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Abstract. The statistics of photon counting by systems affected by deadtime are potentially
important for statistical image reconstruction methods. We present a new way of analyzing
the moments of the counting process for a counter system affected by various models of
deadtime related to PET and SPECT imaging. We derive simple and exact expressions for
the first and second moments of the number of recorded events under various models. From
our mean expression for a SPECT deadtime model, we derive a simple estimator for the actual
intensity of the underlying Poisson process; simulations show that our estimator is unbiased
even for extremely high count rates. From this analysis, we study the suitability of the Poisson
statistical model assumed in most statistical image reconstruction algorithms. For systems
containing “modules” with several detector elements, where each element can cause deadtime
losses for the entire module, such as block PET detectors or Anger cameras, the Poisson
statistical model appears to be adequate even in the presence of deadtime losses.
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1. Introduction

Every photon counting system exhibits a characteristic calleddeadtime. Since the pulses
produced by a detector have finite time duration, if a second pulse occurs before the first
has disappeared, the two pulses will overlap to form a single distorted pulse [Sorenson and
Phelps]. Depending on the system, one or both arrivals will be lost. In PET or SPECT
scanners, the length of pulse resolving time, often just called “deadtime”, denotedτ , is around
2µs. Counting systems are usually classified into two categories: nonparalyzable (type I) or
paralyzable (type II). In a nonparalyzable system, each recorded photon produces a deadtime
of lengthτ ; if an arrival is recorded att, then any arrival fromt to t+ τ will not be recorded.
In a paralyzable system, each photon arrival, whether recorded or not, produces a deadtime of
lengthτ ; if there is an arrival att, then any arrival fromt to t+τ will not be recorded. In some
SPECT systems [Engeland, Striker and Luig], we encounter a third model that is similar to the
paralyzable model: if two photons arrive withinτ of each other, then neither photon will be
recorded (e.g., due to pulse pile-up); we call this the type III model. The asymptotic moments
of the nonparalyzable model are well known [Feller]. For the paralyzable model, the exact
expression for the mean of the number of recorded events from time 0 tot, denotedY (t), has
been derived previously [Carloni, Corberi, Marseguerra and Porceddu]. However, for the type
III model, only an approximate expression for the mean number of recorded events has been
derived [Engeland, Striker and Luig]. In this paper, we derive the exact mean and variance
expressions ofY (t) for both type II and type III models.

This investigation of deadtime statistics was originally motivated by the goal of finding
appropriate statistical models for image reconstruction of PET and SPECT scans with
high deadtime losses. There are four natural choices for dealing with deadtime in image
reconstruction:

(i) ignore it altogether;

(ii) correct the number of recorded events for deadtime losses and plug the corrected
data into the reconstruction algorithm;

(iii) incorporate deadtime losses into the system matrix of the usual Poisson statistical
model;

(iv) develop reconstruction algorithms based on the exact statistics of the counting
process.

For a quantitatively accurate reconstruction, we must correct for the effect of deadtime
to avoid underestimation of source activity. This consideration rules out the first choice.
Previous work [Stearns, Chesler, Kirsch and Brownell, Daube-Witherspoon and Carson,
Mazoyer, Roos and Huesman, Yamamoto, Amano, Miura, Iida and Kan, Tai, Chatziioannou,
Dahlbom and Hoffman] in this field usually involves the second choice,i.e., using the method
of moments to correct the sinograms for deadtime losses, and reconstructing the image using
these corrected counts. In statistical image reconstruction, it is generally assumed that the
number of recorded events at a detector is Poisson distributed. However, in the presence
of deadtime, the fact that there can be no recorded events withinτ of each other makes the
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Figure 1. Illustration of systems affected by three types of deadtime

counting process non-Poisson [Knoll]. However, if the process is approximately Poisson, then
a simple modification of the system matrix,i.e., correct the elements of the system matrix,
aij , by the deadtime loss factor, should suffice. This is the third choice as listed above,
which would yield estimates with lower variance than plugging thecorrectedcounts into a
statistical reconstruction algorithm with anuncorrectedsystem matrix. But simply correcting
the number of recorded events or building this as a “loss factor” in the system model while
assuming that the number of recorded events is Poisson distributed may be suboptimal. In
this paper, we investigate not only the mean, but also the variance of the number of recorded
events. If the mean and variance disagree significantly, then reconstructions based on Poisson
statistical model would have suboptimally large variances. We discuss this further in Section 6
after we derive the exact mean and variance for the counting process.

2. Statistical Analysis of Deadtime

We define a “photon arrival” to mean a photon interacting with the scintillator with sufficient
deposited energy to trigger detection. The photon arrival processN(t) counts the number
of arrivals during the time interval(0, t], and the photon recording processY (t) counts the
number of recorded events. For simplicity, we assume thatN(t) is a homogeneous Poisson
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process with constant rateλ (photon arrivals per unit time)i.e., we neglect radio-isotope decay
and other physical or physiological effects that may cause variable arrival rate (see Appendix
C for a generalization). We first review a few simple and useful facts about the Poisson
process [Feller]. The incrementN(t2)−N(t1), which is the number of photon arrivals during
the time interval(t1, t2], is Poisson distributed with mean(t2 − t1)λ. N(t) has stationary and
independent increments. IfTn denotes the time of thenth photon arrival, then the waiting
time (or inter-arrival time)Wn = Tn − Tn−1 is exponentially distributed with mean1/λ.

For simplicity, we also assume that the deadtimeτ is known and deterministic. Most
systems can be adequately modeled to have a constant deadtime, independent of count rate.

2.1. Asymptotic Analysis via Renewal Theory

The counting processes in all three types of systems discussed above are examples of “renewal
processes” [Feller], and renewal theory has been the classical basis for deadtime analysis
[Libert, Müller, Müller, Faraci and Pennisi]. A renewal process involves recurrent patternsE

after each of which the process starts from scratch. One can view a counting process from this
perspective by definingE to be the state‡ of “the counter is ready to record the next photon
arrival”, andTE to be the waiting time between one renewal and the next (renewal here means
return toE). With E defined as above, the number of renewals from 0 tot is almost§ exactly
the number of recorded events from 0 tot. If TE has ensemble meanµE and varianceσ2E , then
the number of renewals from 0 tot, Ỹ (t), is asymptotically Gaussian distributed [Cox] [Feller]
with the following moments:

E[Ỹ (t)] ∼ t/µE ,Var[Ỹ (t)] ∼ tσ
2
E/µ

3
E , (1)

where∼ indicates that the ratio of the two sides tends to unity ast/µE → ∞. We observe
that whenτ = 0, i.e., no deadtime,TE is exponentially distributed with mean1/λ and
variance1/λ2; thusE[Ỹ (t)] ∼ λt andVar[Ỹ (t)] ∼ λt, as expected sincẽY (t) would be
Poisson distributed with meanλtwhen there is no deadtime. In realistic cases where deadtime
loss becomes significant,µE is usually very small when compared tot, hence the Gaussian
approximation is often very good.

For the nonparalyzable deadtime model (type I model), it is easy to derive the asymptotic
mean and variance of̃Y (t) from the moments ofTE . After each recording of an event,
the “deadtime” when the system cannot record any incoming arrival is simplyτ . Thus
TE = T + τ , whereT is an exponentially distributed random variable with mean1/λ. Hence,
µE = 1/λ+τ =

1+λτ
λ

andσE = 1/λ. Thus from (1), the counting process for a nonparalyzable
(type I) system is asymptotically Gaussian distributed with:

E[Ỹ (t)] ∼
λt

1 + λτ
,Var[Ỹ (t)] ∼

λt

(1 + λτ)3
. (2)

‡ For type III deadtime, we define renewal as “return toE after recording an event”.
§ Almost since we have to consider photons arriving shortly before time 0 (ort) but renewal occurring shortly
after time 0 (ort). If one redefines the time of a recorded event to beτ after the photon arrives at the detector, then
the number of recorded events and the number of renewals during(0, t]would be exactly the same. For stationary
increment processes, which definition one adopts makes absolutely no difference in terms of the statistics of the
process.
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Figure 2. Mean and variance for nonparalyzable (type I) systems, witht = 1s, τ = 2µs.

Figure 2 shows the mean and variance of the counting process of systems affected by
nonparalyzable deadtime. Whenλτ > 0.1, the mean and variance of̃Y (t) differ by at least
20%.

For the other two deadtime models, if we try to deriveE[Y (t)] from E[TE ], it is much
more difficult to obtain a simple closed form expression because if we try to deriveE[TE ],
we get an infinite sum and it is not easy to obtain every term in this sum, let alone a closed-
form expression forE[TE ]. The variance ofTE is even more complicated. Therefore, in
the following section, we describe a new approach for deriving the moments of counting
processes.

2.2. Exact Mean and Variance of Counting Processes

We first consider a general counting processY whereY (t1, t2) denotes the number of recorded
events during the time interval(t1, t2] andY (t) is a shorthand forY (0, t). We define the
instantaneous rateγ : R → [0,∞) of the processY (t) as:

γ(s) , lim
δ→0
E[Y (s+ δ)− Y (s)]/δ, (3)

and the instantaneous second momentα : R → [0,∞) as:

α(s) , lim
δ→0
E[(Y (s+ δ)− Y (s))2]/δ. (4)

We also define the correlation functionβ : R2 → [0,∞) as:

β(s1, s2) , lim
δ1,δ2→0

E[(Y (s1 + δ1)− Y (s1))(Y (s2 + δ2)− Y (s2))]/(δ1δ2). (5)

We assume that the following regularity conditions hold‖

(i) γ andα are well-definedµ-almost everywhere, andβ is well definedµ2-almost
everywhere, andγ andβ are integrable with respect toµ andµ2 over any finite
interval and rectangle, respectively;

‖ µ andµ2 denote Lebesgue measures onR andR2 , respectively.
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(ii) E[Y (s, s + δ)]/δ and E[Y 2(s, s + δ)]/δ are uniformly bounded for alls and
δ ∈ (0, 1);

(iii) E[Y (s1, s1 + δ1)Y (s2, s2 + δ2)]/(δ1δ2) is uniformly bounded for alls1, s2, and
δ1, δ2 ∈ (0, 1) such that(s1, s1 + δ1) ∩ (s2, s2 + δ2) = ∅.

These assumptions hold for a wide variety of counting processes, including any homogeneous
Poisson process with finite intensity. Furthermore, for an arbitrary random processY , if
E[Y (s, s+δ)]/δ,E[Y 2(s, s+δ)]/δ, andE[Y (s1, s1+δ1)Y (s2, s2+δ2)]/(δ1δ2) are respectively
uniformly bounded above by those of a homogeneous Poisson process, then assumption (ii)
and (iii) hold forY . Specifically, if a random process results from some form of selection
from a Poisson process with bounded intensity, then assumptions (ii) and (iii) hold.

For analysis purposes, we artificially divide the time interval[0, t] into n segments of
lengthδ each,i.e., t = nδ. We have

Y (t) =

n−1∑
i=0

Y (iδ, (i+ 1)δ), (6)

E[Y (t)] =
n−1∑
i=0

E[Y (iδ, (i+ 1)δ)], (7)

=

∫
R

fδ(s)ds, (8)

where we define the following piecewise constant function:

fδ(s) ,

{
E[Y (jδ, (j + 1)δ)]/δ, if s ∈ (jδ, (j + 1)δ], 0 ≤ j ≤ n− 1
0, otherwise.

(9)

Sinceγ(t) is well-defined almost everywhere in the interval[0, t] andE[Y (s, s + δ)]/δ is
uniformly bounded, by the Lebesgue Dominated Convergence theorem (LDCT) [Bruckner,
Bruckner and Thomson],

lim
δ→0

∫
R

fδ(s)dµ(s) =

∫
R

lim
δ→0
fδ(s)dµ(s)

=

∫ t
0

γ(s)ds. (10)

Hence, we have the following simple general expression for the mean of the counting process
in terms of its instantaneous rate¶:

E[Y (t)] =

∫ t
0

γ(s)ds. (11)

We consider the second moment by a similar argument:

E[Y 2(t)] = E[(

n−1∑
i=0

Y (iδ, (i+ 1)δ))2]

¶ If E[Y (t)] is differentiable for allt, thenγ(t) = dE[Y (t)]
dt

, and (11) results from the fundamental theorem of
calculus. However,E[Y (s)Y (t)] is not everywhere differentiable even for very simple random processes,e.g.,
for the Poisson processN with intensityλ,E[N(s)N(t)] = λmin(s, t)+λ2st. So a similar argument involving
the fundamental theorem of calculus runs into difficulties for the second moment.
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=
n−1∑
i=0

E[Y 2(iδ, (i+ 1)δ))] +
n−1∑
i=0

n−1∑
j=0,j 6=i

E[Y (iδ, (i+ 1)δ)Y (jδ, (j + 1)δ)]

=
n−1∑
i=0

E[Y 2(iδ, (i+ 1)δ))]

+ 2

n−2∑
i=0

n−1∑
j=i+1

E[Y (iδ, (i+ 1)δ)Y (jδ, (j + 1)δ)]

=

∫
R

gδ(s)dµ(s) + 2

∫
R2

hδ(s1, s2)dµ2(s1, s2), (12)

where we define the following piecewise constant functions:

gδ(s) ,

{
E[Y 2(jδ, (j + 1)δ)]/δ, if s ∈ (jδ, (j + 1)δ] and0 ≤ j ≤ n− 1
0, otherwise,

(13)

and

hδ(s1, s2) ,




E[Y (iδ, (i+ 1)δ)Y (jδ, (j + 1)δ)]/δ2, if s1 ∈ (iδ, (i+ 1)δ],
s2 ∈ (jδ, (j + 1)δ],
0 ≤ i ≤ n− 2,
andi+ 1 ≤ j ≤ n− 1

0, otherwise.

(14)

Sinceβ is well-defined almost everywhere in[0, t]×[0, t] andE[Y (s1, s1+δ)Y (s2, s2+δ)]/δ2

is uniformly bounded, by LDCT and Fubini’s Theorem [Bruckner, Bruckner and Thomson],

lim
δ→0

∫
R2

hδ(s1, s2)dµ2(s1, s2) =

∫
R2

lim
δ→0
hδ(s1, s2)dµ2(s1, s2)

=

∫ t
0

∫ t
s1

β(s1, s2)ds2ds1

=

∫ t
0

∫ t
s2

β(s1, s2)ds1ds2. (15)

Similarly, one can show that

lim
δ→0

∫
R

gδ(s)dµ(s) =

∫ t
0

α(s)ds. (16)

Thus using (12), (15), and (16), we have the following general expression for the second
moment ofY (t):

E[Y 2(t)] =

∫ t
0

α(s)ds+ 2

∫ t
0

∫ t
s1

β(s1, s2)ds2ds1. (17)

In the context of counting processes with deadtime, which includes all random processes
considered in this paper, the process satisfies this additional assumption:

(iv) there exists a positiveδ0 such that∀δ ∈ (0, δ0), Y (s, s+ δ) ≤ 1.

If we pick δ0 < τ , then assumption (iv) holds. Forδ < δ0, since02 = 0 and12 = 1,

E[Y 2(s, s+ δ)] = E[Y (s, s+ δ)], (18)
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so

α(s) = γ(s). (19)

Thus we obtain the following corollary of (17) for random processes satisfying assumptions
(i) to (iv):

E[Y 2(t)] = E[Y (t)] + 2

∫ t
0

∫ t
s1

β(s1, s2)ds2ds1. (20)

Furthermore, ifY (t) has stationary increments, thenγ(s) is constant andβ(s1, s2) =
β(0, s2 − s1) and we can further simplify the results (11) and (20) to the following:

E[Y (t)] = γt (21)

E[Y 2(t)] = γt+ 2

∫ t
0

(t− s)β(0, s)ds. (22)

The above general approach used to find the second moment ofY (t) could be extended
to higher order moments. However, as the order gets higher, the expressions get more
complicated.

3. Single Photon Counting

3.1. Mean and Variance of Recorded Singles Counts, Model Type II

First we consider the paralyzable model in which if the waiting time for a photon arrival is
less thanτ , then this photon is not recorded. We derive the mean and variance ofY (t), the
number of recorded events from time 0 to timet. We observe thatY (t) inherits the stationary
increment property of the arrival processN(t). We first deriveE[Y (0, δ)], where we pick
δ < τ such that the number of recorded events during(0, δ] is either 0 or 1. LetT1 denote the
time of the first photon arrival after time 0; it is exponentially distributed. If there is an arrival
at T1 = s, 0 < s < δ, and there is no arrival betweens − τ ands (in fact, we only need to
make sure there is no arrival betweens− τ and 0,i.e.,N(0) −N(s − τ) = 0, since the first
arrival after 0 occurs ats), then there will be a recorded event during the interval(0, δ]. Thus

E[Y (0, δ)] = P[Y (0, δ) = 1]

=

∫ ∞
0

P[Y (0, δ) = 1|T1 = s]fT1(s)ds

=

∫ δ
0

P[no arrival during(s− τ, 0)|T1 = s]fT1(s)ds

=

∫ δ
0

P[N(s − τ, 0) = 0|T1 = s]fT1(s)ds

=

∫ δ
0

e−λ(τ−s)λe−λsds =

∫ δ
0

λe−λτds = λδe−λτ . (23)

Hence by the definition given in (3), the instantaneous rate ofY (t) is

γ = λe−λτ , (24)
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Figure 3. Mean and variance for paralyzable (type II) systems, witht = 1s, τ = 2µs.

and by (21), we easily obtain the following result (e.g., [Sorenson and Phelps]),

E[Y (t)] = λte−λτ , (25)

i.e., the recorded/arrival ratio for type II systems, denotedξ2, is

ξ2 ,
E[Y (t)]

E[N(t)]
= e−λτ . (26)

The variance ofY (t) for the type II model is (see Appendix A):

Var[Y (t)] = λte−λτ (1− (2λτ − λτ 2/t)e−λτ ). (27)

We can compute numerically thatmaxλτ (2λτe−λτ ) ≈ 0.74, henceVar[Y (t)] will always be
positive. To compare the variance and the mean, we note that

lim
t→∞

Var[Y (t)]

E[Y (t)]
= 1− 2λτe−λτ = 1− 2ξ2 log ξ2. (28)

Figure 3 shows the mean and variance of the singles count for a detector affected by deadtime
of type II. Since the mean and variance can differ greatly,Y (t) is not Poisson.

3.2. Mean and Variance of Recorded Singles Counts, Model Type III

Now we turn to the type of system described in [Engeland, Striker and Luig], in which if the
waiting time for a photon arrival is less thanτ , then neither this photon nor the previous photon
will be recorded. We again observe thatY (t) inherits the stationary increment property of the
arrival processN(t). We first deriveE[Y (0, δ)], where we pickδ < τ such that the number
of recorded events during(0, δ] is still either 0 or 1. Hence,

E[Y (0, δ)] = P[Y (0, δ) = 1]

=

∫ δ
0

P[Y (0, δ) = 1|T1 = s]fT1(s)ds

=

∫ δ
0

P[N(s − τ, 0) = 0]P[(s, s+ τ) = 0]fT1(s)ds
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=

∫ δ
0

e−λ(τ−s)e−λτλe−λsds =

∫ δ
0

λe−λ2τds = λδe−λ2τ . (29)

Hence for this system, the instantaneous rate as defined in (3) is

γ = λe−λ2τ , (30)

and by (21), the expected number of recorded events for a type III system is exactly:

E[Y (t)] = λte−λ2τ . (31)

The type III system was analyzed using approximations in [Engeland, Striker and Luig]. To
compare our exact result (31) with the approximate analysis presented in [Engeland, Striker
and Luig], we note that the mean waiting time between recorded events is:

µE = t/E[Y (t)] =
1

λ
eλ2τ (32)

=
1

λ
(1 + 2λτ + 2(λτ)2 +

4

3
(λτ)3 +

2

3
(λτ)4 +O(λτ)5). (33)

Comparing this exact expansion to the approximate mean waiting time derived in [Engeland,
Striker and Luig, eqn. 16], we find that the approximation in [Engeland, Striker and Luig] is
accurate to 2nd order.

The variance ofY (t) for the type III model is (see Appendix B):

Var[Y (t)] = λte−λ2τ + 2e−3λτ (λt− λτ − 1)

+e−4λτ (4λ2τ 2 − 4λ2tτ + 2− 2λt+ 4λτ). (34)

To compare the variance and the mean, we observe that

lim
t→∞

Var[Y (t)]

E[Y (t)]
= 1− 2(1 + 2λτ − eλτ )e−2λτ . (35)

To simplify this expression, we observe that whenλτ � 1, eλτ − 1 ≈ λτ , and

lim
t→∞

Var[Y (t)]

E[Y (t)]
≈ 1− 2λτe−2λτ = 1− ξ3 log ξ3, (36)

whereξ3 , E[Y (t)]/E[N(t)] = e−2λτ . Figure 4 shows the (exact) mean and variance of the
singles countY (t) for type III systems. AgainY (t) is not Poisson, but the difference between
the variance and the mean is much smaller than type I or type II systems.

4. Recorded Singles Counts by Block Detectors

In many photon counting systems, several detectors are grouped into a “block”; examples
include block PET detectors and Anger cameras. When a photon arrives at any detector in
the block, the whole block goes dead forτ , i.e., no detector in the block can record any
photon forτ . For analysis purposes, we can initially treat the block of detectors as a single
big detector. Letλ1, . . . , λl denote the incident photon arrival rates for each of thel detectors
in the block. LetYj(t) denote the number of events recorded by thejth detector, and letZ(t)
denote the total number of events recorded by all detectors in the block (Z =

∑l
j=1 Yj). We

have derived above the exact first and second moments ofZ(t) for detector blocks affected by
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Figure 4. Mean and variance for type III systems, witht = 1s, τ = 2µs.

type II and type III deadtime, and in each case, the mean and the variance ofZ(t) can differ
greatly. However, what is of greater interest in image reconstruction is the mean and variance
of the number of events recorded by each detector in the block. Given thatZ(t) events are
recorded by the entire block, the conditional distribution of the number of events recorded by
any individual detector is multinomial where the fraction of events allotted to thejth detector
is ηj , λj/λ. Thus from [Barrett and Swindell, p. 99],

E[Yj(t)] = ηjE[Z(t)] (37)

Var[Yj(t)] = ηj(1− ηj)E[Z(t)] + η
2
jVar[Z(t)]. (38)

We observe that the variance to mean ratio is
Var[Yj(t)]

E[Yj(t)]
= 1− ηj(1−Var[Z(t)]/E[Z(t)]) (39)

≥ 1− ηj . (40)

For a system with say, 64 detectors in a block,ηj ≈ 1/64 (assuming that the count ratesλj ’s
are nearly uniform), so from (40) the mean and the variance of the number of recorded events
by a single detector will differ by less than 2%, regardless of count rates and deadtime losses.
Furthermore, sinceE[Z(t)]must be quite large for deadtime to have a significant effect, when
ηj is small, the distribution ofYj(t) will be approximately Poisson by the usual binomial
argument. The only case where the variance to mean ratio is significantly less than 1 would
be whenηj is large (i.e. the count ratesλj ’s are very heterogeneous) andVar[Z(t)]/E[Z(t)] is
small (i.e., the total count rate

∑l
j=1 λj is large). In all other cases, the mean and the variance

would be approximately equal. However, thecovariancebetween the measurements recorded
by different elements within the block can be nonzero [Barrett and Swindell, p. 101]:

Cov(Yi(t), Yj(t)) = ηiηj(Var[Z(t)]− E[Z(t)]). (41)

Thus in the presence of deadtime, the assumption that the measurements are independent
(which is made ubiquitously in statistical reconstruction methods) is incorrect. However,
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whenηi andηj are small, so is the covariance between individual detector elements, so the
impact of this dependence may be small.

5. Count Rate Correction for System Type III

For a quantitatively accurate reconstruction, we must correct for the effect of deadtime to
avoid underestimation of source activity. For type III systems, Engelandet al [Engeland,
Striker and Luig] proposed the following correction formula,

λ̂ =
Y

t
(1 +

2Y

t
τ +
6Y

t2
τ 2), (42)

which they obtained by solving an approximate mean waiting time expression up to second
order inτ by means of the expansionλ = a+ bτ + cτ 2. We propose to estimate the true count
rate by solving numerically our exact expression (31),i.e., solve

Y

t
= λ̂e−2λ̂τ (43)

for λ̂ givenY andt. One could solve analytically the exact mean waiting time expression (32)
up to second order inτ , which yields exactly the same estimator as (42), but this estimator
does not solve (32) exactly. Figure 5 compares our new estimator (43) and the estimator
proposed in [Engeland, Striker and Luig]. It shows that our new estimator is unbiased even at
very high count rates. The error bars are not shown in the figure as they are smaller than the
plotting symbols. Whent is large, the standard deviation is very small when compared to the
mean ofY (t), thus these estimates have extremely small standard deviations. By solving (43)
numerically, we obtain essentially perfect deadtime correction for a type III system.

6. Discussion

We have analyzed the mean and variance of the recorded singles counts for three distinct
models of deadtime. In all three cases, the variance can be significantly less than the mean,
indicating that the counting statistics are not Poisson in the presence of deadtime. Deadtime
losses can be significant in practical SPECT and PET systems, particularly in fully 3D PET
imaging and in SPECT transmission measurements with a scanning line source. The count
rates for a detector block (PET) or detector zone (SPECT) can be significant enough to yield
non-Poisson statistics for the total counts recorded by the block or zone. However, in the
practical situations that we are aware of, the count rates for individual detector elements within
the block or zone are usually not high enough to correspond to significant differences between
the mean and the variance. As we have shown in Section 4, even though the variance of the
counts recorded by a block can be significantly lower than the mean, the variance of the counts
recorded by an individual detector within a block is nevertheless quite close to the mean and
likely to be well approximated by a Poisson distribution. Furthermore, the correlation between
individual detectors will be fairly small. Thus it appears that statistical image reconstruction
based on Poisson models, while certainly not optimal, should be adequate in practice even
under fairly large deadtime losses, provided the deadtime loss factor is included in the system
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Figure 5. 20 realizations, witht = 10s, τ = 2µs.

matrix. We must add one caveat to this conclusion however. Although pairs of individual
detectors have small correlation, the correlation coefficient between thesumof one group of
detectors and thesumof all other detectors in a block may not be small in the presence of
deadtime. The effect of such correlations on image reconstruction algorithms is unknown
and may deserve further investigation. Another natural extension of this work would be to
consider systems with random resolving timesτ . As long as the minimum resolving time is
greater than zero, assumption (iv) would still hold and the derivations would be similar.

7. Appendix A

We derive the variance ofY (t) for deadtime model II, the paralyzable model. We first derive
β(0, s). We consider two cases.

CASE 1: 0 < s < τ
We pickδ such that0 < δ < s < s + δ < τ . Two recorded events cannot correspond to

photons that arrived withinτ of each other. Hence for0 < s < τ , E[Y (0, δ)Y (s, s+ δ)] = 0,
and by the definition given in (3):β(0, s) = 0.

CASE 2: τ < s < t
We pickδ such thatδ < τ ands+δ < t andδ < s−τ . Fors > τ , Y (0, δ) andY (s, s+δ)

are statistically independent, since the event “there is an arrival during(0, δ]” is statistically
independent from the event “there is an arrival during(s, s + δ]”, because they are at leastτ
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apart in time+. Hence by (23),

E[Y (0, δ)Y (s, s+ δ)] = E2[Y (0, δ)] = (λδe−λτ )2, (44)

and

β(0, s) = (λe−λτ )2. (45)

Combining the above two cases and using (22) yields

E[Y 2(t)] = γt+ 2

∫ t
τ

(t− s)(λe−λτ )2ds

= λte−λτ + [(t− τ)(λe−λτ )]2. (46)

UsingVar[Y (t)] = E[Y 2(t)]−E2[Y (t)], with (25) and (46), and simplifying yields (27).

8. Appendix B

We derive the variance ofY (t) for the type III deadtime model. Again, we first derive the
correlation functionβ(0, s). This derivation is more complicated than the type II model, due
to the fact that if two photons arrive at timess1 ands2 respectively andτ < s2 − s1 < 2τ ,
then(s1 − τ, s1 + τ) ∩ (s2 − τ, s2 + τ) 6= ∅ andY (s1, s1 + δ) andY (s2, s2 + δ) would both
depend on what happens during(s2 − τ, s1 + τ).

CASE 1: 0 < s < τ
We pickδ such that0 < δ < s < s + δ < τ . Two recorded events cannot correspond to

photons that arrived withinτ of each other. Hence for0 < s < τ , E[Y (0, δ)Y (s, s+ δ)] = 0,
andβ(0, s) = 0.

CASE 2: τ < s < 2τ
We pickδ such thats + δ < 2τ (henceδ < τ ) andδ < s − τ . As discussed above, for

τ < s < 2τ , Y (0, δ) andY (s, s + δ) will be statistically dependent. If there is exactly one
photon arrival each during(0, δ] and(s, s+ δ] at times1 ands2 respectively, then both events
will be recorded if and only if there is no arrival during(s1 − τ, s1), (s1, s2), or (s2, s2 + τ ]
(sinceτ < s2 − s1 < 2τ , (s1, s1 + τ ] ∪ (s2 − τ, s2) = (s1, s2).) Hence,

E[Y (0, δ)Y (s, s+ δ)]

= P[Y (0, δ) = 1, Y (s, s+ δ) = 1]

=

∫ δ
0

∫ δ
0

P[no arrival during(s1 − τ, 0), or (s1, s), or (s2, s2 + τ ]]

fT1(s1)fT1(s2)ds1ds2

=

∫ δ
0

∫ δ
0

e−λ(τ−s1)e−λ(s−s1)e−λτλe−λs1λe−λs2ds1ds2

= e−λ2τλ2e−λs
∫ δ
0

∫ δ
0

eλs1e−λs2ds1ds2

= (eλδ − 1)2e−λ(2τ+s+δ), (47)
+ If there is one arrival each during(0, δ], (s/2, s/2 + δ], and(s, s+ δ], thenY (0, δ)Y (s, s+ δ) = 0; but loss
of the photon that arrived during(s, s+ δ] is due to the arrival during(s/2, s/2+ δ]; whether there is any arrival
during(0, δ] is independent of whether the arrival during(s, s+ δ] is recorded.
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and

β(0, s) = λ2e−λ(2τ+s). (48)

CASE 3: 2τ < s < t
We pick δ such thatδ < 2τ ands + δ < t andδ < s − 2τ . For 2τ < s < t, Y (0, δ)

andY (s, s+ δ) are statistically independent, since the event “there is an arrival during(0, δ]”
is statistically independent from the event “there is an arrival during(s, s+ δ]”, because they
are at least2τ apart in time. Thus

E[Y (0, δ)Y (s, s+ δ)] = E2[Y (0, δ)] = (λδe−λ2τ )2, (49)

and

β(0, s) = (λe−λ2τ )2. (50)

Combining the above three cases and using (22) yields

E[Y 2(t)] = γt+ 2

∫ 2τ
τ

(t− s)λ2e−λ(2τ+s)ds+ 2

∫ t
2τ

(t− s)(λe−λ2τ )2ds

= λte−λ2τ + 2e−4λτ (1− λt+ 2λτ) + 2e−3λτ (λt− λτ − 1)

+ [(t− 2τ)(λe−λ2τ )]2. (51)

Simple algebra leads to (34).

9. Appendix C

Due to the decay of an isotope photon source, the photon arrival process is not exactly
homogeneous. In medical imaging, the arrival rates are inhomogeneous due to radio-tracer
dynamics. In this section, we deriveE[Y (t)] for paralyzable deadtime model∗, assuming only
that the instantaneous photon arrival rateλ(t) is continuous. This relaxes the assumption made
in Section 2 thatλ is constant. For an inhomogeneous process,E[Y (s, s+δ)] 6= E[Y (0, δ)] in
general. First we observe that the waiting time for the first photon arrival after times, denoted
T1, has the following distribution:

FT1(r) = P[T1 ≤ r] = 1− P[T1 > r] = 1− P[N(s, r) = 0]

= 1− e−
∫ r
s λ(q)dq . (52)

Hence forr > s,

fT1(r) =
d

dr
FT1(r) = λ(r)e

−
∫ r
s
λ(q)dq . (53)

For0 < δ < τ , we have:

E[Y (s, s+ δ)] = P[Y (s, s+ δ) = 1]

=

∫ s+δ
s

P[Y (s, s+ δ) = 1|T1 = r]fT1(r)dr

=

∫ s+δ
s

P[N(r − τ, s) = 0]fT1(r)dr

∗ Extension to the type III deadtime model is straightforward.
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=

∫ s+δ
s

e−
∫ s
r−τ λ(q1)dq1λ(r)e−

∫ r
s
λ(q2)dq2dr

=

∫ s+δ
s

λ(r)e−
∫ r
r−τ λ(q)dqdr. (54)

Sinceλ is continuous, ande−
∫ r
r−τ λ(q)dq is continuous inr, we conclude:

γ(s) = λ(s)e−
∫ s
s−τ λ(q)dq . (55)

Hence]

E[Y (t)] =

∫ t
0

λ(s)e−
∫ s
s−τ λ(q)dqds. (56)

If τ is small relative to variations inλ, then
∫ s
s−τ
λ(q)dq ≈ λ(s)τ , so

E[Y (t)] ≈

∫ t
0

λ(s)e−λ(s)τds. (57)

This approximation can be applied to other deadtime models as well. Similarly, the second
moment ofY is:

E[Y 2(t)] = E[Y (t)] + 2

∫ t
0

∫ t
s1+τ

γ(s1)γ(s2)ds2ds1. (58)
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