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Abstract

In many transmission imaging geometries, the transmitted “beams” ofphotons overlap on the detector, such that a detector element may record
photons that originated in different sources or source locations and thus traversed different paths through the object. Examples include systems
based on scanning line sources or on multiple parallel rod sources. The overlap of these beams has been disregarded by both conventional analytical
reconstruction methods as well as by previous statistical reconstruction methods. We propose a new algorithm for statistical image reconstruction
of attenuation maps that explicitlyaccounts for overlapping beams in transmission scans. The algorithm is guaranteed to monotonically increase
the objective function at each iteration. The availability of this algorithm enables the possibility of deliberately increasing the beam overlap so as
to increase count rates. Simulated SPECT transmission scans based on a multiple line source array demonstrate that the proposed method yields
improved resolution/noise tradeoffs relative to “conventional” reconstruction algorithms, both statistical and nonstatistical.

Keywords: SPECT, attenuation maps, penalized-likelihood, multiple source.

I. INTRODUCTION

To reconstruct quantitativelyaccurate images of radioisotope emission distributions in SPECT, one must compensate

for the effects of photon absorption or attenuation. Accurate attenuation correction requires good attenuation maps, and

one can reconstruct such maps from transmission scan measurements obtained either prior to or simultaneously with

the SPECT emission scan.

Several source/detector configurations for SPECT transmission scans have been investigated, including a single fixed

line source opposite a symmetric fan-beam collimator, used in triple-head SPECT cameras, a scanning line source for

orthogonal dual-head cameras, and offset line sources opposite asymmetric fan-beam collimators. Cellaret al [1]

describe an alternative geometry based on several fixed-position collimated line sources opposing a parallel-beam

collimator. In that system design, the source collimation was selected to minimize overlap on the detector of the

transmitted “fan-beams.” They then applied the filtered back-projection (FBP) algorithm to reconstruct the attenuation

map (an ART algorithm was also mentioned without details). This source collimation has the undesirable consequence

of very nonuniform count profiles, as shown in Figure 4 of [1]. It is natural to expect that higher and more uniform count

profiles could lead to better reconstructed attenuation mapsif the overlap can be properly modeled by the reconstruction

method.

In both the scanning line source geometry and the geometry of Celleret al [1], there can be overlap of the beam

footprints, as illustrated in Figure 2. Previously published statistical algorithms for transmission tomography, e.g. [2–8],

are inapplicable to the multiple source problem when the beams overlap. In this paper we formulate a statistical model

for multiple-source transmission measurements with arbitrary overlapping beams, and then derive an iterative algorithm

for maximizing the likelihood (or a regularized variant thereof). The log-likelihood is not necessarily globally concave,

which usually precludes proofs of convergence to a global maximum. The algorithm that we present is guaranteed to

increase the likelihood at every iteration, and the set of fixed points of the algorithm is the same as the set of stationary

points of the objective function. The algorithm also satisfies the continuity conditions of Meyer [9]. Therefore, by the

convergence results in [9], the proposed algorithm produces a sequence of estimates that converge from any nonnegative

initial image to a stationary point of the objective, provided the set of stationary points is not a continuum. This is nearly

as strong of a convergence result as one might expect for a possibly nonconcave objective function. In Section 2, we
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give the statistical model and the proposed maximum-likelihood algorithm; in Section 3, we present some simulation

results; in Section 4, we present the results from our preliminary study on optimal source collimation angles for a fixed

system setup; and finally Section 5 is discussion and conclusion.

II. STATISTICAL MODEL

Let Yi denote the number of photons counted by theith detector element1 during the transmission scan, fori =

1; : : : ; N , whereN is the number of measurement elements. Each detector element conceivably may count photons

that originated in any of theM � 1 sources. We assume that separate blank scans are available for each of the sources

(or source positions for a scanning line source). (This information is essential for unscrambling the multiplexing of

overlapping beams.) Letbim denote the mean number of photons that would be observed during a transmission scan

by theith detector originating in themth source in the absence of any patient in the scanner. Typically thebim’s would

be determined by a periodic calibrating “blank scan”, performed separately for each of theM sources, and then scaled

by the relative durations of the blank scan and transmission scans. However, we ignore any statistical uncertainty in

thebim’s and treat them as known constants. This assumption is reasonable provided the blank scans are sufficiently

lengthy.

Let�true = [�true1 ; : : : ; �truep ]0 denote the vector of unknown attenuation coefficients for each of thep pixels or voxels

in the attenuation map (or the coefficients of some other basis for the attenuation distribution such as B-splines [10]).

The line integral between themth source and theith detector location through the attenuating object is approximated

by the following sum:

[Am�]i =

pX
j=1

amij�j ;

whereAm = famij g is aN � p matrix with nonnegative elements and theamij ’s represent line-lengths or normalized

strip-intersection areas2. Thus by Beer’s law the “survival probability” for a photon transmitted from themth source in

the direction of thei detector is (approximately)exp(�[Am�]i):

We assume theYi’s have independent Poisson distributions:

Yi � Poisson
�
�yi(�

true)
	
;

where the means are given by

�yi(�) =

"
MX
m=1

bim exp(�[Am�]i)

#
+ ri: (1)

Theri’s are nonnegative constants that one can include to account for the mean contributions of scatter, room back-

ground, and emission crosstalk [11]. We treat theseri’s as known constants, though in practice they must be determined

experimentally. However, since scatter is a spatially smooth function, one can safely smooth scatter estimates fairly

heavily, so generally the uncertainty in theri’s can be made much smaller than that of theYi’s.

The summation overm in (1) allows for arbitrary overlap of the beams transmitted fromeach source. Non-

overlapping beams would correspond to the assumption that ifbim 6= 0, thenbik = 0 for all k 6= m, i.e. bimbik = 0 for

all k 6= m.

1Each “detector element” corresponds to a unique radial position and view angle, i.e., for typical 2D reconstructionN = NrN� whereNr is the number of
radial samples along the detector andN� is the number of view angles or “steps.”
2Normalized by strip width
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Under the above statistical model, given a particular measurement realizationY = [y1; : : : ; yN ]0, we can write the

log-likelihood for� in the following convenient form:

L(�; Y ) =
NX
i=1

hi

 
MX
m=1

uim(�)

!
; hi(t) = yi log t� t; (2)

uim(�) = bim exp(�[Am�]i) + ri=M;

ignoring constants independent of�. Since the form of this log-likelihood is sufficiently different from the usual models

for emission tomography and transmission tomography [4], previously derived algorithms for maximum likelihood

estimation are not directly applicable to this problem.

One could easily derive an expectation-maximization (EM) algorithm [12] that would monotonically increase the

likelihoodL(�; Y ) for this problem, generalizing [4]. However, the convergence would be as painfully slow and the

M-step as difficult as the usual transmission EM algorithm. Instead, we propose an algorithm based on an extension

of our recent work on paraboloidal surrogates methods [2, 3]. For even faster “convergence” one could apply ordered

subsets ideas [13].

Because of theill-posedness of the reconstruction problem, a penalty term is usually added to the likelihood to

encourage piecewise smoothness in the reconstructed image, resulting in the following objective function:

�(�; Y ) = L(�; Y )� �R(�): (3)

Our goal is to produce a penalized-likelihood estimate:

�̂ = argmax
�� 0

�(�; Y ): (4)

Most roughness penaltiesR(�) can be expressed in the following general form:

R(�) =
KX
k=1

 k([C�]k); (5)

where the k’s are potential functions acting as a norm on the “soft constraints”C� � 0 andK is the number of such

constraints. The functions k we consider here are convex, symmetric, nonnegative and differentiable [3].

III. A LGORITHM

We focus on the unregularized maximum-likelihood problem; the regularized approach easily follows from [3].

Since maximizing the log-likelihood directly is difficult to do, we apply the principle of optimization transfer [6, 14]

and define a “surrogate function”Q(�;�n) that is easier to maximize. Since this surrogate function depends on the

previous estimate�n at thenth iteration, the algorithm consists of repeatedly maximizing the surrogate function,i.e.

�n+1 = argmax
�� 0

Q(�;�n): (6)

Note that the maximization is constrained to enforce the nonnegativity constraint. The key algorithm design require-

ment is to chooseQ functions that satisfy the following conditions:

Q(�n;�n) = L(�n; Y ); 8�n � 0 (7)
@Q

@�j
(�;�n)

����
�=�n

=
@L

@�j
(�)

����
�=�n

; 8j = 1; : : : ; p (8)

Q(�;�n) � L(�; Y ); 8� � 0: (9)
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These conditions ensure that the proposed iteration monotonically increases the likelihood.

A difficulty in maximizingL is the sum overm within the logarithm in (2). To move the summation outside of the

logarithm, we first adapt De Pierro’s multiplicative convexity trick [15]. Becausehi is concave:

hi

 
MX
m=1

uim(�)

!
= hi

 
MX
m=1

unim
�yni

uim(�)

unim
�yni

!
(10)

�

MX
m=1

unim
�yni

hi

�
uim(�)

unim
�yni

�
; (11)

whereunim
4
= uim(�

n), and�yni
4
= �yi(�

n). This inequality leads to our first surrogate function:

Q1(�;�
n)

4
=

NX
i=1

MX
m=1

unim
�yni

hi

�
uim(�)

unim
�yni

�
(12)

=
NX
i=1

MX
m=1

unim
�yin

gnim([A
m�]i); (13)

where

bnim
4
=

�yin

unim
bim;

rnim
4
=

�yi
n

unim

ri
M

gnim(l)
4
= yi log

�
bnime

�l + rnim

�
�
�
bnime

�l + rnim

�
:

The surrogate functionQ1 remains too difficult to maximize directly because the argument of eachhi still depends on

uim, which has a complicated exponential form. However, it follows easily from the results in [2,3] that the following

paraboloidal function is a valid surrogate forQ1:

Q2(�;�
n)

4
=

NX
i=1

MX
m=1

unim
�yni

qnim([Am�]i)
4
= Q(�;�n) (14)

where

qnim(l)
4
= gnim(l

n
im) + _gnim(l

n
im)(l� l

n
im)�

1

2
cnim(l� lnim)

2 (15)

and

_gnim(l)
4
=

d

dl
gnim(l)

�gnim(l)
4
=

d2

dl2
gnim(l)

lnim = [Am�n]i =

pX
j=1

A
m
ij�

n
j :

To ensure (9), we must choose the curvaturesfcnimg appropriately [2,3]. As discussed in [3], for the fastest convergence

rate, we would like to choose the curvatures as small as possible, subject to the constraint that the surrogate function
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qnim lies below the functionsgnim. For completeness, we include the following formula for the optimum curvature,i.e.,

cnim = minfc � 0 : gnim(l) � qnim(l) 8l � 0g derived in [3]:

cnim =

8><
>:
�
�2

gnim(0)� gnim(l
n
im) + _gnim(l

n
im)(l

n
im)

(lnim)
2

�
+

; lnim > 0

[��gnim(0)]+ ; lnim = 0

(16)

=

8>><
>>:

�
(2=(lnim)

2)

�
bnim(1� e

�lnim)� yi log
bnim + rnim

�ynim
+ bniml

n
ime

�lnim

�
yi
�ynim

� 1

���
+

; lnim > 0�
1�

yir
n
im

(bnim + rnim)
2

�
+

; lnim = 0,
(17)

where

�ynim
4
= bnime

�lnim + rnim:

Other curvature choices that lead to even faster convergence (but do not guarantee monotonicity) can be found in [3].

Since our second surrogateQ2 is a quadratic functional, it is easily maximized by a variety of algorithms, including

the coordinate ascent algorithm [5, 16]. Adding a penalty function is straightforward. However,Q2 is not separable

and if we want to apply the ordered subsets idea, we must have a separable surrogate function.

A. Separable Paraboloidal Surrogate Algorithm

Now we derive a separable paraboloidal surrogate algorithm; we do not use this algorithm for the simulation de-

scribed in this paper since it converges very slowly even though it is guaranteed to be monotonic. As noted by De Pierro

in [15]:

[Am�]i =

pX
j=1

zmij

"
amij
zmij

(�j � �
n
j ) + [Am�]i

#
; (18)

provided
Pp

j=1 z
m
ij = 1 for all i andm. Thus ifzmij � 0 then it follows from the concavity ofqnim that

qnim([A
m�]i) �

pX
j=1

zmij q
n
im

 
amij
zmij

(�j � �nj ) + [Am�]i

!
: (19)

If we choosezmij = amij =

m
i , where
mi =

Pp
j=1 a

m
ij (such that

Pp
j=1 a

m
ij =


m
i = 1 for all i andm), then from (12)

and (19) we obtain our third surrogate function as follows:

Q3(�;�
n) =

NX
i=1

MX
m=1

pX
j=1

unima
m
ij

�yin
mi
qnim(
mi (�j � �

n
j ) + [Am�n]i): (20)

This surrogate function is a quadratic form, and one that is trivial to maximize because it is a separable function. The

partial derivatives ofQ3 are given as follows:

�
@2

@�2j
Q3(�;�

n) =
NX
i=1

MX
m=1

unima
m
ij


m
i

�yin
cnim

4
= dj(�

n) (21)

@

@�j
Q3(�;�

n) =
NX
i=1

MX
m=1

unima
m
ij

�yin
_gim(l

n
im)�

NX
i=1

MX
m=1

unima
m
ij


m
i

�yin
cnim(�j � �nj ): (22)
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Note that (8) is satisfied since

@

@�j
Q3(�;�

n)

����
�j=�

n
j

=
NX
i=1

MX
m=1

unima
m
ij

�yin
_gim(l

n
im) =

@

@�j
Q2(�;�

n)

����
�j=�

n
j

=
@

@�j
L(�; Y )

����
�=�n

: (23)

From the above expressions for the partial derivatives ofQ3, the unconstrained maximizer ofQ3(�;�
n) with regard to

�j is given by:

�nj +
1

dj(�n)

@

@�j
Q3(�;�

n)

����
�j=�

n
j

: (24)

SinceQ3 is separable and concave, the iterative algorithm for the maximization ofL is:

�n+1 = [�n +D(�n)�1r0L(�n; Y )]+; (25)

wherer0 = [ @
@�1

: : : @
@�p

]0 denotes the (column) gradient operator,[x]+ = x for x > 0 and zero otherwise, andD(�n)

is ap� p diagonal matrix withjth diagonal entrydj(�n). The ordered subsets idea could also be easily applied to this

algorithm [17,18] and adding regularization is straightforward as given in [18].

The iteration (25) monotonically increases the likelihood, however, it has very slow convergence due to the small

curvatures of the surrogate parabolas. Applying the ordered subsets idea leads to faster “convergence” but monotonicity

is no longer guaranteed.

B. Coordinate Ascent Algorithm

To obtain a monotonic algorithm that converges relatively quickly, we can apply coordinate ascent to the surrogate

Q defined in (14),i.e., sequentially update one pixel at a time while holding all other pixels fixed. First, we obtain the

likelihood surrogate parabola for a particular pixel with every other pixel value fixed:

Q̂n
j (�j)

4
= Q([�̂1; : : : ; �̂j�1; �j; �̂j+1; : : : ; �̂p];�

n)

= Q(�̂;�n) + _Qn
j (�̂j)(�j � �̂j)�

1

2
dnj (�j � �̂j)

2; (26)

where�̂ denotes the most recent estimate of�, �̂j denotes thejth entry of�̂, �n denotes the estimate for� after the

nth iteration (with whichQ(�; �n) is constructed), and̂Qn
j (�j) is treated as a function of�j only. The derivative of the

likelihood surrogate parabola at�̂j is:

_Qn
j (�̂)

4
=

@

@�j
Qn
j (�j)

����
�j=�̂j

=
NX
i=1

MX
m=1

unim
�yni

amij [ _g
n
im(l

n
im)� cnim(l̂im � l

n
im)]; (27)

where

l̂im
4
= [Am�̂]i =

pX
j=1

A
m
ij �̂j

_gnim(l) =

�
yi

bnime
�l + rnim

� 1

�
bnime

�l:

The curvature of the parabolâQn
j (�j) is

dnj
4
=

NX
i=1

MX
m=1

unim
�yni

(amij )
2cnim: (28)
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Extension to the penalized likelihood case is straightforward following the methods in [2, 3], so we omit the details

and only comment on notations:̂Rj(�j) denotes the penalty surrogate parabola for�j , andp̂j denotes its curvature.

Combining the likelihood surrogate parabolas in (26) and the penalty surrogate parabolas, the maximization step of the

coordinate ascent for pixelj is:

�̂newj = argmax
�j�0

Q̂n
j (�j)� �R̂j(�j) =

"
�̂j +

_Qn
j (�̂)� �

_Rj(�̂)

dnj + �p̂j

#
+

: (29)

Because of our construction based on surrogate functions that satisfy (9), this update is guaranteed to monotonically

increase the value of�. One iteration is finished when all pixels are updated via (29) in a sequential order. We update

the paraboloidal surrogate function after one iteration of coordinate ascent (CA), although one could also perform more

than one CA iteration per surrogate. An outline of this algorithm is given in Table I, where k denote the potential

function used in the penalty acting as a norm on the “soft constraints”C� � 0, K is the number of such constraints,

and ̂k denotes the surrogate function used for k; see [3] for details.
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Initialize: �̂ = FBPflog((
PM

m=1 bim)=(yi � ri))g
N
i=1 andl̂im =

Pp
j=1 a

m
ij �̂j ; i = 1; : : : ; N

for each iterationn = 1; : : : ; niter

uim = bime
�[A�̂]i + ri=M

�yi =
MX
m=1

bime
�[A�̂]i + ri

bnim =
�yi
uim

bim; r
n
im =

�yi
uim

ri
M

Computecim according to (16)

_qim = _gim =

 
yi

bnime
�l̂im + rnim

� 1

!
bnime

�l̂im ; for i = 1; : : : ; N

for j = 1; : : : ; p

_Qj =
MX
m=1

NX
i=1

uim
�yi
amij _qim

dj =
MX
m=1

NX
i=1

uim
�yi

(amij )
2cim

�oldj = �j

�̂j :=

2
4�̂j + _Qj � �

PK
k=1 ckj

_ k([C�̂]k)

dj + �
PK

k=1 c
2
kj

�̂
 k([C�̂]k)

3
5
+

_qim := _qim � amij cim(�̂j � �
old
j )

end

l̂im := l̂im +
_qim � _gim
cim

; for i = 1; : : : ; N

end

TABLE I

ALGORITHM OUTLINE
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IV. SIMULATION RESULTS

We compared the proposed reconstruction algorithm to the “conventional” reconstruction algorithms (statistical and

FBP) that treat the transmission measurements simply as ideal normalized parallel “strip-integrals”. The system ge-

ometry corresponded fairly closely to the SiemensPro�leTM system (Hoffman Estates, IL) [19]. The sources for the

simulated system consisted of a multiple line source array with 14 sources, unequally spaced, located on a line parallel

to the detector and 110 cm away from the detector plane. The detector plane was located 22 cm away from the center

of rotation. We simulated a range of source collimation angles, from1:6� (with almost no overlap in the transmission

beams) to6:6�, and disregarded detector collimation. The image consisted128� 128 pixels of size3:56� 3:56mm2.

The sinogram size was128 � 60 with detector bins of width4:8mm (i.e., the simulated detector response was rect-

angular with width4:8mm). We performed the simulation for two levels of transmitted counts, one corresponding to

a system whose center rods have just been replaced (the new source case), and the other with sources that have all

decayed by one half-life (the old source case). At1:6�, we simulated 321,000 transmitted counts for the new source

case (160,000 counts for the old source case), and 263,000 background counts (on average). As the source collimation

angle increases, the number of transmitted counts increases, naturally, but the number of background counts remains

the same; at2:6�, there are 523,000 transmitted counts for the new source case (261,000 counts for the old source case);

and at6:6�, there are 1,396,000 transmitted counts for the new source case. For simplicity, we used a space-invariant

quadratic penalty over first-order neighbors throughout our simulations. The phantom used in our simulations, the ROI

used for the evaluation of variance in Section 5 (outlined by solid lines), and the large region used for the evaluation

of spatial resolution (outlined by dashed lines) are shown in Figure 1. Figure 2 illustrates the system setup. The radial

distribution of blank counts (at any projection angle) is shown in Figure 3.

Fig. 1. Digital Phantom used in our simulations and the ROI used for collimation angle optimization.
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Fig. 2. Scaled illustration of the system setup; the two fan-beams on the left have collimation angle2:6�; the two fan-beams on the right side have collimation
angle5:6�.
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Fig. 3. Distribution of blank counts (a) collimation angle2:6� (b) collimation angle5:6�.

Figures 4 and 5 show reconstructions of noisy data using FBP, the parallel algorithm3, and the proposed algorithm,

with new sources. Figure 4 shows reconstructions with2:6� source collimation and Figure 5 shows reconstructions

with 3:6� source collimation. Figures 6 and 7 show the same reconstructions with old sources. The spatial resolution

3We refer to the penalized-likelihood reconstruction assuming ideal normalized parallel “strip-integrals” (and ignoring beam overlap) as the parallel algorithm.
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of the images in these figures is 4.7 pixels on the top row and 6.8 pixels on the bottom row. We use the following

simple method to determine the resolution of a particular (noiseless) reconstruction. Given the ideal image�true and

the reconstructed image�� using ideal data:

�� = argmax
�� 0

�(�; �yi(�
true)); (30)

we define the resolution of�� to be:

argmin�
X
j2R

��[G��
true]j � ��j

��2 (31)

whereG� represents a Gaussian smoothing filter with FWHM�, and theR is a large region encompassing both the

right lung and our ROI as illustrated in Figure 1.

We observe from Figures 4-7 that the proposed algorithm consistently produces less noisy reconstructions than both

the parallel algorithm and FBP (this conclusion from anecdotal evidence will be confirmed in Section 5). The noise

reduction is especially significant when the collimation angle is large (i.e., 3:6�) and the desired spatial resolution is

high (i.e., 4.7 pixels). In such cases, FBP simply cannot produce a reconstructed image of the desired resolution even

with an unapodized ramp filter. Since the parallel algorithm is based on an incorrect system and statistical model, one

expects artifacts due to model mismatch. The absence of apparent artifacts in Figures 4-7 is due to regularization and

noise. Figure 8 shows the reconstructed images from noiseless data (4:6� collimation angle) using the parallel and

proposed algorithms with almost no regularization (� = 2�10). The reconstructed image from noiseless data using the

parallel algorithm shows severe artifacts resulting from model mismatch, which are absent in the reconstructed image

from noiseless data using the proposed algorithm (Figure 8c).

As the collimation angle increases, the artifacts generated by the parallel algorithm worsen. In fact, even the noiseless

reconstruction has a spatial resolution of about 5.6 pixels when the collimation angle is4:6� (Figure 8a)4, and at6:6�,

the noiseless reconstruction has a spatial resolution of 7.7 pixels. Thus for system setups with significantly overlapping

transmission beams, the parallel algorithm simply cannot produce a high-resolution reconstruction, no matter how

many counts one collects.

4The noiseless reconstruction (Figure 8c) using the proposed algorithm has a spatial resolution of 1.4 pixels.
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FBP Parallel algorithm Proposed algorithm

Fig. 4. New sources; collimation angle:2:6�; 785,000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels.

FBP Parallel algorithm Proposed algorithm

Fig. 5. New sources; collimation angle:3:6�; 994,000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was not
achievable with FBP in this case.
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FBP Parallel algorithm Proposed algorithm

Fig. 6. Old sources; collimation angle:2:6�; 392,000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels.

FBP Parallel algorithm Proposed algorithm

Fig. 7. Old sources; collimation angle:3:6�; 497,000 counts; top row: resolution 4.7 pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was not
achievable with FBP in this case.
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Fig. 8. Reconstruction using the parallel and proposed algorithms with almost no regularization; collimation angle4:6� (a) (b) Parallel algorithm (c) (d) Proposed
algorithm.
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V. COLLIMATION ANGLE OPTIMIZATION

We performed a preliminary study of the optimal source collimation angle given that the system configuration, source

strength, and background counts remain constant. As source collimators open up,i.e., the collimation angle increases,

there would be more counts, but there would also be more overlap of transmission beams. Hence initially, when the

transmission beams widen from no overlap to some overlap, we expect better resolution/variance tradeoffs; however,

as the transmission beams open up more and more, we expect less and less improvements, and eventually worse reso-

lution/variance tradeoff since eventually each detected photon hitting will yield very little information about where it

originated. We want to obtain the collimation angle that minimizes a region of interest (ROI) variance for a fixed spatial

resolution. We investigated the proposed algorithm, the parallel algorithm (i.e., the conventional statistical algorithm),

and FBP (derived assuming ideal parallel “line-integrals”). For the statistical algorithms, instead of performing numer-

ical simulations, we used the approach outlined in [20] to compute the variance of the ROI. For FBP, since numerical

simulations are relatively inexpensive, we performed 2000 realizations for each data point.

The approximate covariance for an implicitly defined biased estimator is [20]:

Cov(�̂) � [�r20�(��; �y)]�1r11�(��; �y)CovfY g[r11�(��; �y)]0[�r20�(��; �y)]�1; (32)

where�� is defined in (30). We first deriver20�(�; Y ) andr11�(�; Y ), which are needed for computing the variance

of a ROI for the proposed algorithm. Defining

pim(�)
4
= bime

�
P

j a
m
ij�j (33)

�yi(�) =
MX
m=1

pim(�) + ri; (34)

then

@pim(�)

@�j
= �amij pim(�) =

@�yi(�)

@�j
: (35)

Since

L(�; Y ) =
NX
i=1

yi log �yi(�)� �yi(�); (36)

we have

@L(�; Y )

@�j
=

NX
i=1

yi
�yi(�)

@�yi(�)

@�j
�
@�yi(�)

@�j
=

NX
i=1

�
1�

yi
�yi(�)

� MX
m=1

amij pim(�); (37)

and, applying the chain rule:

@2L(�; Y )

@�j@yi
= �

PM
m=1 a

m
ij pim(�)

�yi(�)
(38)

@2L(�; Y )

@�j@�k
=

@

@�k

NX
i=1

�
1�

yi
�yi(�)

� MX
m=1

amij pim(�)

= �

NX
i=1

�
1�

yi
�yi(�)

� MX
m=1

amij a
m
ikpim(�)�

NX
i=1

yi
�y2i (�)

 
MX
m=1

amij pim(�)

! 
MX
m=1

amikpim(�)

!
:(39)
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LetC(�)
4
= fcij(�)g, wherecij(�)

4
=
PM

m=1 a
m
ij p

m
i (�) soC(�) =

PM
m=1 diagfp

m
i (�)gA

m. Then we obtain:

r11�(�; Y ) = �C(�)0diagf1=�yi(�)g (40)

�r20�(�; Y ) =
MX
m=1

(Am)0diagf(�yi(�)� ri)(1� yi=�yi(�))gA
m

+TC(�)0diagfyi=�y
2
i (�)gC(�) + �R(�); (41)

whereR(�) = r2R(�). (For a detailed derivation of the penalty part, see [20].) We use the following recipe to

compute the approximate estimator (using the proposed algorithm) variance of a ROI:

(i) Compute�� by applying the proposed algorithm to noise-free dataf�yi(�
true)g;

(ii) Forward project�� to compute�yi(��) =
PM

m=1 pim(��) + ri;

(iii) Use an iterative method such as conjugate gradient [21] or Gauss-Siedel [22] to solve

[�r20�(��; �y)]uROI = eROI, whereeROI is a vector with entries1=nROI for pixels inside the region and

zeros for pixels outside;nROI denotes the number of pixels in the ROI;

(iv) Compute(uROI)0r11�(��; �y)CovfY g[r11�(��; �y)]0uROI by first forward projectinguROI to compute

v = diagf1=�yi(��)gC(��)uROI, and then summing:

Var(�̂ROI) �
NX
i=1

v2i yi(�
true): (42)

For the parallel algorithm, the computation of the approximate variance has been outlined in [20], except that we

useCov(Y ) = diagf�yi(�true)g in (23) of [20], where�yi is based on the overlapping beam model (34) rather than the

parallel strip-integral model of [20].

We analyzed the resolution/variance tradeoffs for the ROI illustrated in Figure 1: it is a2� 9 region that goes across

the boundary of the soft tissue, the lung, and the heart. We performed the analysis at two levels of transmitted counts,

one with new sources (the high count case) and the other with old sources (the low count case),i.e., the same as was

done for Section 4. The background count level for both cases remains the same throughout. We only discuss the

high count case; the low count case gives similar results. Figures 9 and 10 show the resolution/variance curves of

the proposed algorithm and the parallel algorithm, respectively, for various collimation angles ranging from1:6� to

6:6�. Based on these two figures, we calculated (using cubic spline interpolation when needed) the variances of the

ROI versus collimation angle at two fixed resolutions: 4.7 pixels and 6.8 pixels, as shown in Figures 11 and 12. The

proposed algorithm outperforms the parallel algorithm which in turn outperforms FBP at both resolutions, and at all

collimation angles. The performance gain of the proposed algorithm over the parallel algorithm is more impressive at

larger collimation angles,e.g., more than2:5�. Using the proposed algorithm, it seems that the optimal collimation

angle for a resolution of 4.7 pixels is around5�, and> 7� for a resolution of 6.8 pixels, both much larger than

typical collimation angles found on SPECT cameras. However, if the suboptimal parallel algorithm were used for

reconstruction, then the optimal collimation angle would be2:6� for a resolution of 4.7 pixels, and4:1� for a resolution

of 6.8 pixels. Even though the optimal collimation angle for the parallel algorithm is closer to what is typically

found on SPECT cameras than the proposed algorithm, the proposed algorithm outperforms the parallel algorithm at

all collimation angles. Furthermore, for collimation angles larger than3:5�, a resolution requirement of 4.7 pixels

would probably mean very high variances in the parallel reconstruction. Figure 13 shows the optimal collimation

angle for the proposed and parallel algorithms at different desired spatial resolutions. Naturally, as the desired spatial

resolution improves, the optimal collimation angle decreases. Figure 14 shows the minimum achievable normalized
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standard deviation for the the proposed and parallel algorithms at different desired spatial resolutions. As expected, the

proposed algorithm consistently outperforms the parallel algorithm, resulting in reduction in the standard deviation by

as much as 40%.
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Fig. 9. High count case: ROI resolution/variance curves for the proposed algorithm.
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Fig. 10. High count case: ROI resolution/variance curves for the parallel algorithm.
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Fig. 11. High count case: ROI variances at desired spatial resolution 4.7 pixels.
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Fig. 12. High count case: ROI variances at desired spatial resolution 6.8 pixels.
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Fig. 13. High count case: A comparison of optimal collimation angles, at different resolutions for the proposed and parallel algorithms.

VI. D ISCUSSION ANDCONCLUSION

We have presented a new algorithm for statistical image reconstruction of attenuation maps that explicitlyaccounts

for overlapping beams in transmission scans; an example of such a system can be found in [23]. The algorithm is
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Fig. 14. High count case: A comparison of minimum achievable normalized standard deviation, at different resolutions for the proposed and parallel algorithms.

guaranteed to monotonically increase the objective function at each iteration, and consistently achieves better vari-

ance/resolution tradeoffs than “conventional” image reconstruction algorithms, both statistical (the parallel algorithm)

and non-statistical (FBP).

From our preliminary study on the optimal collimation angle, we find that it is desirable to open up the source

collimators and allow beam overlap — provided the overlap is modeled appropriately in the reconstruction algorithm.

(This conclusion applies to our ideal simulation settings where system geometry is known perfectly. Robustness of

the proposed algorithm to model mismatch needs investigation.) However, detector collimation currently limits usable

source collimation angles to� 2:6�, so alternatives to widening source collimation are needed to improve the counting

statistics on this system.

The proposed algorithm is more time-consuming and uses more memory than conventional statistical algorithms. For

our simulations, we used 14 system matrices (one for each source) with appropriate collimation angles. The system

matrices with collimation angle2:6� occupy 20 MBytes of disk space, and the system matrices with collimation angle

7� occupy 50 MBytes of disk space, compared to 8 MBytes occupied a single system matrix used by the parallel

algorithm. It also takes longer to project or backproject an image in the proposed algorithm than the parallel algorithm;

in fact, for collimation angle2:6�, each iteration of the proposed algorithm takes about 1.9 seconds, compared to

about 0.8 seconds needed for the parallel algorithm, on a Sun Ultra2 workstation. Furthermore, because of the overlap

between transmission beams, the convergence rate of the proposed algorithm is also slower than the parallel algorithm;

as the overlap between transmission beams increases,i.e., the collimation angle gets larger, the curvaturescim as given

in (16) get larger, hence the convergence rate becomes even slower. In fact, if one goes from a collimation angle of

1:6� to 5:6�, the average curvature of the surrogate parabolas increases by a factor of 3. With regard to the number

of iterations necessary for convergence,i.e., the smallestn such that�(�n) � �(�0) > 0:999
�
�(��)� �(�0)

�
,

where�(��) is the largest objective value obtained in 40 iterations, the parallel algorithm required 22 iterations and

the proposed algorithm required 30 iterations for collimation angle2:6� and a desired spatial resolution of4:7 pixels.

Hence the total amount time required by the proposed algorithm would be 3.3 times that of the parallel algorithm for

collimation angle2:6� and a desired spatial resolution of4:7 pixels.
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