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Abstract

We have investigated a fully automatic set-up error estimation method that aligns DRRs (Digitally Re-

constructed Radiographs) from a 3D planning CT image onto 2D radiographs that are acquired in a treatment

room. We have chosen a MI (Mutual Information)-based image registration method, hoping for robustness

to intensity differences between the DRRs and the radiographs. The MI-based estimator is fully automatic

since it is based on the image intensity values without segmentation. Using 10 repeated scans of an anthro-

pomorphic chest phantom in one position and two single scans in two different positions, we evaluated the

performance of the proposed method and a correlation-based method against the set-up error determined by

fiducial markers-based method. The mean differences between the proposed method and the fiducial marker-

based method were smaller than 1mm for translational parameters and 0.8 degree for rotational parameters.

The standard deviations of estimates from the proposed method due to detector noise were smaller than 0.3

mm and 0.07 degree for the translational parameters and rotational parameters, respectively.
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1 Introduction

The goal of external beam radiotherapy is to irradiate a tumor to a high x-ray dose while sparing normal tissues

as much as possible. To achieve this goal, the x-ray beam arrangement and the dose distribution are carefully

planned based on the target tumor position within an individualized patient model. Each 3D patient model

is constructed using a 3D planning x-ray CT (Computed Tomography) scan or 2D x-ray scan that is acquired

several days before treatment.

Accurate radiotherapy requires the patient to be set up for treatment in a coordinate system that is consistent

with the treatment plan. In practice, however, patient set-up errors occur despite the use of laser alignment. Such

errors continue to be a concern in radiotherapy not only due to the unnecessary irradiation of normal tissues but

also due to the sub-optimal irradiation of the target tumor.

Many studies have been conducted to quantify the statistics of the patient set-up error, to consider the effect

of the set-up error in planning, to reduce the set-up error and/or to compensate for the set-up error by adjusting

the x-ray beam position or the patient position [1–10]. Such considerations require an accurate and automatic

set-up error estimation method. If the patient set-up error can be correctly estimated after a treatment, one can

retrospectively calculate the actual x-ray dose accumulation from the treatment and review the patient set-up

procedure. Moreover, if the position estimate can be completed quickly, then one can compensate for the set-up

error by adjusting either the radiotherapy table or the x-ray beam position prior to treatment delivery.

Technically, the patient setup error estimation problem is the estimation of patient pose difference in the

treatment room from the planning CT. Similar application arises in the area of image-guided surgery that requires

the mapping of positions in pre-operative data to a coordinate system defined in the operating room [10] [11].

The patient setup is usually estimated by an image registration method that registers 2D radiographs after

patient set-up to 2D simulated images or 3D planning CT image at the desired position. In most cases, the 2D

simulator images or the 3D planning CT image is geometrically transformed to achieve the registration, and the

patient set-up is estimated as the geometrical transformation that accomplishes the registration.

Although approaches that use 2D simulator images have the advantage of fast computation time, those are

not very accurate since the 3D transformation is estimated by registering 2D images in a 2D plane [5]. It has been
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reported that these methods have problems in estimating rotations in planes non-parallel to the 2D radiographs

planes [12]. Approaches that register 3D planning CT image onto the 2D radiographs overcome this limitation at

the expense of greater computation.

Several groups have investigated 3D/2D registration methods [5] [11–16]. Those methods can be classified

into feature-based methods [12] [13] [15] and intensity-based methods using DRRs (Digitally Reconstructed

Radiographs) [11] [14] [16]. Feature-based methods use anatomical or artificial landmarks segmented from

the images to perform the registration. Because of the segmentation, the feature based methods have several

drawbacks. For example, segmentation procedures often require skilled human interaction, thereby making the

procedure difficult to automate. Automatic procedures for segmentation have been studied [13]. Even if one

designs an automatic segmentation algorithm, segmentation errors may occur and cause setup estimation errors.

However, since feature-based methods have the advantage of fast computation, those are widely investigated for

setup error estimation [12] [13] [15].

Unlike feature-based methods, intensity-based methods using DRRs do not require segmentation. The DRRs,

which are computed 2D projection images of the planning CT volume, are computed at several angles and

compared to the radiographs from the same angles. The registration is achieved by maximizing a similarity

measure based on the intensity values of such DRRs and the radiographs. Since intensity-based methods do not

require segmentation, those can be easily automated and avoid the segmentation error. However, these methods

require much more computation than feature-based methods, thus posing a significant challenges for clinical

application. In intensity-based methods, one must design an effective similarity measure for registration. The

correlation between images and other application-specific similarity measures have been investigated for 3D/2D

registration [11] [14] [16].

We investigate an approach for estimating the set-up error based on the 3D/2D, intensity-based registration

method using DRRs. We have chosen a MI (Mutual Information) registration criterion since it is robust to the

intensity differences between two images. In image registration for radiotherapy, the radiographs and the DRRs

have different intensities since the radiographs and the CT are generated by x-ray sources with different spectra.

Moreover, other effects such as different scalings between two imaging devices, beam hardening, scattering and
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the radiotherapy table also cause intensity differences. The MI-based image registration method has been suc-

cessful in 3D-3D multi-modality image registration [17] [18] [19]. By adopting the MI-based image registration

technique, we have tried to design a fully automatic and accurate estimator.

Despite the computation time issues, we have chosen the intensity-based method using DRRs since we want

to design an automatic and accurate estimation method. Moreover, we believe that the computation time will be

eventually reduced by faster computer hardware, storing pre-computed DRRs with appropriate interpolation, etc.

To evaluate the performance of the MI-based estimator, we conducted an experiment with an anthropomor-

phic chest phantom. We placed 11 radiopaque markers on the phantom, enabling determination of the “ground

truth” set-up error by registering the positions of the markers in the DRRs and the radiographs. We evaluated

the performance of the MI-based estimator by comparisons with the marker-based method since we expected the

latter to be more accurate in this experiment.

The structure of this paper is as follows. In section 2, we formulate the technical problem of the set-up error

estimation. We also report the materials that were used for the experiment. In section 3, we present experimental

results of the proposed MI-based method in comparison with a well-known correlation-based method [16]. In

section 4, we discuss the proposed method and suggest future research directions.

2 Materials and Methods

2.1 Experimental Methods

We attached eleven 1mm diameter lead markers to the exterior surface of an anthropomorphic phantom to help

establish the “ground truth” set-up error. By placing markers on locations that would be imaged around the

boundaries of the projection views, we could apply the MI-based method using just the center portions of the

projection images excluding the markers.

A 512×512×398 voxel planning CT image with 0.9375×0.9375×1 mm spacing was acquired on a GE CT/i

scanner with a 140 kV x-ray source. Tattoos were drawn on the phantom where three alignment laser planes

crossed the phantom to facilitate consistent set-up in a treatment room.
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Next, the phantom was moved to the treatment room and it was set up at the isocenter by manually aligning

tattoos to three laser planes in the treatment room. Four radiographs were obtained from different angles by

rotating the x-ray source and Varian Portal Vision amorphous silicon active matrix flat panel image detector in

30o increments around the Z-axis as in Figure 1. For each of the0o and90o views, we acquired 10 repeated

radiographs without realignment for evaluating the effect of noise on the estimator. The x-ray source voltage was

6 MV and the detector size was 512×384 pixels with 0.78mm×0.78mm spacing. We used only two radiographs

from0o, 90o (i.e, AP and lateral images) for the MI-based and the correlation-based method. However, to enhance

the accuracy of the “ground truth”, we used all four radiographs for the fiducial marker-based method.

We acquired additional radiographs in the treatment room after manually moving the phantom to each of two

other positions for testing the robustness of the proposed method to different set-up errors. The experiments for

the three different phantom positions are called Experiment A, B and C, respectively in subsequent sections.

We applied three methods for estimating the set-up error: the MI-based method, the correlation-based

method, and the marker-based method. For the MI-based method and the correlation-based method, the planning

CT image was down-sampled by four along each axis to reduce computation time and memory usage. Since our

planning CT had finer axial sampling than typical CTs in clinical use, the down sampling yields more represen-

tative CT quality in axial sampling. However, it also caused slightly coarser in-plane sampling.

The down-sampling was implemented by averaging the nearest 4×4×4 voxel values. As a result, the planning

CT that was used to compute DRRs had 3.750×3.750×4 mm spatial spacing. However to preserve the accuracy

of the “ground truth”, we did not down-sample the CT for the marker based method.

For the MI-based method and the correlation-based method, we used only the central 400×300 sub-image of

each of the DRRs and the radiographs to avoid the effect of the markers which are not usually used in clinical

practice.

We have established the geometry of the EPID imaging systems by determining radiation field edges using

simple thresholding method [20]. We assumed that the distance from source to detector known during calibration

is correct.

For numerical search, we used theNelder-Mead simplexmethod for all three methods [21]. We started the
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search from nominal unrotated and untranslated position. Termination criteria for the simplex method were that

both the sum of the six parameter changes was less than 0.1, 0.1,10−12 and the maximum difference of the ob-

jective function within the simplex was less than 0.0001, 0.0001,10−12 for the MI-based, the correlation-based,

and the marker-based method, respectively. Units for the rotation parameters were degrees and the translational

parameters were mm.

2.2 Technical Problem formulation

For the phantom experiments, we assume that the set-up errors are generated by rigid body motion and there is

no change in the attenuation coefficients from the time of the planning CT scan. With those assumptions, we can

model each voxel intensity valueUk of the planning CT with a mono-energetic source approximation as follows:

Uk = αµ(~x, εkV), k = 1, 2, . . . ,M, (2.1)

where,µ(~x, ε) is 3D attenuation coefficients distribution,~x is 3D spatial index,ε is the photon energy,εkV is the

effective energy of the x-ray source for the planning CT,α is the constant scaling of the x-ray CT, andM is the

number of CT voxels.

The radiographs acquired in the treatment room correspond to the projection images of the rotated and trans-

lated attenuation coefficients based on MV spectrum source since the MV treatment beam is also used for the

imaging. Making a mono-energetic source approximation and neglecting scattered radiation, we model the mea-

sured pixel intensity values of the radiographs as follows:

Ỹk = Ioe
−
∫
Lk
µ(Tθ̃(~x),εMV)d

~l
+Nk, k = 1, 2, . . . ,N (2.2)

θ̃ = [φx φy φz tx ty tz] (2.3)

Tθ̃(~x) = R(φx)R(φy)R(φz)~x+ [tx ty tz]
′, (2.4)
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whereỸk is the measured intensity value ofkth detector pixel,Io is the MV x-ray source intensity,Lk is the

x-ray path from source tokth detector pixel,Tθ̃ is the translate-rotation transform with parametersθ̃, εMV is the

effective source energy for the radiographs,Nk is measurement noise,N is the number of detector pixels,R(·) is

a 3×3 rotation matrix,φx, φy, φz are the unknown rotations around X, Y, Z axes, andtx, ty, tz are the unknown

translations along X, Y, Z axes from the planning CT scan to treatment.

To estimatẽθ, we compute the DRRs of the planning CT transformed according to any given guess for the

parameterθ using the following formula:

Xk(θ) =

∫
Lk

µ(Tθ(~x), εkV)d~l, k = 1, 2, . . . ,N, (2.5)

whereXk is the value ofkth pixel in DRR.

In practice, the DRRs are computed by approximate summations for the line integral using the valuesUk. We

have implemented the line integral by computing the ray crossing lengths within each voxel and summing over

the lengths multiplied by voxel values [22]. The performance of the MI-based method and the correlation-based

method are unaffected by global constant scaling differences.

The technical problem of set-up error estimation is to estimate the six elements of the registration parameters

θ̃ by using the intensity values of the radiographs and the planning CT image. By definingYk = − log(Io/Ỹk)

and ignoring the measurement noise, the problem becomes estimatingθ̃ by usingYk, which is the measured

line integrals of the attenuation coefficient based on mega-voltage spectra, andXk, which is the computed line

integrals of the attenuation coefficients with kilo-voltage source spectra, as defined in (2.5) and the following:

Yk =

∫
Lk

µ(Tθ̃(~x), εMV)d
~l, k = 1, 2, . . . ,N. (2.6)

If there were a functional relationship betweenYk andXk, we could use the MLE (Maximum Likelihood
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Estimator) which has many desirable properties [23]. Moreover, if there were a linear relationship, we could use

successfully the well-known correlation-based method [16]. However, since the DRRs and the radiographs do

not have a exact functional relationship, we would like to use a similarity measure that is robust to the intensity

differences between the two images.

2.3 MI-based Method

Like many other intensity-based image registration methods using statistical analysis, the MI-based method con-

ceptually considers the values of pixels in an image as samples of some random variable. Likewise, we can define

a joint pdf (probability density function) of two random variables based on the corresponding pixel values in two

images.

The idea of the MI-based method is that the two random variables are less jointly random if two images are

more registered. When registered, pixels that have the same intensity value in one image will correspond to a

more clustered distribution of the intensity values in the other image. This observation need not to be limited to

the case that the intensities of the corresponding pixels are clustered around single value. There can be two or

more clusters around different values. If we estimate the joint pdf from corresponding pixels in two images, the

conditional pdf becomes more clustered as the two images become better registered.

Based upon this observation, the MI-based method achieves registration by minimizing the estimated condi-

tional entropy given the random variable which represents the transformed image or equivalently maximizing the

estimated mutual information between two images [17] [18] [19].

We treat the pixel intensity values of the DRRsXk(θ) in (2.5) from AP image as samples of a random variable

XAP and those from lateral image as samples of random variableXLA. We also consider the pixel values of the

radiographsYk from AP and lateral images as samples of a random variableYAP andYLA.

To estimate the mutual information, we first estimate the joint pdf of (XAP ,YAP ) and (XLA,YLA) by using

the samplesXk andYk. We used a 128×128 bin joint histogram to estimate the joint pdf. The estimated mutual

information is then computed from the estimated joint pdf by the definitions of the entropy and the mutual

information [18] [19] [24]. The set-up error is estimated by seekingθ which maximizes the sum of the two
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estimated mutual information as follows,

θ̂MI = argmax
θ
Îθ(XAP , YAP ) + Îθ(XLA, YLA) = argmin

θ
Ĥθ(YAP |XAP ) + Ĥθ(YLA|XLA) (2.7)

whereÎθ(XAP , YAP ), Îθ(XLA, YLA) are the estimated mutual information between random variable(XAP , YAP ),

(XLA, YLA), andĤθ(YAP |XAP ), Ĥθ(YLA|XLA) are the estimated conditional entropy ofYAP givenXAP , YLA

givenXLA.

To solve this nonlinear optimization problem numerically, we applied theNelder-Mead simplex method.

2.4 Correlation-based Method

For comparison purposes, we also applied a correlation-based method. Although the intensity scales of the MV

and the kV X-ray images are not exactly linearly related in theory, we may expect this method to work well since

if MV attenuation is large, so is kV attenuation.

Moreover, one may try to improve the performance of the correlation-based method by computing more

MV-like DRR. The MV attenuation coefficients may be computed from kV attenuation coefficient by classifying

voxels into different compounds and referencing typical MV attenuation coefficients of those compounds [16].

However, these efforts require additional procedure and periodic calibration since the calculations depend on the

characteristics of the CT scanner. Moreover, the performance improvement may be limited by other factors such

as beam hardening effects, scattering effects, presence of the unmodeled radiotherapy table, etc.

We compute the correlation between a DRR and a radiograph of an AP image as follows:

ρ̂θ(XAP , YAP ) =

∑N
k=1(Xk(θ)− X̄k(θ))(Yk − Ȳk)

[(
∑N
k=1(Xk(θ)− X̄k(θ))

2)(
∑N
k=1(Yk − Ȳk)

2)]1/2
, (2.8)

whereXk(θ) is thekth pixel value of AP DRR,X̄k(θ) is the mean ofXk(θ), Yk(θ) is the value ofkth pixel in
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AP radiograph,̄Yk is the mean ofYk, and N is the number of pixels.

Similarly, we can compute the correlation between a DRR and a radiograph from lateral images. The set-up

error is estimated by maximizing the sum of the estimated correlation coefficients from AP and lateral images as

follows,

θ̂co = argmax
θ
ρ̂θ(XAP , YAP ) + ρ̂θ(XLA, YLA) (2.9)

whereρ̂θ(XAP , YAP ) is the estimated correlation between a DRR and a radiograph from the AP direction and

ρ̂θ(XLA, YLA) is that from lateral images.

We also applied theNelder-Mead simplex methodto solve this optimization problem.

2.5 Marker-based Method

To establish the “ground truth”, we estimated the set-up error using the positions of the radiopaque markers. The

results from the marker-based method were assumed to be the true phantom position. As a result, the performance

of the MI-based estimator and the correlation-based method were evaluated by referencing the position estimated

by the marker based method.

The procedures for estimating the set-up error by the marker-based method were as follows. First, we identi-

fied the slices of the CT which contain the markers. Figure 2 shows example two slices among slices that contain

markers. We manually identified 8×8×4 voxel region around each marker and estimated each center position

using the centroid method [25]. We also manually identified 7×7 pixels around each marker in the four different

radiographs and identified each center position aspi using the centroid method. Next, while transforming the

coordinates of the center position of each marker in 3D space, we projected marker center positions onto 2D

planes which are the same planes as the radiograph planes, and identified the 2D indices of the projected center

positions asdi(θ).

We estimated the set-up error by minimizing the mean square Euclidean distance between thepi anddi(θ) as
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follows:

θ̂ = argmin
θ

∑
i

‖pi − di(θ)‖
2. (2.10)

There were 22, 19, and 21 clearly identifiable markers in the four radiographs for Experiment A, B, and C

respectively. Although the projection of 11 markers on the phantom to four different projection views resulted in

44 markers in the radiographic planes, some markers were not visible since those markers projected beyond the

bounds of the detector.

3 Results

3.1 Radiographs

Figure 3 (a) shows the estimated MI from radiograph/DRR 1 and Figure 3 (b) shows the average of two estimated

MI from radiograph/DRR 1,4 as the planning CT is translated along the X, Y and Z axes from the registered

position respectively while other five parameters were kept at the registered position. The registered position was

defined as the mean of the marker-based estimated positions from 10 radiographs.

For the radiograph/DRR 1 case, the estimated MI changes only slightly with respect to the translation along

the Y-axis, and the point of the maximal estimated MI is far from the registered point. This large error could

be due to the fact that the movement along the Y-axis does not cause much change in DRR 1. Thus 3D/2D

registration based on a single-view similarity measure would be sensitive to noise. The insensitivity of the

single-view estimated MI with respect to changes inty is clear from Figure 1, because the Y-axis translation

causes only a small change of magnification in the projection image.

Similar phenomena occur if only radiograph/DRR 4 is used. Thus, using only one projection view may cause

a significant error in estimating the translation that is orthogonal to the detector plane.

This problem is alleviated by using two radiograph/DRR images. Figure 3 (b) shows the estimated MI

using radiograph/DRR 1 and 4. The maximal mutual information position is close to the true position for all
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six parameters. Based on this observation, we used radiograph/DRR 1,4 for evaluating the proposed MI-based

estimator and the correlation-based estimator.

3.2 Estimated joint pdf

Figure 4 shows an example of non-registered and registered radiograph/DRR 1 and 4. The non-registered DRR

was generated by translating the planning CT 12.5mm along the Z-direction from the registered position. For

non-registered images, the bottom rows of DRR 1 contain bright pixels, unlike the corresponding pixels in ra-

diograph 1. Also the top left parts of radiograph 4 are imaged dark, since those areas are air, while some of the

corresponding pixels in DRR 4 have bright pixels. These phenomena diffuse the joint histogram and decrease the

estimated mutual information.

Figure 5 shows the joint histograms that are estimated from the registered and the non-registered DRR/Radiograph

1 and 4. The joint histogram from the registered images shows interesting characteristics. It was expected that the

joint histogram from the registered images would show more clustered shape along increasing functional curve,

since the MV attenuation coefficients tend to be high if the kV attenuation coefficients are high. However, a range

of DRR intensity values corresponded to high radiograph intensity values in Figure 5 (b), the estimated joint his-

togram from lateral images. This can be explained as the effect of the radiotherapy table. The radiotherapy table

is slightly visible in the rightmost parts of radiograph 4 in Figure 1 (e). Although most of the radiotherapy table

parts were not used for the MI-based and the correlation-based method, it still made the upper right parts of the

radiograph 4 brighter than the DRR 4 since the corresponding pixels in the DRR 4 only represents air as we can

see in Figure 4. For increased intensity values in the upper right parts due to the radiotherapy table in Figure 4

(b), even if the DRR and the radiographs are registered, corresponding pixels of DRR in Figure 4 (f) are darker

than radiograph 4.

3.3 Position Estimation Results

In Experiment A, we used laser alignment to set up the phantom without error, while in Experiment B and C, we

generated set-up errors deliberately to test the robustness of the proposed method to different set-up errors.
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In Experiment A, radiographs 1 and 4 were acquired 10 times. Table 1 summarizes the empirical means and

the standard deviations of each method in Experiment A. The estimated set-up errors by the proposed MI-based

method were close to the set-up errors determined by the marker-based method. The differences between the

means of the MI-based method and the marker-based method did not exceed 1.0 mm for translation parameters

and0.8o for rotational parameters. Considering that the voxel spacing of the sub-sampled planning CT that was

used for computing DRR was 3.75×3.75×4 mm, estimation errors for every parameter were sub-voxel.

The sample STD (Standard Deviation) of the proposed estimator was very small. This was because the EPID

has very low noise and we used an automatic method without human interaction.

The results of the correlation-based method were also fairly good. This indicates that the the relationship

between DRR and radiograph is approximately linear. Compared with the proposed method, the result of the

correlation-based method shows relatively larger variance to noise. However, since the noise level was quite low,

the noise-induced variability was insignificant compared to the mean errors.

Table 2 shows the results from Experiment B. In this experiment, we tried to generate patient set-up error of

tx=12mm,ty=-8 mm tz=-7mm andφx = φy = φz = 0o. Compared with the results from Experiment A, the

correlation-based method performed worse while the MI-based method still worked well.

Table 3 shows the results from Experiment C. For this experiment, we tried to generate rotational set-up error.

The planned set-up error wasφx=0o, φy=2.2o, φz=1.2o, tx = ty = tz =0mm.

In summary, for three different phantom positions, we estimated the set-up error 12 times including 10 re-

peated estimates using 10 different acquisitions. The means of the estimated set-up error differences between

the marker-based method and the MI-based estimator did not exceed 1mm for translation parameters and did not

exceed0.8o for rotation parameters.

4 Discussion

By using two orthogonal radiograph/DRR pairs, we achieved average accuracies of better than 1mm for trans-

lational movement parameter and better than0.8o for rotational movement parameters in estimating the set-up

error.
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We established the “ground truth” positions using the marker-based method. The accuracy of the marker-

based method was expected to be the best among the three methods that were tested because the higher resolution

CT was used to identify the marker position in the CT and four radiographs/DRRs were used in the marker-

based method while only two radiographs/DRRs were used for the other methods. Although this method also

contains error due to segmentation errors and noise, we used the marker-based method as “ground truth” since it

is expected to be more accurate than the other methods.

There was approximately 3mm set-up variation from the positioning of the phantom at its proper reference

location. Factors that contribute to this value include the limits of human operators in positioning relative to laser

marks, as well as differences in laser calibration between the CT scanner and the treatment room. A retrospective

review indicated a 1mm offset of the CT lasers from the center of the image matrix. Such errors in transferring a

phantom or patient from one system to another have been previously reported, and are unlikely to be dramatically

reduced in routine radiotherapy quality assurance.

For rigid body set-up error estimation using the chest phantom, two radiographs/DRRs were adequate for

sub-voxel accuracy. We suspect that the performance of the estimator would be improved only modestly if more

DRRs and radiographs from different angles were added. Practically, using fewer radiographs/DRRs is strongly

preferable because of acquisition time and computation time.

The correlation-based method also achieved sub-voxel accuracy. Even though many factors could cause the

intensity relation between DRR and radiograph to be nonlinear, we found the relationship is approximately linear

so the correlation-based method worked fairly well.

We have found that the standard deviation of the correlation-based method was larger than that of the MI-

based method in Experiment A. This implies that the correlation-based method may be more sensitive to the

noise, although the effects of noise were not significant in the experiment since the noise level was very low.

We are not sure if this phenomena is just for our experiments or general. One may investigate this problem by

theoretically approximating the variances of the estimator [26] as well as experimentally.

We also tried to compute the MV DRRs for the correlation-based method. However, results were no better but

more complicated. We think that was because we did not have CT data from test phantoms for voxel classification
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[16] nor information about scattering, etc. Since we were unable to implement the algorithm thoroughly, we have

excluded the results.

One may try to compute better MV DRRs by following thorough procedures, however we suspect that the

result will not be improved dramatically since unmodeled effects such as the presence of the radiotherapy table,

difficulty of correctly compensating for scatter and beam hardening may limit the performance.

Compared with methods that requirea priori model, we think that the MI-based method may perform better

in the presence of unexpected objects. As presented in the experimental results section, even though there exist

non-modeled effects of the radiotherapy table, the results of the MI-based estimator show good performance. This

robustness of the MI-based estimator to non-modeled effects partly supports the advantages of the method over

a priori model-based methods such as MLE [23]. Therefore, the MI-based method may be useful in applications

in which non-modeled objects may present, such as image-guided surgery.

For estimating patient set-up error, around 225 evaluations of the estimated mutual information were re-

quired. Each evaluation of the estimated mutual information requires computation of two DRRs. The joint

histogram and the mutual information also must to be computed for each mutual information evaluation. The

most time consuming part was generating DRRs; it took around 16 sec to compute one 400×300 DRR from the

128×128×85 planning CT on Pentium II 600 MHz machine. As a result, estimating one patient set-up error

using two orthogonal radiographs/DRRs required about 2 hours.

This long computation time is not due to the MI criteria but because of DRR computation. Compared with

other intensity-based method using DRR, our computation time was longer since we implemented a more ac-

curate line integral instead of a trilinear interpolation approximation [14]. One might use trilinear interpolation

approximations for computing DRR with proposed MI criteria for faster estimation.

Due to long computation time, it is difficult to estimate the patient set-up error in real time with the pro-

posed method. As a result, adjusting the position of the x-ray source or the position of the radiotherapy table

to compensate for the patient set-up error is presently impractical. Instead, as a first application, we expect our

method to be applied to review the patient set-up procedure. However, in near future, we expect that the proposed

method can be used for estimating the set-up error in real time using pre-computed DRRs stored in large memory
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with appropriate interpolation and perhaps parallel processing. Furthermore, methods such as multi-resolution

optimization technique may further reduce computing time [27].

Our investigation can be discussed in comparison of other investigations. Lemieuxet al. applied the

correlation-based similarity measure to skull phantom experiments [14]. They used kV X-ray source for both

CT and radiographs so that the correlation measure may work better.

Donget al. also investigated the correlation-based method by testing the method using a head phantom [16].

Although they used MV radiographs and kV CT, they generated MV DRRs so that the DRRs and the radiographs

have linear intensity relationship. MV DRRs were generated by classifying voxels into several categories such

as bone, muscles, etc. based on CT numbers and seeking typical MV attenuation coefficients of those.

There also have been many studies of set-up estimation [5] [11–16]. Most investigations reported set-up

estimation methods of less than a few mm estimation error for translation parameters and less than a few degree

for rotation parameters. It is hard to compare the performance of each method directly since different types of CT

images and radiographs were used. We believe that the performance of an estimator can depend greatly on the

image characteristics. For example, the presence of high contrast objects can improve performance. Moreover,

different image resolution and different optimization stopping criteria may also affect the performance of the

estimators.

Penneyet al. investigated the performance of several similarity measures by applying those similarity mea-

sures to the image registration of a 3D CT to a fluoroscopy image [28]. However, since only one fluoroscopy

image was used for estimating six parameters, the results may not be directly applicable to our study that used

two radiographs for registration.

The MI-based method was investigated for the set-up error estimation problem by Hadleyet al. [29]. In their

investigation, the MI-based method worked well for simulated images but did not show good performance for

clinical images. Since the investigation was for 2D/2D image registration and there was no comparison to other

similarity measures for clinical images, it does not necessarily imply that the MI-based method perform worse in

3D/2D registration problems than other similarity measures.

Our future work on set-up error estimation includes the application of the MI-based estimator to clinical
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data. Although we have achieved good registration results in a phantom experiment, we believe that much more

verification with clinical data is crucial for potential application of the MI-based method to the clinical practice.

We plan to investigate non-rigid body motion set-up error. Since the human body is not rigid and radiotherapy

may change the size and shape of the tumor, an accurate non-rigid body motion set-up error estimation is required

for practical application.

We also plan to investigate other intensity-based similarity measures. For example, R´enyi entropy may be a

more flexible and computationally efficient similarity measure to accomplish image registration [30] [31] since

it is more generalized definition of entropy. Investigating better similarity measures such as R´enyi entropy may

improve both speed and performance.

5 Conclusion

We have investigated a set-up error estimation method using 3D/2D, intensity-based method. To achieve 3D

to 2D image registration, the radiographs and the DRRs of the planning CT were registered by maximizing

the MI between DRRs and radiographs. In the experiment with an anthropomorphic chest phantom, we achieved

accuracies better than 1mm for estimating the translational parameters and 0.8 degree for estimating the rotational

parameters using two orthogonal pairs of the MV radiographs and DRRs. The true set-up error was established by

the fiducial marker-based method. Based upon theoretical background and the experimental results, we believe

that MI has significant potential as an effective similarity measure for 3D/2D intensity-based registration.
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Table 1. Estimated set-up error for Experiment A

φx φy φz tx ty tz
Marker (mean) 0.601 -0.114 -1.892 -1.968 -3.568 -2.995
MI error (mean) -0.064 0.035 -0.729 -0.635 0.692 -0.151

Corr. error (mean) 0.336 0.143 -1.308 -0.939 -0.597 0.102

Marker STD 0.004 0.002 0.002 0.012 0.009 0.004
MI STD 0.045 0.008 0.071 0.088 0.060 0.071

Corr. STD 0.318 0.080 0.158 0.254 0.114 0.248

(*In each table, the units for rotational parameters are degrees and for translational parameters are mm.)

Table 2. Estimated set-up error for Experiment B

φx φy φz tx ty tz
Marker 0.519 0.005 -1.879 9.703 -11.32 -9.58
MI error -0.153 -0.044 -0.594 -0.597 1.030 0.668

Corr. error 0.286 -0.001 -2.534 -0.924 -3.092 1.451

Table 3. Estimated set-up error for Experiment C

φx φy φz tx ty tz
Marker 0.755 1.864 -0.698 -1.515 -3.201 -2.947
MI error 0.067 -0.121 -0.667 -1.043 0.992 -0.453

Corr. error 0.72 0.069 -1.172 -1.050 -0.391 -0.010
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Figure 1: Radiographs
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(a) 86th slice (b) 251th slice

Figure 2: Slices with markers
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(b) Radiograph/DRR 1, 4

Figure 3: Estimated mutual information with respect to the translation errors
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(a) Radiograph 1 (b) Radiograph 4

(c) Non-registered DRR 1 (d) Non-registered DRR 4

(e) Registered DRR 1 (f) Registered DRR 4

Figure 4: Non-registered and registered radiographs and DRRs
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Figure 5: Joint histograms from registered and non-registered images
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