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ABSTRACT

Traditional space-invariant regularization methods in tomo-
graphic image reconstruction using penalized-likelihood es-
timators produce images withnonuniformspatial resolution
properties. The local point spread functions that quantify the lo-
cal smoothing properties of such estimators are not only space-
variant and asymmetric, but are also object-dependent even for
space-invariant imaging systems. We propose a new quadratic
regularization scheme for shift-invariant imaging systems that
yields increased spatial uniformity motivated by the least-
squares fitting of a parameterized local impulse response to a
desired global response. We demonstrate the increased spatial
uniformity of this new method versus conventional quadratic
regularization schemes through an investigation of local point
spread functions, and through reconstruction of thorax phan-
tom data with known structure.

I. I NTRODUCTION

Statistical image reconstruction methods provide improved
noise and resolution properties over conventional nonstatistical
methods such as filtered backprojection (FBP). However, meth-
ods based purely on the maximum-likelihood estimate produce
overly noisy images. This noise may be reduced by stopping
the iterative procedure used to find the maximum-likelihood
estimate before convergence [1], iterating until convergence
followed by post-smoothing [2], or by including a roughness
penalty term in the objective function [3]. It is difficult to con-
trol resolution properties with stopping criteria. Post-smoothing
methods allow for better resolution control but require iteration
until convergence. Since unregularized algorithms converge
slowly, penalized-likelihood methods are desirable.

However, there are disadvantages with penalized-likelihood
methods that use conventional regularization schemes. Space-
invariant penalties lead to object-dependent nonuniform reso-
lution properties [4, 5]. Specifically, for emission tomography
such estimators tend to smooth the image more in high count
regions than in low count regions. The local point spread func-
tions [4,6] that quantify this space-variant smoothing due to the
estimator can also be highly asymmetric, indicating anisotropic
smoothing. These asymmetric point spread functions mean that
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objects within an image are distorted nonuniformly. For exam-
ple, a circular objects will appear elliptical due to more blurring
in one direction. (Such distortions are noticeable in reconstruc-
tions of phantom data in Fig. 15 of this paper.)

These distortions have been noted by colleagues in a clin-
ical setting. Lymph nodes are often found near the edge of
an anatomical slice where the point spread functions are more
asymmetric and these effects are more noticeable. Lymph nodes
which were expected to appear essentially radially symmet-
ric in smooth reconstructions, appeared elliptical in penalized-
likelihood image reconstructions using traditional regulariza-
tion methods. In FBP reconstruction, such lymph nodes ap-
pear nearly radially symmetric since FBP has uniform resolu-
tion properties.

Since conventional regularizations produce images with
nonuniform resolution properties, one also cannot select the
regularization parameter intuitively. With FBP the noise-
resolution tradeoff is controlled through the cutoff frequency,
fc, of the filter. There is a direct relationship betweenfc and
theglobal full-width half-maximum (FWHM) resolution of the
reconstructed image. Such a direct relation does not exist with
penalized-likelihood reconstructions with conventional regular-
izations.

One attempt to analyze and reduce the resolution nonunifor-
mity was presented in [4]. The regularization method proposed
in [4], which is based on the aggregate certainty of measurement
rays intersecting each pixel, provides increased spatial unifor-
mity over conventional space-invariant regularization. How-
ever, the local point spread functions are still highly asymmet-
ric.

In this paper we present a parameterization of the quadratic
roughness penalty function, which in turn parameterizes the
local impulse response functions. We then propose a novel
method for determining the penalty function coefficients mo-
tivated by a least-squares fitting of the parameterized local im-
pulse response to a desired shift-invariant response (Section III).
We describe a computationally efficient noniterative method for
computing the coefficients (Section IV). This new method pro-
vides increased spatial uniformity compared to the certainty-
based method of [4] and to conventional regularization tech-
niques. We demonstrate this increased uniformity through an
investigation of the local point spread functions (Section V). In
addition, we perform a noise investigation on simulated data as
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well as a qualitative investigation using digital thorax phantom
data (Section VI).

Since the proposed quadratic regularization method provides
nearly global resolution uniformity, one can use the direct re-
lationship between the regularization parameter and the global
FWHM resolution to specify a desired resolution for reconstruc-
tion. Therefore, the proposed regularization possesses the intu-
ition of FBP with respect to resolution and performs better than
FBP in terms of variance.

Whether uniform spatial resolution is essential is an open
question. For high resolution PET images the geometric dis-
tortions mentioned above may be undesirable, therefore reso-
lution uniformity would be important. For cross-patient stud-
ies or single patient studies taken over a period of time, one
would presumably desire the same resolution properties across
images for comparison. However, in other cases one may de-
sire nonuniform resolution properties. The methods described
in this paper can also be applied to user-specified nonuniform
resolution criteria using space-varying regularization methods
as in [7,8].

In this paper we focus on the resolution properties of
penalized-likelihood estimators that are iterated until conver-
gence. Other studies have investigated resolution properties of
unregularized maximum-likelihood expectation-maximization
algorithms as a function of iteration [6,9].

Real imaging systems usually possess intrinsically nonuni-
form resolution properties. Single photon emission com-
puted tomography (SPECT) systems generally have a depth-
dependent resolution [10], and positron emission tomography
(PET) systems often have significant resolution nonuniformity
due to crystal penetration effects [11]. The analysis and regular-
ization method developed in this paper are based on quadratic
roughness penalties and an idealized shift-invariant imaging
system with ray-dependent attenuation and detector effects. The
central region in the field of view of many PET systems tends to
be nearly shift-invariant and can be accurately modeled in this
way.

II. BACKGROUND

We focus on emission tomography, although the method ap-
plies generally. Letλ = [λ1, . . . , λp]′ represent the nonnegative
emission rates for an object discretized intop pixels, where′ de-
notes the Hermitian transpose. Detectors surrounding the object
count photons (SPECT) or photon pairs (PET) that are emitted
from the object. Measurements are denoted by the random vec-
tor Y = [Y1, . . . , YN ]′. These measurements are Poisson with
means given by

Ȳi(λ) =

p∑
j=1

aijλj + ri, i = 1, . . . , N,

where theaij ’s represent nonnegative constants that character-
ize the tomographic system, and theri’s are nonnegative con-
stants that specify the contribution due to background events
(background radiation, random coincidences, scatter, etc.).
Given measurementsY , we would like to reconstructλ, assum-
ing theaij ’s andri’s are known.

We will focus on penalized-likelihood estimators (PLEs) of
the form

λ̂(Y ) = argmax
λ∈Λ

L(λ, Y )−R(λ),

whereΛ is the set of feasible images,L(λ, Y ) is the log-
likelihood, andR(λ) is a roughness penalty. For the Poisson
model, the log-likelihood is

L(λ, Y ) =

N∑
i=1

Yi log Ȳi(λ)− Ȳi(λ)− log Yi!.

We focus on pairwise roughness penalties of the following form

R(λ) =

p∑
j=1

1

2

p∑
k=1

wjkψ(λj − λk), (1)

whereψ is a symmetric convex function.
In the case of a quadratic penalty,ψ(x) = x2/2 and the

roughness penalty may be written in matrix form:R(λ) =
1
2λ
′Rλ, where thep× p matrixR has elements defined by

Rjk =

{ ∑p
l=1

1
2 (wlj + wjl), k = j
−wjk, k 6= j.

(2)

For a space-invariant penalty using a first-order neighborhood,
the conventional choice iswjk = β for the horizontal and verti-
cal neighbors, and zero otherwise. The regularization parameter
β controls the noise-resolution tradeoff. Largeβ values induce
smoother reconstructions, hence lower noise. For a second-
order penalty, one often includeswjk = β/

√
2 for the diagonal

neighbors in addition to the first-order neighbors.
The mean reconstruction of an estimator is given by

µ(λ) = Eλ[λ̂(Y )] =

∫
λ̂(Y )f(Y ;λ)dY ,

wheref is the Poisson measurement distribution. The local im-
pulse response [4] at thejth pixel is defined as

lj , lim
δ→0

µ(λ+ δej)− µ(λ)

δ
=

∂

∂λj
µ(λ),

whereej represents thejth unit vector. This definition of the
local impulse response is dependent on the estimatorλ̂, the
objectλ, and the pixel positionj. From [4], for penalized-
likelihood with quadratic penalties1, the local impulse response
may be well approximated by

lj ≈
[
A′D
[
1/Ȳi(λ)

]
A+Rsym

]−1
A′D
[
1/Ȳi(λ)

]
Aej , (3)

whereA is aN×pmatrix of the{aij} elements,D
[
1/Ȳi(λ)

]
is

a diagonal matrix with elements1/Ȳi(λ), andRsym , 1
2 (R +

R′) is the symmetric component ofR.
1In [4], an approximation for the local impulse response was derived for

symmetricR. For an asymmetricR, the scalarλ′Rλ = (λ′Rλ)′ = λ′R′λ.
Therefore,R(λ) = 1

2
[ 1
2
λ′Rλ + 1

2
λ′R′λ] = 1

2
λ′[ 1

2
(R + R′)]λ =

1
2
λ′Rsymλ. If an asymmetricR matrix were used, only the symmetric com-

ponent ofR would influence the objective function.
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Often, A′A is a shift-variant operator even without
D
[
1/Ȳi(λ)

]
. We consider an idealized 2D PET model where

it is possible to factorA such thatA = D[ci]G, whereG′G is
approximately shift-invariant and represents the geometric sys-
tem response. The diagonal matrixD[ci] contains known ray-
dependent effects such as detector efficiency and attenuation
factors, whereci is a multiplicative factor for theith measure-
ment,yi. With this factorization, (3) becomes

lj ≈ [G′WG+Rsym]−1G′WGej , (4)

whereW , D
[
c2i /Ȳi(λ)

]
. WhenȲi(λ) is unknown, one can

estimate the local impulse responselj by using a simple plug-in
technique where the observed measurementsyi replaceȲi(λ),
and theci factors are based on measured detector efficiencies
and attenuation loss factors.

The approximation (4) for the local impulse response is the
tool we use below for the design and evaluation of different
quadratic regularization methods.

III. PENALTY DESIGN METHODS

Ideally, we would like to be able to find a penalty function
R(λ) that yields reconstructed images with some arbitrary de-
sired space-invariant response. For example, we may desire
penalty functions that produce a global impulse response with
a Gaussian shape and some specified FWHM resolution. If we
restrict ourselves to quadratic penalty functions, we can formu-
late such problems in terms of the design of the penalty matrix
R. Equivalently, we may designRsym, since only the symmet-
ric component ofR affects the objective function for quadratic
penalties. Additionally it is desirable to restrictR to be non-
negative definite to maintain the concavity of the penalized-
likelihood objective function.

Therefore, we would like to find a nonnegative definiteR
according to an optimization criterion such as the following2:

R̂ = arg min
R≥0

p∑
j=1

d(lj(R), lj0), (5)

whered(lj , lj0) is some distance measure between the actual lo-
cal impulse response,lj and a desired space-invariant response,
lj0. The desired space-invariant responselj0 is a function of the
pixel positionj only in that the desired response must be cen-
tered at pixelj. That is, since the local impulse response at
pixel j is centered at pixelj, we must shift the desired response
to that location for comparison usingd(·, ·). In principle, we
could solve (5) by plugging in (4). However, this optimization
problem appears to be computationally intractable.

Practical penalties use only a small neighborhood of pixels
for the penalty support (e.g.first- and second-order neighbor-
hoods). Therefore we reformulate the penalty design problem
in terms of these small support neighborhoods by parameteriz-
ing the penalty matrix.

2 The notationR ≥ 0 indicates that this minimization is over nonnegative
definiteR.

A. Penalty Matrix Parameterization

For a shift-invariant quadratic penalty, one can treat the
penalty matrixR as a space-invariant filtering operator. There-
fore the operation of multiplyingR by the imageλ can be
equivalently represented as the convolution of the image with
a kernel3,

Rλ ≡ kR ∗ ∗λ.

For example, the conventional first-order penalty described be-
low (2) has the following kernel

kR0 =


 0 −1 0
−1 4 −1
0 −1 0


 . (6)

The design of a space-invariantR is like a filter design problem
with constraints on the kernelkR. SinceR should yield a zero
penalty for uniform regions, the filter represented bykR should
have zero DC gain. (The kernel elements must sum to zero.)
Since only the symmetric portion ofR influences the penalized-
likelihood objective function and the local impulse response in
(4), we need only to consider symmetric kernels4 kR for rep-
resenting the action of a space-invariantRsym. Lastly, we re-
quire thatRsym be nonnegative definite to guarantee concavity
of the penalized-likelihood objective function. Therefore, for
the space-invariant penalty, the kernelkR must be a nonnega-
tive definite function.

To achieve these goals we parameterize the kernelkR in
terms of a small number of bases such as those having the fol-
lowing form

b(k,l)(m,n) = 2δ(m,n)− δ(m− k, n− l)− δ(m+ k, n+ l),

whereδ(·) represents a 2D discrete impulse function, andm
and n represent spatial coordinates. A collection of such
b(k,l)(m,n) functions for various(k, l) pairs forms a basis for
valid kernels of space-invariantRsym matrices. For example,
for a first-order neighborhood,

b(1,0) =


 0 0 0
−1 2 −1
0 0 0


 b(0,1) =


 0 −1 0
0 2 0
0 −1 0




is a basis for valid kernels ofRsym. For a second-order neigh-
borhood,{b(1,0), b(0,1), b(1,1), b(1,−1)} forms a valid basis set,
where

b(1,−1) =


 −1 0 0
0 2 0
0 0 −1


 b(1,1) =


 0 0 −1
0 2 0
−1 0 0


.

In general, any valid kernel for a space-invariant penalty matrix
Rsym may be specified by a linear combination of such basis

3We use≡ since the left hand side is a vector but the right hand side is a
2D image. The two sides are equivalent in that the vector is a lexicographic
reordering of the 2D image.

4Consider a horizontal penalty and two neighboring pixels; one on the left
and one on the right. For a symmetricRsym, the penalty applied on the right
pixel from the left pixel is the same as the penalty applied on the left from the
right. Therefore, the left and right sides of the kernel must be the same for the
same penalty to be applied in both directions.
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functions:
kR =

∑
k,l

rklb(k,l) ≡ Br (7)

whererkl represent the basis coefficients. Letr represent the
vector of allrkl for a given neighborhood of support. Define
nw to be the number of(k, l) pairs (the number of basis func-
tions) and define thep × nw matrixB with column vectors of
lexicographically ordered basis functions,b(k,l).

In general the penalty specified byR does not have to be
space-invariant. In fact, for uniform resolution properties, we
requirea space-variant regularization. Therefore, we extend the
kernel representation (7) and letR be parameterized by a space-
variant set of coefficientsrj , wherej represents thejth pixel.

Let (nj ,mj) denote the spatial coordinates of thejth pixel
and defineBj to be ap× nw matrix of shifted basis functions,
with each column having elements defined by the lexicograph-
ically ordered bases,b(k,l)(m − mj , n − nj). In the case of
a space-invariantR matrix,Rej = Bjr. (With the choice of
symmetric bases described previously,R = Rsym.) To param-
eterize space-variantR, we define thejth column ofR by

Rej = Bjrj , j = 1, . . . , p. (8)

In this case,R no longer equalsRsym in general. However,
Rsym may be found by12 (R+R

′), as stated previously in foot-
note 1. The parameterization (8) allows for the specification
of valid shift-variantRsym by the set of coefficients{rj}pj=1.
To guarantee the nonnegative definiteness ofRsym it is suffi-
cient to restrictrj to be nonnegative. A nonnegative definiteR
means that the penaltyR(λ) = λ′Rλ is always nonnegative. If
we restrictrj to be nonnegative, the local penalty at any pixel
must be nonnegative due to our selection of bases. Therefore,
the penalty on the entire image will be nonnegative as well.

Using the parameterization described in (8), the problem of
determining thep× p matrixR in (5) is simplified to the prob-
lem of determining thenw · p coefficients{rj}pj=1. The penalty
design problem thus reduces to the following optimization prob-
lem.

{r̂k}pk=1 = arg min
{rk}pk=1≥0

p∑
j=1

d(lj({rk}pk=1), l
j
0). (9)

Although this minimization requires less computation than (5),
it still appears to be impractical since allp of the rj vectors
would need to be found simultaneously.

B. Circulant Simplifications

SinceG′G is approximately shift-invariant, we may approx-
imateG′G byQ′ΩQ, whereQ is a 2D discrete Fourier matrix
operator andΩ is a diagonal matrix representing a frequency
domain filtering operator5. AlthoughG′WG is not globally

5The diagonal elements ofΩ are approximately the well-known1/ρ fre-
quency response of the backprojected projection operator. SinceG′G is nearly
shift-invariant, we may compute the elements ofΩ by taking the 2D discrete
Fourier transform ofG′Gej0 , wherej0 is a fixed pixel in the image (usually
the center pixel, in practice). Whenj0 is not the center pixel we must include
an appropriate complex exponential multiplication to account for the shifting
property of Fourier transforms.

shift-invariant, it is approximatelylocally shift-invariant and we
make the following approximation [12] to (4)

lj(R) ≈ [Q′ΩjQ+Q′ΨjQ]−1Q′ΩjQej

= Q′
[
Ωj

Ωj +Ψj

]
Qej , (10)

where the division is an element-by-element division,Ωj ,
D
[
F {G′WGej }

]
, andΨj , D

[
F {Rsymej }

]
. (F {·} repre-

sents thep× p discrete 2D Fourier transform operator.)
Since local impulse response functions generally vary

smoothly with position, we expect that therj coefficients of
our penalty design will also be smoothly varying. This is also
implied by the above locally shift-invariant approximation. For
this reason we use the approximationRsymej ≈ Bjrj . To il-
lustrate this approximation, consider a simple 1-dimensional ex-
ample with a single[−1 2 −1] basis. For a single basis function
there is a single coefficientrj for each positionj. In terms of
(2), this meanswj,j+1 = −rj andwj+1,j = −rj+1. Therefore,
if rj is smoothly varying (i.e.: rj ≈ rj+1), wj,j+1 ≈ wj+1,j
andR is nearly symmetric. SubstitutingRsymej ≈ Bjrj into
(10) yields

lj ≈ ljF (r
j) , F−1

{
F {G′WGej}

F {G′WGej}+ F {Bjrj}

}
. (11)

Combining (9) and (11) yields a separable minimization
problem,i.e. lj depends only onrj and notrk for k 6= j. There-
fore we may determine eachrj separately by

r̂j = arg min
rj≥0

d(ljF (r
j), lj0). (12)

If d(u, v) = ‖u − v‖2, then (12) is a set ofp constrained non-
linear least-squares (CNLLS) problems, since the dependence
on rj is in the denominator of (11). We have implemented this
method, but it is still computationally expensive. Thus, we fur-
ther simplify this nonlinear optimization problem into a linear
least-squares problem. Working in the frequency domain sim-
plifies the design problem, as described next.

C. Linearized Penalty Design

DefineLj(rj) , F {ljF (r
j)} to be the local frequency re-

sponse and letLj0 , F {l
j
0} be the desired frequency response.

To satisfy (12), we want to chooserj so thatLj(rj) ≈ Lj0, i.e.

Lj(rj) =
F {G′WGej}

F {G′WGej}+ F {Bjrj}
≈ Lj0. (13)

Rearranging (13) by cross multiplying and simplifying yields

F {G′WGej} � (1− Lj0) ≈ L
j
0 � F {B

jrj}, (14)

where� represents element-by-element multiplication. We can
now design the penalty coefficients as a weighted least-squares
solution to (14). Specifically, we chooserj such that

r̂j = arg min
rj≥0

∥∥Φjrj − dj∥∥2 (15)
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with

Φj = V D
[
Lj0

]
F {Bj} (16)

dj = V D
[
1− Lj0

]
F {G′WGej}. (17)

(For matrices,F {·} operates on each column.) The matrixV is
a least-squares weighting6, whereV ′V is a symmetric positive
definitep× p matrix.

Once a desired frequency responseL0 has been chosen, or
equivalently a desired impulse responsel0, one can use the
NNLS (nonnegative least-squares) algorithm in [13] to perform
the minimization (15) for each pixel position,j, to obtain the
parameters{rj}pj=1.

D. Proposed Penalty Design

As mentioned below (2), for traditional space-invariant
penalties, thewjk terms in (2) include the regularization pa-
rameterβ, which controls the mean global resolution. For shift-
invariant penalties whereβ is a simple multiplication factor we
may writeR = βR0, whereR0 specifies the relative penalty
strength between pixel pairs andβ specifies the mean global
resolution. Therefore it is simple to generate newR for differ-
ent desired resolutions. (One does not have to recomputeR0.)
This is not necessarily the case with the penalty design specified
by (15). Each specific desired response, requires a separateR
computation for each desired FWHM resolution.

Therefore, just as the conventional shift-invariant penalty is a
simple function ofβ, we would like to design a newR = βR?
that yields uniform resolution properties. In terms of our pa-
rameterization ofR, we would like factorable coefficients such
thatrj = βsj . Making this substitution into (15) yields

r̂j = βŝj , ŝj , arg min
sj≥0

∥∥βΦjsj − dj∥∥2 (18)

The penalty matrixR? is completely specified bysj . However,
the minimization in (18) depends onβ. To take advantage of the
simpleR = βR? relation, the minimization needs to be inde-
pendent ofβ. In terms of design choices, this amounts to proper
selection of the desired frequency response,L0, and the least-
squares weighting,V . Specifically, we would like to chooseL0
andV such that (18) is not a function ofβ.

The local impulse response of an unweighted least-squares
estimator, where theci’s are all unity, is:

lj0 = [G
′G+ βR0]

−1G′Gej . (19)

If R0 is chosen to be a space-invariant penalty, the response,lj0,
is approximately independent of the choice ofj sinceG′G is
a nearly shift-invariant operator. That is,lj0 is nearly the same
(with appropriate shifts) regardless of the choice ofj. Alter-
nately, if we wish to have a desired response centered at a given
pixel, we may simply specify the locationj. This particular
choice ofl0 has a form very similar to the formulation of the lo-
cal impulse response in (4). Additionally, it is a response whose
resolution is controlled directly through the parameterβ.

6An equivalent weighted least-squares problem may be stated using a
weighted norm‖x‖V = ‖V x‖ in (15) and eliminatingV from (16) and (17).

Using the same simplifications for circulant matrices dis-
cussed previously, we express the frequency response of (19)
as

Lj0 ≈
F {G′Gej}

F {G′Gej}+ βF {R0ej}
. (20)

Similarly we may write

1− Lj0 ≈
βF {R0ej}

F {G′Gej}+ βF {R0ej}
(21)

For the particular choice (19) ofl0, the denominators of (20)
and (21) are identical. Additionally,β is in the numerator of
(21) and not in the numerator of (20). If we choose a least-
squares weighting ofV = D

[
F {(G′G+ βR0)ej}

]
the de-

nominators of (20) and (21) disappear in (16) and (17), and we
can rewrite the penalty design as

ŝj = arg min
sj≥0

∥∥βΦjsj − dj∥∥2 (22)

Φj = D
[
F {G′Gej}

]
F {Bj }

dj = βD
[
F {R0e

j}
]
F {G′WGej}.

The β terms in this minimization amount to a scaling of the
least-squares objective and do not affect its solution. Therefore,
(22) is aβ-independent design.

Once we have calculated the parameters{ŝj}pj=1 accord-
ing to (22), we construct the penalty matrixR? using (8) with
rj = βŝj . Since only the symmetric component ofR? affects
the penalty, we useRsym? , which requires less memory. This
Rsym? has been designed to provide global isotropic resolution
properties and, because of the least-squares weighting leading
to (22),Rsym? is independent of the choice of the regulariza-
tion parameterβ. Therefore, onceRsym? is calculated one may
specify a desired global resolution throughβ. The penalty ma-
trix is given by the simple relationRsym = βRsym? . (A method
relatingβ to the FWHM resolution is discussed in [5].)

IV. PRACTICAL IMPLEMENTATION

While the penalty design methods (15) and (22) give a sim-
ple form for the calculation of̂rj , in the forms described above
they still require more computation than we would like for rou-
tine use. In this section we outline a computationally-efficient
method for closely approximating the parameterized penalty
with coefficients given by (15) (or (22)).

Consider each of the terms in (16) and (17). Determina-
tion of F {Bj} requires a single calculation of the 2D-FFT
(fast Fourier transform) of each of thenw 2D basis functions.
(Different j only shift the bases. One could incorporate these
shifts with relatively little computational overhead by multiply-
ing F {Bj0} by appropriate complex exponentials.) The re-
maining portion of (16) may also be computed once with simple
matrix multiplications. Therefore we can precomputeΦj0 , and
determineΦj fromΦj0 by complex phase shifts. (This step is
eliminated below.) Fordj , the matrix multiplications including
V andD[1− L0]may be precalculated as well. However, for a
direct implementation of (15), one would have to compute the
2D-FFT ofG′WGej for every pixelj, which would be com-
putationally expensive.



6 IV PRACTICAL IMPLEMENTATION

a)
b)

c)

d) e)
f)

g)

h) i)
j)

k)

l) m)
n)

o)

Gej G′Gej
G′Gej

WGej

W jGej

W jGej0 G′W jGej0
G′W jGej0

G′W jGej
G′W jGej

G′WGej
G′WGej

m

m

m

m

n

n

n

n

φφ

φφ

φφ

φ

rr

rr

rr

r

q

q̃j

q̃j

Figure 1: Approximation ofG′WG with local radially-invariant weightings (see text). Image a) shows the unweighted projection
of a single pixel in the sinogram domain. Images b-c) show the backprojection of this unweighted sinogram where Image c)
is an enlarged portion of Image b). Variablesn andm index image coordinates, and variablesφ and r index the sinogram
measurements. Images d-g) show the weighted projection (e) and backprojection (f-g) for a typical weighting (d). Images h-
k) show the weighted projection-backprojection using an approximate radially-invariant weighting (h). Images l-o) show the
weighted projection-backprojection for a fixed central pixelj0. Note that Images g), k), and o) are nearly identical. Images d), e),
h), i), l), and m) have a logarithmic color scale.

One can show that in an idealized continuous system, if the
continuous equivalent ofW is a radially-constant7 sinogram
scaling operator, then the continuous equivalent ofG′WG can
be expressed as a position-independent blurring operation [14].
This property should be approximately true in the discrete case.
If W were radially-constant, we would only need one compu-
tation ofF {G′WGej}.

In practice the elements ofW are not globally radially-
constant. However, since the projection of a single pixel forms
a relatively narrow trace in sinogram space (only a few radial

7A radially constantW scales all of a sinogram’s radial elements for a par-
ticular projection angle by the same scalar value. That is, the diagonal elements
ofW correspond to some (r,φ) radius/angle pair and the elements are equal for
any givenφ.

bins in width), we can approximateW locally by a position-
dependent radially-constant matrixW j . This property is illus-
trated in Fig. 1.

Consider a single pixel in the image represented by the unit
vector ej . The operation ofG on ej forms a relatively nar-
row sinusoidal trace in sinogram space. Such a projection is
shown in Fig. 1a. The backprojection of this sinusoidal trace
produces the familiar1/r response centered at the given pixel.
This image and an enlarged region about the pixel of interest are
shown in Fig. 1b-c. Recall from the local impulse response (4)
that the effective sinogram weighting,W , is c2i /Ȳi. In recon-
structions wherēYi is unknown, we chooseW = D[qi], where
qi , ĉ2i /max{yi, tc}. Theĉi terms are estimates of the detector
efficiencies and attenuation correction factors made from a nor-
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malization scan and transmission scan, andyi are the measure-
ments (an estimate of the variance). Themax{·, tc} is included
to avoid inordinate ray weighting for low countyi, by choosing
tc > 0.

The vectorq = [q1, . . . , qN ]′ represents a lexicographically
reordered 2D array of scaling values that isna angles bynb
radial bins in size, whereN = na · nb. A typical q is presented
in Fig. 1d. Fig. 1e shows the weighted sinogramWGej for the
single pixel’s projection using this particular weighting.

Instead of usingq, we would like to approximate the weight-
ing with a local radially-invariant version,̃qj . The associated

diagonal weighting matrix isW j = D
[
q̃j
]
. To choosẽqj , con-

sider the following. LetU = G′WG, whereW = D
[
q
]
.

Decompose the system matrixG by rows into separate subma-
trices for each projection angle so thatG = [G′1, . . . ,G

′
na
]′

with Gn ∈ IR
nb×p. Similarly, decompose the weighting vector

into q = [[q1]′, . . . , [qna ]′]′ with qn ∈ IRnb .
Due to the1/r response in tomography,U is concentrated

about its diagonal. Therefore,

U =

na∑
n=1

G′nD
[
qn
]
Gn ≈

na∑
n=1

D[κn]G′nGnD[κ
n], Ũ ,

(23)
where thejth element ofκn is

[κn]j ,

√∑nb
i=1[Gn]

2
ij [q

n]i∑nb
i=1[Gn]

2
ij

, n = 1, . . . , na. (24)

This is the unique choice ofκn that makesU ≈ Ũ with equal-
ity along diagonals for each of thena terms in the summa-
tions in (23) (i.e. the diagonal elements ofG′nD

[
qn
]
Gn and

D[κn]G′nGnD[κ
n]are identical for eachn = 1, . . . , na). The

approximation would be exact if theqi’s were all equal. How-
ever, since the local impulse response at pixelj relies predomi-
nately on theqi’s that intersect pixelj,U andŨ will be nearly
equal. This approximation is reasonable even for very nonuni-
form q since[κn]j tend to vary slowly as a function ofj because
of the implicit smoothing in (24). Similarly, sinceG′Gej con-
centrates aroundej (cf [4]),

Uej ≈
na∑
n=1

[κn]2jG
′
nGne

j .

We choosẽqj = [[κ1]2j1
′, . . . , [κna ]2j1

′]′ to form a radially-
constant, position-dependent weightingq̃j , where1 is a column
vector of ones of lengthnb.

Fig. 1h shows the radially-invariant weightingq̃j using this
technique on the weights in Fig. 1d for pixelj. When applied to
the projection ofej , the result is very close to the weighting us-
ing q. The close agreement between theW andW j weightings
can be seen by comparing weighted sinograms in Fig. 1e and
Fig. 1i. Similarly the agreement is very close for the backpro-
jected weighted sinograms,G′WGej andG′W jGej , shown
in Fig. 1f and Fig. 1j, respectively. Zoomed versions of the
backprojected weighted sinogram for regular and local radially-
invariant weightings are shown in Fig. 1g and Fig. 1k. Note the

close agreement in the image domain as well as the sinogram
domain.

SinceG′WG is an approximately shift-invariant operator
for radially-invariantW , G′WGej approximately equals a
shiftedG′W jGej0 for an arbitrary fixed pixelj0 (i.e.: the cen-
ter pixel in the image). Plots ofG′W jGej0 for j0 equal to the
center pixel are shown in Fig. 1n and Fig. 1o. Note the close
agreement betweenG′W jGej0 andG′WGej . Therefore, we
need only to calculateGej0 once, rather than for everyj.

In terms ofΦj in (17), under the radially-invariantW ap-
proximation, we need onlyΦj0 and may replace (15) with

r̂j = arg min
rj≥0

∥∥∥Φj0rj − d̃j∥∥∥2 (25)

d̃
j
, V D[1− L0]F {G

′W jGej0},

whered̃
j

is a “centered” version ofdj . This step eliminates the
need for complex phase shifts. Nevertheless, direct implemen-
tation of (25) would still requirep 2D-FFTs.

Definewj = [[κ1]2j , . . . , [κ
na ]2j ]

′. The vectorwj contains all
of the distinct angular weighting values in the radially constant

W j . Sinced̃
j

is linear in the elements ofW j , we may write

d̃
j
(wj) ≡ Mwj , whereM is ap × na matrix. We may find
M by superposition.

Define W δn to be the weighting matrix with radially-
constant values having unit values at anglen, and zero other-
wise. (i.e. W δn = D[[0′, . . . , 0′, 1′, 0′, . . . , 0′]′], where the1
vector appears in thenth block and1 and0 are column vectors
of lengthnb.) For each anglen define

mn , V D[1− L0]F {G
′W δnGej0}, n = 1, . . . , na.

Then by superpositionM = [m1, . . . ,mna ].
For the unconstrained case, (25) has the closed form linear

solutionr̂j = [[Φj0 ]′Φj0 ]−1[Φj0 ]′dj . Let

T = [[Φj0 ]′Φj0 ]−1[Φj0]
′M

be the combinednw × na matrix operator. Therefore we may
determine unconstrained solution of (25) byr̂j = Twj .

However, for the matrixR to be nonnegative definite, we
need to solve the constrained optimization problem (25). It is
straightforward to modify the NNLS algorithm of [13] using
Φj0 andM to provide the constrained solution.

For simplicity in our implementation we have used the subop-
timal greedy approach presented in Table 1 which yields non-
negativer̂j and nearly the same results as NNLS but with a
slight computational speedup and simpler implementation. This
procedure takes one step for each negative element inr̂j and
will complete in at mostnw steps. For smallnw, one could pre-
compute the2nw−1 possible reducedH−1 matrices for further
speedup.

As described in the beginning of this section, direct imple-
mentation of the design given by (15), (16), and (17) requires
p backprojections,nw + p 2D FFTs, andp applications of the
NNLS algorithm. Using the simplifications described in this
section, we perform the one-time precomputation ofΦj0 and
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Table 1: Routine used to constrain kernel coefficients,r̂j .

SetH = [Φj0 ]′Φj0 andC = [Φj0 ]′M .
Let r̂j = Twj .
while r̂j contains negative values,

Let i equal the index of the minimum value ofr̂j .
Remove theith row andith column ofH.
Remove theith row fromC.
Set theith element of̂rj to zero.
Find the remaining elements ofr̂j byH−1Cwj .

end

M for a given system geometry usingna backprojections and
nw + na 2D FFTs. The coefficientŝrj may be determined with
p calculations of (24), which is on the order of one backpro-
jection, andp applications of the algorithm in Table 1 (or the
NNLS algorithm).

In terms of floating point operations, (24) isO(4M +2p) for
a single pixel positionj, whereM = nanbpα andα is the frac-
tion of nonzero elements ofG. Assuming theH−1 andC ma-
trices are precomputed, the algorithm given in Table 1 is at most
O(n2wna), depending the number times the while loop is exe-
cuted. Therefore, calculation of allr̂j coefficients using method
summarized in Table 1 is at mostO(4M +2p+ pnan2w). Since
the precalculation ofM is approximatelyO(M + nap log p])
andO(nwp log p) for Φj0 , the entire precalculation isO(M +
(na + nw)p log p)]). However this precalculation need only be
performed once for a specific system geometry.

Compare this with the design given by (15), (16), and (17).
The term that dominates this calculation is the computation of
dj in (17). This term isO(2Mnanbα+p log p) for a single pixel
locationj. Therefore, even without calculation of (15) and (16)
we require at leastO(2M2+p2 log p]) floating point operations
to evaluatêrj for all j. Clearly, much of the computational
advantage of the proposed method is due to the order reduction
of M2 toM .

For 2D reconstructions performed in the following section,
30 iterations of the SAGE algorithm [15] on a 266 MHz Pen-
tium II processor took 18.5 seconds for the conventional space-
invariant first-order penalty given by the kernel in (6) and 20.1
seconds for the proposed penalty with precomputedΦj0 and
M . The precalculation ofΦj0 andM , which only need be
done once for a given system and desired response, took 23.1
seconds. Compare this to a computation time of about 2 hours
for the constrained nonlinear least-squares penalty given in (12).
Thus the method is very practical. (We performed the recon-
structions using the ASPIRE iterative reconstruction libraries
[16].)

V. SIMULATION RESULTS

A. Resolution Uniformity

This section provides simulation results comparing the rela-
tive resolution uniformity of different regularization schemes.
Fig. 2 shows the128× 64 emission imageλ (with 3 mm square
pixels) used for the investigation as in [4]. The image has a
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Figure 2: Digital phantom used for investigation of resolution
properties of different regularizations, with four pixels of inter-
est marked.

warm background ellipse, a cold left disc, and hot right disc
with relative emission intensities of 2, 1, and 3, and attenua-
tion coefficients of 0.0096, 0.003, and 0.013/mm, respectively.
The PET system model included projection data with 128 ra-
dial bins and 110 angles uniformly spread over180◦ with 6 mm
wide strip integrals (3 mm center-to-center spacing), and detec-
tor efficiencies with a pseudo-random log-normal variance with
σ = 0.3 to model detector efficiency effects.

We investigated the resolution properties of four different
quadratic regularizations: (I) The conventional space-invariant
first-order penalty given by the kernel in (6), (II) the certainty-
based penalty developed in [4], (III) the constrained nonlin-
ear least-squares (CNLLS) penalty given by (12) using (19) as
l0, and (IV) the computationally-efficient penalty we have pro-
posed in (25) with the proposedβ-independent modifications
of (22). For the CNLLS and proposed penalty design, we used
a second-order basis and selectedR0 in (19) to be the conven-
tional space-invariant first-order penalty, as above. We specified
the regularization parameterβ to correspond to a target resolu-
tion of 4.0 pixels (1.2 cm) FWHM resolution for each of those
penalties.(The relationship between global FWHM resolution
andβ, and how to calculateβ is discussed in [5].) To calculate
qi in (23), we choseqi = ĉ2i /max{yi, tc} with tc = 10.

To demonstrate the relative spatial uniformity of these regu-
larization methods we used (3) to calculate local point spread
functions (PSFs). We approximated the solution of (3) using
100 iterations of a coordinate ascent algorithm initialized with
a Fourier approximation of the target response given in (19).
(Note that (3) is of the form of a penalized weighted least-
squares solution.) Since we expected these responses to be
space-variant, we chose four different locations in the object
for our investigation. These points are represented by the white
“+” marks in Fig. 2. We have systematically examined numer-
ous additional spatial locations which yielded similar conclu-
sions (i.e. these are representative results).

In addition to the penalized-likelihood methods, we present
results for filtered backprojection (FBP) and a penalized un-
weighted least-squares (PULS) estimator with a conventional
first-order shift-invariant penalty specified byR0. Both these
methods should produce shift-invariant and isotropic smoothing
properties. (Recall, the impulse response for a PULS estimator
is given by (19).) Moreover, since we have chosen the con-
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strained least-squares filter for FBP, which essentially matches
the smoothing of FBP and PULS these methods should yield
nearly identical smoothing properties. (See [5].)

Results of this impulse response survey are presented in Fig-
ures 3-8. For each penalty, PSF contours at 25, 50, 75, and 99%
of peak value are shown. These contours were generating us-
ing thecontour command in Matlab. Sampling is on a grid
aligned with pixel centers. The pixel boundaries are represented
by the dotted grid in each plot. Above each set of contours
are estimates of the mean (µ) and standard deviation (σ) of the
FWHM resolution in pixels, which quantify the mean resolution
and radial variation at that location.

For the conventional space-invariant penalty in Fig. 3, the
local PSFs are highly asymmetric and space-variant, blurring
more in high count regions (85,33) than in low count regions.
The certainty-based penalty of [4] shown in Fig. 4 provides
some improvement making the mean FWHM close to 4.0 pix-
els. However, the responses are still quite asymmetric. PSFs for
the CNLLS penalty are shown in Fig. 5. Note these contours are
nearly radially-symmetric and near the 4.0 pixel FWHM target
resolution. The PSFs of the proposed regularization method are
presented in Fig. 6. These contours are also highly symmetric
and the average FWHM resolution is very close to the target res-
olution of 4.0 pixels. Compare these local PSFs to the contours
for filtered backprojection in Fig. 7 and those of PULS in Fig. 8.
Our proposed penalty is designed with a target PSF given by the
PULS response. Note the similarity between these method’s re-
sponses as shown in Fig. 6 and Fig. 8. For FBP and PULS the
PSFs are nearly perfectly symmetric. Not surprisingly, due to
our choice of FBP filter, FBP and PULS have almost identical
contours.

For a more quantitative assessment of the resolution unifor-
mity, we present the following metric. For each response we
calculate the mean absolute radial deviation of the 50% contour
from the 2.0 pixel FWHM target radius. Then we calculate the
average value of this deviation over a set of 69 sample locations
within the phantom. (Ideally, we would do this for all image
phantom pixels. However, this is quite computationally expen-
sive.) The certainty-based penalty and the conventional penalty
have the greatest deviation using this metric, having an average
deviation of 0.27 pixels and 0.25 pixels, respectively. Recall
in Fig. 4, the average resolution (µ) is close to the desired 4.0
pixels, but the average deviation from this target is rather high.
The proposed method and the CNLLS penalty are more uniform
with an average deviation of 0.11 and 0.09 pixels, respectively.
Again, CNLLS and the proposed penalty perform comparably
and show significant improvement over the conventional space-
invariant penalty. For FBP we found an average deviation of
0.02 pixels and for PULS an average deviation of 0.05 pixels.

The calculated̂rj coefficients for the CNLLS penalty and the
proposed method are presented in Fig. 9. The coefficient values
are presented as four images (since we used four basis func-
tions) for both methods, separated by dotted lines. Each image
pixel corresponds to the coefficient of a given basis function at
that pixel location. The scale is logarithmic, except for the value
zero, which is represented in white. The CNLLS and proposed
penalty yield similar results. The largest discrepancies between

the coefficients appear at the edge or outside the object in the
digital phantom.

The CNLLS penalty and the proposed penalty yield very sim-
ilar r̂j coefficients and produce very similar local impulse re-
sponses. Hence we conclude that the computational simplifica-
tions proposed in Section IV do not change the calculated values
of r̂j significantly and that such simplifications are appropriate
for providing a computationally-efficient algorithm for calculat-
ing our proposed penalty for uniform resolution properties.

B. Noise Properties

The results presented above describe the resolution properties
of the estimators. As in [4], we also investigated the noise prop-
erties. To form sample standard deviation images, we simulated
400 noisy measurement realizations for the digital phantom in
Fig. 2. The PET model included 10% random coincidences and
averaged 1 million counts per realization.

We reconstructed each of these 400 realizations using 30 iter-
ations of the SAGE algorithm [15] with the same regularization
methods used above in the resolution properties investigation.
For all of the statistical methods except the CNLLS penalty, we
use the measurements,yi, for calculation ofR. Because of
the extensive computation time associated with calculation of
the CNLLS penalty, the noiseless,ȳi were used,i.e.; the same
penalty based on the noiseless measurements was used for all
realizations.

The results of this noise investigation are presented in Fig. 10.
The actual sample standard deviation images are shown on the
left side of the figure. Horizontal and vertical profiles of these
images are shown in the remaining plots. The horizontal pro-
file is taken through the image center and the vertical profile
is taken through the center of the cold disc. These profiles are
represented by dotted lines in the images. Pixel standard
deviations in these plots are expressed in terms of a percent-
age of the background ellipse intensity. If one included error
bars on these plots, the error bars would be smaller than the plot
markers. Therefore we have eliminated the error bars for clarity.
For conventional regularization, the standard deviation estimate
is nearly uniform. The remaining methods yield similar stan-
dard deviation maps, with FBP and PULS generally having the
highest standard deviation and the certainty-based penalty hav-
ing the lowest standard deviation. Not only do FBP and PULS
share similar resolution properties, but also similar noise prop-
erties. The close agreement in standard deviation between the
proposed method and the CNLLS penalty further justifies our
computationally efficient design technique.

At first glance, it appears that uniform resolution properties
come at the price of a variance increase as compared with the
certainty-based penalty. However, note that the certainty-based
penalty and the proposed penalty havedifferentresolution prop-
erties. The space-variant smoothing in the certainty-based re-
construction often has a greater maximum FWHM resolution if
one considers the maximum diameter of the local PSFs (com-
pare Fig. 4 and Fig. 6). This causes increased smoothing, yield-
ing a reconstruction with lower variance.

It is difficult to produce a resolution-noise curve demonstrat-
ing the relative performance of these two methods because they
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Figure 10: Sample standard deviation images and profiles: a) Filtered backprojection (+), b) Penalized unweighted least-squares
PULS (O), c) PLE with conventional regularization (◦), d) PLE with certainty-based penalty (∗), e) PLE with proposed penalty
(�), and f) PLE with CNLLS penalty (�).
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have different resolution properties. One might choose to use a
metric like the bias-gradient norm [17], however the connection
with resolution is not necessarily straightforward. Similarly,
one could use an average FWHM resolution as a metric. How-
ever, such a metric tends to handicap an estimator with uniform
resolution properties. Estimators with nonuniform smoothing
can smooth differently in different directions while maintain-
ing an average FWHM resolution identical to an estimator with
isotropic smoothing.

Therefore, we create banded plots where each “curve” spans
a range of resolutions. For each method, the local impulse re-
sponse at a given pixel has a range of resolutions from its mini-
mum FWHM resolution to its maximum FWHM resolution. A
given image pixel has a single standard deviation value, but a
range of resolution values.

We produced such banded curves as follows. Resolution is
controlled throughβ, so we performed reconstructions for a
range ofβ values. For eachβ, 400 realizations were used to
compute sample standard deviations of the reconstructed im-
ages. Empirical maximum and minimum FWHM resolution is
calculated by finding the local PSF and its FWHM contour, and
then computing twice the maximum (minimum) radius of the
contour. These two resolution measurements form the range of
resolutions produced by a specificβ. Plotting this resolution
range versus the pixel standard deviation forms a banded curve.
Resolution/noise tradeoff curves were calculated for two pixels;
one at the center of the cold disc and one at the center of the hot
disc.

Curves for the conventional and proposed penalties are
shown in Fig. 11. The lighter band with “+” symbols on the
border represents the resolution/noise tradeoff curve for the pro-
posed regularization, while the darker band with “◦” symbols
on the border is the curve for reconstruction with conventional
regularization. (The light band partially obscures the dark band,
however the borders are marked by symbol and lines so that the
degree of overlap is visible.)

We have produced a banded resolution/noise tradeoff plot us-
ing the certainty-based regularization of [4]. However, since
the certainty-based technique produces a curve nearly identical
to the conventional regularization, we have not included the plot
in this paper. Similar behavior was observed in [4] using a mean
FWHM resolution criterion for the resolution component. Es-
sentially this means a given pixel simply moves up or down its
resolution/noise curve to the specified resolution. This is an-
other indication that the certainty-based method does not yield
uniform resolution properties. While the average FWHM reso-
lution may be improved, the PSFs are still anisotropic yielding
a wide resolution band in our banded resolution/noise tradeoff
curves.

In Fig. 11 the banded curve for the proposed penalty spans
a small resolution range (i.e.: The curve is thin horizontally),
indicating its relatively isotropic smoothing properties as com-
pared with the conventional penalty. If our design were ideal,
minimum and maximum FWHM resolution would be identi-
cal and we would have a line instead of a band. Additionally,
the proposed penalty band lies always inside the conventional
penalty band. While these two methods have different resolu-

tion properties, it appears that our penalty design has not ad-
versely affected the noise properties of the estimator.

It is difficult to globally compare the proposed penalty with
the conventional and certainty-based methods for an entire im-
age reconstruction because they possess different resolution
properties for every pixel. On the other hand, FBP and the pro-
posed penalty both yield nearly the same PSFs, so a comparison
seems more appropriate. Since these methods have nearly the
same resolution properties, we can fairly identify which pro-
vides better global noise properties. Note, particularly in the
vertical profile in Fig. 10, that reconstructions based on the pro-
posed penalty have lower variance than FBP.

There are a few points in Fig. 10 where the standard deviation
estimate is slightly greater for the proposed penalty. Therefore,
to illustrate the relative global noise properties of FBP and the
PLE with the proposed regularization, we generated a histogram
of the relative variance. Specifically, for each pixel in the object,
we calculated the ratio of the sample standard deviation at that
pixel using filtered backprojection (σFBP) to the sample stan-
dard deviation at that pixel using the PLE with the proposed reg-
ularization (σPL). For pixels whereσFBP/σPL is greater than
one, filtered backprojection has higher standard deviation. This
histogram is shown in Fig. 12. The vertical dashed line indicates
the position where this ratio equals one. For nearly every pixel
the PLE with the proposed regularization produces lower vari-
ance estimates and, for those pixels that have higher variances
the difference is only slight. More than 50% of the pixels have
over a 20% reduction in reconstructed pixel standard deviation.

In addition to the variance investigation, we present a correla-
tion investigation. By specifying the desired resolution proper-
ties of PULS, have we gained the correlation properties as well?
To address this issue we have included a set of typical corre-
lation images in Fig. 13 for FBP, PULS, and the PLEs with
conventional, certainty-based, and proposed penalties. These
images represent the absolute value of the correlation between
a pixel and pixel (65,49). FBP and PULS have nearly iden-
tical correlation images (particularly inside the object). The
PLEs with conventional and certainty-based penalties have sim-
ilar images, but are noticeably different due to the different
resolutions. The proposed method shown in Fig. 13e appears
somewhere in-between the other PLEs, and PULS and FBP. The
structure of the correlation immediately surrounding (65,49) is
quite similar to FBP and PULS, having lost the nearly isotropic
effect of the other PLEs. This behavior is somewhat counterin-
tuitive since PLEs usually have much narrower correlation side-
lobes than FBP and PULS. It may be the case that such correla-
tion properties may be inextricably tied to resolution uniformity.
Further investigation will be required.

VI. T HORAX PHANTOM RESULTS

In the previous section we investigated our proposed regu-
larization technique using quantitative measures of noise and
resolution. In this section we demonstrate the qualitative im-
provement using our proposed regularization technique through
reconstruction of a noiseless thorax phantom. Both transmis-
sion and emission images for the digital phantom are shown in
Figure 14. The phantom is128 × 64 and has 0.42 cm square
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a) b) c)

d) e)

Figure 13: Sample absolute correlation images shown for pixel (65,49): a) Filtered backprojection (FBP), b) Penalized unweighted
least-squares (PULS), c) PLE with conventional regularization, d) PLE with certainty-based penalty, e) PLE with proposed penalty.

pixels. Relative emission intensities for the lungs, spine, and
heart are 0.4, 0.0, and 3.0, respectively, with the background
soft tissue having a relative intensity of 2. In addition, there
are four round tumors with a relative intensity of 4. These sim-
ulated tumors are radially symmetric, neglecting discretization
effects. In the transmission image, the attenuation coefficient of
the lungs is 0.001/mm, the spine is 0.016/mm, and the remain-
ing soft tissue is 0.0096/mm. The PET system model includes
160 radial bins and 192 angles space uniformly over180◦, with
3.375 mm strip integrals and 3.375 mm center-to-center spac-
ing.

We reconstructed the noiseless emission measurements using
FBP, penalized unweighted least-squares (PULS), and penal-
ized weighted least-squares (PWLS) estimators with the con-
ventional, certainty-based, and proposed penalties. All statisti-
cal methods enforced nonnegativity of the image and negatives
in the image reconstructed via FBP were set to zero. All meth-
ods used a target FWHM resolution of 3.0 pixels (1.25 cm). For
PULS and PWLS with conventional regularization, the penal-
ties were chosen so thatR0 corresponds to the shift-invariant
first-order penalty with kernel as in (6). The proposed penalty
uses theβ-independent design (22) with second-order bases,
and the same targetR0 as PULS.

The reconstructions using these methods are presented in
Fig. 15. The FBP reconstruction in Fig. 15a has uniform res-
olution properties. This is evident from the uniformly smooth
edges and radially symmetric tumors. Similarly, the PULS re-
construction in Fig. 15b shows the expected nearly identical
results. (Recall the nearly identical PSFs of FBP and PULS
in Section V.) The reconstruction using conventional regular-
ization is shown in Fig. 15c. There are distortions of the four
round tumors (particularly in the lungs) in this reconstruction.
The tumors are stretched vertically and appear elliptical. An-
other indication of resolution nonuniformity is evident at the
outer boundaries of the arms. These boundaries are sharper
than those in FBP and PULS. That is, the resolution is higher in
these regions. The reconstruction with certainty-based penalty

in Fig. 15d shows some improvement. Most notably, the outer
edges of the arms are smoothed in a more uniform fashion.
However, the tumors are still smoothed preferentially in the
vertical direction. Fig. 15d shows the reconstruction with our
proposed penalty. The resolution uniformity appears much im-
proved over the other PWLS methods. The tumors appear
nearly radially symmetric and the edges appear much more uni-
formly smoothed.

VII. D ISCUSSION

Conventional space-invariant regularization methods for
penalized-likelihood image reconstruction produce images with
space-variant resolution properties. This has been shown ana-
lytically in [4] as well as empirically in real images, such as
Fig. 15c. Although the certainty-based method of [4] attempts
to provide more uniform resolution, as we have seen in our in-
vestigations, that method does not provide truly isotropic reso-
lution properties.

We have presented a new computationally-efficient regular-
ization scheme for increased spatial uniformity. The proposed
method is motivated by a least-squares fitting of a parameterized
local impulse response to a desired responsel0. This method
yields nearly space-invariant and nearly symmetric local point
spread functions at FWHM resolutions very close to specified
target resolutions. Additionally, we applied this novel regular-
ization in the reconstruction of simulated thorax phantom data
and demonstrated the increased resolution uniformity.

Providing a regularization scheme that yields uniform reso-
lution properties makes the selection of the regularization pa-
rameter (β) more intuitive. One may simply specify the desired
global resolution of the reconstructed image inl0. Additionally,
creating nearly the same resolution properties in both the statis-
tical (PLE) and traditional (FBP) reconstruction techniques pro-
vides a fair ground for comparing the noise properties of the two
methods. As expected, we observed that by using a likelihood-
based estimator and taking the noise model into account, one
can reduce estimator variance.
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a) b) c)

d) e)

Figure 15: Reconstruction of thorax phantom data using a) filtered backprojection, b) Penalized unweighted least-squares,
c) PWLS with conventional regularization, d) PWLS with certainty-based penalty, and e) PWLS with the proposed regulariza-
tion scheme.

While one may arguably desire space-variant resolution prop-
erties, one would most likely want to be able to control regional
resolution properties, while maintaining radially-symmetric re-
sponses. These proposed methods can be modified to provide
such control, allowing for predictable and intuitive specification
of resolution properties in image reconstruction.

As demonstrated in Fig. 6, the proposed second-order penalty
still yields slight asymmetries in the point spread functions.
Similarly, in Fig. 15e, there are slight resolution nonuniformi-
ties evident in the reconstruction. In particular, the edges of
the phantom have subtle smoothing differences between PWLS
with the proposed penalty, and the FBP and PULS reconstruc-
tions in Fig 15a and Fig. 15b (especially near the arms). There
are many possible solutions that merit future investigation. The
nonnegativity constraint onrj may be too strong a condition.
(Recall this is a sufficient condition for nonnegativity ofR.)
This constraint could be relaxed providing increase design free-
dom, yet still maintaining nonnegativity ofR and a concave ob-
jective. One may also achieve slightly better resolution unifor-
mity at the expense of additional computation by using higher-
order neighborhoods. Additionally, choices ofL0 other than
(20) may require larger neighborhoods to obtain good fits to the
desired response.

With additional improvements, the question of noise perfor-
mance may arise. If the resolution properties are truly identical,
does penalized-likelihood still outperform FBP? The variance
improvements we have seen with our proposed method over
FBP are marginal in some regions. As resolution properties are
matched exactly will the advantages disappear? If so, does this
hold for shift-variant systems as well?

We have seen similar behavior in our brief correlation investi-
gation. The correlation images for our proposed penalty appear
very similar to FBP and PULS. It appears that uniform reso-
lution may come at the cost of wider correlation sidelobes. It
may be the case for space-invariant systems that such proposed
penalties for uniform resolution effectively cancel out the ef-

fects of noise modeling. However, this is not necessarily true
for space-variant systems. Further investigation regarding these
issues is required.

Currently, there is no computationally efficient method for
computing roughness penalties yielding uniform resolution
properties for systems whereG′G is space-variant (as in
SPECT which has a depth-dependent resolution and in PET
system models that account for depth-of-interaction in the de-
tector crystals). Therefore, these ideas need to be extended to
space-variant tomographic systems. Additionally, the methods
presented here are for 2D reconstruction. We also plan to in-
vestigate 3D penalties for resolution uniformity in volumetric
reconstructions. [18]
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Figure 3: Local PSFs for space-invariant penalty.
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Figure 4: Local PSFs for certainty-based penalty.
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Figure 5: Local PSFs for CNLLS penalty.
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Figure 6: Local PSFs for proposed penalty.
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Figure 7: Local PSFs for FBP.
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Figure 8: Local PSFs for Penalized Unweighted Least Squares.
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CNNLS Proposed

10−8

10−6

10−4

10−2

100

102

104
r̂1,0r̂1,0

r̂0,1r̂0,1

r̂1,1r̂1,1

r̂1,−1r̂1,−1

Figure 9: Comparison of calculated̂rj values for the CNLLS
penalty and the proposed penalty. Note the logarithmic color
scale. White regions indicate a value of zero.
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Figure 11: Resolution/noise tradeoff for penalized-likelihood
emission image reconstruction with conventional (◦/dark) and
proposed penalties (+/light).
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Figure 12: Histogram showing the distribution of the ratio of the
pixel standard deviation using filtered backprojection (σFBP)
to the pixel standard deviation using a PLE with the proposed
regularization (σPL).

a) b)

Figure 14: Digital thorax phantom used for reconstruction of
different regularizations. Image a) is the emission image and
Image b) is the transmission image.


