in

figures 6 and 7 for the same image smoothness parameter. Figure 6 shows the mean and standard

deviation images for reconstructions with binary labels and blurred labels (FWHM of 5 mm ).

Images reconstructed without  labels are identical to those shown in figure 4. Also indicated is the

location of the profiles plotted in figure 7 for the original and shifted labels. Figure 7 shows that

when binary labels are used, mis-positioning of the label essentially results in mis-positioning of

the corresponding objects in the emission image, similar to figure 2(iv). The use of blurred labels

mitigates this distortion, but at the cost of reduced contrast recovery.

The bias (equation 4) vs. standard deviation (equation 7) curves were plotted for all

combinations of label type and image smoothness parameter b, for both accurate and shifted labels.

The results for all the objects varied gradually according to size of the object and b, so only

representative results are shown in figure 8 for the 15 mm  and 40 mm  diameter objects, shown

at the top of figure 1(a). These plots show that the use of accurate labels improves noise/contrast

trade-off, with the amount of improvement increasing with object diameter.  The use of mis-

positioned labels, however, yields results that are equivalent to not using labels at all. Figure 8 also

indicates the complex relation between the width of the kernel used to blur the labels and the
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regularization parameter, b. As either b or the kernel width are increased, the noise is reduced and

bias increases.

The RMS error (equation 10) curves were calculated over a wide range of the image

smoothness parameter b to see the asymptotic RMS values corresponding to the case of no

penalization (log2(b) < -30) and to the case of almost “full” penalization (log2(b) > -6). Typical

values that match the range of cutoff frequencies used with filtered-backprojection in clinical

imaging are -20 £ log2(b) £ -14 (Comtat et al 1998). The results are shown in figure 9 for the

three smallest objects (diameters from 10 to 20 mm). As expected, when b tends to zero

(log2(b) < -30), the regularization has almost no effect and the RMS errors are the same

regardless of the type of penalty weight. At the other extreme (log2(b) > -6), for aligned labels,

the use of binary labels results in a lower asymptotic RMS value. For the 5 mm shifted labels, for

the same image smoothness parameter b, the RMS error is increased relative to the use of aligned

labels.

For typical values of the image smoothness parameter b  (-20 £ log2(b) £ -14), the use of

binary labels, even perfectly aligned, results in some RMS values higher than without using labels.

Table 1 summarizes the RMS errors values for the image smoothness parameter b that minimizes

the RMS value without labels (RMSMIN). For the 5 mm shifted labels, the RMS values for the

binary labels are always higher than RMSMIN, while the RMS values for the blurred labels are

slightly lower.

The effect of false labels is demonstrated in the two realizations shown in figure 10 and the

mean and standard deviation images shown in figure 11. The relative standard deviations for the

case of false labels were essentially identical to those shown in figure 5, indicating that while false

labels do not add bias, they substantially increase variance for the regions associated with the false

labels. The effect of false labels could thus lead to false-positives for the detection task, as

indicated by figure 10. It is interesting to note the similarity between the standard deviation images

in figures 6 (true labels) and 11 (false labels) while the corresponding mean images show the lack

of bias in both cases.

4.2. Experimental Studies

The needle sources measured in PET and CT showed that the voxel dimensions differed by

1.8% throughout the field of view. There was a residual in-plane rotational offset of 0.5 deg but no

residual transverse shift or out-of-plane rotation between modalities. By inspection of overlaid PET
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and CT images of the needle and point source arrays, the final image alignment accuracy after

correcting for the voxel scaling difference and residual rotation offset was estimated to be < 2 mm

throughout the field of view. Figure 12 shows transverse and frontal sections through the

reconstructed CT and PET volume images, and the fused PET/CT volume image.

Transverse sections through the reconstructed volume PET images are shown in figure 13.

Representative images are shown for penalty weights based on the three cases of: no labels, binary

labels, and blurred labels. The image reconstructed with binary labels clearly demonstrates

improved contrast for the smaller hot and cold spheres, while the use of the blurred labels results in

contrast levels in between those obtained with and without binary labels. Profiles through the

reconstructed images are displayed in figure 14, demonstrating the improved contrast with the use

of binary and blurred labels.

The processing time for the FORE-rebinning, the PWLS and PWLS+labels reconstructions

given separately in table 2. For reference the reconstruction time using 2D filtered-backprojection

(FBP) is also given. Comparisons of images reconstructed (without anatomical a priori

information), by FORE+FBP, and the combinations of FORE+PWLS, FORE+OSEM, and

FORE+AWOSEM, were discussed by Comtat et al (1998).

5. DISCUSSION AND CONCLUSIONS

As mentioned in the introduction, our goal was not necessarily to develop a method  that

includes anatomical a priori information more accurately than existing methods (Leahy and Yan

1991, Gindi et al 1993, Bowsher et al 1996), but rather to develop a method that would (i)

reconstruct 3D multi-bed data in a clinically feasible time (achieved with the FORE and SOR

algorithms, as shown in table 2), (ii) include a reasonably accurate model of the positron imaging

statistics (achieved by estimating the data variance) (iii) converge (achieved by using fixed weights

in the penalty function), and (iv) introduce few free parameters (achieved by only allowing the

width of the blurring kernel as a free parameter).

To utilize anatomical (CT) information in the functional (PET) image reconstruction we

presented a 3D voxel label model that can accommodate any 3D voxel labeling topology. This

information is incorporated anatomical information via the penalty weights of the PWLS objective

function. This combination of FORE+PWLS+labels was developed as it allows for both

reconstruction of 3D whole-body data sets in clinically feasible times, and also inclusion of

anatomical information in such a way that convergence can be guaranteed.

To reduce the deleterious effects of mismatches between the PET and CT data, the anatomical

labels derived from the CT data are blurred by a pre-specified amount corresponding to the
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alignment accuracy. The blurred label information is not updated during the PET image

reconstruction. An alternative approach to that taken here is to estimate the anatomical boundaries

jointly with the emission distribution, with the CT or MRI image used to “guide” estimated

positions of functional boundaries (Leahy and Yan 1991, Gindi et al 1993, Bowsher et al 1996).

Joint estimation can potentially compensate for alignment errors (Zhou et al 1993), and can be

incorporated into the blurred label approach. This could be done by, for example, re-estimating the

label maps at pre-determined iterations of the PET image reconstruction using both the CT image

and the current PET image. With the joint estimation methods mentioned above, Bayesian

modeling of the prior probability of the of the anatomical and functional boundaries can allow for

more accurate alignment. These techniques can thus potentially circumvent the problems introduced

by anatomical and functional mis-matches (as demonstrated by Zhou et al 1993), albeit at the cost

of increased computation time. In addition, the use of variable weights w ik  can lead to a non

convex penalty function and so global convergence would no longer be assured unless more

sophisticated estimation methods are used. Keeping the anatomical information fixed, however,

while estimating the PET image leads to a simpler and faster procedure with fewer free parameters

to be pre-specified, a consideration important for methods intended for routine clinical use,

particularly with 3D wholebody PET scanning. But this simplicity has a price: to allow for

mismatches, the overall quality of the anatomical information is degraded by the use of fixed

blurred labels, limiting the  maximum achievable accuracy in the PET image that can be obtained,

while Bayesian joint-estimation methods can potentially recover from mismatches and thus retain,

at least locally, the original quality of the anatomical information. If rapidity and simplicity are not a

critical issue, or with sufficient processing speed, the use of Bayesian joint-estimation methods

could utilize the full accuracy of the anatomical information in the PET image reconstruction, even

if (i) there is an alignment error between the CT and PET data (positional mismatch) or (ii) if there

is a true object boundary present in the PET data that is not present in the CT data (signal

mismatch).  The later situation can arise in oncology imaging for tumors with heterogeneous

uptake and uniform tissue density. It is thus possible that both estimation and detection tasks could

be improved with a carefully chosen Bayesian joint-estimation method, relative to the use of the

blurred labels method described here. However, the reliability of Bayesian joint-estimation

methods with the low count levels typical of clinical 3D whole-body PET imaging has not been

investigated, as most implementations have been tested with the significantly higher count levels

encountered in PET brain imaging studies. In our investigation we did not compare the blurred

label method with fully 3D implementations of the alternative approaches of including anatomical a

priori information mentioned above, but rather relied on our comparisons with the standard PWLS

method to demonstrate the efficacy of the blurred label approach for clinical 3D whole-body PET

imaging.
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Some of the potential advantages and problems of including anatomical information are

apparent in figure 2. With accurate alignment, near perfect contrast recovery is obtained for these

simple (piecewise-constant) objects. With the use of binary labels, however, a positional mismatch

distorts the reconstructed object as shown by figures 2 and 7. Label maps blurred with a 1 pixel

Gaussian kernel (FWHM) reduce edge artifacts while also retaining a better contrast than the

PWLS reconstruction without anatomical information.

For the simulations with statistical noise the improvements in the noise-bias tradeoffs were

more apparent for the larger objects (figure 8) even though they had lower contrast, and varied

with the type of anatomical label used. In general, the use of binary labels resulted in a dramatic

increase in variance, which was reduced by blurring the label maps (figures 4, 5 and 8). Even with

accurate labels, the RMS error can be increased by the use of binary labels (figure 9 and table 1)

for values of b that match the range of cutoff frequencies used with filtered-backprojection in

clinical imaging (Comtat et al 1998). The RMS error figure of merit accounts not only for bias in

the image, but also for the noise. With binary labels, the image variance is also increased in the

neighborhood of the labels boundaries (figure 4); this effect counterbalances the decreased bias.

Although we are interested in improving estimation by including anatomical a priori

information, we can also consider the effects on detection. One potential pitfall of including

anatomical information is the temptation to over-smooth images to improve contrast. In the

presence of  signal mismatches this may lead to increased false positive detection rates (due to false

labels) and/or false negative detection rates (due to missing labels). This is anecdotally illustrated in

figure 3 for missing labels (the “no labels” case) and figure 10 for false labels. These effects are

more dramatic for the false labels case when binary labels are used, rather than blurred labels, as

shown by the standard deviation images in figure 11. The use of blurred labels reduced, but did

not eliminate, the variance in the regions of the false labels. Not surprisingly, the standard

deviation images in the cases of accurate and false labels were very similar.  The appearance of

false positive and/or false negative objects (figures 3 and 10) are specific to the parameters of the

study. In the case of a positional mismatch it is difficult to make any conclusions on the effect of

labels for the detection task. The plots in figures 8 and 9 show that the use of accurate labels

improves noise/contrast trade-offs and reduces RMS error, while mis-positioned labels yields

results that are roughly equivalent to not using labels at all. The reasons for this are not clear, but it

may be that mis-positioning the labels is somehow equivalent to over-smoothing the images. The

use of labels, however, in the case of a positioning mismatch, does not lead to an increase in bias

relative to not using labels; an important consideration for quantitation tasks.

Even with observer ROC studies it is not obvious what task performance should be measured.

For example, in the case of a positional mismatch where detection is improved at the expense of a
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localization error, it is not clear if this should be considered an improvement or not as the PET

image (reconstructed with labels) could be used for lesion detection, while the CT image is used

for localization. Other variations are possible, and these questions cannot be answered until

considerably more experience is gained with combined PET/CT studies.

For the estimation task, in the case where the labels were shifted by 5 mm (one pixel) from the

true emission contrast regions, there was a reduction in image contrast, as shown by comparing the

mean images in figures 4 and 6. In addition there was a shift in the apparent centroid of the objects

that corresponded to the shift in the label locations, as shown in figure 7. There was also a

significant reduction in the ROI variance. The net effect is shown in figure 8 for two of the objects,

indicating that a 5 mm shift is sufficient to remove any advantage of using anatomical information

in terms of contrast/noise trade-off. We note, however, that this amount of label misalignment does

not degrade the noise-bias performance relative to PWLS without anatomical information.

The experimental studies, which had an alignment accuracy of better than 2 mm, indicate that

the use of both binary and blurred labels leads to improved contrast for the hot and cold contrast

objects of all sizes, as illustrated in figure 13. It should be noted, however, that both the

experimental and simulated phantoms are piecewise continuous objects, and are ideally suited for

this type of reconstruction method. It may be in practice that methods favoring piecewise-linear

objects, such as those proposed by Lee et al (1995), provide more accurate reconstructions.

It should be emphasized that the blurred labels method is not a substitute for the Bayesian joint

functional/anatomical estimation methods proposed in the literature, but rather a simpler and faster,

but potentially less precise, alternative for clinically feasible 3D whole-body PET imaging with a

PET/CT scanner.

In summary, PET/CT tomographs, by directly acquiring aligned PET and CT data, offer the

possibility to use anatomical information to guide the reconstruction of whole-body PET data. With

mismatches between the PET and CT data, the effects on detection or estimation tasks should be

considered separately. For detection tasks,  signal mismatches will likely increase the false positive

and/or false negative detection rates, depending on the type of mismatch, although the increased

variance introduced by false labels can be reduced by the use of blurred labels. The effect of

positional mismatches is difficult to evaluate in a realistic manner. For estimation procedures with

either positional or  signal mismatches, the use of blurred labels appears to lead to a performance

no worse than that of images reconstructed without anatomical information. With accurate PET-CT

alignment, the use of anatomical labels improves the RMS error and bias-variance tradeoff relative

to images reconstructed without anatomical information. In this case the performance for both

detection and estimation tasks will likely be improved.
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TABLE CAPTIONS

Table 1. RMS error values for the three smallest object in figure 1(a). The image smoothness

parameter b that minimizes the RMS in absence of labels (“no label” column) was selected for each

object. For this parameter, the RMS is reported for three different types of labels, with both

accurate and shifted labels.

Table 2. Computation time of the FORE+PWLS reconstruction method on an Sun Blade 1000

workstation, for one bed position of the PET/CT scanner (47 image planes). For comparison

purposes, we also reported the computation time of 2D-FBP (Comtat et al 1998).
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FIGURE CAPTIONS

Figure 1. Emission distribution and label maps used for simulation studies. From left to right: (a)

emission distribution (contrast varies with diameter), (b) original label map, (c) shifted label map,

and (d) subtraction of original and shifted labels showing the different directions of the label shifts.

Figure 2. The noiseless test object and horizontal profiles through the reconstructed PET emission

images using PWLS with five different combinations of labels and penalty terms: (i) no labels, (ii)

correct labels with binary weights, (iii) correct labels with blurred weights, (iv) shifted labels with

binary weights, and (v) shifted labels with blurred weights. For the later graph (v), to the blurred

weights profile drawn in bold, the binary weights profile (iv) is superposed. All five PWLS

reconstructions were performed with the same image smoothness parameter b. For comparison,

the horizontal profile through the original (simulated) object is shown with a dashed line in each

graph.

Figure 3. Reconstructions of two representative realizations of the one hundred simulations with

accurate labels. The top and bottom rows are the two independent realizations, while the columns

are, from left to right, images reconstructed with: no labels, binary labels, and blurred labels.

Figure 4. Mean and standard deviation images of the 100 realizations of simulations with accurate

labels. Top row: mean images. Bottom row: standard deviation images. The columns correspond

to figure 3 and are, from left to right: no labels, binary labels, and blurred labels.

Figure 5. Ensemble standard deviation of ROI mean values relative to that for the reconstruction

without labels. These are shown as a function of the diameter of the six labels for two different

levels of regularization. The left plot, with b = -2 16 in equation (1), corresponds to increased

regularization or image smoothness compared to the right plot ,where b = -2 19.

Figure 6. Mean and standard deviation images of the 100 reconstructed images with shifted labels.

Top row: mean images. Bottom row: standard deviation images. The columns are, left: binary

labels, right: blurred labels. Also indicated is the location of the profiles plotted in figure 7.

Figure 7. Line profiles corresponding to figure 6 showing the effect of shifted labels.  Left:

Original (true) and 5 mm positional shift of labels.  Effect on images reconstructed using labels:

binary labels (center), blurred labels (right). Note the change in vertical scales and that the

horizontal axis is in units of reconstructed image pixels. The true image profile is also shown for

reference.
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Figure 8. Standard deviation (si) vs. bias (bi) graphs for both accurate and shifted labels for the top

two contrast objects in figure 1(a) as a function of regularization parameter and type of penalty

weight.

Figure 9. RMS error vs. image smoothness parameter b for the three smallest objects in figure

1(a), for both accurate (left) and shifted (right) labels.

Figure 10. Effect of false labels. Two realizations from simulations with false labels and a uniform

emission distribution. The top and bottom rows are independent realizations, while the columns

are, from left to right: no labels, binary labels, and blurred labels.

Figure 11. Mean and standard deviation images of the 100 realizations of simulations with false

labels. Top row: mean images. Bottom row: standard deviation images. The columns correspond

to figure 10 and are, from left to right: no labels, binary labels, and blurred labels.

Figure 12. Transverse and coronal sections through the CT and fused (overlaid) PET/CT volume

images of the torso phantom, showing the location of the seven contrast spheres (one is in the right

lung region). The object at the top of the CT transverse section is a small post taped to the inside of

the phantom and the  dark spots are trapped air bubbles. The PET image was reconstructed without

anatomical information.

Figure 13. Transverse sections through reconstructed volume images of the measured 3D phantom

(with b = -2 15) showing four hot contrast objects and three cold contrast objects.

Figure 14. Profiles through the images of figure 13 showing the effect of including anatomical

information with measured data. Solid line: no labels, dotted line: binary labels, dashed line:

blurred labels.
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TABLE 1.

RMS error

binary labels blurred labels
FWHM = 5 mm

blurred labels
FWHM = 7.5 mm

spot
diam.

[mm]

log2(b)

no labels
aligned 5 mm

shift aligned 5 mm
shift aligned 5 mm

shift

10 -19 0.511 0.775 0.799 0.446 0.497 0.490 0.503

15 -17 0.342 0.333 0.400 0.294 0.334 0.324 0.336

20 -16 0.222 0.213 0.268 0.193 0.217 0.211 0.219

TABLE 2.

Technique computation time [s]

FORE 80

FBP 2D 30

PWLS, 30 iterations, no labels 630

PWLS, 30 iterations, binary labels 660

PWLS, 30 iterations, blurred labels 810
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Figure 1
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Figure 4
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Figure 6
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Figure 8
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Figure 9
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Figure 10
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Figure 12
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