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Abstract— We derive the exact statistical distribution of maximuma be useful for Bayesian techniques such as Gibbs sampling

posteriori (MAP) estimators having edge-preserving non-Gaussian priors. ;
Such estimators have been widely advocated for image restoration and and Markov chain Monte Carlce:.g.[6, 7]'

reconstruction problems. Previous investigations of these image recovery  This paper complements the work of Abbetyal.[8, 9],
methods have been primarily empirical; the distribution we derive enables who developed alapproximatepdf for maximum likeli-
theoretical analysis. The signal model is linear with Gaussian measure- . . .

ment noise. We assume that the energy function of the prior distribution hood and MAP estimates under a gena@hlinearsignal

is chosen to ensure a unimodal posterior distribution (for which convexity ; HE ; _
of the energy function is sufficient), and that the energy function satisfies a model. (See_ also [10]') By conS|der|hgear Slgn_al mo.d
uniform Lipschitz regularity condition. The regularity conditions are suffi- €IS, we obtain thexactpdf, even for non-Gaussian priors.
ciently general to encompass popular priors such as the generalized Gaus-

sian Markov random field prior and the Huber prior, even though those Il. PROBLEM

priors are not everywhere twice continuously differentiable. '

Let X € R™ denote the unknown image vector, and let
I. INTRODUCTION Y € R™ denote the observed measurement veatay. (

Many papers have described edge-preserving methS‘d%OiSy blurry image _in image restoration,.or a sinogra_m
for image reconstruction and image restoration based BrMage reconstruction). We assume a linear Gaussian
the Bayesian formalism with non-Gaussian priors. rAleasurement modele. the conditional distribution oY

cent examples in this journal include [1—4]. Maximam 9VeNX = z is normal:

posteriori (MAP) estimators for non-Gaussian priors are 1 1

nonlinear and defined implicitly (lacking an explicit ex-f(y|z) = —=—= exp (——(y — Az)TI (y — Al‘)) ;
pression). Therefore, in virtually all such papers, the eval- 27|11l 2 (1)

uation of theperformanceof such methods has been INT hereA is a knownm x n system matrix andT| denotes

vestigated only empirically. This paper contributes a St?lﬁ)e determinant of a known measurement noise covariance

towards _ananalytlcal unQerstanQ|ng of e_dqge-pre_serwngnatrix IT, assumed to be symmetric positive definite. As-
MAP estimators by deriving their probability distribution

. sume that the prior distribution foX has the usual Gibbs
functions (pdfs). form:

We attempted to analyze the mean and covariance otm '
such implicitly defined estimators in [5] using linear ap-
proximations to the gradient of the objective functiorwherec is a constant independent ofand R(z) is an
However, hon-Gaussian priors have nonquadratic eneggergy function that discourages image roughness. For
functions that induce significant nonlinearities, renderiregige-preserving image recovery, typicaltyz) is a non-
inaccurate the approximations in [5]. The mean and cguadratic function [1-4], usually composed of functions
variance analysis in [5] accommodates general meastitet increase less rapidly than quadratic functions (see (23)
ment models. In this paper we focus on linear Gaussibelow). If R(x) were quadratic, then both the prior (2) for
measurements. Remarkably, this simple restriction allo&sand the measurement model (1) would be Gaussian, so
us to derive thexact(conditional) pdf for MAP estimators the posterior distributiorf(z|y) would also be Gaussian.
having a broad class of non-Gaussian priors. This explitie focus on the non-Gaussian case here, for which no ex-
form for the pdf may be useful in analyzing the statisticalicit form for f(z|y) has been previously found to our
properties of MAP estimation methods. The pdf may alémowledge.

This work was supported in part by NIH grants CA-60711 and CA-54362 and Suppose we obs.er\lé ~ Y Und_er the abovg e_lssump-
by the Whitaker Foundation. tions, the MAP estimatoX for X, i.e. the maximizer of

f(z) = ce H) 2)
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the posterior distributiorf (z|y), is equivalent, by Bayes edge-preserving image recovery that do not satisfy those
rule, to the maximizer of (y|x) f(x), or equivalently to regularity conditions [1-4], so such a simpler proof would
the minimizer of®(x) = —log f(y|x) — log f(x). Thus be of less interest. For example, one popular prior uses
the MAP estimator for (1)-(2) minimizes the followingan energy function formed from Hubpotential functions

regularized weighted least squares objective function: (seee.g.[1] and (23) below) defined by

A

arg min (), UHuber(t) = { 5“/‘ —6%/2 M >0

1 _
®(z) =Sy~ Az)TI ™ (y — Az) + R(z), (3) for some user-selected paramedethat controls the de-
: : . o gree of edge preservation. This function is convex but
ignoring constants independent of where ** denotes not strictly convex (see Fig. 1). The derivatiwét) of

megnx orVﬁct:)r trhansp?s_e. watisticallv the imolicitly d the potential function is called thefluence functionand
p (;Jrg(:_a 'St %g Erig E;'ZZ sf_a |sd|<.:a é €imp Itﬂ y ﬁf)lays a key role in its edge-preserving properties and in
ined estimalott = ( )_ efined in (3), even thoug our pdf formula. As illustrated in Fig. L)muber(t) is Not
there is no explicit expression fof(-). There are two rea-

. . . . differentiable at the two points = +4, i.e. Yuuber(t) IS
sona_b_le ch0|f:es_ at Fh's pf)mt' We could try t(.).fmd th_e UHot globally twice differentiable. Similarly, the General-
conditional distributionf (), or find the conditional dis-

I , ) ized Gaussian prior [1] has a potential function defined b
tribution f(z|z) for some true image&X = z of interest. prior [1] P y

. L w(t) = |t|P/2 for p € (1,2]. As illustrated in Fig. 1, this
One can find the forr_n_er (in principle) from the latter b¥unction is not twice differentiable a&t= 0 for p < 2.
applying total probability:

Remarkably, despite these “irregularities” in the Hu-
ber potential function and Generalized Gaussian potential

f@) = /f(i"j')f(j') dz. function, the pdf result (12) is indeed applicable to MAP
estimators having priors based on these types of potential

A devout Bayesian might focus on the unconditional diganctions. However, rigorously proving that generality re-

tribution f (), but such a Bayesian would need to havg,ires a more technical treatment than would be needed

faith that the prior distributiorf(x) properly reflects the it oy globally twice continuously differentiable energy

fairly simple energy function®(x) that are typically used
in practice generally only captutecal properties of nat- A. The basic idea
ural image$. Such priors are useful for MAP estimation,

: : o Before delving into technicalities, we first present the
but may be ill-suited for global ensemble statisticBhus,

o = : > general idea behind the derivation. Under regularity as-
we focus on the conditional pdf(z|). By studying this g, mptions A2 and A3 below, the (unconstrained) MAP es-

distribution for various true image¥ = z ofinterest, 0ne {jmate is 4 stationary point of the gradient of the objective
could examine analytically how MAP estimates vary relgy,ction®. where the column gradient éf s given by
tive toZ as a function of hyperparameters, system models,

noise levels, etc. V'®d(z) = —ATI(y — Az) + V'R(x).

[1l. SOLUTION ThusX is related implicitly to the measuremeYitvia

Our main result is the expression for the ptifz|z)
given in (12) below. Our derivation is complicated by our
goal of imposing minimal restrictions on the nature of thRearranging (4) leads to the followitiginsformation
energy functiorR(z), so that the result is as widely appli-
cable as possibleto the cornucopia of priors that have been Z = h(f() (5)
proposed. If we were to assume thi(z) is strictly con-
vex and twice continuously differentiable, then the prodfhéreZ € R" h: R" — R", and
of the main result (12) would be fairly straightforward. ATy (6)

A
However, there are many energy functions of interest for R P ,
h(z) = ATl Az+ V'R(z). (7)

0=—ATI' (Y — AX) + V'R(X). (4)

1See [11] for an interesting exception.

2If the priors used in imaging were truly global priors, then conditional mean c]t follows from (6) and (1) that. conditioned o = #
estimation should be more appropriate than MAP estimation under a square ! . R T
error loss function. the random vectof also has a Gaussian distribution, with
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the following mean and covariance: A4. R(z) is twice continuously differentiable on an
open se¥ C R".
pa; 2 AT py; (8)  AS5. The Lebesgue measure of)°) is zero, wheréh
I L2 ATIA, (9) is defined in (7).

Assumptions A2-A5 are trivially satisfied by all globally
where pi,; = Az is the conditional mean of given yice continuously differentiable convex energy functions
X =1z R(z), such as the large family described in [14]. The ad-

Equation (5) describes a functional relationship bgitional generality afforded by these assumptions will be
tween the MAP estimat& and the random vectdf hav- sed in the Corollaries following the next Theorem to ad-
ing a known Gaussian pdf(z|z). The problem of finding dress energy functions that are not globally twice continu-
f(#|2) thus becomes a “transformation of random vargysly differentiable, such as those illustrated in Fig. 1.
ables” problem. The remainder of this section deals pri- Theorem2: Under assumptions A1-A5 above, the con-
marily with the technical aspects of showing that the trangitional pdf of the (unconstrained) MAP estimator defined

formation (5) leads to the pdf(z|z) in (12). by (3) is
B. General transformations quj(i_)‘ _g(2:7) Flq(4; %)

To prove (12) under the general conditions of inter- f@lz) = Nzl © ( 2 ) ’
est, we need the following theorem, which generalize 12)

the usual such formulas found in engineering probabilify,. .. c V and is 0 elsewhere. where
texts.
Theorem1: (See [12,13] for proofs.) V20(z) = ATI'A 4+ V2R(x) (13)
Letg : R® — R™ be one-to-one and assume that g~!
is continuous. Assume that, on an openlet R", h isthe Hessiahof the objective function (defined aw),

is continuously differentiable with JacobffVha(z)| =

o F2ATT'A (14)
det{%jhi(x)}‘ .
Suppose random vectdr has pdff(z) and is the Fisher information matrix for estimatinginder the
model (1), and
Plz € n(V)] = Ve f(z)dz=0, (10) q(3;%) = AN A(z — %) + V'R(2) (15)

where V¢ denotes the set complement &) of V, and whereV'R(z) is the column gradient ak(z).
h(A) = {y € R": y = h(z), z € A}. Then the pdf of Proof:

X = g(Z)is given by By A2 and A3, the MAP estimate (3) satisfies the trans-
formation relationship given in (5). To apply (11) to (5)
|Vh(z)| f(h(z)), =€V, (11) we must verify the conditions of Theorem 1.

Ignoring constants, we can write the objective function

and is zero otherwise. (3) in terms of the random vectdt defined in (6):

C. General Case for MAP pdf

Now we apply Theorem 1 to find(z|z). So that the

problem is well defined and the analysis is tractable, VS A2, for eachZ there is a singleX that minimizes®.
make the following assumptions. Thus there is an (implicit) functiog : R® — R™ for

Al. A has full column rank. which ) _
A2. The energy functio(z) is chosen such that, for X =g(2) =g(AIIY). (17)

anyy < R™, the negative log postericl has & \ye show thay is one-to-one by contradiction. Suppose
unique _statlon_ary pomtthatglopally minimizés there existsZ; # Z» such thatg(Z,) = g(Zs) = X
A3. R(zx) is continuously differentiabfeon R™. Then by (5)Z1 = h(X) = Zs, contradictingZ; # Z».

3We use F| to denote the absolute value of the determinant of a mérix Furthermore, Sinc@(h(X)) = X and h(g(Z)) =2Z,h

4This condition precludes the absolute value potential function (Laplacian

prior). 5[V2®(2)]i; 2 %@(@ forz € V.

()= -2’ AMM Az — 2'Z + R(z).  (16)

N |
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is one-to-one with inversg = h~*. Although there is no continuous, but not differentiable. Howeve'!ﬁ,luber does
explicit expression foy = A~ in general, we can never-satisfy aLipschitz conditiona property that is stronger
theless findf (z|z) using Theorem 1. than continuity, but weaker than differentiability. Fortu-
By A3, h is continuous ovelR™. By A4, h is con- nately, this weaker condition is adequate to establish con-
tinuously differentiable over the open st Since the ditions A4-A5.
Lebesgue measure &{V°) is zero by A5, and sinc& Definition 1: Afunction f : R™ — R"is said to satisfy
has a Gaussian distributioR]Z € h(V°)] is zero. Thus a uniform Lipschitz condition (of order one) on a compact
all the conditions of Theorem 1 are satisfied, and we caatC C R" if there exists a real numbéd: < oo such
apply (11) to (5) to conclude: that

- ) ) 1F(w) = f)ll < Me Jlu — o], Yu,v €. (21)
f(@z) = |Vh(&)| f(2]2) (18) _ . .
z = h(Z) DefineB(x, ) to be the open ball ilR" of radiusr cen-

. _ _ _ tered atx € R™. It follows from the Lipschitz condition
for z € V and is zero elsewhere. Everything on the rlgf&l) onf that

hand side of (18) has an explicit expressioa, the de-
pendence of (17) op = h~! has disappeared in (18). In  f(B(z,r)NC) C B(f(x), Mcr), Vx € C.  (22)

particular, since from (7): The following Lemma will help establish A4. (See [15,

Vh(z) = AT A + V2R(z) = V2®(z) (19) p. 27, Prop. 2.2] for a closely related argument for Haus-
dorff measures.)
for z € V, we arrive at the pdf expression: Lemmal: Let A C C C R" satisfy|A| = 0, where
|| denotes Lebesgue measure, &nd a compact set. If
f : R™ — R" satisfies a uniform Lipschitz condition @i
z = h(%) then|f(.A)| = 0. Thus, functions satisfying uniform Lip-
schitz conditions map zero measure sets into zero measure
IV2®(z)| <—q(i-; 2)'TL L q(#; i‘)) sets.
exp (20) Proof:
27 |T1, ;| 2 root. _
Since.A has measure zero by assumption, for ary 0
for & € V, wherell,; is defined in (9) (cf (14)V2®(z) there exists a countable covering of open balls with cen-

f(@]7) = V22 (2)] f(2]2)

z|z

is defined in (13), and ters{z;} and radii{r;} such thatd C U;B(z;,r;) and
> |B(xi,r;)| < e/MF. Thus by (22) and by the subad-
q(%7) = @) - pyz- ditivity of Lebesgue measure
Thus (12) is the conditional pdf of the MAP estimata. lf(A)]=f(ANC)| < Z |f(B(zi,7m;) NC)|
As a sanity check, one can consider the case of a Gaus- i

R(z) = i2'Ra. In this caseX is linear inY, so it has

a Gaqs&_an qllstrlbutlon_ with easily computed mqmengmce6 was arbitrary, this shows thaf(A4)| = 0. -
Substituting into (12) yields the expected Gaussian dls-.l_he Lipschitz condition (21) applies to many energy

tribution for X functions of interestj.e. V'R(z) is often uniform Lips-
D. Practical Special Cases chitz overR”. The following Corollary, proven in Ap-
pendix A, specializes Theorem 2 to a fairly general form

In _p_rlnC|pIe we could leave it to_the reader to V_ermfor the energy function that covers many cases of interest.
conditions A2-A5 for her own favorite energy functions. Corollary1: Suppose Al holds and that the energy

However, establishin_g condi_tion A5 is nontrivial in 9eNg nction has the following form:
eral for energy functions of interest such as those based
on the Huber prior or Generalized Gaussian prior. In this K
section we provide Corollaries that show that the condi- R(z) = ZW([C‘T]’C) (23)
tions of Theorem 2 hold under most cases of interest. k=1
We first lay some groundwork that helps cover the cagéere n
of influence functions such as that of the Huber potential [Ca]), £ Z ChyT i,
function shown in Fig. 1. The Huber influence function is

sian prior, for which the energy function is quadratic: Z\B(f(w‘) Mery)| = M”Z\B(f(m) )| < e
= 1) 7 - C 1)y .

Jj=1
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and where the potential functiofigy, } satisfy the follow- tions.

ing conditions. The proofs of Corollary 1 and 2 do not use the fact that
e Eachv, is convex and differentiable dR (and hence is one-to-one, and only weakly use the fact thats a col-
continuously differentiable). lection of hyperplanes. We conjecture that if these proper-

e Each vy, is twice continuously differentiable every-ties were used fully, then one could eliminate the Lipschitz
where onR exceptpossibly for a finite numbenr; of conditions on thel,’s and simply assume that eagh is

points, saytx 1, . . ., tk.n, ,» Where the second derivativeconvex and continuously differentiable and twice differen-
of ¢ (t) is undefined. tiable almost everywhere.
e Each influence function);, satisfies a uniform Lips-
chitz condition on any bounded interjalc, ] for any IV. NON-GAUSSIAN MEASUREMENTS
¢>0. The above development relies fairly heavily on the as-
Then all the conditions of Theorem 2 hold, and (12) is thgimption that” has a Gaussian distribution, since in the
conditional distribution of the MAP estimator. Gaussian case we can eas”y find the deoff: A'TI Y

The preceding Corollary covers cases such as the Hufmgruse in (18).
potential function, since the Huber influence function is When Y is non-Gaussian, (3) defines a penalized
differentiable everywhere exceptfat= +4, and satisfies weighted least-squares (PWLS) estimator, rather than a
a uniform Lipschitz condition oveR. MAP estimator. We can determine the pfifz|z) of

However, the proof of Corollary 1 is inapplicable tdhis PWLS estimator even for non-Gaussian measurement
the Generalized Gaussian prior. As illustrated in Fig. fpise if A is invertible (and hence square). Whdnis
the Generalized Gaussian influence function is not umivertible, we can rewrite (4) as
form Lipshitz over any interval of the forfc, ¢| since X
its derivative is unbounded near= 0 for p < 2. How- Y = ha(X),
ever, the Generalized Gaussian influence fundsami-
form Lipshitz over intervals of the forf-c, —¢] and[e, (] Where
for ¢ > £ > 0. This turns out to be adequate regularity to ho(z) £ Az + IIA™TV'R(x),
establish the conditions of Theorem 2, as shown by tg
following Corollary, proven in Appendix B.

Corollary2: Suppose Al holds and that the energy . .
function has the form (23), where the potential functions f(&|z) = [Vha(2)| f(ylz)
{11} satisfy the following conditions.

e Eachyy, is convex and continuously differentiable omgain all terms on the right hand side have explicit ex-

§ similar arguments as above lead to

(24)
y = h2(2)

R. pressions.
e Eachyy(t) is twice continuously differentiable every-
where orR exceptpossibly at = 0. V. SIMPLE 2D EXAMPLE

e Each influence function);, satisfies a uniform Lips-
chitz condition on any bounded interval of the fornb, T — 021, wherel, is the2 x 2 identity matrix,
[e, c] and[—c, —¢] for anyc > e > 0. for anye > 0. o -~ /

- . & =p,; =[0py], and where
Then all the conditions of Theorem 2 hold, and (12) is the
conditional distribution of the MAP estimator. R(z) = By (z1 — x2)

We note without proof that one can combine the general

approach to the proofs of Corollary 1 and 2 to formulafer some symmetric, convex potential functign One
sufficient conditions for the);’s that encompass an evercan consider this case as representing an image consisting
wider class of priors. For an energy function that has tloé two neighboring pixels. If3 = 0, then the pixels are
form (23), it is sufficient that the potential functiong estimated independently By = y;, 7 = 1,2. Including

be convex and continuously differentiable olytwice a prior with energy functiorR(z) yields MAP estimates
continuously differentiable everywhere except at a finifer the two pixel values that are encouraged to be similar.
number of “problem” points, and that the influence fund®y choosingu # 0 we can study the case where the two
tions ¢, be Lipschitz on closed intervals that do not corpixels straddle an “edge,” since their mean values differ,
tain those points. We are unaware of any differentialtleereby investigating the edge-preserving properties of the
convex potential functions that fail to satisfy these condprior.

The simplest nontrivial example of (12) is wheh =
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To compute the pdf of the MAP estimator, note that VI. CONCLUSION
V'R(z) = § [ 1 ] le — 2) Our main result is (12), an explicit exact expression for
-1 the conditional pdf of MAP estimators for edge-preserving

9 B I =15 priors. The expression is surprisingly simple given that
ViR(z) = 5[ -1 1 ]w(xl z2)- edge-preserving MAP estimators are defined implicitly

Thus from (13) the Hessian & is and can be highly nonlinear. Limitations of the result in-
clude the restriction to Gaussian measurements, and the

V2®(z) = o 2I,+ 03 [ 1 _1 ] U(z1 — 2) regularity assumptions for the energy function. Never-

B theless, the explicit expression may prove useful in bet-

2 [Ig ta [ 1 -1 ] 15(11 B xQ)] ter understanding the properties of edge-preserving image
-1 1 recovery methods.

wherea = 802, and the determinant of that Hessian is
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into (12) and simplifying:

o 14 200p(2y — o APPENDIX A. PROOF OFCOR. 1
F(@l7) = ( ) 0OF OFCO

2mo?
- exp <_L2 z+a [ 1 ] Y(&) — &) — [ 0 ] are convex, s@ is strictly convex. A3 holds by the as-
20 -1 K sumption that the potential functions are continuously dif-
As a numerical example, we computgct|z) for the ferentiable. For A4, considér C R defined by
casec = 0.6, up = 1, « = 0.1. We used a general-

2) A2 holds by the assumption that the potential functions

ized Gaussian energy function [L](t) = £|¢|', so the K ng
above pdf is zero oW = {& : &, = #,}.  Fig. 2 VeE [ {z eR™ : [Cali = tis}.
shows contours of the pdf(z|z). There is one mode of k=1i=1

the pdf near the true valug = [0 1), indicated by the

asterisk. Estimates that lie near this mode correspondTiee setVe is a finite union of hyperplanes and thus is a

“preserved edges,” since the pixel estimates are close€tesed set. Therefor® is an open set on whick(z) is

the truth than to each other. However, there is anotH@fice continuously differentiable, so A4 holds.

mode nearz = [0.5 0.5)', because for measurement re- To complete the proof, we must establish A5 by show-

alizations for whichy; ~ y., the energy function of the ing that|~(V°)| = 0, whereh was defined in (7). Because

prior encourages; andz, to be approximately equal. InV¢ is a finite union of hyperplane$,“| = 0, so we can

fact, there is a ridge of higher relative probability near trepply Lemma 1. Defined; = VN [, 1]" for l € N.

line ; = # indicated by the dotted line in Fig. 2. ThisSinceh (V) = U2, h(A;), by subadditivity of Lebesgue

ridge is induced by the non-Gaussian prior; for a Gaussiareasurg h(V°)| < > 72, |h(A;)], so it suffices to show

prior the contours would be elliptical and centered at theat|h(.A;)| = 0.

conditional mean. For the energy functio®(z) given in (23) above, the
From the contours of the exact pdf shown in Fig. 2, ftinction’ has the form

would appear that simple characterizations. Gaussian

approximations) of the joint pdf are nontrivial. Whether K

the covariance matrix off can be approximated ana- h(z) = Fz + V'R(z) = Fz + chk([Cx]k),

Iytically via extensions of [5] remains an open question. k=1

Fig. 3 shows the marginal distributions ¢fz;|z) com-

puted by numerical integration of the joint pdf. Despiterherec; denotes the transpose of thth row of C, i.e.

the complicated structure of the joint pdf, the marginaC'z], = ¢, x. Since each)y, is uniform Lipschitz over

pdfs are remarkably similar to Gaussian pdfs. Thus it mapunded intervals, the functioh is uniform Lipschitz

be possible to find simple approximations for the marginaver [—1,1]”, since forz € [-1,1]", |[Cz]x] < ¢ =

means and variances. maxy, ) ; |cx;| I Thus by Lemma 1}i(A;)[ = 0. |
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APPENDIX B. PROOF OFCOR. 2
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t t pdfs are surprisingly Gaussian, despite the highly non-Gaussian joint pdf.

Fig. 1. Huber and Generalized Gaussian potential functjgm$, and deriva-
tives(t).



