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Abstract. The statistics of photon counting by systems affected by deadtime are potentially
important for statistical image reconstruction methods. We present a new way of analyzing
the moments of the counting process for a counter system affected by various models of
deadtime related to PET and SPECT imaging. We derive simple and exact expressions for
the first and second moments of the number of recorded events under various models. From
our mean expression for a SPECT deadtime model, we derive a simple estimator for the actual
intensity of the underlying Poisson process; simulations show that our estimator is unbiased
even for extremely high count rates. From this analysis, we study the suitability of the Poisson
statistical model assumed in most statistical image reconstruction algorithms. For systems
containing “modules” with several detector elements, where each element can cause deadtime
losses for the entire module, such as block PET detectors or Anger cameras, the Poisson
statistical model appears to be adequate even in the presence of deadtime losses.
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1. Introduction

Every photon counting system exhibits a characteristic calladtime Since the pulses
produced by a detector have finite time duration, if a second pulse occurs before the first
has disappeared, the two pulses will overlap to form a single distorted pulse [Sorenson and
Phelps]. Depending on the system, one or both arrivals will be lost. In PET or SPECT
scanners, the length of pulse resolving time, often just called “deadtime”, denasetound

2us. Counting systems are usually classified into two categories: nonparalyzable (type ) or
paralyzable (type Il). In a nonparalyzable system, each recorded photon produces a deadtime
of lengthr; if an arrival is recorded at then any arrival front to ¢t + 7 will not be recorded.

In a paralyzable system, each photon arrival, whether recorded or not, produces a deadtime of
lengthr; if there is an arrival at, then any arrival from to ¢ 4+ 7 will not be recorded. In some
SPECT systems [Engeland, Striker and Luig], we encounter a third model that is similar to the
paralyzable model: if two photons arrive withinof each other, then neither photon will be
recorded €.g, due to pulse pile-up); we call this the type Il model. The asymptotic moments

of the nonparalyzable model are well known [Feller]. For the paralyzable model, the exact
expression for the mean of the number of recorded events from timg @¢ooted’ (¢), has

been derived previously [Carloni, Corberi, Marseguerra and Porceddu]. However, for the type
Il model, only an approximate expression for the mean number of recorded events has been
derived [Engeland, Striker and Luig]. In this paper, we derive the exact mean and variance
expressions oY (t) for both type Il and type 11l models.

This investigation of deadtime statistics was originally motivated by the goal of finding
appropriate statistical models for image reconstruction of PET and SPECT scans with
high deadtime losses. There are four natural choices for dealing with deadtime in image
reconstruction:

(i) ignore it altogether;

(i) correct the number of recorded events for deadtime losses and plug the corrected
data into the reconstruction algorithm;

(i) incorporate deadtime losses into the system matrix of the usual Poisson statistical
model;

(iv) develop reconstruction algorithms based on the exact statistics of the counting
process.

For a quantitatively accurate reconstruction, we must correct for the effect of deadtime
to avoid underestimation of source activity. This consideration rules out the first choice.
Previous work [Stearns, Chesler, Kirsch and Brownell, Daube-Witherspoon and Carson,
Mazoyer, Roos and Huesman, Yamamoto, Amano, Miura, lida and Kan, Tai, Chatziioannou,
Dahlbom and Hoffman] in this field usually involves the second chaiegusing the method

of moments to correct the sinograms for deadtime losses, and reconstructing the image using
these corrected counts. In statistical image reconstruction, it is generally assumed that the
number of recorded events at a detector is Poisson distributed. However, in the presence
of deadtime, the fact that there can be no recorded events witbfreach other makes the
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Figure 1. lllustration of systems affected by three types of deadtime

t

counting process non-Poisson [Knoll]. However, if the process is approximately Poisson, then
a simple modification of the system matrixg., correct the elements of the system matrix,

a;j, by the deadtime loss factor, should suffice. This is the third choice as listed above,
which would yield estimates with lower variance than pluggingdbgectedcounts into a
statistical reconstruction algorithm with ancorrectedsystem matrix. But simply correcting

the number of recorded events or building this as a “loss factor” in the system model while
assuming that the number of recorded events is Poisson distributed may be suboptimal. In
this paper, we investigate not only the mean, but also the variance of the number of recorded
events. If the mean and variance disagree significantly, then reconstructions based on Poisson
statistical model would have suboptimally large variances. We discuss this further in Section 6
after we derive the exact mean and variance for the counting process.

2. Statistical Analysis of Deadtime

We define a “photon arrival” to mean a photon interacting with the scintillator with sufficient
deposited energy to trigger detection. The photon arrival proddss counts the number

of arrivals during the time intervgD, t|, and the photon recording procegst) counts the
number of recorded events. For simplicity, we assume Ah@} is a homogeneous Poisson
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process with constant rakgphoton arrivals per unit time)e., we neglect radio-isotope decay
and other physical or physiological effects that may cause variable arrival rate (see Appendix
C for a generalization). We first review a few simple and useful facts about the Poisson
process [Feller]. The incremeit(ty) — N(¢1), which is the number of photon arrivals during
the time intervalt,, ¢,], is Poisson distributed with medty — t1)\. N(¢) has stationary and
independent increments. T, denotes the time of theth photon arrival, then the waiting
time (or inter-arrival timeyV,, = T,, — T,,_; is exponentially distributed with medn .

For simplicity, we also assume that the deadtimis known and deterministic. Most
systems can be adequately modeled to have a constant deadtime, independent of count rate.

2.1. Asymptotic Analysis via Renewal Theory

The counting processes in all three types of systems discussed above are examples of “renewal
processes” [Feller], and renewal theory has been the classical basis for deadtime analysis
[Libert, Muller, Muller, Faraci and Pennisi]. A renewal process involves recurrent paterns
after each of which the process starts from scratch. One can view a counting process from this
perspective by defining to be the stateof “the counter is ready to record the next photon
arrival”, andT% to be the waiting time between one renewal and the next (renewal here means
return to€). With £ defined as above, the number of renewals from Oisocalmos§ exactly
the number of recorded events from Qttdf T has ensemble mean and variance?, then
the number of renewals from Otof/(t), Is asymptotically Gaussian distributed [Cox] [Feller]
with the following moments:
E[Y (8)] ~ t/ne, Var[Y (1)) ~ tog /i, 1)
where~ indicates that the ratio of the two sides tends to unity/as — oo. We observe
that whenr = 0, i.e, no deadtimeT;: is exponentially distributed with meaty A and
variancel/\?; thus E[Y (t)] ~ At and Var[Y (t)] ~ Xt, as expected sincg(t) would be
Poisson distributed with meaxt when there is no deadtime. In realistic cases where deadtime
loss becomes significante is usually very small when compared #ohence the Gaussian
approximation is often very good.
For the nonparalyzable deadtime model (type | model), it is easy to derive the asymptotic
mean and variance df (¢) from the moments oflz. After each recording of an event,
the “deadtime” when the system cannot record any incoming arrival is simplyrhus
Te = T + 7, whereT is an exponentially distributed random variable with méak. Hence,
pe = 1/A+1 = % andog = 1/A. Thus from (1), the counting process for a nonparalyzable
(type 1) system is asymptotically Gaussian distributed with:
~ At ~ At
E[Y ()] ~ m,Var[Y(t)] ~ m

1 Fortype Il deadtime, we define renewal as “returigtafter recording an event”.

¢ Almost since we have to consider photons arriving shortly before time €) fart renewal occurring shortly
aftertime O (ott). If one redefines the time of a recorded event te ber the photon arrives at the detector, then

the number of recorded events and the number of renewals doritigvould be exactly the same. For stationary
increment processes, which definition one adopts makes absolutely no difference in terms of the statistics of the
process.

(2)
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Figure 2. Mean and variance for nonparalyzable (type 1) systems, tvithls, 7 = 2us.

Figure 2 shows the mean and variance of the counting process of systems affected by
nonparalyzable deadtime. Wham > 0.1, the mean and variance &(t) differ by at least
20%.

For the other two deadtime models, if we try to dertvg’(¢)] from E[T¢], it is much
more difficult to obtain a simple closed form expression because if we try to defilg,
we get an infinite sum and it is not easy to obtain every term in this sum, let alone a closed-
form expression forE[Te]. The variance ofl¢ is even more complicated. Therefore, in
the following section, we describe a new approach for deriving the moments of counting
processes.

2.2. Exact Mean and Variance of Counting Processes

We first consider a general counting procEsshereY (¢, t;) denotes the number of recorded
events during the time intervdt,, to]) andY (¢) is a shorthand fok"(0,¢). We define the
instantaneous rate: R — [0, oo) of the procesd’(¢) as:

v(s) = lm E[Y (s + ) — Y (s)]/9, 3)
and the instantaneous second momenR — [0, co) as:

a(s) 2 lim B[(Y (s +8) = Y (5))%]/. @)
We also define the correlation functign R* — [0, c0) as:

B(s1,52) = JI%TLOE[(Y(Sl +01) = Y(s1))(Y(s2 + 02) — Y(s2))]/(9102)- (5)
We assume that the following regularity conditions Hold

(i) v anda are well-definedu-almost everywhere, and is well definedu,-almost
everywhere, and and $ are integrable with respect o and u, over any finite
interval and rectangle, respectively;

|| »andus denote Lebesgue measuresoandR?, respectively.
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(i) E[Y(s,s + 6)]/6 and E[Y?(s,s + 0)]/¢ are uniformly bounded for alk and
d€(0,1);

(iii)y E[Y (s1,51 + 61)Y (52,82 + 62)]/(6192) is uniformly bounded for alls;, s», and
01,02 € (0,1) such that(sy, s; + 1) N (82, $2 + d2) = 0.

These assumptions hold for a wide variety of counting processes, including any homogeneous
Poisson process with finite intensity. Furthermore, for an arbitrary random pricess
E[Y (s,5+0)]/6, E[Y?(s,5+0)]/d,andE[Y (s, s1+61)Y (82, s2+82)] /(0152 ) are respectively
uniformly bounded above by those of a homogeneous Poisson process, then assumption (ii)
and (iii) hold forY. Specifically, if a random process results from some form of selection
from a Poisson process with bounded intensity, then assumptions (ii) and (iii) hold.

For analysis purposes, we artificially divide the time interdat] into n segments of
lengthé each,.e., t = nd. We have

Y(t) = Z_:Y(z‘é, (1 +1)0), (6)
E[Y(t)] = z_: E[Y (i0, (i + 1)9)], @)
= /Rf(;(s)ds, (8)

where we define the following piecewise constant function:

fi(s) 2 { BY (35, + DO))/6, if s€ (6, +DOL0< <n-1 o

0, otherwise.

Since~(t) is well-defined almost everywhere in the interj@l¢] and E[Y (s, s + 0)]/4 is
uniformly bounded, by the Lebesgue Dominated Convergence theorem (LDCT) [Bruckner,
Bruckner and Thomson],

lim / F5(s)dpls) = / lim f5(s)dp(s)
= /o v(s)ds. (10)

Hence, we have the following simple general expression for the mean of the counting process
in terms of its instantaneous r&te

BY(0) = [ 2()ds 1)

We consider the second moment by a similar argument:

BY* (1) = (Y ¥ (68, (i + 1))

9 If E[Y (¢)] is differentiable for alk, then~(t) = %, and (11) results from the fundamental theorem of
calculus. HoweverE[Y (s)Y (¢)] is not everywhere differentiable even for very simple random processgs,
for the Poisson procegé with intensity\, E[N(s)N (t)] = Amin(s, t)+ A?st. So a similar argumentinvolving
the fundamental theorem of calculus runs into difficulties for the second moment.
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where we define the following piecewise constant functions:

a J E[Y?(j6,(5 +1)0)]/6, ifse(§o,(j+1)dJand0 <j<n-—1
9a(s) = { 0, otherwise, (13)

and
( E[Y(i0, (i + 1)8)Y (46, (j + 1)0)] /6%, if s1 € (36, (i + 1)d],
sy € (40, (4 + 1)d),
hs(s1, s3) = 0<i<n-—2, (24)
andi +1<j57<n-1
0, otherwise.

Sinces is well-defined almost everywhere(in ] x [0, t] andE[Y (s1, s1+06)Y (82, s9+4)] /62
is uniformly bounded, by LDCT and Fubini’s Theorem [Bruckner, Bruckner and Thomson],

lim h(;(Sl,Sg)d/.Lg(Sl,Sg):/ lim hs(s1, s2)dps(s1, S2)

0—0 R2 R2 6—0

t t
= / / ﬁ(Sl,Sg)ngdSl
0 S1

= / / B(s1, s2)ds1dss. (15)
0 Js2

Similarly, one can show that

i [ s(s)ints) = [ ats)is (16)

Thus using (12), (15), and (16), we have the following general expression for the second
moment ofY (¢):

E[Y%(t)] = /Ota(s)ds +2 /Ot tﬁ(sl, So)dsadsy. (17)

In the context of counting processes with deadtime, which includes all random processes
considered in this paper, the process satisfies this additional assumption:
(iv) there exists a positiv& such that’d € (0,dy), Y(s,s+ ) < 1.
If we pick §; < 7, then assumption (iv) holds. Fér< §,, since0? = 0 and1? = 1,
E[Y?(s,s+0)] = E[Y(s,s+6)], (18)
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SO

a(s) = (). (19)
Thus we obtain the following corollary of (17) for random processes satisfying assumptions

(i) to (iv):
EIY2(t)] = E[Y (1)) + 2 /0 / B(s1, 52)dsds1. (20)

Furthermore, ifY'(¢) has stationary increments, thefs) is constant and(sy, s2) =
B3(0, so — s1) and we can further simplify the results (11) and (20) to the following:

ElY(t)] =t (21)
EY2(t)] = At + 2 /0 (t — $)3(0, 5)ds. 22)

The above general approach used to find the second momeénttpfcould be extended
to higher order moments. However, as the order gets higher, the expressions get more
complicated.

3. Single Photon Counting

3.1. Mean and Variance of Recorded Singles Counts, Model Type II

First we consider the paralyzable model in which if the waiting time for a photon arrival is
less thanr, then this photon is not recorded. We derive the mean and variaricé pfthe
number of recorded events from time O to tim&Ve observe thak () inherits the stationary
increment property of the arrival proced¥t). We first deriveE[Y (0, d)], where we pick

d < 7 such that the number of recorded events dufing] is either O or 1. Lef/; denote the
time of the first photon arrival after time O; it is exponentially distributed. If there is an arrival
at7T; = s,0 < s < 4, and there is no arrival betwean- 7 ands (in fact, we only need to
make sure there is no arrival between 7 and 0,i.e., N(0) — N(s — 7) = 0, since the first
arrival after 0 occurs at), then there will be a recorded event during the intefGab]. Thus

E[Y(0,6)] = P[Y(0,6) = 1]
_ /0 P[Y(0,0) = 1|Ty = s]fr,(s)ds

5
= / P[no arrival during(s — 7,0)|T} = s|fr,(s)ds
0
5
= / P[N(s — 7,0) = 0[T\ = s]fr,(s)ds
0

5 5
= / e AT \e Ao (s = / e Mds = Ade . (23)
0 0

Hence by the definition given in (3), the instantaneous ralé(ef is
¥ =, (24)
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Figure 3. Mean and variance for paralyzable (type Il) systems, withls, 7 = 2yus.

and by (21), we easily obtain the following resudtq, [Sorenson and Phelps]),

E[Y (t)] = Me™7, (25)
i.e., the recorded/arrival ratio for type Il systems, dendigds
o BY®] _ s

&= BN - )
The variance ot (t) for the type Il model is (see Appendix A):
Var[Y ()] = Me (1 — (2A7 — A\72/t)e™7). (27)

We can compute numerically thatax,, (2\7e*") ~ 0.74, henceVar[Y (¢)] will always be
positive. To compare the variance and the mean, we note that
- Var[Y (¢)]
t—o0 E[Y(t)]
Figure 3 shows the mean and variance of the singles count for a detector affected by deadtime
of type Il. Since the mean and variance can differ greatly, is not Poisson.

=1—-2X re™ =1 —2&1ogés. (28)

3.2. Mean and Variance of Recorded Singles Counts, Model Type 11l

Now we turn to the type of system described in [Engeland, Striker and Luig], in which if the
waiting time for a photon arrival is less thanthen neither this photon nor the previous photon
will be recorded. We again observe th&() inherits the stationary increment property of the
arrival processV(t). We first deriveE'[Y (0, )], where we pickd < 7 such that the number
of recorded events durin@, 4] is still either 0 or 1. Hence,

[

E[Y(0,6)] = P[Y(0,6) = 1]
(/ Y(0,6) = 1Ty = s]fr, (s)ds

/P (s — 7,0) = OP[(s, 5 + 7) = O] fu (s)ds

0
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5 5
= / e AT eTAT N e A ] = / e MTds = \je M. (29)
0 0

Hence for this system, the instantaneous rate as defined in (3) is

= )\e—>\27" (30)
and by (21), the expected number of recorded events for a type Il system is exactly:
E[Y ()] = Me™ . (31)

The type Ill system was analyzed using approximations in [Engeland, Striker and Luig]. To
compare our exact result (31) with the approximate analysis presented in [Engeland, Striker
and Luig], we note that the mean waiting time between recorded events is:

e = t/ELY ()] = 3¢ @)
= S+ 227 +20m? 4 S(00) + 2 (W) + O(A)). (33)

Comparing this exact expansion to the approximate mean waiting time derived in [Engeland,
Striker and Luig, eqn. 16], we find that the approximation in [Engeland, Striker and Luig] is
accurate to 2nd order.

The variance ot (¢) for the type Il model is (see Appendix B):

Var[Y (t)] = Ate 7 + 27 (At — A7 — 1)

e (4N T2 — AN 4 2 — 2)t + 4)T). (34)
To compare the variance and the mean, we observe that
. Var[Y(t)] _ AT ,—2AT
To simplify this expression, we observe that when< 1, e’ — 1 ~ A7, and
. Var[Y(t)] o
lim ———2~ ~1-2 T=1-¢&1
0] ATe &3 log &, (36)

whereé; £ E[Y (t)]/E[N(t)] = e 2. Figure 4 shows the (exact) mean and variance of the
singles count’(¢) for type Ill systems. Agaify’(¢) is not Poisson, but the difference between
the variance and the mean is much smaller than type | or type Il systems.

4. Recorded Singles Counts by Block Detectors

In many photon counting systems, several detectors are grouped into a “block”; examples
include block PET detectors and Anger cameras. When a photon arrives at any detector in
the block, the whole block goes dead fori.e,, no detector in the block can record any
photon forr. For analysis purposes, we can initially treat the block of detectors as a single
big detector. Lef\;, ..., \; denote the incident photon arrival rates for each of tiietectors

in the block. LetY;(¢) denote the number of events recorded byjtiedetector, and lef (¢)

denote the total number of events recorded by all detectors in the tﬂfoek}jézl Y;). We

have derived above the exact first and second momeut&pfor detector blocks affected by
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Figure 4. Mean and variance for type Il systems, witk= 1s, 7 = 2us.

type Il and type Il deadtime, and in each case, the mean and the variaf¢e) alan differ
greatly. However, what is of greater interest in image reconstruction is the mean and variance
of the number of events recorded by each detector in the block. Gived thaevents are
recorded by the entire block, the conditional distribution of the number of events recorded by
any individual detector is multinomial where the fraction of events allotted tgtthdetector

isn; = A\;/A. Thus from [Barrett and Swindell, p. 99],

ElY;t)] =nE[Z()] (37)
Var(Y;(t)] = n;(1 — n;) E[Z(t)] + 13 Var[Z(t)]. (38)
We observe that the variance to mean ratio is
B = 1 w1 = VarlZ(e)/E L) (39
> 1—mn;. (40)

For a system with say, 64 detectors in a blogkx 1/64 (assuming that the count ratess

are nearly uniform), so from (40) the mean and the variance of the number of recorded events
by a single detector will differ by less than 2%, regardless of count rates and deadtime losses.
Furthermore, sinc&|[Z(t)] must be quite large for deadtime to have a significant effect, when

n; is small, the distribution ol;(¢) will be approximately Poisson by the usual binomial
argument. The only case where the variance to mean ratio is significantly less than 1 would
be whery), is large (.e. the count rates,’s are very heterogeneous) aviar[Z(t)|/E[Z(t)] is

small (.e., the total count ratgi‘:1 A is large). In all other cases, the mean and the variance
would be approximately equal. However, twvariancebetween the measurements recorded

by different elements within the block can be nonzero [Barrett and Swindell, p. 101]:

Cov(Y;(t), Y;(t)) = min;(Var[Z(t)] — E[Z(1)]). (41)

Thus in the presence of deadtime, the assumption that the measurements are independent
(which is made ubiquitously in statistical reconstruction methods) is incorrect. However,
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whenn, andn; are small, so is the covariance between individual detector elements, so the
impact of this dependence may be small.

5. Count Rate Correction for System Type IlI

For a quantitatively accurate reconstruction, we must correct for the effect of deadtime to
avoid underestimation of source activity. For type Ill systems, Engetdrad [Engeland,
Striker and Luig] proposed the following correction formula,

A= %( +¥7’+i—§7’2), (42)
which they obtained by solving an approximate mean waiting time expression up to second
order inT by means of the expansion= a + b7 + cT2. We propose to estimate the true count
rate by solving numerically our exact expression (3&), solve

Y

t
for \ givenY andt. One could solve analytically the exact mean waiting time expression (32)
up to second order im, which yields exactly the same estimator as (42), but this estimator
does not solve (32) exactly. Figure 5 compares our new estimator (43) and the estimator
proposed in [Engeland, Striker and Luig]. It shows that our new estimator is unbiased even at
very high count rates. The error bars are not shown in the figure as they are smaller than the
plotting symbols. When s large, the standard deviation is very small when compared to the
mean ofY (t), thus these estimates have extremely small standard deviations. By solving (43)
numerically, we obtain essentially perfect deadtime correction for a type Il system.

— \e—2M (43)

6. Discussion

We have analyzed the mean and variance of the recorded singles counts for three distinct
models of deadtime. In all three cases, the variance can be significantly less than the mean,
indicating that the counting statistics are not Poisson in the presence of deadtime. Deadtime
losses can be significant in practical SPECT and PET systems, particularly in fully 3D PET
imaging and in SPECT transmission measurements with a scanning line source. The count
rates for a detector block (PET) or detector zone (SPECT) can be significant enough to yield
non-Poisson statistics for the total counts recorded by the block or zone. However, in the
practical situations that we are aware of, the count rates for individual detector elements within
the block or zone are usually not high enough to correspond to significant differences between
the mean and the variance. As we have shown in Section 4, even though the variance of the
counts recorded by a block can be significantly lower than the mean, the variance of the counts
recorded by an individual detector within a block is nevertheless quite close to the mean and
likely to be well approximated by a Poisson distribution. Furthermore, the correlation between
individual detectors will be fairly small. Thus it appears that statistical image reconstruction
based on Poisson models, while certainly not optimal, should be adequate in practice even
under fairly large deadtime losses, provided the deadtime loss factor is included in the system
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matrix. We must add one caveat to this conclusion however. Although pairs of individual
detectors have small correlation, the correlation coefficient betweesuthef one group of
detectors and theumof all other detectors in a block may not be small in the presence of
deadtime. The effect of such correlations on image reconstruction algorithms is unknown
and may deserve further investigation. Another natural extension of this work would be to
consider systems with random resolving timesAs long as the minimum resolving time is
greater than zero, assumption (iv) would still hold and the derivations would be similar.

7. Appendix A

We derive the variance df (¢) for deadtime model Il, the paralyzable model. We first derive
B(0, s). We consider two cases.
CAasel:0<s<T

We pickd such thab < § < s < s+ d < 7. Two recorded events cannot correspond to
photons that arrived within of each other. Hence for< s < 7, E[Y(0,0)Y (s, s+ )] = 0,
and by the definition given in (3)3(0, s) = 0.

CAsE2: T <s<t

We picko suchthat < rands+d < tandd < s—7. Fors > 7,Y(0,0) andY (s, s+9)
are statistically independent, since the event “there is an arrival d(5j@ag is statistically
independent from the event “there is an arrival duriag + ¢6|”, because they are at least




Single Photon Counting with Deadtime 14

apart in time'. Hence by (23),
EY(0,0)Y (s,5+0)] = E[Y(0,0)] = (Ae™")%, (44)
and

B(0,5) = (A7) (45)

Combining the above two cases and using (22) yields

E[Y?(t)] = vyt + 2 /t(t — 5)(\e™7)%ds
= Xe M+ [(t — 1) (A (46)
UsingVar[Y (t)] = E[Y?(t)] — E*[Y (¢)], with (25) and (46), and simplifying yields (27).

8. Appendix B

We derive the variance df (¢) for the type Il deadtime model. Again, we first derive the
correlation function3(0, s). This derivation is more complicated than the type || model, due
to the fact that if two photons arrive at timesand s, respectively and < s, — s; < 27,
then(s; — 7,81+ 7) N (s2 — 7,82 + 7) # 0 andY (s1, s1 + d) andY (sq, s2 + &) would both
depend on what happens durif|g — 7, s1 + 7).
CAsSEL:0<s<T
We pickd such that) < § < s < s+ < 7. Two recorded events cannot correspond to
photons that arrived within of each other. Hence fér< s < 7, E[Y (0,0)Y (s,s 4+ 0)] =
andg(0, s) = 0.
CASE2: T <s <27
We pické such thats + § < 27 (henced < 7) andd < s — 7. As discussed above, for
T < s<27,Y(0,0)andY(s,s + d) will be statistically dependent. If there is exactly one
photon arrival each durin@, 6] and(s, s + ¢] at times; ands, respectively, then both events
will be recorded if and only if there is no arrival duririg, — 7, s1), (s1, S2), Of (s2, $2 + 7]
(sincer < sy — s1 < 27, (81,81 + 7] U (59 — T, 52) = (51, $2).) Hence,

E[Y(0,0)Y(s,s+0)]

=P[Y(0,0) =1,Y(s,s +0) = 1]
5

= / / P[no arrival during(s; — 7,0), or (s1, s), or (S2, sg + 7||
le S1 fT1(52)d51d52

_ / / (t—s1) 7)\(5 $1) 7/\7')\6 /\51>\e )\SQdSldSQ
— 7)\27')\2 )\s/ / )\.91 /\SQdS dSQ

( A0 1)2 7)\(27’4’84’5 (47)

* If there is one arrival each durin@, 4], (3/2, s/2+ 6], and(s, s + 4], thenY (0,0)Y (s, s + §) = 0; but loss
of the photon that arrived durin@, s + 4] is due to the arrival durin@s/2, s/2 + d]; whether there is any arrival
during (0, ¢] is independent of whether the arrival durig s + 4] is recorded.
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and
B0, s) = N2e @7+, (48)

CASE3: 21 < s <t

We pickd such thath < 27 ands + 0 < tandd < s — 27. For2r < s < t, Y/(0,9)
andY (s, s + ) are statistically independent, since the event “there is an arrival d{riag
is statistically independent from the event “there is an arrival duting+ J]”, because they
are at leas2r apart in time. Thus

E[Y(0,8)Y(s,s+6)] = E*[Y(0,0)] = (\de *7)?, (49)
and
B5(0,5) = (Ae™7)%. (50)
Combining the above three cases and using (22) yields

2T t
E[Y2(t)] =yt +2 / (t — $)N2eNE+9 s 4 9 / (t = 5)(Ae=2")2ds
T 2

T

= Ae T 4+ 2e7 (1 — Mt 4 2A7) + 27T (At — AT — 1)
+[(t —27)(Ne™ )2 (51)
Simple algebra leads to (34).

9. Appendix C

Due to the decay of an isotope photon source, the photon arrival process is not exactly
homogeneous. In medical imaging, the arrival rates are inhomogeneous due to radio-tracer
dynamics. In this section, we deri¥gY (¢)] for paralyzable deadtime modelssuming only

that the instantaneous photon arrival rate) is continuous. This relaxes the assumption made

in Section 2 thad is constant. For an inhomogeneous procéss;(s, s+6)] # E[Y (0,0)]in
general. First we observe that the waiting time for the first photon arrival aftestidenoted

T1, has the following distribution:

Fr(ry=P[Thy <r]=1—-P[Ty >r] =1—-P[N(s,r) =0]
— 1 — e Js Mg (52)

Hence forr > s,

Frr) = - () = Alr)e 20, (59

For0 < 6 < 7, we have:
E[Y(s,s+0)] =P[Y(s,s+ ) =1]

/$+6P[Y(s, s+9) = 1T, =r|fr (r)dr

540
= / PIN(r —7,s) = 0] fr,(r)dr

* Extension to the type 1l deadtime model is straightforward.
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s+d
— / e Jrr Ma)day A(r)e 7 Maz)daz g,

s+ .
= / A(r)e™ JrrA@da gy (54)
Since) is continuous, and™ 7+ M9)da i continuous i, we conclude:
7(s) = A(s)e™ for MO, (55)
Hencé
t
E[Y(t)] = / As)e™ i Aag (56)
0

If 7 is smalll relative to variations ii, then [” _\(¢)dg ~ A(s)7, so

E[Y(#)] ~ /O A(8)e N ds, (57)

This approximation can be applied to other deadtime models as well. Similarly, the second
moment ofY” is:

E[Y?(t)] = E[Y(t)] +2/0 /+ v(81)7y(s2)dsads;. (58)
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