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ABSTRACT objects within an image are distorted nonuniformly. For exam-
8[e, a circular objects will appear elliptical due to more blurring

Traditional space-invariant regularization methods in tom o . . . .
I . . : S In one direction. (Such distortions are noticeable in reconstruc-
graphic image reconstruction using penalized-likelihood es-

! X . X ; . "tions of phantom data in Fig. 15 of this paper.)
timators produce images withonuniform spatial resolution Th distorti h b ted b I . i
properties. The local point spread functions that quantify the lo- ese distortions have been noted by colleagues in a clin-

cal smoothing properties of such estimators are not only spa&?—l setting. Lymph nodes are often found near the edge of

variant and asymmetric, but are also object-dependent even":}Bran""tom'CaI slice where the point spreqd functions are more
Xmmetrlc and these effects are more noticeable. Lymph nodes

space-invariant imaging systems. We propose a hew quadrgﬁ1 h rod t dall diall i
regularization scheme for shift-invariant imaging systems thyt!'ch Were expected 1o appear essentially radially symmet-

yields increased spatial uniformity motivated by the leasic N Smo‘?”‘ reconstructions_, appea_red eIIip_ticaI in penali_zed-
squares fitting of a parameterized local impulse response tBkgl'hootﬂ |;nag? rle;céo;structlops Lt'.smg tragltllonalhreglélarlza—
desired global response. We demonstrate the increased spgﬂglme (I) s.d'n” reconstruc |on|£Bs;ch ympf noaes allp—
uniformity of this new method versus conventional quadratR:ear nearly radially symmetric since as uniform resofu-
regularization schemes through an investigation of local poﬁ'ﬂn properties.

spread functions, and through reconstruction of thorax phan-SINC€ conventional regularizations produce images with
tom data with known structure. nonuniform resolution properties, one also cannot select the

regularization parameter intuitively. With FBP the noise-
|. INTRODUCTION resolution tradeoff is controlled through the cutoff frequency,
A ) o fe, of the filter. There is a direct relationship betwegnand

Statistical image reconstruction methods provide improvege global full-width half-maximum (FWHM) resolution of the
noise and resolution properties over conventional nonstatistigg¢onstructed image. Such a direct relation does not exist with
methods such as filtered backprojection (FBP). However, meffnalized-likelihood reconstructions with conventional regular-
ods based purely on the maximum-likelihood estimate produg@tions.
overlly noisy images. This noise may be redU'Ced b){ stoppingpne attempt to analyze and reduce the resolution nonunifor-
the iterative procedure used to find the maximum-likelihoggi, \as presented in [4]. The regularization method proposed
estimate before convergence [1], iterating until convergengf) which is based on the aggregate certainty of measurement
followed by post-smoothing [2], or by including a roughness,ys intersecting each pixel, provides increased spatial unifor-
penalty term in the objective function [3]. Itis difficult to con-yiry, over conventional space-invariant regularization. How-
trol resolution properties with stopping criteria. Post-smoothu}__g,er, the local point spread functions are still highly asymmet-
methods allow for better resolution control but require iteratiqg.
until convergence. S_ince unregularized algorithms CONVErg8y, this paper we present a parameterization of the quadratic
slowly, penalized-likelihood methods are desirable. | hness penalty function, which in turn parameterizes the

However, there are dlsa_dvantages WIth _penallzed-hkehho%a' impulse response functions. We then propose a novel
methods that use conventional regularization schemes. Spafeinod for determining the penalty function coefficients mo-
invariant penalties lead to object-dependent nonuniform reg@zyeq by a least-squares fitting of the parameterized local im-
lution properties [4, 5]. Specifically, for emission tomography, se response to a desired shift-invariant response (Section 11).
such estimators tend to smooth the image more in high coyjl yescribe a computationally efficient noniterative method for
regions than in low count regions. The local point spread fungs o ting the coefficients (Section 1V). This new method pro-
tions [4,6] that quantify this space-variant smoothing due to theyeq jncreased spatial uniformity compared to the certainty-
estimator can also be highly asymmetric, indicating anisotropjGse method of [4] and to conventional regularization tech-
smoothing. These asymmetric point spread functions mean il s \We demonstrate this increased uniformity through an

*This work was supported in part by the Whitaker Foundation and NI.“I"V(:"_S_'[igaticm of the local p_Oin'F Spre"?‘d fl_mCtionS_ (Section V). In
grants CA-60711 and CA-54362. addition, we perform a noise investigation on simulated data as




2 I BACKGROUND

well as a qualitative investigation using digital thorax phantom We will focus on penalized-likelihood estimators (PLES) of
data (Section VI). the form
Since the proposed quadratic regularization method provides AY) = argmax L(),Y) — R()),
nearly global resolution uniformity, one can use the direct re- ASA
lationship between the regularization parameter and the globdilere A is the set of feasible imaged;()\,Y) is the log-
FWHM resolution to specify a desired resolution for reconstrutikelihood, andR()) is a roughness penalty. For the Poisson
tion. Therefore, the proposed regularization possesses the imtiadel, the log-likelihood is
ition of FBP with respect to resolution and performs better than
FBP in terms of variance. _ _
Whether uniform spatial resolution is essential is an open LAY) = ZYilOgYi(A) = Yi(d) —logV3!.
question. For high resolution PET images the geometric dis- =1

tortions mentioned above may be undesirable, therefore reggs focus on pairwise roughness penalties of the following form
lution uniformity would be important. For cross-patient stud-

ies or single patient studies taken over a period of time, one 1
would presumably desire the same resolution properties across R(Q) = Z 3 Z wikp(Aj — M), (1)
images for comparison. However, in other cases one may de- Jj=1 k=1
sire nonuniform resolution properties. The methods describe% . . .
wheret is a symmetric convex function.

in this paper can also be applied to user-specified nonuniforn]

resolution criteria using space-varying regularization methods . : .
9sp ying reg roughness penalty may be written in matrix forfR(\) =

n the case of a quadratic penalty(z) = z2/2 and the

asin[7,8]. 14/ ; :
In this paper we focus on the resolution properties @fARA' where thep x p matrix R has elements defined by
penalized-likelihood estimators that are iterated until conver- S Ly +wy), k=
gence. Other studies have investigated resolution properties of R, = { =1 Q_wl_’k ah i ;JJ 2
IR :

unregularized maximum-likelihood expectation-maximization

algorithms as a function of iteration [6,9]. For a space-invariant penalty using a first-order neighborhood,
Real imaging systems usually possess intrinsically nonugie conventional choice is;), = 3 for the horizontal and verti-

form resolution properties. ~ Single photon emission comgy| neighbors, and zero otherwise. The regularization parameter

puted tomography (SPECT) systems generally have a depifeontrols the noise-resolution tradeoff. Largealues induce

dependent resolution [10], and positron emission tomograpiioother reconstructions, hence lower noise.  For a second-

(PET) systems often have significant resolution nonuniformigyqer penalty, one often includes; = 3/+/2 for the diagonal

due to crystal penetration effects [11]. The analysis and regulﬁé—ighbors in addition to the first-order neighbors.

ization method developed in this paper are based on quadrati§ne mean reconstruction of an estimator is given by
roughness penalties and an idealized shift-invariant imaging

system with ray-dependent attenuation and detector effects. The N N
central region in the field of view of many PET systems tends to w) = ExAY)] = /A(Z)f(K; A)dy,
be nearly shift-invariant and can be accurately modeled in this
way. wheref is the Poisson measurement distribution. The local im-
pulse response [4] at thigh pixel is defined as
1. BACKGROUND 4

We focus on emission tomography, although the method ap- 2 lim pA+0¢) — pl(d) - iu(&),

plies generally. Leh = [Aq, ..., ]’ represent the nonnegative =0 o N =

emission rates for an object discretized iptoixels, wheré de-
notes the Hermitian transpose. Detectors surrounding the obig
count photons (SPECT) or photon pairs (PET) that are emitte

from the object. Measurements are denoted by the random v éel’.ﬁto%)’ dan_?htheaz'éet!cpogar']t;?tr;vé- t;é?&;ﬁ]hforlfjpg'zggée
torY = [Y3,...,Yy]". These measurements are Poisson wi{ma ! be éNHIa qlﬁo 'malue[ij b €5 'mpu P
means given by y bew pproxi y

E\Fregﬂ' represents thgth unit vector. This definition of the
al impulse response is dependent on the estimatdhe

. 2 V'~ [AD[I/Y;()]A+R™] AD[/T(M)] A, (3)
Yi(A)ZZaij)\j—l—m, i=1,...,N,

=1 whereA is aN x p matrix of the{a;; } elementsD[1/Y;())]is
a diagonal matrix with elements'Y;()), andR™™ £ 1 (R +

where thea;;’s represent nonnegative constants that charact%r) is the symmetric component dt

ize the tomographic system, and thé are nonnegative con-
stants that specify the contribution due to background events'n [4], an approximation for the local impulse response was derived for
(background radiation, random coincidences, scatter, et égg:écﬁ( AF;) Pty [yﬂrpﬁt;di’ t?i/slg?/l\?p_\fR A1?[(%(11?3L 1:2%];2 z

f . AUA) = A A T A VAL = A5 A=
_G'Ven measurements, we would like to reconstruct, assum- LN R™™ ). If an asymmetricR matrix were used, only the symmetric com-
ing thea;;'s andr;’s are known. ponent of R would influence the objective function.




IlI-A  Penalty Matrix Parameterization 3

Oftgn, A’A is a shift-variant operator even withoutA. Penalty Matrix Parameterization
D[1/Y;(3)]. We consider an idealized 2D PET model where ¢ shift-invariant quadratic penalty, one can treat the

s E _ ) ok
itis possible to factor such thatd = D[c;]G, whereG'G is  panaity matrixR as a space-invariant filtering operator. There-
approximately shift-invariant and represents the geometric SYSie the operation of multiplyingk by the imageA can be

tem response. The diagonal matfi{c;] contains known ray- o ivalently represented as the convolution of the image with
dependent effects such as detector efficiency and attenuatign), e

factors, where:; is a multiplicative factor for théth measure- R = kp # %)
ment,y;. With this factorization, (3) becomes - -
For example, the conventional first-order penalty described be-

U~ [GWG+ RY™ | '\GWGe, (4) low (2) has the following kernel

whereW £ D[c2/Y;(A)]. WhenY;(}) is unknown, one can fr — _? _i _? ©)

estimate the local impulse resporiéey using a simple plug-in o = 0o -1 ol

technique where the observed measuremgntsplaceY; (),

and thec; factors are based on measured detector efficiencifise design of a space-invariaRtis like a filter design problem

and attenuation loss factors. with constraints on the kernélz. SinceR should yield a zero
The approximation (4) for the local impulse response is thEenalty for uniform regions, the filter representedidgyshould

tool we use below for the design and evaluation of differehtaive zero DC gain. (The kernel elements must sum to zero.)

guadratic regularization methods. Since only the symmetric portion @t influences the penalized-
likelihood objective function and the local impulse response in
I1l. PENALTY DESIGNMETHODS (4), we need only to consider symmetric kerfiglg for rep-

resenting the action of a space-invarid&it™. Lastly, we re-

hat viel ; ith ) uire thatR™™ be nonnegative definite to guarantee concavity
R(2) that yields reconstructed images with some arbitrary dgf yhe penalized-likelihood objective function. Therefore, for

sired space-invariant response. For example, we may deﬁl{g space-invariant penalty, the kergl must be a nonnega-
penalty functions that produce a global impulse response mee definite function

a Gaussian shape and some specified FWHM resolution. Ifwel-0 achieve these goals we parameterize the kekpeln

restrict ourselves to quadratic penalty functions, we can formt\é'rms of a small number of bases such as those having the fol-
late such problems in terms of the design of the penalty matjjx

. ) X wing form
R. Equivalently, we may desigR™™, since only the symmet-
ric component ofR affects the objective function for quadratiq)(kﬁl)(m, n) =26(m,n) —d(m —k,n—1)—d(m+k,n+1),
penalties. Additionally it is desirable to restrift to be non- _ _ _
negative definite to maintain the concavity of the penalizedhered(-) represents a 2D discrete impulse function, amd
likelihood objective function. and n represent spatial coordinates. A collection of such
Therefore, we would like to find a nonnegative definige b(x,1) (m,n) functions for variougk, I) pairs forms a basis for

according to an optimization criterion such as the following Valid kernels of space-invariad™"™ matrices. For example,
for a first-order neighborhood,

Ideally, we would like to be able to find a penalty functio

p
R =argmin } d(l'(R), 1), (5) 0.0 0 0 -1 0
- j:l b(l,O): —1 2 —1 b(O,l): 0 2 0
0 0 0 0 -1 0

whered(l’, ;g) is some distance measure between the actual |o- . . sym .
. ; . . . IS a basis for valid kernels dR*™. For a second-order neigh-

cal impulse respons¢, and a desired space-invariant responsg, 1 ood It b b b } forms a valid basis set

I). The desired space-invariant respotfsis a function of the "U(1,0)> 7(0,1), 7(1,1), (1,1 ’

pixel positionj only in that the desired response must be Ce\r/]v_here

tered at pixelj. That is, since the local impulse response at -1 0 0 0 0 -1

pixel j is centered at pixel, we must shift the desired response b, ) = 0 2 0 bii,1) = 0 2 0

to that location for comparison usingf-,-). In principle, we 0 0 -1 -1 0 0

could solve (5) by plugging in (4). However, this optimization ) ] ) _
problem appears to be computationally intractable. In general, any valid kernel for a space-invariant penalty matrix

Practical penalties use only a small neighborhood of pixels . may be specified by a linear combination of such basis

for the penalty supporte(g.first- and second-order neighbor- We use= since the left hand side is a vector but the right hand side is a
hoods). Therefore we reformulate the penalty design proméﬁﬂmage. The two sides are equivalent in that the vector is a lexicographic

in terms of these small rt neighborhoods by parameteffga g of the 2D image.
erms of these small SUpport n€ighborhoods by parameterizac, gger a horizontal penalty and two neighboring pixels; one on the left

ing the penalty matrix. and one on the right. For a symmetd®Y™, the penalty applied on the right
pixel from the left pixel is the same as the penalty applied on the left from the

2 The notationR > 0 indicates that this minimization is over nonnegativeright. Therefore, the left and right sides of the kernel must be the same for the
definite R. same penalty to be applied in both directions.




4 Il PENALTY DESIGN METHODS

functions: shift-invariant, it is approximatelpcally shift-invariant and we
kr = Zrklb(k,l) = Br (7) make the following approximation [12] to (4)

bl j 'OJ i —1n'0d j

wherery; represent the basis coefficients. letepresent the V(R) QY'Q + Q¥R QYQ
vector of allry, for a given neighborhood of support. Define - [ R0 ] Qe (10)
n,, to be the number ofk, l) pairs (the number of basis func- QP rwi| T
tions) and define thg x n,, matrix B with column vectors of S i
lexicographically ordered basis fUﬂCtiOlbﬁgJ). where the leISIOﬂ IS an ‘element-by-element divisién, =

In general the penalty specified B does not have to be D[F{G'WGe’}], and®’ £ D[F{R"™¢’}]. (F{-} repre-
space-invariant. In fact, for uniform resolution properties, wgents the x p discrete 2D Fourier transform operator.)
requirea space-variant regularization. Therefore, we extend theSince local impulse response functions generally vary
kernel representation (7) and IBtbe parameterized by a spacesmoothly with position, we expect that thé coefficients of
variant set of coefficients’, wherej represents thgth pixel.  our penalty design will also be smoothly varying. This is also

Let (nj,m;) denote the spatial coordinates of tfta pixel implied by the above locally shift-invariant approximation. For
and defineB’ to be ap x n,, matrix of shifted basis functions, this reason we use the approximatiB¥"e’ ~ B’r’. To il-
with each column having elements defined by the lexicogragHstrate this approximation, consider a simple 1-dimensional ex-
ically ordered basesy;, ;(m — m;,n — n;). In the case of amplgwith gsinglé—l _2_ —1] basis. Foragipgle basis function
a space-invarianR matrix, Re/ = Bir. (With the choice of there is a single coefﬁmem}7 for each positiory. In terms of
symmetric bases described previously= R*™.) To param- (2); this meansu; ;.1 = —r/ andw;, ; = —r7*%. Therefore,
eterize space-varia®®, we define theth column of R by if r7 is smoothly varyingite: 17/ ~ r/*1), wj ;11 ~ w1

and R is nearly symmetric. SubstitutinB>™e’ ~ B’r’ into
RS =Biri, j=1,...,p. (8) (10)yields

Q

In this case,R no longer equald®®™™ in general. However, Vo () & F1 { F{G'WG¢} ' } (11)
R¥™ may be found byt (R+ R'), as stated previously in foot- T F{G'WGei} + F{B’ri}
note 1. The parameterization (8) allows for the specification o ) o
of valid shift-variantR™™ by the set of coefficient§r}?_,. Comb|.n|ng‘ (9) and (11) yields a separable m|n|m|zat|on
To guarantee the nonnegative definitenes®8™ it is suffi- Problemj.e.l’ depends only on’ and not* for k # j. There-
cient to restrict to be nonnegative. A nonnegative definfle fore we may determine eaeh separately by
means that the penali(\) = ) R\ is always nonnegative. If i . S
we restrictr? to be nonge)gative, the local penalty at any pixel i’ = arg s d(lz(r7), Lp)- (12)
must be nonnegative due to our selection of bases. Therefore, -
the penalty on the entire image will be nonnegative as well. If d(u,v) = ||u — v||?, then (12) is a set gf constrained non-
Using the parameterization described in (8), the problem liiear least-squares (CNLLS) problems, since the dependence
determining the x p matrix R in (5) is simplified to the prob- onr/ is in the denominator of (11). We have implemented this
lem of determining the., - p coefficients{r’ }§=1- The penalty method, but it is still computationally expensive. Thus, we fur-
design problem thus reduces to the following optimization protier simplify this nonlinear optimization problem into a linear
lem. least-squares problem. Working in the frequency domain sim-
v plifies the design problem, as described next.
{t"}hoy = arg (e} 50 ;d(y({fk k=1):00)- O ¢ Linearized Penalty Design
’ Define L’ (r7) & F{l},(r?)} to be the local frequency re-
Although this minimization requires less computation than (3ponse and let? 2 F{1J} be the desired frequency response.

it still appears to be impractical since allof the 7 vectors To satisfy (12), we want to choosé so thatLj(rj) ~ I ie.
would need to be found simultaneously. ' - =T

o / J .
L’ (r7) PG WGe ) )

B. Circulant Simplifications L' (r?) = - - —— ~ L.
F{G'WGei} + F{B’ri}

(13)

SinceG'G is approximately shift-invariant, we may approx-
imateG’'G by Q'QQ, whereQ is a 2D discrete Fourier matrix Rearranging (13) by cross multiplying and simplifying yields
operator and? is a diagonal matrix representing a frequency ] ) ) o
domain filtering operatér Although G'W G is not globally F{G'WG} o (1- L) = Ly © F{B’r’}, (14)

The diagonal elements &2 are approximately the well-known/p fre- e represents element-by-element multiplication. We can
quency response of the backprojected projection operator. Glh@kis nearly

shift-invariant, we may compute the elementstdhy taking the 2D discrete MOW Qe3|gn the penal'.cy coefficients as a weighted least-squares
Fourier transform ofG’ Gefo, wherejj is a fixed pixel in the image (usually Solution to (14). Specifically, we choosésuch that
the center pixel, in practice). Whejg is not the center pixel we must include

- A e o . ) o 9
an appropriate (;omplex exponential multiplication to account for the shifting = arg min ”(I.jzj s H (15)
property of Fourier transforms. ri>0




with Using the same simplifications for circulant matrices dis-
) ) . cussed previously, we express the frequency response of (19)
® - VD|L|F{B} (16) as
. , _ ; F{G'G¢’}
i _ 7 / L) ~ : — —. 20
& = VD {1 Lo} F{G'WGe'}. 17) Lo~ Fe@Geil + BF (Reh) (20)
(For matricesF{-} operates on each column.) The matis Similarly we may write
a least-squares weightigvhereV'V is a symmetric positive ) BF{Roe’}
definitep x p matrix. 1 - Ly~ P - (21)
F{G'Ge’} + BF{Rype’}

Once a desired frequency respordgghas been chosen, or
equivalently a desired impulse resporige one can use the For the particular choice (19) ¢f, the denominators of (20)
NNLS (nonnegative least-squares) algorithm in [13] to perforamd (21) are identical. Additionallyj is in the numerator of
the minimization (15) for each pixel positiop, to obtain the (21) and not in the numerator of (20). If we choose a least-

parametergrs }7_,. squares weighting oV = D[F{(G'G + SRy)e’}] the de-
) nominators of (20) and (21) disappear in (16) and (17), and we
D. Proposed Penalty Design can rewrite the penalty design as
As mentioned below (2), for traditional space-invariant o ) P a2
penalties, thew,; terms in (2) include the regularization pa- § = arghm [6®'s” — || (22)

rameters, which controls the mean global resolution. For shift- j o ; y
invariant penalties wherg is a simple multiplication factor we CI>‘ D [F{G Ge HF{B 1

may writt R = SRy, whereR, specifies the relative penalty & = BD[F{R¢e}|F{G'WGe}.
strength between pixel pairs amtispecifies the mean global
resolution. Therefore it is simple to generate nB\vor differ-
ent desired resolutions. (One does not have to recomigyife i X X
This is not necessarily the case with the penalty design specifiéd) 'S @3-independent design. -

by (15). Each specific desired response, requires a separate ONc€ We have calculated the parametei® }7_, accord-
computation for each desired FWHM resolution. ing to (22), we construct the penalty matd¥. using (8) with

— aJ i i
Therefore, just as the conventional shift-invariant penalty isﬁé = 03 | Since onlysglne syhr_nrrr:etrlc (_:ompl)onentRL affectsh_
simple function of3, we would like to design a nesl® = 3R, t Syrge”aty, we usd2?’™, which requires less memory. This
that yields uniform resolution properties. In terms of our pd%= has been designed to provide global isotropic resolution

rameterization o2, we would like factorable coefficients sucHPTOPerties and, because of the least-squares weighting leading
thatr/ = Bsi. Making this substitution into (15) yields to (22), R™ is independent of the choice of the regulariza-
- - tion parametep. Therefore, oncdR}’™ is calculated one may

P =p37, & £ argmin||B®'s’ - deQ (18) specify a desired global resolution throughThe penalty ma-
s7>0 trix is given by the simple relatioR>™ = SR"™. (A method
relating3 to the FWHM resolution is discussed in [5].)

The @ terms in this minimization amount to a scaling of the
least-squares objective and do not affect its solution. Therefore,

The penalty matrixR, is completely specified by’ . However,
the minimization in (18) depends gh To take advantage of the IV. PRACTICAL IMPLEMENTATION
simple R = SR, relation, the minimization needs to be inde- . . . .
pendent of3. In terms of design choices, this amounts to prope\rWhIIe the penalty de§|gn m‘et'hods (15) and (22.) give a sim-
selection of the desired frequency resporsg,and the least- ple form for the calculation of’, in the forms described above

squares weighing. Specifically, we would ike o choos, /500 ' 8 S8 T e e T e o
andV such that (18) is not a function ¢f. : P y

The local impulse response of an unweighted least-squal %:hOd ;f(_)r_ cl?sel_y apgroilénatlngztzhe parameterized penalty
estimator, where the’s are all unity, is: with coefficients given by (15) (or (22)).

Consider each of the terms in (16) and (17). Determina-

lﬁ = [G'G + B3Ry 'G'G¢’. (19) tion of F{B’} requires a single calculation of the 2D-FFT

~ (fast Fourier transform) of each of thg, 2D basis functions.

If Ry is chosen to be a space-invariant penalty, the respgse(Different j only shift the bases. One could incorporate these
is approximately independent of the choicejafinceG'G is  shifts with relatively little computational overhead by multiply-
a nearly shift-invariant operator. That i§,is nearly the same ing F{B’°} by appropriate complex exponentials.) The re-
(with appropriate shifts) regardless of the choicejofAlter-  maining portion of (16) may also be computed once with simple
nately, if we wish to have a desired response centered at a giveatrix multiplications. Therefore we can precompd@#, and
pixel, we may simply specify the locatioh This particular determine®’ from ®’° by complex phase shifts. (This step is
choice ofl,, has a form very similar to the formulation of the lo-eliminated below.) Fod”, the matrix multiplications including
cal impulse response in (4). Additionally, it is a response who$eand D[1 — L, may be precalculated as well. However, for a
resolution is controlled directly through the parameter direct implementation of (15), one would have to compute the

! 1 . . .
6An equivalent weighted least-squares problem may be stated usin@Q'F_FT of G WGQJ_ for every p'erJ’ which would be com-
weighted normj|z||y, = [|[V'z| in (15) and eliminatind” from (16) and (17). putationally expensive.




6 IV PRACTICAL IMPLEMENTATION

GeJ ) G'Ge’
G'Gel
a) b) C)
¢ n| " ™
m
'S
q WGe! , G'WGe
= G'WGe!
e) f 0)
¥
) | n "
\!
T T mn
7 WIGes p—— G'WIGe
h D[ ° ) — K)
D,
@ @ | n j'
\3
'8 T mn
i W Gelo o G'WIGer"
— G'W’Gedo
) m) " 0)
6 6 n / ¥
|
i

Figure 1: Approximation oz’ W G with local radially-invariant weightings (see text). Image a) shows the unweighted projection

of a single pixel in the sinogram domain. Images b-c) show the backprojection of this unweighted sinogram where Image c)
is an enlarged portion of Image b). Variablesandm index image coordinates, and variablesand » index the sinogram
measurements. Images d-g) show the weighted projection (e) and backprojection (f-g) for a typical weighting (d). Images h-
k) show the weighted projection-backprojection using an approximate radially-invariant weighting (h). Images I-0) show the
weighted projection-backprojection for a fixed central pixelNote that Images g), k), and o) are nearly identical. Images d), e),

h), i), I), and m) have a logarithmic color scale.

One can show that in an idealized continuous system, if thims in width), we can approxima®” locally by a position-
continuous equivalent o is aradially-constant sinogram dependent radially-constant mat#”. This property is illus-
scaling operator, then the continuous equivaler6W G can trated in Fig. 1.

be_expressed asa position—independent blu_rring operation [14]Consider a single pixel in the image represented by the unit
This property should be approximately true in the discrete Ca§8ctorgj. The operation ofG on e/ forms a relatively nar-

It W were radially-constant, we would only need one compyls,,; sinysoidal trace in sinogram space. Such a projection is

tation of F{G'W Ge'}. shown in Fig. 1a. The backprojection of this sinusoidal trace
In practice the elements d#V are not globally radially- produces the familiat /r response centered at the given pixel.

constant. However, since the projection of a single pixel forms,is image and an enlarged region about the pixel of interest are

a relatively narrow trace in sinogram space (only a few radighown in Fig. 1b-c. Recall from the local impulse response (4)

— , _ that the effective sinogram weightin§/, is ¢ /Y;. In recon-
_ A radl_ally_constanW scales all of a sinogram’s rad_lal elem_ents fora Palstructions wherd; is unknown, we choosW = D[qi], where
ticular projection angle by the same scalar value. That is, the diagonal elements, ~ R .

of W correspond to some f¢) radius/angle pair and the elements are equal féfi = C; / max{y;,t.}. Theé; terms are estimates of the detector

any givend. efficiencies and attenuation correction factors made from a nor-




malization scan and transmission scan, gndre the measure- close agreement in the image domain as well as the sinogram
ments (an estimate of the variance). Thex{-,t.} is included domain.
to avoid inordinate ray weighting for low coug, by choosing  Since G’'W G is an approximately shift-invariant operator
te > 0. for radially-invariantW, G'W Ge’ approximately equals a
The vectorg = [q1,...,qx] represents a lexicographicallyshifted G’ W’ Ge’ for an arbitrary fixed pixejy (i.e. the cen-
reordered 2D array of scaling values thatuis angles byn, ter pixel in the image). Plots a& W’ Ge’ for j, equal to the
radial bins in size, wher&/ = n, - n,. Atypical g is presented center pixel are shown in Fig. 1n and Fig. 10. Note the close
in Fig. 1d. Fig. 1e shows the weighted sinogri#iGe’ for the agreement betwedd W’ Ge’> andG'W Ge’. Therefore, we
single pixel’s projection using this particular weighting. need only to calculat&e’ once, rather than for every
Instead of using, we would like to approximate the weight- In terms of®’ in (17), under the radially-invariari” ap-

ing with a local radially-invariant versiori. The associated Proximation, we need onlg’ and may replace (15) with

diagonal weighting matrix 8%’ = D[g’]. To choose&}’, con- » 2

sider the following. LetU = G'WG, whereW = D|q|. Po= arg gl;% H‘I’jof] —d H (25)

Decompose the system mati& by rows into separate subma- i e

trices for each projection angle so ti@t = [GY,...,G., |’ d = VD[1-L)|F{GW'Ge"},

with G,, € R™*P. Similarly, decompose the welghtmg vector - ) , . o

intog = [[g']', .-, [g"]') with g" € R™. whered’ is a “centered” version af’. This step eliminates the
Due to thel /r response in tomography/ is concentrated need for complex phase shifts. Nevertheless, direct implemen-

about its diagonal. Therefore, tation of (25) would still require 2D-FFTs.

Definew’ = [[']3,...,[s"]3]". The vector’ contains all
- of the distinct angular weighting values in the radially constant

—S @ Dl ~ S DG G, DIk 2 ) ; .
u ,;Gn [¢"] G nz::l [£")G GRD[E"] = U, W, Sinced’ is linear in the elements a7, we may write
(23) d'(wi) = Muwi, whereM is ap x n, matrix. We may find

where thejth element ok™ is M by superposition.
Define W to be the weighting matrix with radially-
a2 [GRlE e constant values having unit values at angleand zero other-
~li = von=heona (24 el G.e. W = D[[0,...,0/,1',0,...,0)} where thel

vector appears in theth block andl and0 are column vectors
This is the unique choice ef* that maked/ ~ U with equal- of lengthn,.) For each angle define
ity along diagonals for each of the, terms in the summa- A s .
tions in (23) (e. the diagonal elements &/, D[¢"]G, and 1, = VD[1 = Lo|F{G W™ G}, n=1,..., 0.
D[s"|G), G, D|s"] are identical for each = 1,...,n,). The
approximation would be exact if thg’s were all equal. How-
ever, since the local impulse response at pjxalies predomi-
nately on they,’s that intersect pixej, U andU will be nearly
equal. This approximation is reasonable even for very nonuni-
form g since[x™]; tend to vary slowly as a function gtbecause

of the implicit smoothing in (24). Similarly, sind&’Ge’ con-  pe the combinea,, x n, matrix operator. Therefore we may

Then by superpositioM = [m;,...,m,
For the unconstrained case, (25) has the closed form linear
solutioni? = [[®7°] ®7°] 1 [®7°] d;. Let

T = ([@°) 8" @) M

centrates arounel (cf [4]), determine unconstrained solution of (25)#y= Tw’.
na However, for the matrixR to be nonnegative definite, we
Uel ~ Z[ﬁ"]?G%G’ngj- need to solve the constrained optimization problem (25). It is
1 straightforward to modify the NNLS algorithm of [13] using
4 &7 and M to provide the constrained solution.
We choosey’ = [[&']31,...,[&"*]31']" to form a radially-  For simplicity in ourimplementation we have used the subop-
constant, position- dependentwelghtqigwherel isacolumn timal greedy approach presented in Table 1 which yields non-
vector of ones of length,,. B negative’’ and nearly the same results as NNLS but with a

Fig. 1h shows the radially-invariant welghtn'q@ using this  slight computational speedup and simpler implementation. This
technique on the weights in Fig. 1d for pixelWhen applied to procedure takes one step for each negative elemeitt and
the projection o7, the result is very close to the weighting uswill complete in at mosh.,, steps. For smat,,, one could pre-
ing ¢. The close agreement between #WeandW’ weightings compute the™ — 1 possible reduced ~* matrices for further
can be seen by comparing weighted sinograms in Fig. le amgedup.
Fig. 1i. Similarly the agreement is very close for the backpro- As described in the beginning of this section, direct imple-
jected weighted sinogram&' W Ge? andG’W?Ge’, shown mentation of the design given by (15), (16), and (17) requires
in Fig. 1f and Fig. 1j, respectively. Zoomed versions of thg backprojectionsp.,, + p 2D FFTs, and applications of the
backprojected weighted sinogram for regular and local radiallNLS algorithm. Using the simplifications described in this
invariant weightings are shown in Fig. 1g and Fig. 1k. Note tteection, we perform the one-time precomputatiori®éf and
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Table 1: Routine used to constrain kernel coefficiefts, 10l 1
SetH = [#°]'®’° andC = [ M. 20t ]
Let#’ = Tw.

A . . 30r
while 77 contains negative values,

Lets equal the index of the minimum value F.

Remove théth row andith column of H. 50t

Remove théth row fromC.

Set theith element of’ to zero.

Find the remaining elements &f by H ' Cw’.
end

401

60 1
20 40 60 80 100 120
Figure 2: Digital phantom used for investigation of resolution
properties of different regularizations, with four pixels of inter-
est marked.

M for a given system geometry usimg backprojections and

nw + na 2D FFTs. The coefficien® may be determined with warm background ellipse, a cold left disc, and hot right disc

p calculations of (24), which is on the order of one backpravith relative emission intensities of 2, 1, and 3, and attenua-

jection, andp applications of the algorithm in Table 1 (or thetion coefficients of 0.0096, 0.003, and 0.013/mm, respectively.

NNLS algorithm). The PET system model included projection data with 128 ra-
In terms of floating point operations, (24)iX4M + 2p) for  dial bins and 110 angles uniformly spread ov&d° with 6 mm

a single pixel positiory, whereM = n,nypa anda is the frac- wide strip integrals (3 mm center-to-center spacing), and detec-

tion of nonzero elements @. Assuming thel —* andC ma- tor efficiencies with a pseudo-random log-normal variance with

trices are precomputed, the algorithm given in Table 1 is at mest= 0.3 to model detector efficiency effects.

O(n2,n,), depending the number times the while loop is exe- we investigated the resolution properties of four different
cuted. Therefore, calculation of &ff coefficients using method quadratic regularizations: (I) The conventional space-invariant
summarized in Table 1 is at maS(4M + 2p + pn,nz,). Since first-order penalty given by the kernel in (6), (I1) the certainty-
the precalculation ofVf is approximatelyO(M + nq.plogp]) pased penalty developed in [4], (lll) the constrained nonlin-
andO(n,,plogp) for ®’°, the entire precalculation 8(M +  ear least-squares (CNLLS) penalty given by (12) using (19) as
(na + nw)plogp)]). However this precalculation need only bg  and (1) the computationally-efficient penalty we have pro-
performed once for a specific system geometry. posed in (25) with the proposegtindependent modifications
Compare this with the design given by (15), (16), and (179f (22). For the CNLLS and proposed penalty design, we used
The term that dominates this calculation is the computation §%second-order basis and seleckglin (19) to be the conven-
@’ in (17). This term igD(2Mn,nya+plog p) for asingle pixel  tional space-invariant first-order penalty, as above. We specified
location;. Therefore, even without calculation of (15) and (16he regularization parametgrto correspond to a target resolu-
we require at leagd(2M> +p* log p]) floating point operations tion of 4.0 pixels (1.2 cm) FWHM resolution for each of those
to evaluatef’ for all j. Clearly, much of the computationalpenalties.(The relationship between global FWHM resolution
advantage of the proposed method is due to the order reductigRi 3, and how to calculatg is discussed in [5].) To calculate
of M?to M. _ _ _ ~ ¢; In (23), we chos@; = ¢Z/ max{y;, t.} with t. = 10.
For 2D reconstructions performed in the following section, 1, qemonstrate the relative spatial uniformity of these regu-
30 iterations of the SAGE algorithm [15] on & 266 MHZ Pery, i, ation methods we used (3) to calculate local point spread

Fium !I pro.cessortook 18.5 sgconds for the conyentional SPagSictions (PSFs). We approximated the solution of (3) using
invariant first-order penalty given by the kernel in (6) and 204 jterations of a coordinate ascent algorithm initialized with

seconds for the proposed penalty with precompubétiand 5 £ rier approximation of the target response given in (19).
M. The precalculation o’ and M, which only need be \qte that (3) is of the form of a penalized weighted least-
done once for a given system and desired response, 100k 23l 5re5 solution.) Since we expected these responses to be
seconds. Compare this to a computation time of about 2 hours, ce variant, we chose four different locations in the object

for the constrained nonlinear least-squares penalty given in (1g}. oy investigation. These points are represented by the white
Thus the method is very practical. (We performed the réCoNr» marks in Fig. 2. We have systematically examined numer-

structions using the ASPIRE iterative reconstruction librarieg,s 4qditional spatial locations which yielded similar conclu-
[16].) sions {.e.these are representative results).

V. SIMULATION RESULTS In addition to the penalized-likelihood methods, we present

results for filtered backprojection (FBP) and a penalized un-

weighted least-squares (PULS) estimator with a conventional
This section provides simulation results comparing the relfirst-order shift-invariant penalty specified #®,. Both these

tive resolution uniformity of different regularization schemesnethods should produce shift-invariant and isotropic smoothing

Fig. 2 shows th@ 28 x 64 emission image (with 3 mm square properties. (Recall, the impulse response for a PULS estimator

pixels) used for the investigation as in [4]. The image hasis given by (19).) Moreover, since we have chosen the con-

A. Resolution Uniformity
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strained least-squares filter for FBP, which essentially matctthe coefficients appear at the edge or outside the object in the

the smoothing of FBP and PULS these methods should yielijital phantom.

nearly identical smoothing properties. (See [5].) The CNLLS penalty and the proposed penalty yield very sim-
Results of this impulse response survey are presented in Higr 7/ coefficients and produce very similar local impulse re-

ures 3-8. For each penalty, PSF contours at 25, 50, 75, and &ganses. Hence we conclude that the computational simplifica-

of peak value are shown. These contours were generatingtigns proposed in Section IV do not change the calculated values

ing thecontour command in Matlab. Sampling is on a gridof 7 significantly and that such simplifications are appropriate

aligned with pixel centers. The pixel boundaries are represenfetiproviding a computationally-efficient algorithm for calculat-

by the dotted grid in each plot. Above each set of contoursg our proposed penalty for uniform resolution properties.

are estimates of the meam)(@and standard deviatiow) of the ) )

FWHM resolution in pixels, which quantify the mean resolutioB- Noise Properties

and radial variation at that location. The results presented above describe the resolution properties
For the conventional space-invariant penalty in Fig. 3, thsf the estimators. As in [4], we also investigated the noise prop-
local PSFs are highly asymmetric and space-variant, blurriggiies. To form sample standard deviation images, we simulated
more in high count regions (85,33) than in low count regiong00 noisy measurement realizations for the digital phantom in
The certainty-based penalty of [4] shown in Fig. 4 providegsig. 2. The PET model included 10% random coincidences and
some improvement making the mean FWHM close to 4.0 pigveraged 1 million counts per realization.
els. However, the responses are still quite asymmetric. PSFs fope reconstructed each of these 400 realizations using 30 iter-
the CNLLS penalty are shown in Fig. 5. Note these contours atgions of the SAGE algorithm [15] with the same regularization
nearly radially-symmetric and near the 4.0 pixel FWHM targetethods used above in the resolution properties investigation.
resolution. The PSFs of the proposed regularization method geg all of the statistical methods except the CNLLS penalty, we
presented in Fig. 6. These contours are also highly symmetiise the measurementg, for calculation of R. Because of
and the average FWHM resolution is very close to the target réise extensive computation time associated with calculation of
olution of 4.0 pixels. Compare these local PSFs to the contotii# CNLLS penalty, the noiselesg, were usedi.e.; the same
for filtered backprojection in Fig. 7 and those of PULS in Fig. §enalty based on the noiseless measurements was used for all
Our proposed penalty is designed with a target PSF given by tealizations.
PULS response. Note the similarity between these method’s reThe results of this noise investigation are presented in Fig. 10.
sponses as shown in Fig. 6 and Fig. 8. For FBP and PULS thige actual sample standard deviation images are shown on the
PSFs are nearly perfectly symmetric. Not surprisingly, due lgft side of the figure. Horizontal and vertical profiles of these
our choice of FBP filter, FBP and PULS have almost identicghages are shown in the remaining plots. The horizontal pro-
contours. file is taken through the image center and the vertical profile
For a more quantitative assessment of the resolution unif@-taken through the center of the cold disc. These profiles are
mity, we present the following metric. For each response wepresented by dotted lines in the images. Pixel standard
calculate the mean absolute radial deviation of the 50% contaaviations in these plots are expressed in terms of a percent-
from the 2.0 pixel FWHM target radius. Then we calculate thege of the background ellipse intensity. If one included error
average value of this deviation over a set of 69 sample locatidser's on these plots, the error bars would be smaller than the plot
within the phantom. (Ideally, we would do this for all imagemarkers. Therefore we have eliminated the error bars for clarity.
phantom pixels. However, this is quite computationally expefor conventional regularization, the standard deviation estimate
sive.) The certainty-based penalty and the conventional penaddiynearly uniform. The remaining methods yield similar stan-
have the greatest deviation using this metric, having an averaged deviation maps, with FBP and PULS generally having the
deviation of 0.27 pixels and 0.25 pixels, respectively. Recdllghest standard deviation and the certainty-based penalty hav-
in Fig. 4, the average resolutiop)(is close to the desired 4.0ing the lowest standard deviation. Not only do FBP and PULS
pixels, but the average deviation from this target is rather higthare similar resolution properties, but also similar noise prop-
The proposed method and the CNLLS penalty are more unifoenties. The close agreement in standard deviation between the
with an average deviation of 0.11 and 0.09 pixels, respectivetyoposed method and the CNLLS penalty further justifies our
Again, CNLLS and the proposed penalty perform comparaldpmputationally efficient design technique.
and show significant improvement over the conventional spaceAt first glance, it appears that uniform resolution properties
invariant penalty. For FBP we found an average deviation odme at the price of a variance increase as compared with the
0.02 pixels and for PULS an average deviation of 0.05 pixelscertainty-based penalty. However, note that the certainty-based
The calculated’ coefficients for the CNLLS penalty and thepenalty and the proposed penalty hdiféerentresolution prop-
proposed method are presented in Fig. 9. The coefficient valegies. The space-variant smoothing in the certainty-based re-
are presented as four images (since we used four basis furanstruction often has a greater maximum FWHM resolution if
tions) for both methods, separated by dotted lines. Each image considers the maximum diameter of the local PSFs (com-
pixel corresponds to the coefficient of a given basis function p&re Fig. 4 and Fig. 6). This causes increased smoothing, yield-
that pixel location. The scale is logarithmic, except for the valueg a reconstruction with lower variance.
zero, which is represented in white. The CNLLS and proposedlt is difficult to produce a resolution-noise curve demonstrat-
penalty yield similar results. The largest discrepancies betweang the relative performance of these two methods because they
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Figure 10: Sample standard deviation images and profiles: a) Filtered backproje¢tidn Penalized unweighted least-squares
PULS (), c) PLE with conventional regularization)( d) PLE with certainty-based penalty)( e) PLE with proposed penalty
(0), and f) PLE with CNLLS penaltyl().
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have different resolution properties. One might choose to uséan properties, it appears that our penalty design has not ad-
metric like the bias-gradient norm [17], however the connectiamersely affected the noise properties of the estimator.
with resolution is not necessarily straightforward. Similarly, It is difficult to globally compare the proposed penalty with
one could use an average FWHM resolution as a metric. Hothie conventional and certainty-based methods for an entire im-
ever, such a metric tends to handicap an estimator with unifoage reconstruction because they possess different resolution
resolution properties. Estimators with nonuniform smoothingroperties for every pixel. On the other hand, FBP and the pro-
can smooth differently in different directions while maintainposed penalty both yield nearly the same PSFs, so a comparison
ing an average FWHM resolution identical to an estimator wikeems more appropriate. Since these methods have nearly the
isotropic smoothing. same resolution properties, we can fairly identify which pro-
Therefore, we create banded plots where each “curve” spaides better global noise properties. Note, particularly in the
a range of resolutions. For each method, the local impulse vertical profile in Fig. 10, that reconstructions based on the pro-
sponse at a given pixel has a range of resolutions from its mipiesed penalty have lower variance than FBP.
mum FWHM resolution to its maximum FWHM resolution. A There are a few points in Fig. 10 where the standard deviation
given image pixel has a single standard deviation value, buestimate is slightly greater for the proposed penalty. Therefore,
range of resolution values. to illustrate the relative global noise properties of FBP and the
We produced such banded curves as follows. ResolutionPkE with the proposed regularization, we generated a histogram
controlled through3, so we performed reconstructions for @f the relative variance. Specifically, for each pixel in the object,
range of3 values. For eacl®, 400 realizations were used towe calculated the ratio of the sample standard deviation at that
compute sample standard deviations of the reconstructed ixel using filtered backprojectiowfpp) to the sample stan-
ages. Empirical maximum and minimum FWHM resolution igard deviation at that pixel using the PLE with the proposed reg-
calculated by finding the local PSF and its FWHM contour, andarization ¢pr,). For pixels whererrgp /op1, is greater than
then computing twice the maximum (minimum) radius of thene, filtered backprojection has higher standard deviation. This
contour. These two resolution measurements form the rangdistogram is shown in Fig. 12. The vertical dashed line indicates
resolutions produced by a specific Plotting this resolution the position where this ratio equals one. For nearly every pixel
range versus the pixel standard deviation forms a banded cuthe. PLE with the proposed regularization produces lower vari-
Resolution/noise tradeoff curves were calculated for two pixeBnce estimates and, for those pixels that have higher variances
one at the center of the cold disc and one at the center of the et difference is only slight. More than 50% of the pixels have
disc. over a 20% reduction in reconstructed pixel standard deviation.
Curves for the conventional and proposed penalties ardn addition to the variance investigation, we present a correla-
shown in Fig. 11. The lighter band with “+” symbols on thdion investigation. By specifying the desired resolution proper-
border represents the resolution/noise tradeoff curve for the pties of PULS, have we gained the correlation properties as well?
posed regularization, while the darker band witfi $ymbols To address this issue we have included a set of typical corre-
on the border is the curve for reconstruction with convention@tion images in Fig. 13 for FBP, PULS, and the PLEs with
regularization. (The light band partially obscures the dark bar@@nventional, certainty-based, and proposed penalties. These
however the borders are marked by symbol and lines so thatifi@ges represent the absolute value of the correlation between
degree of overlap is visible.) a pixel and pixel (65,49). FBP and PULS have nearly iden-
We have produced a banded resolution/noise tradeoff plot i§al correlation images (particularly inside the object). The
ing the certainty-based regularization of [4]. However, sindeLEs with conventional and certainty-based penalties have sim-
the certainty-based technique produces a curve nearly identit& images, but are noticeably different due to the different
to the conventional regularization, we have not included the pl&solutions. The proposed method shown in Fig. 13e appears
in this paper. Similar behavior was observed in [4] using a me§@mewhere in-between the other PLEs, and PULS and FBP. The
FWHM resolution criterion for the resolution component. Esstructure of the correlation immediately surrounding (65,49) is
sentially this means a given pixel simply moves up or down igglite similar to FBP and PULS, having lost the nearly isotropic
resolution/noise curve to the specified resolution. This is agffect of the other PLEs. This behavior is somewhat counterin-
other indication that the certainty-based method does not yiéidfive since PLEs usually have much narrower correlation side-
uniform resolution properties. While the average FWHM reséabes than FBP and PULS. It may be the case that such correla-
lution may be improved, the PSFs are still anisotropic yieldirfiPn properties may be inextricably tied to resolution uniformity.
a wide resolution band in our banded resolution/noise tradebHrther investigation will be required.
curves.
In Fig. 11 the banded curve for the proposed penalty spans
a small resolution range.€.. The curve is thin horizontally), In the previous section we investigated our proposed regu-
indicating its relatively isotropic smoothing properties as contarization technique using quantitative measures of noise and
pared with the conventional penalty. If our design were ideagsolution. In this section we demonstrate the qualitative im-
minimum and maximum FWHM resolution would be identiprovement using our proposed regularization technique through
cal and we would have a line instead of a band. Additionallseconstruction of a noiseless thorax phantom. Both transmis-
the proposed penalty band lies always inside the conventiosiain and emission images for the digital phantom are shown in
penalty band. While these two methods have different resokigure 14. The phantom 828 x 64 and has 0.42 cm square

VI. THORAX PHANTOM RESULTS
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d) e)

Figure 13: Sample absolute correlation images shown for pixel (65,49): a) Filtered backprojection (FBP), b) Penalized unweighted
least-squares (PULS), c) PLE with conventional regularization, d) PLE with certainty-based penalty, e) PLE with proposed penalty.

pixels. Relative emission intensities for the lungs, spine, aimdFig. 15d shows some improvement. Most notably, the outer
heart are 0.4, 0.0, and 3.0, respectively, with the backgroumdiges of the arms are smoothed in a more uniform fashion.
soft tissue having a relative intensity of 2. In addition, theddowever, the tumors are still smoothed preferentially in the
are four round tumors with a relative intensity of 4. These simertical direction. Fig. 15d shows the reconstruction with our
ulated tumors are radially symmetric, neglecting discretizatigmoposed penalty. The resolution uniformity appears much im-
effects. In the transmission image, the attenuation coefficientgybved over the other PWLS methods. The tumors appear
the lungs is 0.001/mm, the spine is 0.016/mm, and the remairearly radially symmetric and the edges appear much more uni-
ing soft tissue is 0.0096/mm. The PET system model includiesmly smoothed.

160 radial bins and 192 angles space uniformly a®ér, with

3.375 mm strip integrals and 3.375 mm center-to-center spac- VII. DISCUSSION

Ing. Conventional space-invariant regularization methods for
We reconstructed the noiseless emission measurements ugiigalized-likelihood image reconstruction produce images with
FBP, penalized unweighted least-squares (PULS), and perglace-variant resolution properties. This has been shown ana-
ized weighted least-squares (PWLS) estimators with the caytically in [4] as well as empirically in real images, such as
ventional, certainty-based, and proposed penalties. All statigtig. 15¢c. Although the certainty-based method of [4] attempts
cal methods enforced nonnegativity of the image and negativerovide more uniform resolution, as we have seen in our in-
in the image reconstructed via FBP were set to zero. All metfestigations, that method does not provide truly isotropic reso-
ods used a target FWHM resolution of 3.0 pixels (1.25 cm). FRition properties.
PULS and PWLS with conventional regularization, the penal- we have presented a new computationally-efficient regular-
ties were chosen so th&, corresponds to the shift-invariantization scheme for increased spatial uniformity. The proposed
first-order penalty with kernel as in (6). The proposed penaliyethod is motivated by a least-squares fitting of a parameterized
uses thes-independent design (22) with second-order basggcal impulse response to a desired respdpseThis method
and the same targé, as PULS. yields nearly space-invariant and nearly symmetric local point
The reconstructions using these methods are presentegpread functions at FWHM resolutions very close to specified
Fig. 15. The FBP reconstruction in Fig. 15a has uniform retrget resolutions. Additionally, we applied this novel regular-
olution properties. This is evident from the uniformly smootization in the reconstruction of simulated thorax phantom data
edges and radially symmetric tumors. Similarly, the PULS rend demonstrated the increased resolution uniformity.
construction in Fig. 15b shows the expected nearly identicalProviding a regularization scheme that yields uniform reso-
results. (Recall the nearly identical PSFs of FBP and PUL&ion properties makes the selection of the regularization pa-
in Section V.) The reconstruction using conventional regulacameter () more intuitive. One may simply specify the desired
ization is shown in Fig. 15c. There are distortions of the folobal resolution of the reconstructed imagégjnAdditionally,
round tumors (particularly in the lungs) in this reconstructiomreating nearly the same resolution properties in both the statis-
The tumors are stretched vertically and appear elliptical. Atieal (PLE) and traditional (FBP) reconstruction techniques pro-
other indication of resolution nonuniformity is evident at thgides a fair ground for comparing the noise properties of the two
outer boundaries of the arms. These boundaries are shamethods. As expected, we observed that by using a likelihood-
than those in FBP and PULS. That is, the resolution is higherliased estimator and taking the noise model into account, one
these regions. The reconstruction with certainty-based penalgn reduce estimator variance.
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Figure 15: Reconstruction of thorax phantom data using a) filtered backprojection, b) Penalized unweighted least-squares,
¢) PWLS with conventional regularization, d) PWLS with certainty-based penalty, and e) PWLS with the proposed regulariza-
tion scheme.

While one may arguably desire space-variant resolution prdpets of noise modeling. However, this is not necessarily true
erties, one would most likely want to be able to control regionfdr space-variant systems. Further investigation regarding these
resolution properties, while maintaining radially-symmetric réssues is required.
sponses. These proposed methods can be modified to provideurrently, there is no computationally efficient method for
such control, allowing for predictable and intuitive specificatiooomputing roughness penalties yielding uniform resolution
of resolution properties in image reconstruction. properties for systems wher&'G is space-variant (as in

As demonstrated in Fig. 6, the proposed second-order pen&§fECT which has a depth-dependent resolution and in PET
still yields slight asymmetries in the point spread function§ystem models that account for depth-of-interaction in the de-
Similarly, in Fig. 15e, there are slight resolution nonuniformtector crystals). Therefore, these ideas need to be extended to
ties evident in the reconstruction. In particular, the edges $#ace-variant tomographic systems. Additionally, the methods
the phantom have subtle smoothing differences between pwhresented here are for 2D reconstruction. We also plan to in-
with the proposed penany, and the FBP and PULS reconstruestigate 3D penalties for resolution Uniformity in volumetric
tions in Fig 15a and Fig. 15b (especially near the arms). Théggonstructions. [18]
are many possible solutions that merit future investigation. The
nonnegativity constraint o’ may be too strong a condition.

(Recall this is a sufficient condition for nonnegativity &.) [1] E. Veklerov and J. Llacer, “Stopping rule for the MLE al-

This constraint could be relaxed providing increase design free-  gorithm based on statistical hypothesis testingGEE Tr.

dom, yet still maintaining nonnegativity & and a concave ob- Med. Im, vol. 6, pp. 313-9, Dec. 1987.

jective. One may also achieve slightly better resolution unifor- . u . .

mity at the expense of additional computation by using higherI—Z] D L.‘ Snyder and M. 1. Mlller, The use O.f sieves to S.tab"

order neighborhoods. Additionally, choices bf other than lize images eroduced with the I.EM algorithm for emission
. . X ' tomography,”IEEE Tr. Nuc. Scj.vol. 32, pp. 3864-71,

(20) may require larger neighborhoods to obtain good fits to the Oct. 1985

desired response. ' '

With additional improvements, the question of noise perfor{3] K. Lange, “Convergence of EM image reconstruction al-
mance may arise. If the resolution properties are truly identical, gorithms with Gibbs smoothing,IEEE Tr. Med. Im,
does penalized-likelihood still outperform FBP? The variance vol. 9, pp. 439-46, Dec. 1990. Corrections, T-MI,
improvements we have seen with our proposed method over 10:2(288), June 1991.

FBP are marginal in some regions. As resolution properties a

matched exactly will the advantages disappear? If so, does tr@ J. A Fessler a_nd WZ L-.ROQETS' Spatial resolut.|on prop-
hold for shift-variant systems as well? erties of penalized-likelihood image reconstruction meth-

h imilar behaviori brief lation | _ods: Space-invariant tomograph$EZEE Tr. Im. Proc,
We have seen similar behavior in our brief correlation investi- | 5, pp. 1346-58, Sept. 1996.

gation. The correlation images for our proposed penalty appear

very similar to FBP and PULS. It appears that uniform resof5] J. A. Fessler, “Resolution properties of regularized im-
lution may come at the cost of wider correlation sidelobes. It  age reconstruction methods,” Tech. Rep. 297, Comm. and
may be the case for space-invariant systems that such proposed Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann
penalties for uniform resolution effectively cancel out the ef-  Arbor, MI, 48109-2122, Aug. 1995.
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Figure 3: Local PSFs for space-invariant penalty.
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Figure 4: Local PSFs for certainty-based penalty.
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Figure 5: Local PSFs for CNLLS penalty.
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Figure 6: Local PSFs for proposed penalty.
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Figure 7: Local PSFs for FBP.
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Proposed

) L 41078
Figure 9: Comparison of calculatéd values for the CNLLS

penalty and the proposed penalty. Note the logarithmic color
scale. White regions indicate a value of zero.
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Figure 14: Digital thorax phantom used for reconstruction of
different regularizations. Image a) is the emission image and
Figure 11: Resolution/noise tradeoff for penalized-likelihookinage b) is the transmission image.

emission image reconstruction with conventiongtlark) and

proposed penaltiest{light).
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Figure 12: Histogram showing the distribution of the ratio of the
pixel standard deviation using filtered backprojectiefndp)

to the pixel standard deviation using a PLE with the proposed
regularization §pr).



