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Abstract— We derive the exact statistical distribution of maximum a
posteriori (MAP) estimators having edge-preserving non-Gaussian priors.
Such estimators have been widely advocated for image restoration and
reconstruction problems. Previous investigations of these image recovery
methods have been primarily empirical; the distribution we derive enables
theoretical analysis. The signal model is linear with Gaussian measure-
ment noise. We assume that the energy function of the prior distribution
is chosen to ensure a unimodal posterior distribution (for which convexity
of the energy function is sufficient), and that the energy function satisfies a
uniform Lipschitz regularity condition. The regularity conditions are suffi-
ciently general to encompass popular priors such as the generalized Gaus-
sian Markov random field prior and the Huber prior, even though those
priors are not everywhere twice continuously differentiable.

I. INTRODUCTION

Many papers have described edge-preserving methods
for image reconstruction and image restoration based on
the Bayesian formalism with non-Gaussian priors. Re-
cent examples in this journal include [1–4]. Maximuma
posteriori (MAP) estimators for non-Gaussian priors are
nonlinear and defined implicitly (lacking an explicit ex-
pression). Therefore, in virtually all such papers, the eval-
uation of theperformanceof such methods has been in-
vestigated only empirically. This paper contributes a step
towards ananalytical understanding of edge-preserving
MAP estimators by deriving their probability distribution
functions (pdfs).

We attempted to analyze the mean and covariance of
such implicitly defined estimators in [5] using linear ap-
proximations to the gradient of the objective function.
However, non-Gaussian priors have nonquadratic energy
functions that induce significant nonlinearities, rendering
inaccurate the approximations in [5]. The mean and co-
variance analysis in [5] accommodates general measure-
ment models. In this paper we focus on linear Gaussian
measurements. Remarkably, this simple restriction allows
us to derive theexact(conditional) pdf for MAP estimators
having a broad class of non-Gaussian priors. This explicit
form for the pdf may be useful in analyzing the statistical
properties of MAP estimation methods. The pdf may also
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be useful for Bayesian techniques such as Gibbs sampling
and Markov chain Monte Carlo,e.g.[6,7].

This paper complements the work of Abbeyet al.[8,9],
who developed anapproximatepdf for maximum likeli-
hood and MAP estimates under a generalnonlinearsignal
model. (See also [10].) By consideringlinear signal mod-
els, we obtain theexactpdf, even for non-Gaussian priors.

II. PROBLEM

LetX ∈ Rn denote the unknown image vector, and let
Y ∈ Rm denote the observed measurement vector (e.g.
a noisy blurry image in image restoration, or a sinogram
in image reconstruction). We assume a linear Gaussian
measurement model,i.e. the conditional distribution ofY
givenX = x is normal:

f(y|x) =
1√
2π|Π|

exp

(
−
1

2
(y −Ax)′Π−1(y −Ax)

)
,

(1)
whereA is a knownm×n system matrix and|Π| denotes
the determinant of a known measurement noise covariance
matrixΠ, assumed to be symmetric positive definite. As-
sume that the prior distribution forX has the usual Gibbs
form:

f(x) = ce−R(x) (2)

wherec is a constant independent ofx andR(x) is an
energy function that discourages image roughness. For
edge-preserving image recovery, typicallyR(x) is a non-
quadratic function [1–4], usually composed of functions
that increase less rapidly than quadratic functions (see (23)
below). IfR(x) were quadratic, then both the prior (2) for
X and the measurement model (1) would be Gaussian, so
the posterior distributionf(x|y) would also be Gaussian.
We focus on the non-Gaussian case here, for which no ex-
plicit form for f(x|y) has been previously found to our
knowledge.

Suppose we observeY = y. Under the above assump-
tions, the MAP estimator̂X for X , i.e. the maximizer of
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the posterior distributionf(x|y), is equivalent, by Bayes
rule, to the maximizer off(y|x)f(x), or equivalently to
the minimizer ofΦ(x) , − log f(y|x)− log f(x). Thus
the MAP estimator for (1)-(2) minimizes the following
regularized weighted least squares objective function:

X̂ = argmin
x
Φ(x),

Φ(x) =
1

2
(y −Ax)′Π−1(y −Ax) + R(x), (3)

ignoring constants independent ofx, where “′” denotes
matrix or vector transpose.

Our goal is to characterize statistically the implicitly de-
fined estimatorX̂ = X̂(Y ) defined in (3), even though
there is no explicit expression for̂X(·). There are two rea-
sonable choices at this point. We could try to find the un-
conditional distributionf(x̂), or find the conditional dis-
tribution f(x̂|x̃) for some true imageX = x̃ of interest.
One can find the former (in principle) from the latter by
applying total probability:

f(x̂) =

∫
f(x̂|x̃)f(x̃) dx̃.

A devout Bayesian might focus on the unconditional dis-
tribution f(x̂), but such a Bayesian would need to have
faith that the prior distributionf(x) properly reflects the
global prior characteristics of the unknown image. The
fairly simple energy functionsR(x) that are typically used
in practice generally only capturelocal properties of nat-
ural images1. Such priors are useful for MAP estimation,
but may be ill-suited for global ensemble statistics2. Thus,
we focus on the conditional pdff(x̂|x̃). By studying this
distribution for various true imagesX = x̃ of interest, one
could examine analytically how MAP estimates vary rela-
tive to x̃ as a function of hyperparameters, system models,
noise levels, etc.

III. SOLUTION

Our main result is the expression for the pdff(x̂|x̃)
given in (12) below. Our derivation is complicated by our
goal of imposing minimal restrictions on the nature of the
energy functionR(x), so that the result is as widely appli-
cable as possible to the cornucopia of priors that have been
proposed. If we were to assume thatR(x) is strictly con-
vex and twice continuously differentiable, then the proof
of the main result (12) would be fairly straightforward.
However, there are many energy functions of interest for

1See [11] for an interesting exception.
2If the priors used in imaging were truly global priors, then conditional mean

estimation should be more appropriate than MAP estimation under a squared
error loss function.

edge-preserving image recovery that do not satisfy those
regularity conditions [1–4], so such a simpler proof would
be of less interest. For example, one popular prior uses
an energy function formed from Huberpotential functions
(seee.g.[1] and (23) below) defined by

ψHuber(t) ,

{
t2/2, |t| ≤ δ
δ|t| − δ2/2, |t| > δ

for some user-selected parameterδ that controls the de-
gree of edge preservation. This function is convex but
not strictly convex (see Fig. 1). The derivativėψ(t) of
the potential function is called theinfluence function, and
plays a key role in its edge-preserving properties and in
our pdf formula. As illustrated in Fig. 1,̇ψHuber(t) is not
differentiable at the two pointst = ±δ, i.e. ψHuber(t) is
not globally twice differentiable. Similarly, the General-
ized Gaussian prior [1] has a potential function defined by
ψ(t) = |t|p/2 for p ∈ (1, 2]. As illustrated in Fig. 1, this
function is not twice differentiable att = 0 for p < 2.

Remarkably, despite these “irregularities” in the Hu-
ber potential function and Generalized Gaussian potential
function, the pdf result (12) is indeed applicable to MAP
estimators having priors based on these types of potential
functions. However, rigorously proving that generality re-
quires a more technical treatment than would be needed
if only globally twice continuously differentiable energy
functions were of interest.

A. The basic idea

Before delving into technicalities, we first present the
general idea behind the derivation. Under regularity as-
sumptions A2 and A3 below, the (unconstrained) MAP es-
timate is a stationary point of the gradient of the objective
functionΦ, where the column gradient ofΦ is given by

∇′Φ(x) = −A′Π−1(y −Ax) +∇′R(x).

ThusX̂ is related implicitly to the measurementY via

0 = −A′Π−1(Y −AX̂) +∇′R(X̂). (4)

Rearranging (4) leads to the followingtransformation:

Z = h(X̂) (5)

whereZ ∈ Rn, h : Rn→ Rn, and

Z , A′Π−1Y (6)

h(x) , A′Π−1Ax+∇′R(x). (7)

It follows from (6) and (1) that, conditioned onX = x̃,
the random vectorZ also has a Gaussian distribution, with
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the following mean and covariance:

µz|x̃ , A′Π−1µy|x̃ (8)

Πz|x̃ , A′Π−1A, (9)

whereµy|x̃ , Ax̃ is the conditional mean ofY given
X = x̃.

Equation (5) describes a functional relationship be-
tween the MAP estimatêX and the random vectorZ hav-
ing a known Gaussian pdff(z|x̃). The problem of finding
f(x̂|x̃) thus becomes a “transformation of random vari-
ables” problem. The remainder of this section deals pri-
marily with the technical aspects of showing that the trans-
formation (5) leads to the pdff(x̂|x̃) in (12).

B. General transformations

To prove (12) under the general conditions of inter-
est, we need the following theorem, which generalizes
the usual such formulas found in engineering probability
texts.

Theorem1: (See [12,13] for proofs.)
Let g : Rn→ R

n be one-to-one and assume thath = g−1

is continuous. Assume that, on an open setV ⊆ Rn, h
is continuously differentiable with Jacobian3 |∇h(x)| ,∣∣∣det{ ∂

∂xj
hi(x)}

∣∣∣ .
Suppose random vectorZ has pdff(z) and

P [Z ∈ h(Vc)] =

∫
Vc
f(z) dz = 0, (10)

whereVc denotes the set complement (inRn) of V , and
h(A) = {y ∈ Rn : y = h(x), x ∈ A}. Then the pdf of
X = g(Z) is given by

|∇h(x)|f(h(x)), x ∈ V , (11)

and is zero otherwise.

C. General Case for MAP pdf

Now we apply Theorem 1 to findf(x̂|x̃). So that the
problem is well defined and the analysis is tractable, we
make the following assumptions.

A1. A has full column rank.
A2. The energy functionR(x) is chosen such that, for

any y ∈ Rm, the negative log posteriorΦ has a
unique stationary point that globally minimizesΦ.

A3. R(x) is continuously differentiable4 onRn.

3We use|F | to denote the absolute value of the determinant of a matrixF .
4This condition precludes the absolute value potential function (Laplacian

prior).

A4. R(x) is twice continuously differentiable on an
open setV ⊆ Rn.

A5. The Lebesgue measure ofh(Vc) is zero, whereh
is defined in (7).

Assumptions A2-A5 are trivially satisfied by all globally
twice continuously differentiable convex energy functions
R(x), such as the large family described in [14]. The ad-
ditional generality afforded by these assumptions will be
used in the Corollaries following the next Theorem to ad-
dress energy functions that are not globally twice continu-
ously differentiable, such as those illustrated in Fig. 1.

Theorem2: Under assumptions A1-A5 above, the con-
ditional pdf of the (unconstrained) MAP estimator defined
by (3) is

f(x̂|x̃) =

∣∣∇2Φ(x̂)∣∣√
2π |F |

exp

(
−q(x̂; x̃)′F−1q(x̂; x̃)

2

)
,

(12)
for x̂ ∈ V and is 0 elsewhere, where

∇2Φ(x) = A′Π−1A+∇2R(x) (13)

is the Hessian5 of the objective function (defined onV),

F , A′Π−1A (14)

is the Fisher information matrix for estimatingx under the
model (1), and

q(x̂; x̃) , A′Π−1A(x̂− x̃) +∇′R(x̂) (15)

where∇′R(x) is the column gradient ofR(x).
Proof:
By A2 and A3, the MAP estimate (3) satisfies the trans-
formation relationship given in (5). To apply (11) to (5)
we must verify the conditions of Theorem 1.

Ignoring constants, we can write the objective function
(3) in terms of the random vectorZ defined in (6):

Φ(x) ≡
1

2
x′A′Π−1Ax− x′Z + R(x). (16)

By A2, for eachZ there is a singlêX that minimizesΦ.
Thus there is an (implicit) functiong : Rn → R

n for
which

X̂ = g(Z) = g(A′Π−1Y ). (17)

We show thatg is one-to-one by contradiction. Suppose
there existsZ1 6= Z2 such thatg(Z1) = g(Z2) = X̂.
Then by (5)Z1 = h(X̂) = Z2, contradictingZ1 6= Z2.
Furthermore, sinceg(h(X̂)) = X̂ andh(g(Z)) = Z, h

5[∇2Φ(x)]ij ,
∂2

∂xi∂xj
Φ(x) for x ∈ V .
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is one-to-one with inverseg = h−1. Although there is no
explicit expression forg = h−1 in general, we can never-
theless findf(x̂|x̃) using Theorem 1.

By A3, h is continuous overRn. By A4, h is con-
tinuously differentiable over the open setV . Since the
Lebesgue measure ofh(Vc) is zero by A5, and sinceZ
has a Gaussian distribution,P [Z ∈ h(Vc)] is zero. Thus
all the conditions of Theorem 1 are satisfied, and we can
apply (11) to (5) to conclude:

f(x̂|x̃) = |∇h(x̂)| f(z|x̃)

∣∣∣∣
z = h(x̂)

(18)

for x̂ ∈ V and is zero elsewhere. Everything on the right
hand side of (18) has an explicit expression,i.e. the de-
pendence of (17) ong = h−1 has disappeared in (18). In
particular, since from (7):

∇h(x) = A′Π−1A+∇2R(x) = ∇2Φ(x) (19)

for x ∈ V , we arrive at the pdf expression:

f(x̂|x̃) = |∇2Φ(x̂)| f(z|x̃)

∣∣∣∣
z = h(x̂)

=
|∇2Φ(x̂)|√
2π|Πz|x̃|

exp

(
−q(x̂; x̃)′Π−1z|x̃q(x̂; x̃)

2

)
(20)

for x̂ ∈ V , whereΠz|x̃ is defined in (9) (cf (14)),∇2Φ(x̂)
is defined in (13), and

q(x̂; x̃) , h(x̂)− µz|x̃.

Thus (12) is the conditional pdf of the MAP estimator.2
As a sanity check, one can consider the case of a Gaus-

sian prior, for which the energy function is quadratic:
R(x) = 1

2x
′Rx. In this caseX̂ is linear inY , so it has

a Gaussian distribution with easily computed moments.
Substituting into (12) yields the expected Gaussian dis-
tribution for X̂.

D. Practical Special Cases

In principle we could leave it to the reader to verify
conditions A2-A5 for her own favorite energy functions.
However, establishing condition A5 is nontrivial in gen-
eral for energy functions of interest such as those based
on the Huber prior or Generalized Gaussian prior. In this
section we provide Corollaries that show that the condi-
tions of Theorem 2 hold under most cases of interest.

We first lay some groundwork that helps cover the case
of influence functions such as that of the Huber potential
function shown in Fig. 1. The Huber influence function is

continuous, but not differentiable. However,ψ̇Huber does
satisfy aLipschitz condition, a property that is stronger
than continuity, but weaker than differentiability. Fortu-
nately, this weaker condition is adequate to establish con-
ditions A4-A5.

Definition 1: A functionf : Rn→ Rn is said to satisfy
a uniform Lipschitz condition (of order one) on a compact
setC ⊆ Rn if there exists a real numberMC < ∞ such
that

‖f(u)− f(v)‖ ≤MC ‖u− v‖ , ∀u, v ∈ C. (21)

DefineB(x, r) to be the open ball inRn of radiusr cen-
tered atx ∈ Rn. It follows from the Lipschitz condition
(21) onf that

f(B(x, r) ∩ C) ⊆ B(f(x),MCr), ∀x ∈ C. (22)

The following Lemma will help establish A4. (See [15,
p. 27, Prop. 2.2] for a closely related argument for Haus-
dorff measures.)

Lemma1: Let A ⊂ C ⊂ Rn satisfy |A| = 0, where
|·| denotes Lebesgue measure, andC is a compact set. If
f : Rn→ R

n satisfies a uniform Lipschitz condition onC,
then|f(A)| = 0. Thus, functions satisfying uniform Lip-
schitz conditions map zero measure sets into zero measure
sets.
Proof:
SinceA has measure zero by assumption, for anyε > 0
there exists a countable covering of open balls with cen-
ters{xi} and radii{ri} such thatA ⊆ ∪iB(xi, ri) and∑

i |B(xi, ri)| < ε/Mn
C . Thus by (22) and by the subad-

ditivity of Lebesgue measure

|f(A)| = |f(A∩ C)| ≤
∑
i

|f(B(xi, ri) ∩ C)|

≤
∑
i

|B(f(xi),MCri)| =M
n
C

∑
i

|B(f(xi), ri)| < ε.

Sinceε was arbitrary, this shows that|f(A)| = 0. 2

The Lipschitz condition (21) applies to many energy
functions of interest,i.e. ∇′R(x) is often uniform Lips-
chitz overRn. The following Corollary, proven in Ap-
pendix A, specializes Theorem 2 to a fairly general form
for the energy function that covers many cases of interest.

Corollary1: Suppose A1 holds and that the energy
function has the following form:

R(x) =

K∑
k=1

ψk([Cx]k) (23)

where

[Cx]k ,

n∑
j=1

ckjxj,
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and where the potential functions{ψk} satisfy the follow-
ing conditions.
• Eachψk is convex and differentiable onR (and hence

continuously differentiable).
• Eachψk is twice continuously differentiable every-

where onR exceptpossibly for a finite numbernk of
points, saytk,1, . . . , tk,nk , where the second derivative
of ψk(t) is undefined.
• Each influence functioṅψk satisfies a uniform Lips-

chitz condition on any bounded interval[−c, c] for any
c > 0.

Then all the conditions of Theorem 2 hold, and (12) is the
conditional distribution of the MAP estimator.

The preceding Corollary covers cases such as the Huber
potential function, since the Huber influence function is
differentiable everywhere except att = ±δ, and satisfies
a uniform Lipschitz condition overR.

However, the proof of Corollary 1 is inapplicable to
the Generalized Gaussian prior. As illustrated in Fig. 1,
the Generalized Gaussian influence function is not uni-
form Lipshitz over any interval of the form[−c, c] since
its derivative is unbounded neart = 0 for p < 2. How-
ever, the Generalized Gaussian influence functionis uni-
form Lipshitz over intervals of the form[−c,−ε] and[ε, c]
for c > ε > 0. This turns out to be adequate regularity to
establish the conditions of Theorem 2, as shown by the
following Corollary, proven in Appendix B.

Corollary2: Suppose A1 holds and that the energy
function has the form (23), where the potential functions
{ψk} satisfy the following conditions.
• Eachψk is convex and continuously differentiable on
R.
• Eachψk(t) is twice continuously differentiable every-

where onRexceptpossibly att = 0.
• Each influence functioṅψk satisfies a uniform Lips-

chitz condition on any bounded interval of the form
[ε, c] and[−c,−ε] for anyc > ε > 0. for anyε > 0.

Then all the conditions of Theorem 2 hold, and (12) is the
conditional distribution of the MAP estimator.

We note without proof that one can combine the general
approach to the proofs of Corollary 1 and 2 to formulate
sufficient conditions for theψk’s that encompass an even
wider class of priors. For an energy function that has the
form (23), it is sufficient that the potential functionsψk
be convex and continuously differentiable overR, twice
continuously differentiable everywhere except at a finite
number of “problem” points, and that the influence func-
tions ψ̇k be Lipschitz on closed intervals that do not con-
tain those points. We are unaware of any differentiable
convex potential functions that fail to satisfy these condi-

tions.
The proofs of Corollary 1 and 2 do not use the fact thath

is one-to-one, and only weakly use the fact thatVc is a col-
lection of hyperplanes. We conjecture that if these proper-
ties were used fully, then one could eliminate the Lipschitz
conditions on theψk’s and simply assume that eachψk is
convex and continuouslydifferentiable and twice differen-
tiable almost everywhere.

IV. N ON-GAUSSIAN MEASUREMENTS

The above development relies fairly heavily on the as-
sumption thatY has a Gaussian distribution, since in the
Gaussian case we can easily find the pdf ofZ = A′Π−1Y
for use in (18).

When Y is non-Gaussian, (3) defines a penalized
weighted least-squares (PWLS) estimator, rather than a
MAP estimator. We can determine the pdff(x̂|x̃) of
this PWLS estimator even for non-Gaussian measurement
noise ifA is invertible (and hence square). WhenA is
invertible, we can rewrite (4) as

Y = h2(X̂),

where
h2(x) , Ax+ΠA

−T∇′R(x),

so similar arguments as above lead to

f(x̂|x̃) = |∇h2(x̂)| f(y|x)

∣∣∣∣
y = h2(x̂)

. (24)

Again all terms on the right hand side have explicit ex-
pressions.

V. SIMPLE 2D EXAMPLE

The simplest nontrivial example of (12) is whenA =
I2, Π = σ2I2, whereI2 is the2 × 2 identity matrix,
x̃ = µy|x̃ = [0 µ]

′, and where

R(x) = βψ(x1 − x2)

for some symmetric, convex potential functionψ. One
can consider this case as representing an image consisting
of two neighboring pixels. Ifβ = 0, then the pixels are
estimated independently bŷxj = yj , j = 1, 2. Including
a prior with energy functionR(x) yields MAP estimates
for the two pixel values that are encouraged to be similar.
By choosingµ 6= 0 we can study the case where the two
pixels straddle an “edge,” since their mean values differ,
thereby investigating the edge-preserving properties of the
prior.
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To compute the pdf of the MAP estimator, note that

∇′R(x) = β

[
1
−1

]
ψ̇(x1 − x2)

∇2R(x) = β

[
1 −1
−1 1

]
ψ̈(x1 − x2).

Thus from (13) the Hessian ofΦ is

∇2Φ(x) = σ−2I2 + β

[
1 −1
−1 1

]
ψ̈(x1 − x2)

= σ−2
[
I2 + α

[
1 −1
−1 1

]
ψ̈(x1 − x2)

]

whereα , βσ2, and the determinant of that Hessian is

|∇2Φ(x)| = σ−4
[
1 + 2αψ̈(x1 − x2)

]
.

Also µz|x̃ = [0 µ/σ
2]′ andΠz|x̃ = σ−2I2. Substituting

into (12) and simplifying:

f(x̂|x̃) =
1 + 2αψ̈(x̂1 − x̂2)

2πσ2

· exp

(
−
1

2σ2

∥∥∥∥x+ α
[
1
−1

]
ψ̇(x̂1 − x̂2)−

[
0
µ

]∥∥∥∥
2
)
.

As a numerical example, we computedf(x̂|x̃) for the
caseσ = 0.6, µ = 1, α = 0.1. We used a general-
ized Gaussian energy function [1]:ψ(t) = 1

2 |t|
1.5, so the

above pdf is zero onVc = {x̂ : x̂1 = x̂2}. Fig. 2
shows contours of the pdff(x̂|x̃). There is one mode of
the pdf near the true valuẽx = [0 1]′, indicated by the
asterisk. Estimates that lie near this mode correspond to
“preserved edges,” since the pixel estimates are closer to
the truth than to each other. However, there is another
mode near̂x = [0.5 0.5]′, because for measurement re-
alizations for whichy1 ≈ y2, the energy function of the
prior encourageŝx1 andx̂2 to be approximately equal. In
fact, there is a ridge of higher relative probability near the
line x̂1 = x̂2 indicated by the dotted line in Fig. 2. This
ridge is induced by the non-Gaussian prior; for a Gaussian
prior the contours would be elliptical and centered at the
conditional mean.

From the contours of the exact pdf shown in Fig. 2, it
would appear that simple characterizations (i.e. Gaussian
approximations) of the joint pdf are nontrivial. Whether
the covariance matrix ofX̂ can be approximated ana-
lytically via extensions of [5] remains an open question.
Fig. 3 shows the marginal distributions off(x̂j|x̃) com-
puted by numerical integration of the joint pdf. Despite
the complicated structure of the joint pdf, the marginal
pdfs are remarkably similar to Gaussian pdfs. Thus it may
be possible to find simple approximations for the marginal
means and variances.

VI. CONCLUSION

Our main result is (12), an explicit exact expression for
the conditional pdf of MAP estimators for edge-preserving
priors. The expression is surprisingly simple given that
edge-preserving MAP estimators are defined implicitly
and can be highly nonlinear. Limitations of the result in-
clude the restriction to Gaussian measurements, and the
regularity assumptions for the energy function. Never-
theless, the explicit expression may prove useful in bet-
ter understanding the properties of edge-preserving image
recovery methods.
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APPENDIX A. PROOF OFCOR. 1

A2 holds by the assumption that the potential functions
are convex, soΦ is strictly convex. A3 holds by the as-
sumption that the potential functions are continuously dif-
ferentiable. For A4, considerV ⊆ Rn defined by

Vc ,
K⋃
k=1

nk⋃
i=1

{x ∈ Rn : [Cx]k = tk,i}.

The setVc is a finite union of hyperplanes and thus is a
closed set. ThereforeV is an open set on whichR(x) is
twice continuously differentiable, so A4 holds.

To complete the proof, we must establish A5 by show-
ing that|h(Vc)| = 0, whereh was defined in (7). Because
Vc is a finite union of hyperplanes,|Vc| = 0, so we can
apply Lemma 1. DefineAl = Vc ∩ [−l, l]n for l ∈ N.
Sinceh(Vc) = ∪∞l=1h(Al), by subadditivity of Lebesgue
measure|h(Vc)| ≤

∑∞
l=1 |h(Al)|, so it suffices to show

that|h(Al)| = 0.

For the energy functionR(x) given in (23) above, the
functionh has the form

h(x) = Fx+∇′R(x) = Fx+
K∑
k=1

ckψ̇k([Cx]k),

whereck denotes the transpose of thekth row ofC, i.e.
[Cx]k = c′kx. Since eachψ̇k is uniform Lipschitz over
bounded intervals, the functionh is uniform Lipschitz
over [−l, l]n, since forx ∈ [−l, l]n, |[Cx]k| ≤ c ,

maxk
∑

j |ckj| l. Thus by Lemma 1,|h(Al)| = 0. 2
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APPENDIX B. PROOF OFCOR. 2

Conditions A2-A4 hold as shown in the proof of Corol-
lary 1 with the setVc in this case defined by

Vc ,
K⋃
k=1

Hk, whereHk , {x ∈ R
n : [Cx]k = 0} .

To show A5, again defineAl , Vc∩ [−l, l]n, so that again
it suffices to show that|h(Al)| = 0, noting that|Al| = 0.

For anyI ⊆ {1, . . . , K}, denoteIc = {1, . . . , K}− I
and define

GI(x) , Fx+
∑
k∈Ic

ckψ̇k([Cx]k) +
∑
k∈I

ckψ̇k(0)

and6

ZI =
⋂
k∈I

Hk.

Then forx ∈ ZI , clearlyh(x) = GI(x).
The functionGI is uniform Lipschitz on the compact

set

Cl(I, ε) ,
⋂
k∈Ic

{x ∈ Rn : |[Cx]k| ≥ ε} ∩ [−l, l]
n.

Thus by Lemma 1,|GI(Al ∩ ZI ∩ Cl(I, ε))| = 0 for all
ε > 0, since|Al| = 0. ButAl ∩ ZI ∩ Cl(I, ε) ⊂ ZI , and
h = GI onZI, so|h(Al ∩ ZI ∩ Cl(I, ε))| = 0. Defining

Cl(I) ,
∞⋃
m=1

Cl(I, 1/m),

then by subadditivity of Lebesgue measure,

|h(Al ∩ ZI ∩ Cl(I))| ≤
∞∑
m=1

|h(Al ∩ ZI ∩ Cl(I, 1/m))|

which is zero. Finally, since

Cl(I) =
⋂
k∈Ic

{x ∈ Rn : |[Cx]k| > 0} ∩ [−l, l]
n

=
⋂
k∈Ic

Hck ∩ [−l, l]
n,

one can easily show that⋃
I⊆{1,2,...,K}

ZI ∩ Cl(I) = [−l, l]
n.

Thus, again by subadditivity,

|h(Al)| ≤
∑

I⊆{1,2,...,K}

|h(Al ∩ ZI ∩ Cl(I))| = 0.

Thus A5 holds under the conditions of the Corollary.2

6By convention, ifI = φ, then
⋂
k∈I Hk =R

n.
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