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ABSTRACT

Statistical Image Reconstruction Algorithms Using Paraboloidal

Surrogates for PET Transmission Scans

by

Hakan Erdoğan

Chair: Jeffrey A. Fessler

Positron Emission Tomography (PET) is a diagnostic imaging tool that provides

images of radioactive substances injected into the body to trace biological functions.

The radioactive substance emits a positron which annihilates with an electron to

produce two 511 keV photons traveling in approximately opposite directions to be

coincidentally detected by two detectors. Many photons are absorbed or scattered,

reducing the number of detected emission events.

Attenuation correction is crucial for quantitatively accurate PET reconstructions.

PET transmission scans are performed to estimate attenuation parameters which

are in turn used to correct the emission scans for attenuation effects. The noise in

estimating the attenuation parameters propagates to the emission images affecting

their quality and quantitative correctness. Thus, attenuation image reconstruction is

extremely important in PET.

Conventional methods of attenuation correction are suboptimal and ignore the

Poisson nature of the data. We propose to use penalized likelihood image reconstruc-

tion techniques for transmission scans. Current algorithms for transmission tomog-

raphy have two important problems: 1) they are not guaranteed to converge, 2) if

they converge, the convergence is slow. We develop new fast and monotonic opti-



mization algorithms for penalized likelihood image reconstruction based on a novel

paraboloidal surrogates principle. We present results showing the speed of the new

optimization algorithms as compared to previous ones. We apply the algorithms to

PET data obtained from an anthropomorphic thorax phantom and real patient data.

A transmission scan performed after the patient is injected is called a post-

injection transmission scan. Post-injection transmission scans are desirable since the

patient throughput is increased and motion artifacts are reduced as compared to pre-

injection scans. However, there are emission counts contaminating the measurements.

We include emission contamination in the post-injection transmission measurement

statistical model and obtain better images as compared to conventional subtraction

based approaches. We also present a joint estimation technique to estimate attenua-

tion and emission images simultaneously from transmission and emission scans.

We analyze noise propagation from transmission scans to emission images for some

sequential image reconstruction methods. The results show that transmission noise

affects emission image quality heavily, especially when short transmission scans are

utilized.
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B.1 Plot of q̇(l; lc) and ḣ(l) for optimum curvature. . . . . . . . . . . . . 156

xi



LIST OF APPENDICES

APPENDIX

A Proof of Maximum Curvature . . . . . . . . . . . . . . . . . . . . . . 151

B Proof of Optimum Curvature . . . . . . . . . . . . . . . . . . . . . . 155

xii



CHAPTER 1

Introduction

1.1 Motivation

Computed tomography is the generic name given to the class of non-invasive

imaging techniques in which one uses line integral measurements through objects

to reconstruct a three dimensional image of a parameter of interest. Measurements

are obtained by detecting radiations from radiating sources. Possible sources include

electromagnetic radiation ranging from microwaves to high energy X-rays and a wide

range of acoustic waves. Computed tomography is mostly used for diagnostic medical

imaging. For example in X-ray CT, X-ray transmission sources are used to obtain

attenuated measurements and this data is used to reconstruct anatomical images of

the attenuation map of the patient.

Emission Computed Tomography is a medical imaging technique that yields func-

tional information about physiological processes as opposed to X-ray CT which pro-

vides anatomical images. In emission tomography, radiating sources are injected

into the body. Single photon emission computed tomography (SPECT) and positron

emission tomography (PET) are two emission tomography modalities. In SPECT,

the radioactive nucleus radiates a single photon and these photons are detected by

collimated detectors. We focus on PET in this thesis.

In positron emission tomography (PET), a chemical compound labeled with a

positron emitting radioisotope is injected into the bloodstream of the patient. The

1



purpose is to obtain an image of the concentration of that chemical compound which

is related to a biological function in the patient body. The radiotracer nucleus emits

a positron (positively charged electron) to change from a metastable state to a stable

state. The emitted positron annihilates with a nearby electron to form a pair of

511 keV photons propagating in opposite directions. When a pair of photons are

detected almost simultaneously outside the subject, it is known that a positron-

electron annihilation took place in the line joining two detectors. This simultaneous

detection is termed coincidence detection. Each coincidence detection increments a

counter that represents the line integral specified by two detectors. After a certain

scan time, line integral measurements of the radioisotope density is obtained.

However, all annihilations that result in a photon pair heading towards two de-

tectors are not detected. Often, one or both of the photons get scattered or absorbed

by the patient body resulting in no detection. The survival probability of the annihi-

lation event is determined by the length and the type of the tissue that the photons

traverse. This effect is called attenuation. Attenuation is different for different tissue

types, hence the measurements should be compensated for attenuation for each ray

(or line integral). According to Beer’s law, the survival probability of a photon going

through a uniform medium can be determined by

α = e−µL,

where µ is the linear attenuation coefficient of the medium and L is the length.

Obtaining a continuous linear attenuation coefficient image (attenuation map for

short) is enough to determine the survival probabilities for each line integral (or ray)

of PET emission measurements.

A good way to estimate attenuation is to perform a “transmission scan” with an

outside radiating source before or after the radiotracer is injected. Ring or rod sources

that contain long half life positron emitters are used in PET transmission scans.

The attenuation effects on the final emission image quality are particularly severe

in thorax and abdomen imaging where the survival probability of photon pairs can

be as low as 2%. There are potential new clinical applications for creating PET
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images of the thorax, such as detection of breast cancer and lung tumors. Hence, the

improvement of attenuation correction methods is very important.

If the noise level is negligibly small, Radon transform and Fourier slice theorem

can be used to reconstruct images from projections. The highly accepted method

that is based on the two principles mentioned above is the analytical method called

filtered backprojection (FBP). FBP can be used to reconstruct emission images from

emission scans and attenuation maps from transmission scans. However, in PET

the statistical variability of the measurements is high because of the count limited

nature of the detection process. Radioisotope dosage cannot exceed a certain level

for safety and PET detector system has count-rate limitations for reliable detection

of events. In addition, long scan times may also be impractical especially for whole

body and dynamic PET studies. The lower the counts in the data the lower the

signal to noise ratio for the measurements and the higher the percent variability. FBP

ignores the counting noise present in the data. Especially for low count scans, FBP

yields unacceptable images with streak artifacts. FBP treats all the measurements

equally even though they all have different noise levels. Transmission and emission

scan measurements are well modeled as Poisson random variables. Statistical image

reconstruction methods use this information to reconstruct better images. Moreover,

the measurements usually have to be compensated for factors like scatter, randoms,

detector efficiencies, deadtime and attenuation. These factors themselves need to be

estimated and the estimates are mostly noisy. Conventional FBP based methods use

simple processing such as subtraction and multiplication to correct for these factors

which might result in increased error and noise in the data. Decreasing the cut-off

frequency in the filter of FBP will reduce the amount of the noise, but it results in

a loss of resolution. Statistical methods include these factors in the measurement

model. Some of these factors such as randoms and scatter can also be estimated by

statistical means to reduce noise in them [84].

Statistical image reconstruction methods include maximum likelihood (ML) and

penalized likelihood (PL) estimation. PL methods can also be cast as Bayesian or

maximum a posteriori probability (MAP) estimation with Gibbs Markov random field
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(MRF) priors. A fundamental problem in statistical image reconstruction algorithms

is the excessive computational cost. Since no closed form solutions are available,

iterative algorithms are employed. Even though the computational power of micro-

processors is increasing, there is still a need of reduction in computation time for these

methods to be used in commercially available scanners. Currently, some scanners ship

with statistical image reconstruction for emission scans, but attenuation correction is

still performed using conventional methods.

The benefits of using statistical methods to reconstruct emission images have

been demonstrated clearly in the literature, e.g. [85, 47]. Attenuation maps can also

be estimated using statistical methods, however using statistical methods for the

transmission case has not been studied as extensively as the emission case. We focus

on the transmission problem in this thesis.

The PL formulation regularizes the ML problem by including a roughness penalty

term in the objective function. The ML problem can be considered a special case of

the PL problem (by setting the penalty to zero). Many algorithms for ML and PL

reconstruction of emission and attenuation images have been proposed.

In the first part of this thesis, we develop new fast and monotonic algorithms for

PL reconstruction of attenuation maps from transmission scans. The statistical model

includes background events and nonnegativity constraints can be enforced easily. The

algorithms are based on a notion we call “paraboloidal surrogates”. This notion leads

to many fast and/or monotonic algorithms which are further explored in chapters 4

and 5.

Conventionally, attenuation correction factors (ACFs) are computed from a trans-

mission scan that precedes the radiotracer injection, thereby increasing total scan

time. Reducing the scan time is crucial to increase the patient throughput and to

make attenuation corrected whole body PET scans possible. For this purpose, post-

injection measurements have been proposed that use rotating rod sources and sino-

gram windowing to acquire transmission scans with some emission contamination.

Post-injection scans also eliminate the problem of misregistration between emission

and transmission reconstructions. Simultaneous emission/transmission (SET) scans
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are also possible using sinogram windowing.

In the second part of this thesis, we focus on post-injection transmission scans.

Conventional methods of reconstruction used in post-injection scans are suboptimal.

Simple subtraction of emission data from the transmission sinogram and FBP recon-

struction of emission image ignore the Poisson nature of the measured data. Although

these methods give satisfactory results for brain scans [21], they perform much worse

in the thorax where attenuation is more nonuniform and its correction is more impor-

tant. We present new methods of image reconstruction which include the emission

contamination in the statistical model. Various image reconstruction methods based

on sequential estimation of transmission and emission images as well as joint estima-

tion of both parameters are explored.

We also analyze the noise properties of the reconstructed emission image for post-

injection transmission scenario by using approximations to predict the variance of

the total uptake in a region of interest in the emission image for conventional and

some statistical methods introduced. Previous studies on this problem were based

on noise equivalent counts (NEC) criteria which only considered the conventional

image reconstruction method. Our approximations separate the effects of emission

and transmission scans on the emission image variance. This separation enables us

to optimize scan times for emission and transmission scans under a total scan time

constraint that would minimize the variance in a region of interest.

The goals of this research can be summarized as follows:

• Develop a framework of algorithms based on a new paraboloidal surrogates idea.

• Using the paraboloidal surrogates develop new fast and monotonic algorithms

for PL image reconstruction in transmission tomography.

• Develop new statistical models, techniques and algorithms for the post-injection

transmission scenario in PET scans.

• Analyze the noise properties of the reconstructed emission images, particularly

to optimize the scan times of transmission and emission scans under a total

scan time constraint.
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1.2 Background and Significance

PET was introduced in 1970’s [93, 109] as a novel tomographic imaging method

based on the coincidence detection of photon couples generated by radioactive decay

from radiotracers distributed in the human body. Image reconstruction was done

using filtered backprojection (FBP) as it was done in X-ray CT. High counting noise

in PET caused poor quality and streak artifacts in images reconstructed by FBP.

Initially, PET was used mostly for brain scans and attenuation correction was

done by calculating the attenuation correction factors (ACFs) assuming the head as

an elliptic region with a constant attenuation coefficient of soft tissue inside [58].

However, this approach is not accurate enough for thorax scans, due to the nonuni-

form attenuation properties of bone, lungs and soft tissue. Thus, most PET centers

have adopted the measured attenuation correction method, in which one precedes

the emission scan with a transmission scan that measures the unique attenuation

characteristics of each patient for each slice of interest [61].

The conventional method of attenuation correction in PET using measured trans-

mission scans consists of two steps: first compute the attenuation correction factors

(ACFs) by smoothing the ratio of the blank scan to the transmission scan data, then

multiply the emission measurements by the ACFs for each ray. Therefore, no at-

tenuation map reconstruction is needed. However, it is advantageous to reconstruct

attenuation maps and reproject them to get ACFs for improved noise performance1

[79], for anatomical localization [1] and for reprojection in fully 3D PET studies [116].

Conventionally, to obtain the attenuation map, one first divides the blank scan mea-

surements by transmission measurements to get a noisy estimate of the ACFs. After

division, the logarithm of the ratio is taken to obtain line integrals of the attenuation

map. Next, one applies the FBP method to the logarithmic data to reconstruct the

attenuation map. This approach yields positively biased estimates of the attenuation

map when the transmission counts are small [35]. After possibly some processing in

1Simple reconstruction by FBP would yield the same results as the conventional method [88].
Some processing in the image domain such as segmentation or statistical methods of image recon-
struction should be employed for better noise performance.
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the image domain (like segmentation), reconstructed attenuation maps are usually

reprojected to obtain line integrals and ACFs in the sinogram domain. Other ap-

proaches to reconstruct attenuation maps include penalized weighted least squares

(PWLS) and penalized likelihood (PL) methods. PWLS reconstructs negatively bi-

ased images for low-count scans [35]. PL methods are preferable because they avoid

the systematic bias problem and due to the algorithms we present in this thesis, the

computational requirements are almost the same as the PWLS method. Now, we

review the statistical image reconstruction algorithms for transmission and emission

scans.

In early 1980’s, Shepp and Vardi [100] and Lange and Carson [70] published

seminal papers on image reconstruction in PET using a statistical model for data

and maximizing the resulting likelihood using the expectation maximization (EM)

algorithm which was introduced in 1977 [26]. Lange and Carson [70] discussed both

the transmission and emission cases. The EM algorithm resulted in a closed form

solution for the M-step in the emission case. However, for the transmission case, the

M-step did not yield a closed form solution. Lange and Carson [70] suggested an

approximate update for the M-step.

The algorithms presented in [100, 70] have some limitations: (1) the model does

not fully account for the factors such as randoms and scatter, (2) due to ill-conditioned

nature of the ML problem, the maximizing images are unacceptably noisy, and (3)

convergence of the EM algorithm is very slow.

The algorithm in [70] was based on a simplified statistical model in which only

attenuation and detector efficiencies could be included. Later, a randoms term was

included in the statistical model [94] and the problem of scatter was addressed in the

context of iterative image reconstruction in PET [22, 90]. In this thesis, we include

the background terms in our transmission and emission models. These background

terms contain randoms, scatter, cosmic radiation and any other extra term that is

not directly due to a true annihilation. Nonlinear Bayesian estimation of randoms

and scatter terms was discussed in [84, 85]. We focus on the algorithms based on

the general measurement model and assume the factors other than attenuation were

7



estimated or measured appropriately in both the transmission and emission cases.

Maximum likelihood problem in PET is ill-conditioned, i.e. small changes in the

data result in big changes in the reconstructed images. Thus, the maximizing images

are very noisy. The EM algorithm is usually initialized with a uniform image and af-

ter a certain number of iterations, the image quality starts to deteriorate. Methods to

overcome the noise problem include: stopping rules to stop iterations before conver-

gence [118, 55], regularization using sieves [104], adding smoothing steps in between

iterations [101], penalized weighted least squares [33], separable (nonsmoothness) pri-

ors [69, 74] and penalized-likelihood (PL) or maximum a posteriori probability (MAP)

or Bayesian methods with smoothness priors [48, 54]. Studies [9] have shown that the

PL methods outperform sieves. In this thesis, we focus on PL image reconstruction,

but the algorithms we introduce are also applicable to the ML problem by setting a

parameter to zero. The PL formulation also enables one to include other prior or side

information (e.g. from a registered MRI scan) about the image in the model [115].

The roughness penalty in the PL formulation is chosen in general to encourage

local smoothness (discourage roughness) in the image. Quadratic penalties result in

a globally blurred image. The edges in the image are also blurred the same amount

as the homogenous regions. Nonquadratic penalties may be designed to encourage

smoothness within homogenous regions but allow relatively sharp edges. For trans-

mission scans, nonquadratic penalties are preferred because attenuation maps are

generally composed of large homogenous regions with sharp boundaries.

The convergence rate of the EM algorithm [70] is not satisfactory for either the

transmission or emission cases (it is worse for the transmission case [89]). For the

PL formulation, because of the coupling among neighboring pixels introduced by the

penalty term, the maximization step (M-step) of the EM algorithm has no closed

form solution even in the emission case. There have been many studies to improve

the convergence rate as well as modify the EM algorithm to handle the penalty term.

The following approaches were used for the emission problem. Green’s one step late

(OSL) [51, 52] algorithm replaces the gradient of the penalty term with values from

the previous iteration to decouple the updates. However, this modification of the EM
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algorithm is not guaranteed to converge to the true optimizer. Another approach is

called generalized EM (GEM) which replaces the M-step with an updating procedure

which guarantees monotonic changes in the objective function at each iteration [54].

If the penalty term is convex, another approach by De Pierro [24] uses convexity

to find separable surrogates for the penalty part which decouples the M-step and

yields a closed form update. Alternatively, by using a separate hidden data space for

each parameter, the SAGE algorithm [44, 45] intrinsically uncouples the parameter

updates and uses less informative complete data spaces to improve convergence speed.

These algorithms are provably convergent algorithms for emission tomography.

The least informative data space is the measurement space itself. Thus, some

researchers worked on optimizing the objective function directly instead of using the

EM formalism. This approach yielded faster algorithms than the ones based on EM

algorithm. Sauer and Bouman [98, 6] introduced the iterative coordinate descent

(CD) method which optimizes the objective function by updating each parameter

sequentially. This method also goes by other names such as iterated conditional

modes (ICM) for MAP segmentation [2] and Gauss-Seidel (GS) for linear systems

[123]. This method easily accommodates nonquadratic penalties and nonnegativity

constraints. The optimization at each step is reduced to one dimensional function

optimization which is simpler than multidimensional functions. Usually, coordinate

descent is implemented with a Newton Raphson update step for each parameter. This

implementation is not guaranteed to be monotonic (it is locally convergent for convex

objective functions). Coordinate descent optimization is applicable to both emission

and transmission tomography. Mumcuoglu [84, 85] uses conjugate gradient algorithms

to optimize the objective function directly for both emission and transmission cases.

It is harder to impose nonnegativity constraints with that method. For the transmis-

sion PET, attempts at developing an EM algorithm have not resulted in attractive

closed form updates [70]. Approximate EM algorithms were proposed [7, 89], but

the computational cost remains high. Lange derived an algorithm for transmission

tomography called the convex algorithm [71] which simultaneously updates all the

parameters and is faster than the transmission EM algorithm [70].
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Although the coordinate descent algorithm is very fast, it has two drawbacks.

The algorithm requires column access to the system matrix and it is not paralleliz-

able. The first problem kept it from being widely used in the medical imaging com-

munity because of implementation difficulty. The EM method and simultaneous

update algorithms are more popular because they can be implemented using pro-

jector/backprojector subroutines without precomputing and column accessing the

system matrix.

It is possible to parallelize the coordinate descent by updating a group of pixels

at a time instead of a single one [42, 99]. This approach is called grouped coordinate

descent (GD) [42, 38]. In the case of transmission tomography, updating groups of

pixels also reduces the amount of computation due to many exponentiations. Thus,

the GD [42] method is also much faster even in a serial computer as compared to CD.

However, the GD method is also more complicated to implement.

Another acceleration of emission EM was achieved by updating the parameters

by using a subset of the data at a time [60]. These subsets are ordered and cover all

the projection space. The algorithm goes through each subset to finish an iteration.

This approach leads to a fast algorithm called ordered subsets EM (OSEM) [60].

However, the OSEM algorithm does not converge and it eventually cycles through

points. Byrne introduced a modification of OSEM called RBI-EM [11, 12] which is

convergent in the case of unrealistic consistent data. By adding appropriate relax-

ation parameters to OSEM, Browne and De Pierro [8] achieved a fast and convergent

algorithm called RAMLA for the ML problem in the emission case. Manglos [77]

applied the ordered subsets idea to transmission EM algorithm for the ML problem.

We apply the ordered subsets idea to a new simultaneous update algorithm for PL

image reconstruction called separable paraboloidal surrogates (SPS) which is much

faster than the transmission EM algorithm.

When the background terms are included in the model, the PL objective function

for the transmission problem is not convex, whereas it is convex for the emission case.

So, this makes it harder to find a convergent algorithm for the transmission problem.

In this thesis, we present algorithms for transmission tomography that are guaranteed
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to be monotonic even with nonzero background events.

Earlier transmission scans were performed pre-injection. After the transmission

scan is performed, the patient was injected with the radiotracer. After a long time,

up to 50 minutes for some studies, the emission scan was performed. The waiting

period is required for the radiotracer to get distributed to places where it will be

metabolised in the body. Only after this waiting period could one perform the emis-

sion scan. There are some problems with this approach, such as unnecessary idle time

in the scanner and artifacts due to motion of the patient while waiting. To avoid these

problems, one can perform the transmission scan after injection right before or after

the emission scan is done. These scans are called post-injection transmission scans

[14, 21]. The drawback is that post-injection transmission scans are contaminated

by emission counts. Conventional method of dealing with emission contamination is

either to ignore it or subtract the scaled emission data (acquired separately) from

the transmission scan [14]. It was also suggested that emission contamination can be

estimated by performing a transmission scan with sinogram windowing but without

the rods present [103]. Some researchers used the “other” sinogram window to simul-

taneously acquire emission data with the transmission data leading to simultaneous

transmission-emission scans [114, 78] and some utilized this simultaneous emission

scan to estimate emission contamination [57]. The use of transmission rod sources

and sinogram windowing of the measurements reduce the emission contamination

considerably to a much smaller percentage as compared to the case when ring sources

are used. We focus on the post-injection transmission scans and discuss ways of

correcting for the emission contamination. Both conventional and various statistical

methods are explored.

Noise analysis for conventional image reconstruction in emission tomography relies

mostly on noise equivalent counts (NEC) concept [108]. In count limited tomography,

variance of the prompt data is equal to the mean. So, the data counts itself is an

estimate of the variance. In the conventional method, corrections to the sinogram

data often yield changes in the variance of the data. The changed variance can be

estimated by NEC easily. Stearns [107] improved this analysis to include the noise
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propagation from transmission scans to emission images. This approach was used

to obtain scan time optimization for transmission and emission scans [3]. On the

other hand, Fessler obtained approximations for the mean and variance of the images

reconstructed by penalized likelihood methods [37]. We use these approximations

and others to analyze the noise properties of emission and attenuation images where

attenuation is reconstructed by conventional or PL methods and emission images

are reconstructed by FBP. We evaluate our approximations by comparing them with

empirical results.

1.3 Organization of Dissertation

The dissertation is organized as follows. In Chapter 2, the physics of a PET imag-

ing system is described and a realistic model for the measured data is introduced

for pre-injection transmission and emission scans. Different factors in the model are

explained and estimation of some of the factors is explained briefly. Chapter 3 de-

scribes statistical image reconstruction methods such as maximum likelihood (ML)

and penalized likelihood (PL). A general form of regularizing penalty is given and

resolution properties are explained briefly. Some basic algorithms for ML and PL are

introduced in this chapter as well. In Chapter 4, a new fast and monotonic algorithm

called paraboloidal surrogates coordinate descent (PSCD) for transmission tomogra-

phy PL image reconstruction is developed. Results illustrating speed and convergence

of new algorithms are presented. Chapter 5 introduces a new simultaneous update

algorithm and its ordered subsets version. Ordered subsets is shown to improve the

speed of the algorithm. Phantom and real patient data are processed and recon-

structed images are presented. Chapter 6 is devoted to post-injection transmission

scans and image reconstruction techniques for it. Sequential reconstruction of trans-

mission and emission data with conventional and statistical methods are described.

A joint estimation approach is also developed in this chapter. Some preliminary

results are shown. Next, Chapter 7 develops new variance prediction formulas for

post-injection scans for some image reconstruction methods. Results comparing pre-
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dicted and empirical variances are shown. Finally, Chapter 8 contains conclusions

and directions for future work related to this research.

1.4 Original Contributions

The original contributions made by this research are summarized in the following.

• A novel image reconstruction method called Paraboloidal Surrogates (PS) is

presented. This method gives a framework for designing algorithms for a gen-

eral class of objective functions. By simplifying the PL image reconstruction

problem at each iteration, PS enables faster algorithms to be developed.

• An optimum curvature is developed for the paraboloidal surrogate which would

result in the fastest algorithm while preserving monotonicity.

• A new sequential update algorithm based on PS is presented (PSCD).

• A new simultaneous update algorithm based on PS is presented (SPS).

• Ordered subsets acceleration of SPS is presented (OSTR).

• New techniques for sequential reconstruction of attenuation and emission images

are presented for a generalized model of post-injection transmission scans.

• Joint estimation of attenuation and emission images from a joint objective func-

tion is presented.

• Variance predictions for some sequential post-injection transmission and emis-

sion image reconstruction techniques are developed.
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CHAPTER 2

Physics of PET and Statistical Modeling

Positron emission tomography (PET) is a diagnostic method that creates 3D to-

mographic images of the distribution of positron emitting radionuclides in the human

body. The radiolabeled compounds used include substrates, ligands, drugs, antibod-

ies, neurotransmitters and other biomolecules that are tracers for specific biological

processes. Thus, the resulting PET images can be considered images of these biochem-

ical or physiological processes. These images are often called “functional images”.

PET has been used extensively in neurological research for brain activation studies,

and there is a growing interest in the clinic for it, especially for detecting and staging

of cancer. The major disadvantage of PET is its high cost and requirement of an

on-site cyclotron to produce the radiotracers.

PET image reconstruction is based on tomography. We first describe tomography

in general terms and move on to PET measurement system after that.

2.1 Computed Tomography and FBP

The term tomography refers to the process of generating images of an object

from its projections. In 2D planar tomography, line integrals along many angles

and radial positions are gathered and the original image is reconstructed from the

projection data. A line integral (or ray) can be characterized by its angle and radial

position. A set of rays at a fixed angle is termed a projection. The process of
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transforming a continuous 2D function into its projections (sets of line integrals) is

known as the Radon transform [63]. In practice, due to the limitations of the detection

systems, the projections are performed for a finite number of angles and at each

angle the measurements are “binned” into a finite number of bins with different radial

positions. The discretized projections are illustrated in Figure 2.1. The measurements

are traditionally organized in a 2D array form where the projection angles form the

vertical axis and radial bin positions form the horizontal axis. This “array” is called

the sinogram, since a single point source in the original image approximately traces

a sine wave in the projection domain.

For noiseless and continuous data, the Fourier slice theorem gives a relation be-

tween the Fourier transform of the projections and 2D Fourier transform of the image.

This relation leads to a well known analytic image reconstruction method called fil-

tered backprojection (FBP) [63, 76].

R

R

Sinogramith detector pair

θ

θ

Figure 2.1: Illustration of 2D projections and their organization.

FBP is an image reconstruction method that has long been used in medical to-

mographic reconstruction, such as in X-ray CT [76]. FBP is a deterministic tool

which ignores the counting noise in PET scan data. However, it has found a place in

PET applications due to historical reasons and the speed of calculation, despite the

suboptimal reconstructed image quality.

Although not needed to perform FBP, we first describe the forward geometric

projection model used in our image reconstructions.
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2.1.1 Geometric Projection Model

The geometric projections are binned into a set of bins with Nθ angles and Nr

radial positions. Assume the continuous 3D image is represented by λ(x) : IR3 → IR

and the projections at angle θm and radial position rn can be written in terms of the

original image as follows:

pi
4
= pθm (rn) =

∫
fi(x)λ(x)dx, m = 1 . . . Nθ, n = 1 . . . Nr, i = m ∗Nr + n.

Here i indexes all the projections at every angle and radial position. In this equation

fi(x) denotes the unitless geometric point response function of the ith ray.

Since a scanner can collect only a finite number of measurements, for reconstruc-

tion purposes, we must also represent the radiotracer distribution λ(x) by a finite

parameterization, say in terms of a set of basis functions:

λ(x) =
p∑
j=1

λjbj(x),

where λ = [λ1, . . . , λp]
′ is the vector of unknown parameters that must be computed

from measurements. Typically bj is the indicator function for the jth voxel and we

refer to λj as the jth voxel value hereafter.

Then, the relation between p and λ can be given by:

pi(λ) = [Gλ]i
4
=

p∑
j=1

gijλj , and (2.1)

gij =
∫
fi(x)bj(x)dx,

where, gij relate voxel values to projections. In emission tomography, gij is the

geometric probability that an emission from inside voxel j gets detected by detector

pair i. In a single slice reconstruction (2-D problem), gij can be assumed to be

proportional to the intersection of the strip characterizing the ith projection and the

jth pixel. This is illustrated in Figure 2.2.

In PET, more realistic and complex geometric system models might be introduced

considering these factors: 1) positron range of the radiotracer, 2) The variation of

probability of detection across the strip, 3) The strip width reduction as the rays get

far from the center.
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Figure 2.2: System model for the geometric projections.

We use the same system model (matrix gij) for emission and transmission PET

reconstructions in this thesis. However, we must note that the nature of the projec-

tions are different in these two scans and that it might be necessary to use different

geometric models for each one. For the sake of simplicity, we also use the same nota-

tion gij to present the theory although the theory is general and different geometric

system matrices can be used for each scan. Before performing an FBP on an emission

or transmission scan, there are some corrections on the data that should be performed

to obtain the pure geometric projections first. Notably, for the transmission scans,

the logarithm of the data should be taken since the attenuation map is related to

the measured data with an exponentiation. We will discuss the PET measurement

models in detail in this chapter.

2.1.2 Filtered Backprojection

FBP is performed in discrete space as follows. Let, pθm [k] denote the projections

at angle θm and the integers k = −Nr/2 . . . Nr/2 − 1. Each pθm [k] is filtered by

a ramp filter and then the resulting sinogram data is backprojected to reconstruct

the image. The latter operation called backprojection is performed by smearing the
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projection data back into the image domain. The following formula represents the

filtered backprojection operation:

Filtering step: p̃θm [k] = pθm [k] ∗ h[k], h[k] = F−1(|ω|M(ω))

Backprojection step: λ̂j =
π
Nθ

Nθ∑
m=0

p̃θm [rj cos(φj − θm)/∆r]

where rj =
√
x2j + y

2
j and φj = tan

−1(yj/xj), where (xj, yj) are the center coordinates

of the jth pixel. If the value rj cos(φj − θm) is not an integer multiple of the ray

spacing (∆r), the values of p̃θm [k] are linearly interpolated.

Using the ramp filter directly is impractical, because being a highpass filter, it

accentuates noise. Usually, the filter is cut-off at half-Nyquist rate and windowed with

a smooth windowM(ω) to reduce noise and get a reasonable reconstruction. However

as a tradeoff, reducing noise by filtering degrades the resolution of the reconstructed

image.

2.2 PET Physics and Instrumentation

2.2.1 Radiotracers and Coincidence Detection

Chemically traceable radionuclides exist that are biologically relevant substances

for the body. These radionuclides can be produced in a small hospital based cyclotron

and rapidly coupled to biomolecules. Examples of these radiotracers include C-11,

N-13, O-15, F-18 with 20, 12, 2 and 110 minutes of half lives respectively. The biolog-

ical molecules synthesized with these radiotracers include fluorodeoxyglucose (FDG),

NH3, CO2, H2O, etc. These radionuclides emit positrons to return to the stable state.

The emitted positron annihilates with an electron after traveling a distance that de-

pends on the radionuclide [19]. The distance traveled is called the positron range

which depends on the energy of the positron. The range is 0.22 mm FWHM for F-18

and 0.28 mm FWHM for C-11 in water [105]. This event produces two 511 keV gamma

photons which travel at an angle of about 180◦ to preserve momentum and energy.
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If both these photons are detected by two detectors, the sinogram bin corresponding

to the line of response (LOR) associated with the detector pair is incremented. The

detectors should detect the two events in a coincidence window of a short duration τ

(around 12 ns) to make sure that two photons originate from the same annihilation.

Thus, the detector system in PET is named coincidence detection system [110]. A

few PET systems are also capable of roughly measuring the arrival time difference

during coincidence detection which provides specific information about the position

of the annihilation along the line of response (time-of-flight PET). However, most

PET systems only provide the information that the annihilation occurred somewhere

along the line. Measurements of such coincidences therefore, correspond to approx-

imations to parallel line integrals of the radiotracer distribution. However, due to

scattering and absorption of the photons, not all true annihilations can be detected.

This effect is called attenuation. Additionally, there are some undesired coincidences

which deceive the system to record an annihilation at a ray when actually there were

no annihilation along that line of detection. These events are scattered and random

coincidences. When traveling through a medium, a photon could be scattered by

an electron and change direction. Although a scattered photon loses some energy,

it can still be detected by PET detection system. When a scattered photon is de-

tected along with its coincident photon, that line of coincidence does not represent

a true coincidence. Such coincidences are called scatter. Similarly, if two annihila-

tions happen within the same time window and each one loses one photon due to the

scatter of photon out of plane, then the resulting coincidence is called a random or

accidental coincidence and is again undesired. Unless the data are compensated for

such undesired events or the model is designed to include these effects, the resulting

reconstruction would not be quantitatively correct. These effects are illustrated in

Figure 2.3.

The explanation above is given in a simple way. Actually, PET systems are much

more complex. We will describe some details in the following sections.
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Figure 2.3: An illustration of true, attenuated, scattered and random coincidences.

2.2.2 Detectors and Detection System

Although conceptually PET system detectors can be viewed as a single ring, actual

PET systems utilize cylindrically arranged blocks of detectors to achieve volumetric

measurements. In current PET systems, detectors are arranged in 2D modular ar-

rays of detectors because the modular approach has distinct advantages over discrete

detectors in terms of cost, coincidence timing, energy resolution, sensitivity and axial

resolution [83]. The detectors of most current PET cameras are made from blocks of

cube shaped large crystals of BGO (bismuth-germanate) segmented into an array of

elements. The BGO crystals are scintillators that stop the incoming photon and pro-

duce light in proportion to the energy of the incoming photon. This array is coupled

to a group (usually 4) of photo multiplier tubes (PMTs) that amplify this light to a

detectable level whose output channels are used in Anger-type positioning logic for

detector element identification [91]. This geometry is shown in Figures 2.4 and 2.5.

For cost reasons, thick sodium iodide (NaI) detectors are also used in some current

systems, although they do not stop photons at 511 keV as well as BGO crystals.

When a photon is detected, the analog-digital circuitry produces a signal repre-

senting the arrival time, energy and position within the block. If the energy of the

incoming photon is within the energy window, then a binning address is formed and

the relevant data is sent to the coincidence processing unit. If two valid photons are
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A B C
D

E

Figure 2.4: A transaxial view (upper portion) and a top view (lower portion) of a

PET scanner. Showing A) rod sources for attenuation correction, B) the septa used

for scatter reduction, C) detector blocks D) photomultiplier tubes and E) End shields.

detected between any two detector blocks within the time window (12 ns), then this

event is counted as a coincidence for the corresponding detector pair. A certain du-

ration of time (about 2 µs) is required for the detector block and the circuitry to get

ready for the next photon due to pulse integration, position calculation and energy

discrimination [49]. During this period, the detector block is dead for the incoming

photons. This is called the deadtime problem. Typically, deadtime is a function of

the single photon rate at the detector blocks or singles rate. Deadtime correction fac-

tors have to be known for accurate reconstruction. Deadtime is especially a problem

when the count rates are high in which case many true coincidences go undetected.

Therefore, deadtime is the dominant effect that limits the injection dose [91].

Once a pair of photons reaches the detectors, correct detection probability is de-

termined by the geometric and intrinsic detector efficiencies, deadtime of the detector
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Figure 2.5: A block detector consisting of 8x8 array of crystals coupled to four PMTs.

block, intercrystal scatter and crystal penetration [85]. Efficiency of a detector de-

pends on its position within the block. For example, detector efficiency is lower for a

crystal that is located in the edge of a block, because the probability that a photon will

be scattered out of the block and go undetected is higher for edge crystals [91]. This

is called intrinsic detector efficiency. The stopping powers of detectors also decrease

with the obliqueness of the incoming photon angle due to the decrease in the effective

depth of the crystal. This is called the geometric detector efficiency. Scattering in-

side a crystal (intercrystal scatter) and penetration of a photon through a detector to

another neighboring one (crystal penetration) are also factors affecting the detection.

We ignore these last two effects, but they are important in high resolution systems.

Detector efficiencies are determined by a long calibration measurement of a plane

source. These efficiencies are included in the emission measurement model. For the

transmission scans, a “blank” transmission scan serves as a calibration measurement.

The efficiency values for scattered, accidental and true coincidences are different be-

cause scattered events have lower energies, and random and scattered events arrive

at a wide range of angles as opposed to nearly the same angle for true events for a

given detector pair.

It is possible to acquire volumetric data between detector pairs across planes with
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a cylindrical set of detectors. This is called 3D PET. In 3D PET, efficiency increases

significantly, but scatter, randoms and deadtime rates also increase, thus the image

reconstruction is harder [116]. Therefore, in PET systems, there is parallel mechanical

shielding (septa) between slices in front of the detectors. Septa absorb most of the

photons travelling in the non-transaxial directions and thus only coincidence data

in transaxial directions are acquired. This is called direct plane data. To increase

efficiency and SNR, ±1 plane difference coincidence data can also be acquired by

adjusting septa accordingly and considered as parallel data set. This is called cross

plane data.

2.2.3 Background Events: Scattered and Random Coinci-

dences

Scatter

Compton scatter is the main cause of photon attenuation at 511 keV in biological

tissues [111]. The energy discrimination cannot reduce the scatter component to

zero since most of the scattered photons do not lose a lot of energy. Using longer

septa might also reduce scatter but will also decrease sensitivity [111]. In case of

septaless 3D PET, scatter is a big problem since many off-plane scatters will also be

detected by the cylindrically placed detectors. The contribution of scattered data in

PET measurements can be as high as 12-20 % with septa. The effect of the scatter

term, if ignored, is to under and over estimate attenuation and emission parameters

in transmission and emission scans respectively. This bias is not necessarily uniform,

so the scatter terms should be estimated and included in the statistical model.

Scatter estimation is an important topic by itself. Many researchers have worked

on scatter estimation. The simplest approach is to extrapolate projections outside

the body. Convolution subtraction smooths the data with a spatially varying kernel

to obtain the scatter component [15]. Dual energy window idea was also used to

estimate scatter. Most recent scatter estimation techniques use the Klein-Nishina

formula for estimating scatter from an initial reconstruction of the attenuation map
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[90, 84, 85].

Randoms

Detections of single photons by detectors are called singles. If two singles from

two different annihilations are detected in the same coincidence window of duration

τ seconds (about 12 ns) with their “partners” either absorbed or scattered out of

the plane, this event is called an accidental coincidence (or random event). These

randoms or background events are also a part of the measurements and should be

corrected for.

There is a relation between the singles rate and the randoms which is given by:

Ri = 2τSi1Si2, (2.2)

where Ri is the randoms rate in the ith LOR, Si1 and Si2 are the singles rates in

each detector involved in the ith LOR, and τ is the coincidence window duration. A

random event is caused by two unrelated singles striking two detectors in the same

time interval.

The randoms component is a function of the unknown image in general. Typically,

the data are precorrected for randoms by subtracting a randoms sinogram from the

transmission or emission sinogram. The randoms sinogram is collected by detecting

“delayed” coincidences using a delayed coincidence circuit with the same resolving

time as the coincidence sinogram. That is, if two single events detected by two

elements of the ith detector pair are separated by a certain time delay (for example

2τ ), they increment the random coincidence sinogram. Delayed coincidences can only

be due to randoms, not true annihilations or scattered events, because of the delay

between the arrival times of two photons. Single event occurrences are uniformly

distributed over time in a PET scan. Therefore, the number of delayed coincidences

for a detector pair is an estimate of the mean number of coincident random events

in that pair. We assume the delayed coincidence or randoms sinogram is a Poisson

random variable because of the counting nature of detection (this is approximately

correct) [124].
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In most scanners, the subtraction of the randoms sinogram is performed auto-

matically during data acquisition. This correction compensates the data in its mean

for the effect of the randoms. However, the randoms corrected sinogram is the dif-

ference of two independent Poisson random variables whose variance is equal to the

sum of their means. In other words, randoms subtraction compensates in mean for

randoms, but the variance of the measurement is also increased by an amount equal

to the mean of the randoms. Moreover, the measurements are no longer Poisson. For

these measurements, Yavuz and Fessler [121, 122] have developed a shifted Poisson

model which approximates the probability distribution of subtracted data better than

Gaussian models [33]. However, to avoid this problem, we must maintain the true

measurements and randoms measurements as two separate sinograms.

The randoms component within the model can be estimated or approximated by

many methods. Joint estimation of the image and the randoms sinogram was pro-

posed [72]. Mumcuoglu used ML and MAP techniques to estimate randoms from the

delayed sinogram using the singles model (2.2) [84]. A simple technique is to esti-

mate randoms from the delayed sinogram by smoothing it since randoms are known

to be very slowly varying factors. We could even assume a constant uniform randoms

contribution as described in [94] because of the same reason. For the transmission

case, the randoms in the blank scan and the transmission scan were shown to be very

close [121], so the high count blank scan randoms can be used to estimate the mean

of randoms in the transmission scan.

We mostly assume randoms are known fixed values in our simulations and recon-

structions. Sometimes we use the blank scan randoms in the transmission model.

2.2.4 Attenuation

At 511 keV, the photons suffer from two different interactions: absorption and

Compton scatter. Although absorption is negligible at this energy, scattering causes

the photon not to arrive to its original destination [91]. Most scattered photons

are not detected at all. Thus, these interactions affect the detection probability of
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annihilations and their effect is termed attenuation. This is one of the biggest factors

that has to be corrected for in PET emission scans. Both photons must be detected

to have a coincidence event. The probability that a photon pair will survive along a

ray is termed survival probability. This can be found from:

αi(µ) = e
−
∫

fi(x)µ(x)dx,

where µ(x) is the linear attenuation coefficient (attenuation map value) of the tissue

at position x, and fi(x) is the geometric factor that represents the contribution of the

attenuation map at position x to the total attenuation for the ith ray. We parametrize

the attenuation image similar to (2.1) and we get:

αi(µ) = e
−
∑p

j=1
gijµj . (2.3)

The attenuation correction factors (ACFs) are defined as γi(µ) = 1/αi(µ). They

are the multiplicative factors to correct for the effects of attenuation in the emission

scan data. The survival probabilities are independent from the location of annihilation

along the line, so we can correct for the attenuation by processing the sinogram data.

Transmission scans are used for attenuation correction in PET which we discuss in

detail in section 2.3.1.

2.3 Measurement Model and Conventional Image

Reconstruction

The measured data in both transmission and emission PET are due to annihila-

tions that are a result of radioactive decay. The number of decays (thus annihilations)

that occurs inside a voxel follows a Poisson probability with the mean proportional

to the radiotracer concentration within the voxel. Then, the number of photon-pair

detections from voxel j by the ith detector pair follows a Poisson distribution as

well. We assume the direction of an emitted photon-pair is uniformly and randomly

distributed over 3D space, thus all measurements are assumed to be independent Pois-

son random variables in PET scans. The above statement ignores the deadtime and
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background events. Because of how deadtime affects the PET system and because

of the measurement of randoms, the Poisson distribution assumption might not be

exactly valid. However, even with deadtime and randoms, the measurements follow

a probability distribution function (pdf) which can be very closely approximated by

a Poisson pdf [124]. So, for all practical purposes, we assume the measurements in

transmission and emission PET are Poisson. Let yi be the random variable represent-

ing ray i and ȳi be its mean as a function of the underlying emission or transmission

image, then the joint conditional density of the random vector y = [y1, . . . , yN ] can

be given by:

P (y) =
∏
i

e−ȳi
ȳyii
yi!
.

Next, we describe the models for the mean of the data ȳ for transmission and emission

scans.

2.3.1 Transmission Scans

Early “calculated” methods of attenuation correction employed simple geometric

approximations to attenuating medium (e.g. a uniform ellipse), which is inaccurate

for thorax scans because of attenuation coefficient differences between air, lung, soft

tissue and bone.

Currently, “measured” attenuation correction methods provide better estimates of

ACFs. Measuring the attenuation requires a separate scan called transmission scan.

Transmission PET data is collected using an external radiotracer source. Usually,

transmission sources contain Ge-68, a positron emitting radioisotope which has a half

life of 270 days. A fixed ring source was used in earlier scanners [56]. Rotating rod

sources [112] were also proposed. Current scanners with transmission rod sources use

one to three rotating rods in the system. For the rotating rod sources, only the sino-

gram elements that are collinear with the rods are considered at a given time and the

rest of the measurements are discarded. As the rods move, the sinogram window uti-

lized is also changed. This is called sinogram windowing [62]. The major advantages

of the rod sources are that the scatter and random component in the transmission
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data is greatly reduced. If the transmission scan is done post-injection, the emission

contamination is also reduced greatly. Besides, it is also possible to utilize the (nor-

mally) discarded window data to acquire simultaneous transmission emission (SET)

scans [114, 78]. Recently, some scanners employ singles transmission measurements

where the transmission scans are done in singles mode by using higher energy Cs-137

single photon emitting sources [65, 102]. Although these scans can achieve very high

counts in a very short time, they have a much higher scatter percentage as compared

to coincidence transmission scans. The model we describe for the transmission mea-

surements is valid for ring sources, rod sources and singles sources for PET as well as

transmission SPECT and X-ray CT.

To obtain attenuation correction factors (ACFs) or to reconstruct an attenuation

map, it is necessary to collect both blank and transmission sinograms. For calibration

purposes, a long blank transmission scan should be done when the patient is not in

the scanner. This blank scan reflects the activity of the source and also includes

effects of the detector efficiencies and the attenuation due to rods. Blank scans can

be made virtually noise free because relatively long scanning times can be used (e.g.

they can be done every night). On the other hand, transmission scan data is collected

in a limited time with the patient in position before or after the radiotracer injection.

So, typically transmission scans are much shorter than the blank scan. In the clinic,

there is also a tendency to perform the transmission scans shorter than the emission

scans since the emission scan is seen as the important one and the transmission scan

is seen as a method to estimate nuisance parameters. This makes the transmission

scans much noisier and statistical methods outperform the conventional methods with

a wider margin when the scan counts are low. We analyze the post-injection case in

Chapter 6 and focus on pre-injection transmission in this section.

The ratio of the blank sinogram to the transmission sinogram roughly gives the

ACFs if we ignore background counts. However, correction factors based on the

ratio of the blank and transmission sinograms provide noisy estimates of the true

attenuation factors. Linear smoothing of the transmission data reduces noise but

introduces bias and does not provide sufficient accuracy [79]. Reconstruction of the
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attenuation map, followed by reprojection, can improve the accuracy of the estimated

correction factors if some additional information about the attenuation image is used.

Simply using FBP followed by reprojection of the attenuation map is essentially

equivalent to direct linear filtering of the attenuation correction factors and should

not be expected to yield further improvements. There are some other advantages of

reconstructing the attenuation map. For example, if the patient moves in between the

transmission and emission scans, two images can be re-registered before reprojection

of the attenuation map. Attenuation maps can also be used to estimate scatter in

emission and transmission scans [84]. Finally, attenuation maps provide anatomical

boundaries that are often not visible in emission images. This information can be

used when interpreting emission images or for registration of the PET images with

other anatomical modalities such as MR or CT [92, 82].

Some researchers performed segmentation [120, 80] of attenuation maps before

reprojecting. Segmentation misclassification might cause errors in the ACFs resulting

in artifacts in emission images. From our perspective, penalized-likelihood methods

of image reconstruction based on statistical modeling and prior information about

the image (that it is locally smooth) are more appealing due to effective handling of

the statistics and natural incorporation of penalty functions in the objective function.

The main focus of chapters 4 and 5 is to develop fast and monotonic algorithms for

penalized-likelihood transmission image reconstruction.

We model the mean of the transmission scan data as the following:

ȳTi = τ
TdTi

[
biαi(µ) + r

T
i

]
. (2.4)

The superscript T indicates that the terms belong to the transmission scan. Here,

αi(µ) are the survival probabilities and are given by (2.3), bi are the blank scan rates

(time adjusted and deadtime corrected), rTi represent the background event rates such

as randoms and scatter, and τT and dTi represent the scan time and live time fraction

(1 - deadtime fraction) respectively. The blank scan rates bi can be obtained from

the blank scan by:

bi =
τT

τBdBi
Bi,
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where Bi are the blank scan counts, τ
B is the blank scan time and dBi are live time

fractions for each ray for the blank scan. Since Bi’s are acquired for a very long time,

we assume that bi correctly represents mean blank scan rates, even though there is

Poisson counting noise present in the blank scan.

In conventional attenuation correction strategy, we obtain an estimate of the sur-

vival probabilities by the following formula:

α̂i = smooth

{
yTi /(τ

TdTi )− r
T
i

bi

}
. (2.5)

Smoothing is done to reduce the level of noise. It is reported to be better to smooth

in the radial direction of the sinogram only [27].

Some whole body scans are performed without a transmission scan due to emission

contamination and time constraints. However, for quantitatively accurate emission

images, attenuation correction is a must. Especially in the thorax due to nonuniform

attenuation, transmission scans are more important.

(a)

(b)

Figure 2.6: Emission image reconstructed (a) without and (b) with attenuation cor-

rection from noiseless data.

In Fig. 2.6, we can see two images reconstructed with and without attenuation

correction from noiseless data. In the uncorrected image, the radiotracer distribution
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is quantitatively incorrect. The structures inside the body appear to have lower

radiotracer density than the outside and the lungs appear to have higher dose as

compared to attenuation corrected one.

Attenuation correction can be done by dividing the ith emission measurement

by α̂i. Next, we describe the emission scan model and conventional attenuation

correction.

2.3.2 Emission Scans

The emission scan model is similar to transmission scan one but the measurements

are related to the line integrals of the radio-tracer activity in the scanner in an affine

way. More precisely, in an emission scan, we model the mean of the recorded events

yEi as:

ȳEi = τEdEi
[
εiαi(µ)pi(λ) + r

E
i

]
,

pi(λ) =
p∑
j=1

gijλj ,

where τE is the scan time, αi(µ) are the survival probabilities as defined in (2.3), pi(λ)

are the average number of coincident annihilations per second that can potentially1 be

detected by the ith detector pair, rEi are the rate of accidental coincidences (randoms)

and scattered events. εi denote the detector efficiencies for true events for the ith

detector pair. Finally, dEi denotes the probability of an event not being lost due to

detector deadtime (live time fraction).

To reconstruct the emission image, first we need to estimate the factors other than

pi(λ) in equation (2.6) if they are unknown, such as survival probabilities, detector

efficiencies, and background event rates. We assume the background events, detector

efficiencies and live time fractions are known exactly or approximated reliably. Thus,

only the survival probabilities need to be estimated. We focus on it in the next

section.

1if there had been no scatter, attenuation etc.
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2.3.3 Conventional Image Reconstruction

Conventional attenuation correction is performed by dividing the emission mea-

surements by survival probabilities. The survival probabilities are smoothed to reduce

noise. Emission scans are also smoothed before attenuation correction. If the emis-

sion measurements are directly divided to the smoothed survival probabilities or the

emission data is smoothed by a different filter, the reconstructed emission images

have some undesired artifacts, as we elaborate more in Chapter 6. Therefore, the

emission scan measurements need to be smoothed with the same filter as the survival

probabilities [16]. Thus, we get the following formulae for attenuation correction and

FBP reconstruction of emission image:

p̂i =
smooth

{
1
εi

(
yEi

(τEdEi )
− rEi

)}
α̂i

,

λ̂ = FBPramp {p̂} ,

where α̂i was found in (2.5). Note that in this case, the Nyquist-windowed ramp filter

is used directly in FBP, because the smoothing is done before filtering.

We explore statistical and hybrid methods for attenuation correction and emission

image reconstruction in Chapter 6 in detail.
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CHAPTER 3

Statistical Image Reconstruction

In current clinical practice, tomographic image reconstruction is mostly based on

Radon transform theory, Fourier slice theorem and filtered backprojection. These

analytical methods perform very well on low noise data and extensive research was

performed on developing better filters for filtered backprojection to deal with noise.

However, if the noise is structured like in the case of count limited tomography, meth-

ods based on statistical modeling and iterative optimization of statistically derived

objective functions yield much better images in terms of quality and quantitative cor-

rectness. Iterative methods were first used for X-ray CT to solve deterministic linear

equations. Arithmetic reconstruction technique (ART) was probably the first itera-

tive algorithm to be used. Weighted least squares was first suggested for 3D SPECT

[50]. Maximum likelihood reconstruction based on Poisson likelihood for emission

tomography was first proposed by Rockmore and Macovski [95]. The same authors

proposed the ML technique for transmission tomography one year later [96]. EM

algorithm for ML estimation was introduced in 1977 [26]. Shepp and Vardi applied

the EM algorithm for ML image reconstruction in emission tomography [100]. Lange

and Carson [70] improved on their work by also applying the technique to the trans-

mission case. We present the maximum likelihood and penalized-likelihood image

reconstruction formulation in this chapter.
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3.1 Maximum Likelihood

PET measurements are based on a counting process. Thus, it is reasonable to

assume that the measurements are independently distributed Poisson random vari-

ables. Let y be the measurements from an emission or transmission scan. For both

scans, the measurements can be well modeled as Poisson random vectors with mean

ȳ as a function of the underlying image to be estimated.

yi ∼ Poisson {ȳi(θ)} , i = 1 . . . N, (3.1)

where N is the number of detector pairs (or LORs), ȳi(θ) is the mean value of the

ith measurement in terms of the emission or attenuation parameters θ. Then, the

log-likelihood function for estimating θ from y is:

L(θ; y) =
∑
i

(yi log ȳi(θ)− ȳi(θ)− log yi!) .

We model the measurement means for the transmission case as follows:

ȳTi (µ) = bie
−[Gµ]i + rTi . (3.2)

This model is different than the one in (2.4) because scan time and deadtime cor-

rection terms are included in bi and r
T
i for simplicity. Here bi are the time-adjusted

and deadtime corrected total blank scan counts, rTi are the total background counts

and [Gµ]i
4
=
∑p
j=1 gijµj , where gij represent the geometric projection factors which

should represent the contribution of the average attenuation coefficient at pixel j to

the total attenuation effecting the measurement i.

On the other hand, we model the measurement means for the emission case by

the following affine model:

ȳEi (λ) =
p∑
j=1

aijλj + r
E
i . (3.3)

Here λj denotes the count rate in the jth pixel, aij = cigij is the contribution of the

jth pixel counts to the ith measurement mean. gij is the geometric probability that

an emission from pixel j is detected by the detector pair i in ideal conditions. For
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notational simplicity here, we assume that gij terms in (3.3) and (3.2) are proportional

and the proportionality constant can be included in the ci factors which contain

calibration factors for scan time, detector efficiencies, attenuation factors and possibly

deadtime correction factors as well. rEi represents the total detected random and

scattered event counts. Note that these representations are simpler than the one we

used in Chapter 2 since some factors are incorporated into the bi, r
T
i , aij and r

E
i

terms. This is done for notational convenience.

The log-likelihood is concave for the emission case and has a nonnegative unique

maximizer at which the gradient of the log-likelihood is zero. However for the trans-

mission case, when rTi 6= 0, the log-likelihood is not concave and theoretically there

might be multiple local maxima or a continuous region of maxima. In both cases,

there is no closed form expression for the maximizer image. Instead, one resorts to

iterative methods for computing them. The EM algorithm [70, 100] computes the

ML estimate in an easy way. For the emission problem, each iteration of the EM

algorithm is given by:

λn+1j = λnj
1∑

i
aij

∑
i

aij
yEi∑

j′
aij′λnj′ + ri

. (3.4)

The iterations as above converge to the true maximizer of the likelihood if initialized

with a positive image. The convergence is very slow, typically requiring hundreds of

iterations. Each iteration monotonically increases the log-likelihood. The updates

are done simultaneously rather than sequentially.

For the transmission case, there is no closed form solution for the maximization

step (M-step) of the EM algorithm. Some approximate solutions can be applied at

each iteration [70]. Even with the approximations, the EM algorithm for transmission

scans is also very slow and requires hundreds of iterations as well [89].

Usually the maximizer of the log-likelihood is extremely noisy due to the ill-

posedness of the problem. Tomographic reconstruction is ill-posed meaning small

changes in data results in big changes in the reconstruction. Some form of regulariza-

tion is required. Methods to regularize the ML problem are: stopping the iterations

before convergence [118], post-smoothing the image [104], and adding a roughness
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penalty term to the log-likelihood [43]. The final methods are called penalized likeli-

hood (PL) methods. They can also be viewed as maximum a posteriori probability

(MAP) estimation with a Gauss-Markov (or Gibbs) prior [53] where the log-prior

corresponds to the penalty function.

3.2 Penalized Likelihood

PL methods have some distinct advantages over other methods: 1) Adding a

penalty term regularizes the problem and causes iterative algorithms to converge

faster; 2) Local smoothness penalties add negligible computational cost to the per

iteration costs; 3) PL methods give the opportunity to use spatially variant penalties

that reflect prior anatomical boundary information; 4) These methods has been shown

to outperform other methods [9] in image quality. Thus, we focus on PL methods in

this thesis.

The objective function for the PL problem for estimating the parameters θ from

the measurements y is:

Φ(θ) = −L(θ; y) + βR(θ).

Here, the penalty term is R(θ) and β is the parameter that controls the level of

smoothing. We seek to minimize this objective function in the nonnegative orthant

since the images we would like to reconstruct are known to be nonnegative:

θ̂ = argmin
θ≥0

Φ(θ). (3.5)

R(θ) is usually chosen to be a function which penalizes differences between neigh-

boring pixels. It is traditionally expressed as:

R(θ) =
1

2

∑
m

∑
j∈Nm

wjmψ(θj − θm), (3.6)

where Nm is the neighborhood of voxel m, wjm represent the weights for each term.

ψ(t) is called the potential or cost function associated with each difference. For a

quadratic penalty, the potential function is quadratic, ψ(t) = t2/2 in (3.6). The

“weights” are usually chosen to be wjm = 1 for 1st order neighbors and wjm =
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1/
√
2 for 2nd order ones. In 2D, a first order neighborhood includes north, south,

east and west neighbors. In 3D, a first order neighborhood has 6 elements. Second

order neighborhoods also include diagonal neighbors, having 8 elements in 2D and 26

elements in 3D.

The roughness penalty can be expressed in general as:

R(θ) =
K∑
k=1

ψk([Cθ − z]k). (3.7)

The form of the penalty in (3.7) is more general than (3.6). In this form, C is a

K × p matrix, and z is a K-vector, where K is the number of “soft constraints” of

type [Cθ]k ≈ zk. [Cθ]k is a shorthand notation for the kth entry of the vector Cθ

or [Cθ]k =
∑p
j=1 ckjθj. ψk are the weighted potential functions associated with each

soft constraint.

To represent (3.6) with (3.7), we have to have C as the generalization of this 1-D

differencing matrix form:

C =




−1 1 0 . . . 0

0 −1 1 . . . 0
. . .

. . .

0 0 . . . −1 1



,

and z = 0.

In (3.6), the neighbor pairs are counted twice, hence the 1/2 term in front. How-

ever, the pairs are counted once in (3.7) and the number of distinct pairs is K.

Specifically, in 2D, K = 2p if we are using a 1st order neighborhood and K = 4p for

a 2nd order neighborhood (ignoring edge effects). The form (3.7) of the penalty term

covers a broader range of penalties such as second order difference penalties [73] and

more.

3.2.1 Potential Functions

In choosing a penalty function, the ability to model smooth regions as well as

edges is a major concern. Since we use gradient based optimization techniques, it is
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advantageous to use penalty functions with continuous first derivatives. It is desirable

to have a convex potential function to ensure the convexity of the overall objective

function if the log-likelihood is concave. If the objective function is convex, there

is only one local minimum which is also the global minimum. If gradient based

techniques reach a stationary point of the objective function, then it is the global

optimum. The convexity of the potential function ψ(t) ensures the convexity of the

penalty function R(θ). The potential functions are also chosen to be symmetric

because they act as a norm and there is no need to differentiate between negative

or positive differences. We consider penalties derived from the following functions:

Quadratic, Lange, Generalized Gaussian and Huber potential functions.

• Quadratic Penalty: The potential function is quadratic:

ψ(t) = t2/2.

The effect of this potential is to smooth the reconstructed image globally. The

quadratically penalized objective function is much easier to optimize than oth-

ers due to its simple form. The penalty function can be written compactly

as R(θ) =
1

2
θ′C ′Cθ. The edges in the image are also smoothed out when a

quadratic penalty is used. If edge preservation is desired, a nonquadratic penalty

should be used. Nonquadratic penalties can be chosen to produce sharper edges.

In the transmission case, the attenuation map is composed of homogeneous re-

gions with sharp boundaries. So, it is desirable to use edge-preserving penalties

in that case. However, in the emission case, there is often not a clear separation

of homogeneous regions. Moreover, nonquadratic penalties (as described next)

have an “edge size” parameter which is easy to determine in the transmission

case but difficult in the emission case. Another disadvantage of nonquadratic

penalties in the emission case is that they tend to produce blocky piecewise

smooth regions and seem to result in artifacts that might be misinterpreted

as tumors when actually there is none. Due to these problems with the non-

quadratic penalties, quadratic penalties are desirable in the emission case. For

the transmission scans, nonquadratic penalties should be used, which we explain
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next.

• Lange’s Penalty:

ψ(t) = δ2 [|t/δ| − log(1 + |t/δ|)] .

This penalty was introduced in [68]. This nonquadratic penalty behaves like the

absolute value penalty for |t| >> δ, but like the quadratic penalty for |t| << δ.

δ needs to be predetermined. It is chosen to be less than the minimum edge

difference in the reconstructed image so that the neighbor differences at the

edges are less penalized than the differences in the homogeneous regions. We

used this penalty function in most of our reconstructions in this thesis.

• Generalized Gaussian MRF (GGMRF) penalties: These potential func-

tions were first introduced by Bouman and Sauer [5] and are defined as:

ψ(t) = |t|p,

where 1 ≤ p ≤ 2. When p = 2, this is equivalent to the quadratic penalty.

The GGMRF penalties have two nice properties when p = 1 (the absolute value

potential) [5]: 1) invariance to scaling of data, 2) they do not differentiate be-

tween slow monotonic changes and abrupt changes, and consequently does not

penalize the presence of edges in the image. However, GGMRF priors are chal-

lenging for gradient-based optimization techniques since the second derivative

is infinite at t = 0 for p < 2. The reconstructions with p = 1 usually result in

blocky images. To avoid these problems, one can round the tip of the potential

function at t = 0 by replacing the potential with a quadratic function for small

values which we consider next.

• Generalized Huber Penalty: Huber penalty was introduced by Huber [59]

to circumvent problems with the absolute value penalty. Here, we generalize it

for p values other than p = 1:

ψ(t) =



1

2
pδp−2t2, |t| ≤ δ,

|t|p − (1− p/2)δp, |t| > δ,
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for 1 ≤ p ≤ 2. The potential function is quadratic for |t| < δ and it is parallel

to |t|p for |t| > δ. The first derivatives from left and right match at |t| = δ,

thus it has a continuous first derivative. This penalty is not scale invariant and

the choice of δ depends on the scale as for the Lange penalty. The generalized

Huber penalty can be seen as a regularization of GGMRF penalty.
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Figure 3.1: Plots of various potential functions ψ(t).

Representative plots for the above potential functions are given in Figure 3.1.

Many other convex and nonconvex penalty functions (or priors) were introduced some

of which are Geman & McClure [48], Green’s log-cosh [51] and others in [68].

3.2.2 Resolution

The images reconstructed with penalized likelihood exhibit spatially varying res-

olution properties [46] when spatially invariant weights wjk are used in (3.6). This

is obvious with nonquadratic penalties since they smooth the image more in homo-

geneous regions and less in the edges. However, even with quadratic penalties, the
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above statement is correct. High intensity regions are smoothed more than the low

intensity regions and the point spread functions are not circularly symmetric [46].

The weights wjk can be modified to obtain a more uniform resolution over all the im-

age. Fessler’s certainty based penalty [46] yields more uniform resolution in terms of

the average FWHM of the point spread function over the image. But, it still has non-

uniform resolution in that the psf is not circularly symmetric but the level contours

look like ellipses whose orientation are image dependent and space-variant. Stayman

and Fessler have recently proposed a new modification to the quadratic penalty [106]

which yields more circularly symmetric uniform resolution properties.

3.2.3 Algorithms

There is no closed form solution to the penalized likelihood problem (3.5). The

original EM algorithm cannot be directly applied because the penalty term adds

coupling to the M-step of the EM algorithm. Adding a regularizing penalty term

to the log-likelihood improves the condition of the problem and causes algorithms to

converge faster. There are many algorithms proposed for this problem.

The algorithms can be classified in many ways. One possible classification is in

regards to the monotonicity of the algorithm. A monotonic algorithm is one that

is guaranteed to decrease the objective function at each iteration. There are three

types: 1) Intrinsically monotonic: Monotonicity is guaranteed by the algorithm, 2)

Forced monotonic: Can be made monotonic by doing a line search, 3) Nonmonotonic

algorithms. Monotonic algorithms are desirable since convergence is guaranteed at

least to a local optimum and the algorithm is guaranteed not to diverge. We present

a monotonic algorithm in Chapter 4.

Another classification is the type of update an algorithm performs. Four categories

are possible in this case:

1. Simultaneous Update Algorithms:

θn+1 = f(θn, y).

In a simultaneous update algorithm, all the parameters are updated at once
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using the previous iteration values and the measurements. The EM algorithm

is an example for simultaneous update algorithms. Simultaneous updates are

parallelizable since each voxel’s update is decoupled from all the other ones.

Simultaneous update algorithms can further be divided into two subgroups:

(a) Separable simultaneous updates: θn+1j = f1j (θ
n
j , y).

(b) Nonseparable simultaneous updates: θn+1j = f2j (θ
n, y).

In addition to EM, separable simultaneous update algorithms include De Pierro’s

modification of EM for PL [24] and Lange’s Convex algorithm for transmission

tomography [71]. The conjugate gradient algorithm is an example for nonsep-

arable simultaneous update algorithms [85]. Nonnegativity is enforced easily

for separable simultaneous updates, whereas it is very difficult for nonseparable

ones.

2. Sequential Update Algorithms:

for j = 1, . . . , p

θn+1j = fj(θ
∗, y)

end

In these algorithms, the parameters are updated sequentially and the latest

estimate of the parameters are used in determining the next iteration value

for the current one. We use θ∗ to denote the latest values for the parameters.

Coordinate descent is a very good example of a sequential update algorithm.

Sequential updates are easy to perform since minimization is reduced to a one

dimensional problem for each voxel. Nonnegativity is enforced easily by setting

the iterates back to zero if they go negative. In sequential update algorithms,

usually the high frequencies converge faster [98] so that if one starts with an

image that has correct low frequencies (like a smooth FBP image), the iterations

converge to the optimizer much faster than other algorithms. Another example

of a sequential update algorithm is SAGE [44]. In SAGE, less informative
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hidden data spaces for each pixel are used and each pixel is updated sequentially

using the EM idea. It converges very fast for the emission problem. Sequential

update algorithms are harder to implement since they require column access to

the system matrix G.

3. Group Update Algorithms:

for k = 1, . . . , NS

θSk = fk(θ
∗, y)

end

In group update algorithms, a group of variables Sk are updated at a time us-

ing the latest parameter values θ∗. This is a style in between simultaneous and

sequential updates and may have a lot of benefits. They are parallelizable and

require less computation per iteration than sequential ones if implemented care-

fully. Grouped descent [42, 99] is the algorithm that is in this category. These

algorithms also require column access to G and are fairly hard to implement.

4. Ordered Subsets/Block Iterative/Row Action Algorithms:

for k = 1, . . . , NS

θn,k = fk(θ
n,k−1, ySk)

end

θn+1,0 = θn,NS

In an ordered subsets algorithm, all the parameters are updated using a sub-

group of data at a time. Usually, these algorithms are approximations and are

not guaranteed to converge. OSEM algorithm is the first of these algorithms

[60]. RBI-EM modifies the OSEM to make it converge in the consistent case

[10]. RAMLA is a row action algorithm and adds relaxation parameters to each

update and proves convergence for a certain class of relaxation parameters in

the ML problem [8]. OSC algorithm [64] is the ordered subsets version of the

convex algorithm for transmission tomography. Although most of these algo-
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rithms are not guaranteed to converge, the resultant image quality seems to be

acceptable. They are fast algorithms and are very easy to implement.

We introduce new algorithms for transmission tomography penalized likelihood

image reconstruction in this thesis. A new class of sequential update algorithms called

PSCD is introduced in Chapter 4 which includes an intrinsically monotonic algorithm.

A new class of separable simultaneous update algorithms called SPS and their ordered

subsets versions called OSTR are introduced in Chapter 5. The paraboloidal surro-

gates idea can also be used to obtain algorithms for emission scans [41]. However,

our focus in this thesis is the transmission problem. We consider both post-injection

transmission and emission cases in Chapter 6 to obtain a joint estimation algorithm

based on paraboloidal surrogates.
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CHAPTER 4

Paraboloidal Surrogates Coordinate Descent

Algorithms for Transmission Tomography

4.1 Introduction

1Attenuation correction is required for quantitatively accurate image reconstruc-

tion in emission tomography. The accuracy of this correction is very important in

both PET and SPECT [58]. Transmission scans are performed to measure the atten-

uation characteristics of the object and to determine attenuation correction factors

(ACFs) for emission image reconstruction. Conventional smoothing methods for ACF

computation are simple and fast, but suboptimal [28, 84]. For low-count transmission

scans, statistical reconstruction methods provide lower noise ACFs. However, a draw-

back of statistical methods is the slow convergence (or possible divergence) of current

reconstruction algorithms. This chapter describes fast and monotonic algorithms for

penalized-likelihood reconstruction of attenuation maps from transmission scan data.

These reconstructed attenuation maps can be reprojected to calculate lower noise

ACFs for improved emission image reconstruction.

Statistical methods for reconstructing attenuation maps from transmission scans

are becoming increasingly important in thorax and whole-body PET imaging, where

lower counts and short scan times are typical. 3-D PET systems also require attenu-

1This chapter is based on [30].
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ation correction, which can be done by reprojecting 2-D attenuation maps. SPECT

systems with transmission sources are becoming increasingly available where statis-

tical algorithms can be efficiently used for attenuation map reconstructions. For

low-count transmission scans, the non-statistical FBP reconstruction method sys-

tematically overestimates attenuation map coefficients, whereas data-weighted least

squares methods (WLS) for transmission reconstruction are systematically negatively

biased [35]. By accurate statistical modeling, penalized-likelihood reconstruction of

attenuation maps eliminates the systematic bias and yields lower variance relative to

linear methods. Hence, we focus on penalized-likelihood image reconstruction rather

than WLS in our work.

There are many reconstruction algorithms based on the Poisson model for trans-

mission measurements. The expectation maximization (EM) algorithm [26], which

led to a simple M-step for the emission problem, does not yield a closed form ex-

pression for the M-step in the transmission case [70]. Modifications of the transmis-

sion ML-EM algorithm [89, 66, 7] as well as algorithms that directly optimize the

penalized-likelihood objective [6, 98, 42, 99, 84] have been introduced. Some of these

algorithms seem to converge rapidly in the convex case.

However, up to now, no practically realizable monotonic (or convergent) algorithm

has been found for the penalized-likelihood problem when the objective is not convex.

The negative log-likelihood is nonconvex when there are “background” counts in the

data. This is unavoidable in PET and SPECT, due to the accidental coincidences in

PET and emission crosstalk2 in SPECT. The assumption of no background counts

may be reasonable in some X-ray CT applications.

In this chapter, we present a new algorithm which is guaranteed to be mono-

tonic even when the objective function is nonconvex. This algorithm depends on

paraboloidal surrogate functions for the log-likelihood which transform the problem

into a simpler quadratic optimization problem at each iteration. The transformed

problem at each iteration is similar to a Penalized Weighted Least Squares (PWLS)

2Even though different photon energies are used in simultaneous emission/transmission SPECT
imaging, some emission events are recorded in the transmission energy window due to Compton
scatter and finite energy resolution.
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problem, and thus has a familiar and simple form. This quadratic problem need not

be solved exactly; an algorithm that monotonically decreases the surrogate function

suffices. Since evaluating the gradient and Hessian of the surrogate function is much

less costly, the CPU time per iteration is greatly reduced as compared to algorithms

that directly attempt to minimize the objective function, such as coordinate descent.

Remarkably, the convergence rate is comparable to other direct algorithms. For non-

convex objective functions, monotonicity alone does not guarantee convergence to the

global minimizer when local minima exist, but it does ensure that the estimates do

not diverge since the likelihood is bounded. Whether the transmission log likelihood

has multiple local minima is an open question.

The “surrogate” or “substitute” function idea is not new to the tomographic

reconstruction area. EM algorithms can be viewed as providing a surrogate function

for the log-likelihood function by means of a statistically more informative “complete”

data set which is unobservable [26]. The conditional expectation of the log-likelihood

function for this new space is often easier to maximize, having a closed form for

the emission case. This statistical construction of surrogate functions is somewhat

indirect and seems to yield a limited selection of choices. De Pierro has developed

surrogate functions for nonnegative least squares problems based solely on convexity

arguments, rather than statistics [23]. Our proposed approach is similar in spirit.

The EM algorithm did not result in a closed form M-step for the transmission

case [70], so direct minimization of the objective function became more attractive.

Cyclic Newtonian coordinate descent (CD,NR) [98] has been used effectively in trans-

mission tomography. However, coordinate descent based on Newton’s iteration for

each pixel is not guaranteed to be monotonic. Furthermore, an iteration of Newton-

based coordinate descent requires at least M exponentiations and 17M floating point

operations3, where M is the (very large) number of nonzero elements in the system

matrix G in (4.1) below. These exponentiations and floating point operations con-

stitute a significant fraction of the CPU time per iteration. Recently, Zheng et al.

3This can be reduced to 9M floating point operations if the denominator terms are precomputed
similar to section 4.3.7.
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introduced a “functional substitution” (FS) method [125, 97] which is proven to be

monotonic for transmission scans with no background counts (ri = 0 in (4.1) below).

Like coordinate descent, FS algorithm cyclically updates the coordinates of the image

vector, i.e. the attenuation map values for each pixel. However, instead of minimizing

the original complex objective function with respect to each parameter, FS algorithm

minimizes a 1-D parabolic surrogate function. The minimization of the surrogate is

guaranteed to monotonically decrease the original objective function if the derivative

of the negative log-likelihood is concave (which is true when ri = 0) [125, 97]. On the

other hand, the FS algorithm requires at least 2M exponentiations and 17M float-

ing point operations4 per iteration, which means that the guarantee of monotonicity

comes at a price of significantly increased computation time per iteration for that

method. Furthermore, the FS algorithm is not monotonic in the nonconvex case of

interest in PET and SPECT, where ri 6= 0.

De Pierro [24] has used a surrogate function for the penalty part of the penalized-

likelihood problem for convex penalties. The surrogate function idea was also used in

several algorithms which update a group of pixel values at a time instead of sequential

update of each pixel. Examples of these types of algorithms are the convex algorithm

of [71] which updates all pixels simultaneously and the grouped coordinate ascent

(GCA) algorithm of [42, 125] which updates a subset of pixels at a time. The surrogate

functions used in these algorithms were obtained using De Pierro’s convexity trick [24]

to form a separable function that is easier to minimize than the non-separable original

objective function. The convergence rates per iteration decrease due to the higher

curvature of these surrogate functions, but these algorithms require less computation

per iteration as compared to single coordinate descent [98] and are parallelizable.

Furthermore, it is trivial to impose the nonnegativity constraint with an additively

separable surrogate function [42].

In this work, we propose to use a global surrogate function for the original objective

function. This global surrogate function is not separable, but has a simple quadratic

form. The method is based on finding 1-D parabolic functions that are tangent to

4Precomputation of the denominator terms in FSCD would destroy monotonicity.
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and lie above each of the terms in the log-likelihood, similar to Huber’s method for

robust linear regression [59]. Whereas Huber considered strictly convex cost functions,

we extend the method to derive provably monotonic algorithms even for nonconvex

negative log-likelihood functions. Remarkably, these algorithms require less CPU

time to converge than the fastest algorithm introduced before (GCA of [42]) and as

an additional advantage, they are proven to be monotonic. We call the new approach

to image reconstruction the “Paraboloidal Surrogates” (PS) method.

In the rest of this chapter, we describe the problem, develop the new algorithm,

and present representative performance results on real PET transmission data.

4.2 The Problem

The measurements in a photon-limited application such as PET or SPECT are

modeled appropriately as Poisson random variables. In transmission tomography,

the means of the prompt coincidences are related exponentially to the projections

(or line integrals) of the attenuation map through Beer’s Law [70]. In addition, the

measurements are contaminated by extra “background” counts due mostly to random

coincidences and scatter in PET and emission crosstalk in SPECT. Thus, it is realistic

to assume the following model:

yi ∼ Poisson{bie
−[Gµ]i + ri}, i = 1, . . . , N, (4.1)

where N is the number of measurements, µj is the average linear attenuation coeffi-

cient in voxel j for j = 1, . . . , p, and p denotes the number of voxels. The notation

[Gµ]i =
∑p
j=1 gijµj represents the ith “line integral” of the attenuation map µ, and

G = {gij} is the N×p system matrix. We assume that {bi}, {ri} and {gij} are known

nonnegative constants5, where ri is the mean number of background events, bi is the

blank scan factor, and yi represents the number of transmission events counted by

5The assumption that the background counts ri are known nonnegative constants is an approxi-
mation. In PET, we estimate the ri’s by smoothing the delayed coincidences from the transmission
scan [85]. Alternatively, one can use time scaled delayed coincidences from a blank scan (which are
less noisy due to longer scan times) as the ri factors [121] or use Bayesian estimation techniques to
estimate ri’s from delayed coincidences [84, 85].
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the ith detector (or detector pair in PET).

We seek to find a statistical estimate of the attenuation map µ which “agrees”

with the data and is anatomically reasonable. For this purpose, a natural approach

is to use a likelihood-based estimation strategy. The log-likelihood function for the

independent transmission data is:

L(µ) =
N∑
i=1

{
yi log(bie

−[Gµ]i + ri)− (bie
−[Gµ]i + ri)

}
,

ignoring constant terms. The log-likelihood depends on the parameter vector µ

through only its projections [Gµ]i and can be expressed in the following form:

−L(µ) =
N∑
i=1

hi([Gµ]i), (4.2)

where the contribution of the ith measurement to the negative log-likelihood is given

by:

hi(l)
4
= (bie

−l + ri)− yi log(bie
−l + ri). (4.3)

The proposed algorithm exploits the additive form of (4.2). Directly minimizing

−L(µ) (maximum likelihood) results in a very noisy estimate µ̂ due to the ill-posed

nature of the problem. However, it is well known that the attenuation map in the body

consists of approximately locally homogeneous regions. This property has formed the

basis of many segmentation methods for transmission scans [80]. Rather than apply-

ing hard segmentation, we add to the negative log-likelihood a penalty term which

encourages piecewise smoothness in the image, resulting in the penalized-likelihood

image reconstruction formulation as given below:

µ̂ = argmin
µ≥0

Φ(µ), Φ(µ) = −L(µ) + βR(µ). (4.4)

Our goal is to develop an algorithm for finding the minimizing µ̂ with minimal CPU

time.

We consider roughness penalties R(µ) that can be expressed in the following very

general form [38, 24]:

R(µ) =
K∑
k=1

ψk([Cµ]k), (4.5)
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where the ψk’s are potential functions acting as a norm on the “soft constraints”

Cµ ≈ 0 and K is the number of such constraints. The functions ψk we consider are

convex, symmetric, nonnegative, differentiable and satisfy some more conditions that

are listed in Section 4.3.3. The β in equation (4.4) is a parameter which controls the

level of smoothness in the final reconstructed image. For more explanation of the

penalty function, see [38].

The objective function defined in (4.4) is not convex when there are nonzero

background counts (ri 6= 0) in the data. In this realistic case, there is no guarantee

that there is a single global minimum. However, some practical algorithms exist that

seem to work very well, yet none of them are proven to be monotonic. In this chapter

we introduce an algorithm that is monotonic even when Φ is not convex. The new

approach is based on successive paraboloidal surrogate functions and will be explained

in the rest of the chapter.

4.3 Paraboloidal Surrogates Algorithms

The penalized-likelihood objective function Φ(µ) has a complex form that pre-

cludes analytical minimization. Thus, iterative methods are necessary for minimiz-

ing Φ(µ). Our approach uses the optimization transfer idea proposed by De Pierro

[23, 24], summarized as follows. Let µn be the attenuation map estimate after the

nth iteration. We would like to find a “surrogate” function6 φ(µ;µn) which is easier

to minimize or to monotonically decrease than Φ(µ). This approach transforms the

optimization problem into a simpler problem at each iteration, as illustrated in Figure

4.1. The following “monotonicity” condition on the surrogate function is sufficient to

ensure that the iterates {µn} monotonically decrease Φ:

Φ(µ) −Φ(µn) ≤ φ(µ;µn)− φ(µn;µn), ∀µ ≥ 0. (4.6)

We restrict ourselves to differentiable surrogate functions, for which the following

6We use the notation φ(µ;µn) to emphasize that the surrogate is a function of µ once µn is fixed
and it changes for each µn, following the Q function notation of the EM algorithm [26].
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Figure 4.1: One-dimensional illustration of the optimization transfer principle. In-

stead of minimizing Φ(µ), we minimize the surrogate function φ(µ;µn) at the nth

iteration. Here, the surrogate function φ2 has a smaller curvature and is wider than

φ1, thus it has a bigger step size and hence faster convergence rate to the local mini-

mum µ∗.

conditions are sufficient7 to ensure (4.6):

1. φ(µn;µn) = Φ(µn)

2.
∂φ

∂µj
(µ;µn)

∣∣∣∣∣
µ=µn

=
∂Φ

∂µj
(µ)

∣∣∣∣∣
µ=µn

, ∀j = 1, . . . , p (4.7)

3. φ(µ;µn) ≥ Φ(µ) for µ ≥ 0.

Figure 4.1 illustrates two different surrogate functions that are tangent to the original

objective at the current iterate and lie above it for all feasible values of the parameters.

The EM algorithm [70] provides a statistical method for constructing surrogate

functions φ(µ;µn) satisfying the above conditions. However, in the transmission to-

mography problem, the natural EM surrogate is difficult to minimize and leads to slow

convergence. In this work, we construct a simpler surrogate using ordinary calculus

7The second condition follows from the other two conditions for differentiable surrogate functions.
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rather than statistical techniques.

The log-likelihood function (4.2) has a certain kind of dependence on the param-

eters µ, namely through their projections Gµ. The negative log-likelihood is the sum

of individual functions hi, each of which depends on a single projection only. We can

exploit this form of the likelihood function by selecting a 1-D surrogate function for

each of the one-dimensional hi functions in the projection (l) domain. The overall sum

of these individual 1-D functions will be an appropriate surrogate for the likelihood

part of the objective.

Let lni = [Gµ
n]i denote the estimate of the ith line integral of the attenuation coef-

ficient at the nth iteration. We choose the following quadratic form for the surrogate

functions qi:

qi(l; l
n
i )
4
= hi(l

n
i ) + ḣi(l

n
i )(l − l

n
i ) +

1

2
ci(l

n
i )(l− l

n
i )
2, (4.8)

where ci(l
n
i ) is the curvature of the parabola qi and ḣ denotes first derivative of h.

This construction ensures that qi(l
n
i ; l

n
i ) = hi(l

n
i ) and q̇i(l

n
i ; l

n
i ) = ḣi(l

n
i ) similar to

(4.7). To ensure monotonicity, we must choose the curvatures ci(l
n
i ) to satisfy the

following inequality at each iteration:

hi(l) ≤ qi(l; l
n
i ), for l ≥ 0. (4.9)

After determining the parabolas, one can easily verify that the following function is

a global surrogate function for the objective Φ(µ) which satisfies the properties in

(4.7):

φ(µ;µn) = Q(µ;µn) + βR(µ), (4.10)

where

Q(µ;µn)
4
=

N∑
i=1

qi([Gµ]i ; l
n
i ) (4.11)

= Φ(µn) + dh(l
n)′G(µ− µn) +

1

2
(µ − µn)′G′D(ci(l

n
i ))G(µ − µ

n),(4.12)

where the column vector dh(l
n)

4
=
[
ḣi(l

n
i )
]N
i=1
, x′ denotes the transpose of x, and

D(ci(l
n
i )) is the N ×N diagonal matrix with diagonal entries ci(l

n
i ) for i = 1, . . . , N .

The surrogate function φ(µ;µn) in (4.10) consists of the sum of a paraboloid (i.e.

a quadratic form) and the convex penalty term. An algorithm that decreases the
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function φ will also monotonically decrease the objective function if the inequality

in (4.9) holds. The general paraboloidal surrogates (PS) method can be outlined as

follows:

for each iteration n

determine ci(l
n
i ) and consequently φ(µ;µ

n)

find a µn+1 ≥ 0 that decreases (or minimizes) φ(µ;µn)

end.

The key design choices in the general method outlined above are:

1. The different ways of choosing the curvatures ci(l
n
i )’s which would satisfy (4.9).

2. The algorithm to monotonically decrease φ(µ;µn) defined in (4.10) for µ ≥ 0.

Each combination of choices leads to a different algorithm, as we elaborate in the

following sections.

4.3.1 Maximum Curvature

A natural choice for ci(l
n
i ) is the maximum second derivative in the feasible region

for the projections. This “maximum curvature” ensures that (4.9) holds, which fol-

lows from the generalized mean value theorem for twice differentiable functions (page

228, [17]). The feasible region for the projections is [0,∞) due to the nonnegativity

constraint. Hence, the choice

ci(l
n
i ) = max

l∈[0,∞)
{ḧi(l)} (4.13)

is guaranteed to satisfy (4.9). We show in Appendix A that the closed form expression

for ci(l
n
i ) is:

ci(l
n
i ) =

[(
1−

yiri

(bi + ri)2

)
bi

]
+

(4.14)

where [x]+ = x for x > 0 and zero otherwise. Thus, it is trivial to compute the ci(l
n
i )

terms in this case. The choice (4.14) for the curvature ci(l
n
i ) does not depend on the
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iteration n, so it is a constant. We refer to this choice as the “maximum curvature”

(PS,M,CD).

Having specified the curvatures {ci(lni )}, the paraboloidal surrogate Q(µ;µ
n) in

(4.12) is now fully determined. Next we need an algorithm that decreases or minimizes

the surrogate function φ(µ;µn).

4.3.2 Algorithms for Minimizing the Paraboloidal Surrogate

In the absence of the nonnegativity constraint, in principle one could minimize

the surrogate function φ(µ;µn) over µ by zeroing its gradient. The column gradient

of φ(µ;µn) with respect to µ is given by

∇µφ(µ;µ
n) = G′dh(l

n) +G′D(ci(l
n
i ))G(µ− µ

n) + β∇R(µ). (4.15)

If R(µ) is a quadratic form, i.e. R(µ) =
1

2
µ′Rµ, then we can analytically zero the

gradient, yielding the iteration:

µn+1 = µn − [G′D(ci(l
n
i ))G+ βR]

−1∇µΦ(µ
n). (4.16)

There are three problems with the above iteration. It does not enforce the non-

negativity constraint, the matrix inverse is impractical to compute exactly, and it

is limited to quadratic penalty functions. To overcome these limitations, we instead

apply a monotonic coordinate descent iteration to decrease φ(µ;µn).

4.3.3 Coordinate Descent Applied to the Surrogate Function

To apply coordinate descent to monotonically decrease the surrogate function

φ(µ;µn), we need a quadratic function that majorizes (i.e. lies above ∀µ ≥ 0)

the function φ(µ;µn) at each pixel. We treat the likelihood part and the penalty

part separately. Let Q̂n
j (µj)

4
= Q([µ̂1, . . . , µ̂j−1, µj , µ̂j+1, . . . , µ̂p];µ

n) and R̂oj (µj)
4
=

R([µ̂1, . . . , µ̂j−1, µj, µ̂j+1, . . . , µ̂p]), where µ̂ denotes the current estimate of the pa-

rameter µ. Then we must select curvatures dnj and p̂j that satisfy the following:

Q̂n
j (µj) = Q(µ̂;µn) + Q̇n

j (µ̂)(µj − µ̂j) +
1

2
dnj (µj − µ̂j)

2 (4.17)
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R̂oj (µj) ≤ R̂j(µj)
4
= R(µ̂) + Ṙj(µ̂)(µj − µ̂j) +

1

2
p̂j(µj − µ̂j)

2, ∀µj ≥ 0, (4.18)

where Q̂n
j (µj) and R̂

o
j (µj) are treated as functions of µj only. Equality is achievable

in (4.17) since the likelihood surrogate Q̂n
j (µj) is quadratic. For the penalty part

R̂oj (µj), we must find a quadratic function R̂j(µj) that lies above it, by appropriate

choice of p̂j as considered below.

The derivative of the likelihood surrogate parabola at µ̂j is (from (4.11))

Q̇n
j (µ̂)

4
=

∂

∂µj
Q̂n
j (µj)

∣∣∣∣∣
µj=µ̂j

=
N∑
i=1

gij q̇i(l̂i),

where from (4.8)

q̇i(l̂i) = ḣi(l
n
i ) + ci(l

n
i )(l̂i − l

n
i ), (4.19)

where l̂i =
∑N
i=1 gij µ̂j, and

ḣi(l) =
(

yi
bie−l + ri

− 1
)
bie
−l. (4.20)

From (4.8) and (4.11), the curvature of the parabola Q̂n
j (µj) is obviously:

dnj
4
=

N∑
i=1

g2ijci(l
n
i ). (4.21)

From (4.5), the derivative of the penalty part at µ̂j is

Ṙj(µ̂)
4
=

∂

∂µj
R̂oj (µj)

∣∣∣∣∣
µj=µ̂j

=
K∑
k=1

ckjψ̇k([Cµ̂]k).

We must obtain a parabolic surrogate R̂j(µj) that satisfies (4.18). We assume the

potential functions ψk(·) satisfy the following conditions:

• ψ is symmetric

• ψ is everywhere differentiable (and therefore continuous)

• ψ̇(t) = d/dt ψ(t) is non-decreasing (and hence ψ is convex)

• ωψ(t)
4
= ψ̇(t)/t is non-increasing for t ≥ 0

• ωψ(0) = limt→0 ψ̇(t)/t is finite and nonzero i.e. 0 < ωψ(0) <∞.

In the context of robust regression, Huber showed (Lemma 8.3 on page 184 in [59],

also [38]) that for potential functions ψk that satisfy the conditions above, we can find
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Figure 4.2: Illustration of the tangent parabolas lying above a potential function.

a parabola ψ̂k(t) that lies above ψk(t), ∀t ∈ IR. This parabola ψ̂k(t) is tangent to the

potential function at the current point t̂k
4
= [Cµ̂]k and at −t̂k and has the curvature

ωψk(t̂k) where ωψ(·) was defined above. The surrogate parabola is given by:

ψ̂k(t) = ψk(t̂k) + ψ̇(t̂k)(t− t̂k) +
1

2
ωψk(t̂k)(t− t̂k)

2,

and is illustrated in Figure 4.2. Thus, the following is a surrogate parabola for the

penalty part of the objective function:

R̂j(µj) =
K∑
k=1

ψ̂k([Cµ]k)
∣∣∣
µm=µ̂m,∀m6=j

. (4.22)

The curvature of the parabola R̂j(µj) is:

p̂j
4
=

K∑
k=1

c2kjωψk([Cµ̂]k). (4.23)

Combining the above surrogate parabolas (4.17) and (4.22), the minimization step
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of the coordinate descent for pixel j is simply:

µ̂newj = argmin
µj≥0

Q̂n
j (µj) + βR̂j(µj) =


µ̂j − Q̇n

j (µ̂) + βṘj(µ̂)

dnj + βp̂j



+

. (4.24)

This is an update that monotonically decreases the value of φ(·;µn) and consequently

the value of Φ(·). One iteration is finished when all pixels are updated via (4.24) in

a sequential order. We usually update the paraboloidal surrogate function after one

iteration of coordinate descent (CD), but one could also perform more than one CD

iteration per surrogate. We call this method the Paraboloidal Surrogates Coordinate

Descent (PSCD) method.

The PSCD algorithm with the curvatures obtained from (4.14) is outlined in Table

4.1. In this table, the algorithm flow is given for the general case where ci(l
n
i ) may

change at each iteration. However, the curvatures ci(l
n
i ) given in (4.26) in Table 4.1

are constant throughout the iterations. If one uses fixed ci(l
n
i ) values which do not

depend on n as in (4.26), then the dnj terms can be precomputed and the algorithm

should be reorganized to take this computational advantage into account.

Another computational advantage of curvatures that do not depend on the iter-

ations is as follows. If we define q̃i = q̇i/
√
ci and g̃ij = gij

√
ci, then the update in

(4.29) will be simplified to:

q̃i := q̃i + g̃ij(µ
work
j − µ̂j),

which decreases the computation time devoted to back and forward projections per

iteration by about 20% for implementations using precomputed system matrices. The

equations (4.28) and (4.30) should also be modified to use the new variables. We have

not implemented this faster version for this work.

The algorithm in Table 4.1 requires roughly double the floating point operations

required for one forward and one backprojection per iteration. The gradient of the

original log-likelihood with respect to the projections
{
ḣi(l

n
i )
}N
i=1
and the curvature

terms ci(l
n
i ) are computed only once per iteration

8. The gradient of the surrogate

8In contrast to PSCD algorithm, when coordinate descent (CD,NR) is applied to the original
objective function, new gradients and curvatures must be computed after each pixel is updated.
These computations involve expensive exponentiations and floating point operations which increase
the CPU time required for original coordinate descent.
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Initialize: µ̂ = FBP{log(bi/(yi − ri))}Ni=1 and l̂i =
∑p
j=1 aijµ̂j, ∀i = 1, . . . , N

for each iteration n = 0, . . . ,Niter− 1

q̇i = ḣi =

(
yi

bie−l̂i + ri
− 1

)
bie
−l̂i, for i = 1, . . . , N (4.25)

ci = max
l≥0

ḧi(l) =

[(
1−

yiri
(bi + ri)2

)
bi

]
+

, for i = 1, . . . , N (4.26)

ci :=



ci, ci > ε

ε, ci ≤ ε
(4.27)

repeat one or more times

for j = 1, . . . , p

Q̇j =
N∑
i=1

aij q̇i, dj =
N∑
i=1

a2ijci (4.28)

µoldj = µ̂j

for a couple sub-iterations

µ̂j :=


µ̂j − Q̇j + dj(µ̂j − µoldj ) + β

∑K
k=1 ckjψ̇ ([Cµ̂]k)

dj + β
∑K
k=1 c

2
kjωψk ([Cµ̂]k)



+

end

q̇i := q̇i + aijci(µ̂j − µ
old
j ) ∀i s.t. aij 6= 0 (4.29)

end

end

l̂i := l̂i +
q̇i − ḣi
ci

, for i = 1, . . . , N (4.30)

end

Table 4.1: Algorithm outline for a paraboloidal surrogates algorithm with coordinate

descent (PSCD). The curvature choice shown here is the maximum second derivative

(PS,M,CD).
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paraboloid uses q̇i terms which can be updated easily as shown in (4.29) in the algo-

rithm. This implementation does not update the projections l̂i after each pixel update

since they are only needed in the outer loop (4.25). The projections are computed in

(4.30) after updating all pixels. The update (4.30) requires cni > 0 to work. In (4.27),

we constrain the curvature value to some small value ε > 0 (which obviously does

not hurt monotonicity) so that (4.30) can be evaluated for all i = 1, . . . , N . However,

ε should not be very small since it will cause undesirable numerical precision errors.

Storage requirements are also modest for the proposed algorithm. A single copy of

the image and four sinograms for l̂i, ci, ḣi and q̇i need to be stored in addition to data

vectors yi, bi, ri.

In the following, we discuss the convergence rate of the algorithm, which provides

motivation for obtaining better curvatures.

4.3.4 Convergence and Convergence Rate

In the absence of background events, i.e. when ri = 0, the penalized-likelihood

objective Φ is convex and our proposed PSCD algorithm is globally convergent. This

is a fairly straightforward consequence of the proof in [45] for convergence of SAGE,

so we omit the details.

However when ri 6= 0, little can be said about global convergence due to the

possibility that there are multiple minima or a continuous region of minima. Our

practical experience suggests that local minima are either unlikely to be present, or

are quite far from reasonable starting images, since all experiments with multiple

initializations of the algorithm yielded the same limit within numerical precision.

The PSCD algorithm is monotonic even with the nonconvex objective function. One

can easily show that every fixed point of the algorithm is a stationary point of the

objective function and vice versa. Thus, it is comforting to know that the algorithm

will converge to a local minimum and will not blow up.

The convergence rate of the proposed algorithm with the “maximum curvature”

choice is suboptimal. The curvatures ci(l
n
i ) are too conservative and the paraboloids
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are unnecessarily narrow. Intuitively, one can deduce that smaller ci(l
n
i ) values will

result in faster convergence. The reason for this is that the lower the curvature, the

wider the paraboloid and the bigger the step size as can be seen in Fig. 4.1. To verify

this intuition, we analyze the convergence rate of the algorithm. For simplicity, we

assume that a quadratic penalty is used in the reconstruction and that the surrogate

function φ(µ;µn) (4.10) is minimized exactly.

Let µ̂ be the unconstrained minimizer of the original objective function. At step

n, by zeroing the gradient of (4.10), we get the simple Newton-like update in (4.16).

By Taylor series, for µn ≈ µ̂, we can approximate the gradient of the objective

function as: ∇Φ(µn) ≈ H(µ̂)(µn − µ̂), where H(µ̂) is the Hessian of Φ at µ̂. Define

N(c) =G′D(ci)G+ βR, then from (4.16):

µn+1 − µ̂ ≈ µn − µ̂− [N(c)]−1H(µ̂)(µn − µ̂)

= (I − [N(c)]−1H(µ̂))(µn − µ̂). (4.31)

This equation describes how the convergence rate of the proposed algorithm is affected

by different ci choices. We use the results from [39] to evaluate the convergence rate.

Let N(c1) and N(c2) be two matrices corresponding to curvature vectors c1 and c2

respectively with c1i < c2i , ∀i. Then obviously N (c
2) −N(c1) is positive definite and

it follows from Lemma 1 in [39] that the algorithm corresponding to c1 has a lower

root-convergence factor and thus converges faster than the algorithm corresponding

to c2.

Therefore, to optimize the convergence rate, we would like the ci(l
n
i ) values to be

as small as possible while still satisfying (4.9). The optimal choice for the curvatures

is the solution to the following constrained optimization problem for each i:

ci(l
n
i ) = min

{
c ≥ 0 : hi(l) ≤ hi(l

n
i ) + ḣi(l

n
i )(l− l

n
i ) +

1

2
c(l− lni )

2 ∀l ≥ 0
}
. (4.32)

This choice yields the fastest convergence rate while still guaranteeing monotonicity.

In the following section, we discuss the solution to (4.32).
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4.3.5 Optimum Curvature

The curvature that satisfies (4.32) is not trivial to find for general functions hi(·).

However, the marginal negative log-likelihood functions for each projection (hi de-

fined in (4.3)) in transmission tomography have some nice properties. We show the

following in Appendix B. The parabola that is:

1. tangent to hi at the current projection l
n
i , and

2. intersects hi at l = 0,

is guaranteed to lie above hi(l) ∀l ≥ 0. This claim is true only when the curvature

ci(l
n
i ) of qi is nonnegative. If the curvature obtained by the above procedure is nega-

tive, then we set ci(l
n
i ) to zero

9. When ci(l
n
i ) = 0, the qi function is the line which is

tangent to the hi curve at the current projection value l
n
i .

The curvature of the parabola described above is10 :

ci(l
n
i ) =




[
2
hi(0)− hi(lni ) + ḣi(l

n
i )(l

n
i )

(lni )
2

]
+

, lni > 0,[
ḧi(0)

]
+
, lni = 0.

(4.33)

We prove in Appendix B that this curvature is the optimum curvature that satisfies

(4.32). The nonnegativity constraint plays an important role in the proof. If non-

negativity is not enforced, the projections at an iteration may go negative and the

curvature (4.33) will not guarantee monotonicity anymore. Fig. 4.3 illustrates this

surrogate parabola with the “optimum curvature” (4.33). In Table 4.1, the curvature

computation in (4.26) should be changed to (4.33) to implement PSCD method with

the optimum curvature (PS,O,CD).

9In fact, any nonnegative ci(l
n
i ) will ensure monotonicity, hence the ε in (4.27).

10When lni is nonzero but small, due to numerical precision, (4.33) might turn out to be extremely

large during computation. If ci(l
n
i ) >

[
ḧi(0)

]
+
(which theoretically should not happen but prac-

tically happens due to limited precision), then we set ci(l
n
i ) to be equal to the maximum second

derivative
[
ḧi(0)

]
+
which eliminates the problem.
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Figure 4.3: This figure illustrates the optimum curvature and the maximum curvature

surrogate functions and their derivatives for bi = 100, yi = 70, ri = 5, and l
n
i = 2.5.

4.3.6 Relationship to Newton-type Optimization Algorithms

A quadratic approximation of any objective function can be obtained by using

the first three terms of the Taylor’s expansion around a point. An iterative algo-

rithm can be obtained by successively approximating the objective function with a

quadratic function at each iteration using first three terms of the Taylor series ex-

pansion around the current parameter value and minimizing that quadratic function.

Newton’s method minimizes this approximating function at each iteration by per-

forming an update similar to (4.16) with the following Newton’s (second derivative)

curvatures:

ci(l
n
i ) = ḧi(l

n
i ).
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This method has drawbacks similar to those listed in Section 4.3.2, the major draw-

back being the computation of the inverse of the Hessian matrix. However, one can

use the quadratic approximation obtained by the first three terms of Taylor’s expan-

sion and apply coordinate descent on this quadratic function similar to what we did

for the maximum or optimum curvature paraboloids to avoid the computational re-

quirements of (4.16). This algorithm would not be guaranteed to be monotonic, but

it would be locally convergent. Our PSCD algorithm is different than the Newton’s

method in that we use a curvature that guarantees monotonicity by guaranteeing

the quadratic surrogate to lie above the original objective function. Secondly, we do

not directly minimize the quadratic objective using matrix inverses similar to (4.16),

but we use monotonic coordinate descent to decrease the surrogate function. The

parabolic surrogates qi’s obtained using the optimum curvature and Newton’s curva-

ture are shown in Figure 4.4. The Newton parabola does not lie above the original

function, hence does not guarantee monotonicity.

Bohning et al. [4] introduced a monotonic version of Newton’s method which is

similar to our maximum curvature paraboloidal surrogates method. They propose to

use an update similar to (4.16) as well. We improve on their idea by introducing the

optimum curvature which changes at each iteration unlike the maximum curvature.

Their method results in narrower quadratic surrogates as compared to our optimum

curvature surrogates.

Quasi-Newton methods avoid the matrix inverse in (4.16) by updating an approx-

imation of the Hessian inverse at each iteration, thus reducing the computational

requirements. We compared our PSCD methods with a Quasi-Newton algorithm

called LBFGS [126] in the results section.

4.3.7 Precomputed Curvature

By relaxing the monotonicity requirement, we can develop faster yet “almost

always” monotonic algorithms. We can do this by choosing curvatures ci(l
n
i ) in equa-

tion (4.8) such that ḣi(l) = q̇i(l; l
n
i ), but hi(l) ≈ qi(l; l

n
i ), rather than requiring the
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Figure 4.4: This figure illustrates the quadratic surrogates with the optimum curva-

ture and the Newton curvature.

inequality (4.9). In this case, the paraboloids are quadratic “approximations” to the

log-likelihood function at each iteration. A reasonable choice for the curvatures is:

ci = ḧi

(
log

bi

yi − ri

)
= (yi − ri)

2/yi. (4.34)

The value lmini = log(
bi

yi − ri
) is the point that minimizes the hi function. These cur-

vatures ci in (4.34) are close approximations to the second derivative of hi functions at

the projection values Gµ̂ where µ̂ is the solution to the penalized-likelihood problem

[42]. This is an approximation to the Newton curvatures. This is called the “fast de-

nominator” approach in [42], since it features a one-time precomputed approximation

to the curvature that is left unchanged during the iterations so that the denominator

terms dnj (4.21) can be computed prior to iteration (similar to “maximum curvature”
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in equation (4.14)). Computational benefits for iteration independent curvatures as

summarized in Section 4.3.3 can be utilized. This approximation works well because

we usually start the iterations with an FBP image µ0 where projections Gµ0 are

usually close to lmin. Nevertheless, unlike with (4.33) monotonicity is not guaranteed

with (4.34).

The PS method with the curvature (4.34) yields faster convergence than the other

PS algorithms presented above. This method is related to the PWLS image recon-

struction method [98, 33], but instead of making a one-time quadratic approximation

to the log-likelihood function, the approximation is renewed at each iteration. Al-

though the curvature of the paraboloid remains same, the gradient is changed to

match the gradient of the original objective function at the current iterate. The

nonnegativity constraint does not play an important role for the derivation, and this

curvature may be used for algorithms where nonnegativity is not enforced. We refer

to this curvature as “precomputed curvature” (PS,P,CD).

To test the relations between different curvatures, we plotted denominator dnj

values in a reconstruction for a single pixel in Figure 4.5. This plot shows that max-

imum and optimum curvatures are more conservative as compared to precomputed

denominator. We also compared dnj values obtained after 100 iterations of PSCD with

optimum curvature and Newton’s curvature (second derivative) with the precomputed

denominators in Figures 4.6 and 4.7 by scatter plots. These scatter plots show that

precomputed denominators are very close to the Newton’s denominators (after 100th

iteration), and that optimum curvature denominators are more conservative than the

precomputed denominators to ensure monotonicity.

4.4 Results

To assess the effectiveness and speed of the new PS algorithms, we present results

using real PET data. We acquired a 15-hour blank scan (bi’s) and a 12-min trans-

mission scan data (yi’s) using a Siemens/CTI ECAT EXACT 921 PET scanner with

rotating rod transmission sources [119]. The phantom used was an anthropomorphic

66



10
0

10
1

10
2

10
2

10
3

10
4

iterations

d
j

d
j
 versus iterations for pixel 7770

optimum curvature
precomputed curvature
maximum curvature
second derivative

Figure 4.5: Denominators dnj versus iterations for different PSCD curvatures.

thorax phantom (Data Spectrum, Chapel Hill, NC). Delayed coincidence sinograms

were collected separately in each scan. There were 0.920 million prompt coincidences

for the reconstructed slice and the delayed coincidences were about 2.6% of the prompt

ones. The blank and transmission scan delayed-coincidence sinograms were shown to

be numerically close11 [121], so we used a time-scaled version of blank scan delayed

coincidences as the ri factors with no other processing. The projection space was 160

radial bins and 192 angles, and the reconstructed images were 128 × 128 with 4.2

mm pixels. The system matrix {gij} was computed by using 3.375 mm wide strip

integrals with 3.375 mm spacing, which roughly approximates the system geometry

[35].

We performed reconstructions of the phantom by FBP as well as various penalized-

likelihood methods. For the penalty term in PL reconstructions, we used the following

11This is due to the fact that singles rate is mostly affected by transmission rods.
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Figure 4.6: Optimum curvature denominators d100j versus precomputed denominators.

function:

R(µ) =
1

2

p∑
j=1

∑
k∈Nj

wjkψ(µj − µk)

which is a special case of (4.5). Here wjk is normally equal to 1 for horizontal and

vertical neighbors and 1/
√
2 for diagonal neighbors. We used the modified wjk’s

described in [46] to achieve more uniform resolution. For the potential function, we

used one of the edge-preserving nonquadratic cost functions that was introduced in

[68]

ψ(x) = δ2 [|x/δ| − log(1 + |x/δ|)] .

This function acts like a quadratic penalty for small differences in neighboring pix-

els and is close to absolute value function for differences greater than δ. This

nonquadratic function penalizes sharp edges less than quadratic functions. We used

δ = 0.004 cm−1 chosen by visual inspection. In the final reconstructed image, the

horizontal and vertical neighbor differences are less than this δ in homogeneous re-

gions (90% of all differences) which makes the curved part of the penalty effective in
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Figure 4.7: Newton’s curvature denominators d100j versus precomputed denominators.

those regions. However at edges, for which the differences are greater than δ, this

penalty penalizes less than the quadratic one.

The PS algorithms described throughout this section are named using the following

format: PS,C,CD. PS stands for paraboloidal surrogates as the general framework for

the algorithms and CD stands for coordinate descent applied to the surrogate function.

The letter C in the format represents the curvature type ci(lni ). The types are: “M”,

“O” and “P” for maximum second derivative curvature (4.14), optimum curvature

(4.33) and precomputed curvature (4.34) respectively. The other algorithms we

used for comparison in this section are as follows. LBFGS: a constrained Quasi-

Newton algorithm [126], CD,P: coordinate descent with precomputed denominators

and CD,NR: coordinate descent with Newton-Raphson denominators [98, 42] applied

to objective function, GD,P: grouped descent with precomputed denominators [42].

Fig. 4.8 shows images reconstructed by FBP and statistical methods from a 12

minute scan. For comparison, an FBP reconstruction of a 7 hour scan is also shown.

69



For FBP images, we used 2D Gaussian sinogram smoothing with (3 mm,π/192)

FWHM followed by a ramp filter to reconstruct the 7 hour scan, and (12 mm,π/48)

FWHM for the 12 minute scan. Qualitatively, the statistical reconstruction looks bet-

ter than the FBP image, having less noise and more uniform homogeneous regions.

However, our focus here is not the image quality but the amount of time it takes the

algorithms to converge to the minimizer image. Nevertheless, improved emission im-

age quality is our ultimate goal. Statistical methods for transmission reconstruction

yield better ACFs as compared to conventional methods and result in better emission

images. Our goal here is to speed-up and stabilize statistical methods to make them

usable routinely in clinic.

Fig. 4.9 shows that the proposed PSCD algorithms decreased Φ almost as much

per iteration as the coordinate descent algorithm applied to Φ directly. This result is

important because it shows that the surrogate paraboloids (especially with the opti-

mum curvature) closely approximate the original log-likelihood. More importantly, in

Fig. 4.10 the PSCD algorithms are seen to be much faster than coordinate descent in

terms of the actual CPU time12. One of the main overhead costs in coordinate descent

is the computation of the log-likelihood gradient term after each pixel change [42].

In PSCD algorithm, the gradient of the surrogate function (q̇i’s) can be computed

(updated) by a single multiplication (4.19). The “maximum curvature” method in-

troduced in Section 4.3.1 precomputes the denominator terms (dnj ) for the likelihood

part since ci(l
n
i )’s do not depend on the iterations. However, these ci(l

n
i )’s are much

larger than the optimal curvatures, so more iterations are required for PS,M,CD than

PS,O,CD to converge.

We also compared the PSCD algorithms to the general purpose constrained Quasi-

Newton algorithm (LBFGS) [126] in Figures 4.9 and 4.10. Although the LBFGS

algorithm takes about 25% less CPU time (0.88 seconds) per iteration than PSCD

algorithms, it did not converge as fast as the proposed algorithms. This shows that

the algorithms such as PSCD which are tailored to our specific problem converge

12All CPU times are recorded on a DEC 600 5-333 MHz workstation with compiler optimization
enabled.
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faster than the general purpose Quasi-Newton method.

In Fig. 4.11, we consider the fastest previous algorithm we know of (i.e. GD with

3× 3 groups with precomputed denominator [42]) and compare it to the fastest PS

algorithms. The PSCD with “precomputed curvatures” (PS,P,CD) (introduced in

Section 4.3.7) requires slightly less CPU time than GD,P to converge. Although the

PS,P,CD algorithm is not provably monotonic, it is a reasonable approximation and

we did not observe any non-monotonicity in our practical experience when initializing

with an FBP image. The monotonic PS,O,CD method is shown in this plot as a

baseline for comparison with Fig. 4.10.

In Figures 4.12 and 4.13, we present the results of a transmission scan simulation

with zero background counts (ri = 0) and compare the monotonic PSCD algorithm

with the functional substitution (FS) method of Zheng et al.[125, 97]. The FS algo-

rithm is proven to be monotonic when ri = 0 in which case hi is convex. However,

the FSCD method requires considerably more computation per iteration than both

CD and PSCD. The plot in Figure 4.13 shows that FSCD requires more CPU time

than PSCD.

Table 4.2 compares the number of iterations and CPU seconds required to mini-

mize the objective function by each method. The CPU times13, floating point opera-

tions and memory accesses (of order M only) per iteration are also tabulated, where

M is the number of nonzero entries in system matrix G. For comparison purposes, a

single forward and backprojection requires about 0.78 CPU seconds. The CD and FS

methods are significantly different from our proposed PSCD methods in the following

respect. In our methods, the q̇i terms are kept updated for all i outside the projection

loop in (4.29). In contrast, both CD and FS require ḣi terms within the backpro-

jection loop, and these change with every pixel update so they must be computed

on the fly within the backprojection loop. Thus that backprojection must access

yi, bi, ri, l̂i and the system matrix within the loop, and perform quite a few floating

point operations (including the exponentiations) with them. Not only is there inher-

13The CPU times are computed on a DEC 600 5-333 MHz. We also compiled the code on a SUN
Ultra 2 computer and got similar CPU time ratios for the algorithms. However, the ratios could
differ on another architecture or with another compiler due to cache size and pipelining differences.
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Real data, ri 6= 0 monotonic nonmonotonic

methods P
S
,M
,C
D

P
S
,O
,C
D

P
S
,P
,C
D

G
D
,P
,3
x
3

C
D
,P

C
D
,N
R

F
S
C
D

iters for convergence 18 12 11 14 11 11 11

CPU s for convergence 23.3 17.4 15.1 18.1 44.3 52.3 56.2

CPU s per iteration 1.2 1.3 1.2 1.1 3.8 4.6 4.9

exponentiations
per iteration 0 0 0 0 M M 2M

add/subts
per iteration

2M 3M 2M 2M 4M 6M 7M

mult/divs
per iteration

3M 5M 3M 2M 5M 11M 10M

nonsequential accesses
per backprojection M 2M M M 4M 4M 4M

nonsequential accesses
per forward projection 2M 2M 2M M M M M

system matrix accesses
per iteration 2M 2M 2M 2M 2M 2M 2M

Table 4.2: Comparison of CPU times, number of iterations to converge, floating
point operations and memory accesses for the PS algorithms versus CD, GD and FS
methods. Convergence in this table means Φ(µ0) − Φ(µn) > 0.999 [Φ(µ0)− Φ(µ∗)]
where Φ(µ∗) is the smallest objective value obtained in 30 iterations among all the
methods. The floating point operations and memory accesses only in the order of M
are shown for each method.
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ently more floating point operations required for CD and FS, we suspect that the

need to nonsequentially access parts of four sinogram-sized arrays, in addition to the

system matrix, significantly degrades the ability of the CPU to pipeline operations.

This leads to the dramatic differences in CPU time between PSCD and CD methods.

If a monotonic algorithm is required, the PSCD algorithm with the optimal curva-

ture (PS,O,CD) is the fastest algorithm. The other algorithms are not guaranteed to

be monotonic except PSCD with maximum curvature. Although PS,M,CD algorithm

consumes less CPU time per iteration, it takes longer to converge since the curvatures

result in an unnecessarily narrow surrogate function which causes small step sizes.

Among the nonmonotonic algorithms, another PS method, PSCD with precom-

puted curvatures (PS,P,CD) is the fastest. It converged in about 15 seconds with

the real data used. The CPU time per iteration is the same as PS,M,CD since they

both precompute the denominator (dnj ) terms. Since the curvatures are smaller, this

method decreases the objective very rapidly, nevertheless it is not guaranteed to be

monotonic. However, as with the CD and GD with precomputed denominators [42],

we have never observed any nonmonotonicity in practical applications with iterations

started with an FBP image. The FSCD and CD algorithms consume a lot of CPU cy-

cles per iteration and they are much slower than the proposed algorithms. The GD,P

algorithm lowers the CPU requirements by decreasing the number of exponentiations,

but it does not decrease the objective function as much per iteration as coordinate

descent. Thus, it is also slightly slower than the PS,P,CD algorithm. This Table

shows that PSCD algorithms are preferable for both monotonic and nonmonotonic

transmission image reconstructions.

4.5 Conclusion

We have introduced a new class of algorithms for minimizing penalized-likelihood

objective functions for transmission tomography. The algorithms are shown to be

monotonic even with the nonconvex objective function. In the nonconvex case, there is

no proof that these algorithms will find the global minimum but at least the algorithms
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will monotonically decrease the objective function towards a local minimum. Practical

experience suggests there are rarely multiple minima in this problem, but there is no

proof. In the strictly convex case, the proposed algorithms are guaranteed to converge

to the global minimum by a proof similar to that in [44].

Convergence is very important for algorithms for any optimization problem, par-

ticularly in medical applications. The PSCD algorithm is globally convergent when

there are no background counts. Even when there are background counts, the new

algorithm is guaranteed to monotonically decrease the objective function making the

algorithm stable. Previous algorithms could not guarantee that property without

expensive line searches. The robustness, stability and speed of the new algorithm

renders it usable in routine clinical studies. Such use should increase the emission

image quality as compared to conventional methods which use linear processing and

FBP for reconstruction. Further “acceleration” is possible by ordered subsets [32],

albeit without guaranteed monotonicity.

The algorithms we introduced are simple, easy to understand and fast. The sim-

plicity in part is due to the additive form of (4.2), which is a direct consequence

of independent measurements. Since the emission tomography log-likelihood has a

very similar form due to independence of measurements, it is possible to apply the

paraboloidal surrogates idea to the emission case as well to get faster algorithms [41].

Since the emission problem is convex regardless of the background events, PSCD will

be a globally convergent algorithm for the emission problem.

It is possible to parallelize the PS algorithms by applying either grouped descent

(GD) [42, 99] algorithm to the surrogate function, or by parallelizing the projection

and backprojection operators [86] for each pixel. However, in a serial computer we

found that PS method with GD update (PSGD) was not faster than the PSCD algo-

rithm. This is due to the fact that the gradient updates in PSCD algorithm consume

much less CPU time than the gradient evaluations in the original CD algorithm which

require expensive exponentiations and floating point operations. Hence, grouped de-

scent did not reduce the CPU time per iteration as much in PS method as in the

direct method.

74



In our opinion, the PS,O,CD algorithm supersedes all of our previous methods

[35, 71, 42], and is our recommended algorithm for penalized-likelihood transmission

tomography. The PS,P,CD algorithm is a faster but nonmonotonic alternative which

can be used for noncritical applications. A possible compromise would be to run a few

iterations of PS,O,CD algorithm and then fix the curvatures and denominator terms

(dnj ) for the rest of the iterations to save computation time. Alternatively, one can run

PS,P,CD algorithm and check the objective function Φ(µ) after each iteration to verify

that it has decreased. If the objective does not decrease (happens very rarely), then

PS,O,CD algorithm can be applied to the previous iterate to ensure monotonicity. For

medical purposes, we believe that a monotonic algorithm should be used to reduce

the risk of diagnostic errors due to erroneous reconstructions. Fortunately, with the

new proposed methods, monotonicity can be assured with only a minor increase in

CPU time (17.2 versus 15.1 CPU seconds).
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(a)

(b)

(c)

Figure 4.8: (a) FBP reconstruction of phantom data from 7-h transmission scan,

(b) FBP reconstruction from 12-min transmission scan, and (c) Penalized-likelihood

reconstruction from 12-min transmission scan using 12 iterations of the “optimum

curvature” PSCD algorithm.
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Figure 4.9: Comparison of objective function decrease Φ(µ0)−Φ(µn) versus iteration

number n of monotonic PS methods with coordinate descent and LBFGS methods

for real phantom data.
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of monotonic PS and FS methods with coordinate descent. Note ri = 0 in this

simulation.
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CHAPTER 5

Paraboloidal Surrogates Ordered Subsets

Algorithms for Transmission Tomography

5.1 Introduction

1Attenuation is an important factor that should be corrected for in emission com-

puted tomography. In modern PET and SPECT systems, transmission scans are

performed in addition to emission scans to correct for the effects of attenuation.

Statistical methods can be used to reconstruct attenuation maps, from which one

can calculate attenuation correction factors (ACFs) to yield quantitatively accurate

emission images.

Many algorithms exist for maximum likelihood (ML) and penalized likelihood

(PL) transmission image reconstruction problems. Most of the recent ones [98, 42]

are based on direct maximization of the objective function rather than on the famous

expectation maximization (EM) algorithm [70] due to the fact that the EM algorithm

for transmission reconstruction converges very slowly [89].

Recently, ordered subsets EM (OSEM) [60] for the emission problem has been

used extensively in emission image reconstruction, primarily because of the following

reasons.

• OSEM provides order-of-magnitude acceleration over EM in ML problems.

1This chapter is based on [31].
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• The reconstructed images look good after only a few iterations.

• OSEM is implemented by slightly modifying the well-known EM algorithm.

• OSEM is easily implemented with any type of system model.

Although the images seem to look good, the resolution and variance properties

of OSEM are unclear. In addition it does not converge and may cycle. Due to

its popularity, OSEM has even been applied to transmission data after taking its

logarithm. In the results section, we show that this approach yields lower quality

images than the ordered subsets transmission (OSTR) algorithm that we introduce

in this chapter.

The ordered subsets principle can be applied to any algorithm which involves a

sum over sinogram indices. The sums over all the sinogram indices are replaced by

sums over a subset of the data and an ordered subsets version of the algorithm is

obtained. However, it seems best to apply this idea to algorithms which update the

parameters simultaneously at each iteration rather than to sequential update algo-

rithms. Simultaneous update algorithms take smaller steps in the update direction

than sequential update algorithms due to the requirement of a separable surrogate

function which has higher curvature than a nonseparable one. Sequential update

algorithms such as coordinate descent tend to update high frequencies faster [98].

When only a subset of the data is used, as in ordered subsets, there is no point in

making high frequency details converge. For the algorithms that use only a portion

of the data at each iteration such as ART, underrelaxation along the update direction

helps the algorithm to converge [8].

We introduce a new simultaneous update algorithm called separable paraboloidal

surrogates (SPS) algorithm in this chapter. A paraboloidal surrogate [30] is a quadratic

function that is designed to lie above the negative log-likelihood. Using convexity [42],

we get a separable quadratic function that lies above this paraboloid. Another sep-

arable surrogate can be obtained for the penalty part by using De Pierro’s methods

[23, 24]. The global separable surrogate function can be minimized by a simple si-

multaneous update.
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The SPS algorithm has three advantages as compared to previous simultaneous

update algorithms such as transmission EM algorithm [70] and Lange’s Convex algo-

rithm [71] : 1) It requires fewer flops per iteration than the transmission EM algorithm

and is comparable to the Convex algorithm, 2) SPS is derived for the PL problem

which is a more general form than the ML problem, 3) SPS is guaranteed to be

monotonic, even with nonzero background events.

The ordered subsets principle has been applied to other transmission ML algo-

rithms. Manglos et al. [77] applied the ordered subsets idea to the transmission EM

method for ML problem. Although ordered subsets accelerates the original transmis-

sion EM algorithm, it still converges slowly. Nuyts et al. [87] tested an ordered subsets

version of an approximate simultaneous update algorithm they developed. Their al-

gorithm disregards background counts (such as random coincidences in PET) and

the convergence properties are unknown. Kamphuis and Beekman [64] applied the

ordered subsets principle to Lange’s Convex algorithm to accelerate ML transmission

image reconstruction, also ignoring the background counts.

In this work, we apply the ordered subsets principle to the SPS algorithm for

both ML and PL transmission tomography problems. We show that ordered subsets

accelerates the initial speed of the original SPS algorithm. However, OSTR is not

guaranteed to be monotonic and does not converge to the true optimum for number of

subsets greater than one. Browne and Depierro [8] developed a new algorithm called

RAMLA which is similar to OSEM with a relaxation parameter incorporated to the

algorithm. For a certain class of relaxation parameters, they prove that RAMLA

converges to the true ML solution for emission tomography. It might be possible to

obtain a convergent version of OSTR by similar means. However, our results show

that, even without relaxation, the PL images reconstructed with OSTR are very

similar to the ones obtained by convergent algorithms.

In the rest of the chapter, we first introduce the problem and the OSTR algorithm

for general penalized-likelihood (PL) objective. Then, we present results on real

PET transmission data with ML and PL reconstructions. We analyze the algorithms

in terms of their mean squared error. We also perform hard segmentation on the
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reconstructed images to analyze their tissue classification performance.

5.2 The Problem

For transmission scans, it is realistic to assume the following statistical model if

the raw (prompt) measurements {yi} are available:

yi ∼ Poisson{bie
−[Gµ]i + ri}, i = 1, . . . , N, (5.1)

where N is the number of measured rays, µj is the average linear attenuation coef-

ficient in voxel j for j = 1, . . . , p, and p denotes the number of voxels. The nota-

tion [Gµ]i =
∑p
j=1 gijµj represents the line integral of the attenuation map µ, and

G = {gij} is the N × p system matrix. We assume that {bi}, {ri} and {gij} are

known nonnegative constants, where ri is the mean number of background events, bi

is the blank scan count and yi represents the number of coincident transmission events

counted by the ith detector pair. Although we adopt PET terminology throughout,

the algorithm is also applicable to SPECT and X-ray CT.

For most PET systems, the delayed coincidences are pre-subtracted from true

(prompt) coincidences by the device hardware in an attempt to remove the back-

ground counts. The subtracted data is no longer Poisson [33, 121], but a difference

of two Poisson random variables:

ysi ∼ Poisson{bie
−[Gµ]i + ri} − Poisson{ri}. (5.2)

In this case, the model (5.1) is not accurate. Yavuz and Fessler [121] showed that an

accurate model is achieved by adding a sinogram which is a good estimate of twice

the mean background events (ri’s) to the subtracted data and assuming that this

resultant random vector has the distribution:

ysi + 2ri ∼ Poisson{bie
−[Gµ]i + 2ri}, i = 1, . . . , N.

This “Shifted Poisson” model matches the mean and variance of the data and yields

more accurate images than the PWLS method [121]. For the rest of the chapter, we
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focus on the model (5.1). However extension to the Shifted Poisson model can easily

be done by replacing yi by y
s
i + 2ri and ri by 2ri.

The negative log-likelihood function for the independent transmission data is:

−L(µ) =
N∑
i=1

hi([Gµ]i), (5.3)

where hi(l) = bie
−l + ri − yi log (bie

−l + ri), ignoring the constant terms. Directly

minimizing −L(µ) (ML method) results in a very noisy estimate µ̂. Segmentation of

the attenuation map is commonly performed to reduce noise afterwards. Penalized-

likelihood (PL) (or MAP) methods regularize the problem and reduce the noise by

adding a roughness penalty to the objective function as follows:

µ̂ = argmin
µ≥0

Φ(µ), Φ(µ) = −L(µ) + βR(µ).

For simplicity we focus here on a roughness penalty R of this form:

R(µ) =
1

2

p∑
j=1

∑
k∈Nj

wjkψ(µj − µk),

where Nj represents a neighborhood of voxel j, ψ is a symmetric and convex function

that penalizes neighboring pixel differences. The method easily generalizes to other

forms of penalty functions.

In the following discussion, we use the PL formulation to derive the new algorithm.

Setting β = 0 in the following discussion yields the ML estimator.

5.3 The SPS Algorithm

In this section, we describe a new simultaneous update algorithm called separable

paraboloidal surrogates (SPS) algorithm.

5.3.1 The Likelihood Part

Nonseparable Paraboloidal Surrogate

We presented the paraboloidal surrogates algorithm for transmission tomography

previously [30, 29]. We first find a one-dimensional surrogate parabola qi(l; l
n
i ) that
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is tangent to the marginal negative log-likelihood function hi(l) at the current iterate

lni = [Gµ
n]i and lies above it for all l > 0. Then, we sum up these parabolas like (5.3)

to obtain an overall (nonseparable) paraboloidal surrogate function for the negative

log-likelihood as follows:

Q1(µ;µ
n)
4
=

N∑
i=1

qi([Gµ]i ; l
n
i ) ≥ −L(µ), ∀µ ≥ 0,

where

qi(l; l
n
i )
4
= hi(l

n
i ) + ḣi(l

n
i )(l − l

n
i ) +

1

2
ci(l

n
i )(l− l

n
i )
2.

The optimum curvature that provides the fastest convergence rate while preserving

monotonicity was shown to be [30]

ci(l
n
i ) =




[
2
hi(0)− hi(lni ) + ḣi(l

n
i )(l

n
i )

(lni )
2

]
+

, lni > 0[
ḧi(0)

]
+
, lni = 0

, (5.4)

=




[
2
(lni )

2

{
bi(1− e−l

n
i )− yi log

bi + ri
ȳni

+ lni bie
−lni

(
yi

ȳni
− 1

)}]
+

, lni > 0[
bi

(
1−

yiri

(bi + ri)2

)]
+

, lni = 0

where ȳni = bie
−lni + ri. This surrogate function Q1(µ;µ

n) and each qi(l; l
n
i ) are

naturally convex. Previously, we used coordinate descent to minimize this function

[30]. That approach leads to a very fast and monotonic algorithm. However, the

computational advantages only exist if the system matrix is precomputed and column

accessible [34]. For implementations in which the system matrix is not precomputed

(e.g. software that uses projector/backprojector subroutines which compute the gij on

the fly), algorithms that update all the parameters simultaneously are preferable since

column access to the system matrix is not needed. Moreover, simultaneous update

algorithms parallelize more readily than sequential updates. A simultaneous update

algorithm can be obtained from the above paraboloidal surrogate by finding another

separable surrogate function that lies above it for all possible feasible parameter

values µ. The additive separability of the surrogate will result in decoupling of the

optimization problem for each parameter and each parameter µj can be updated
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independently from the others. To obtain this separable function we use the convexity

tricks employed in [23, 24].

Separable Surrogate

Lange [71] applied De Pierro’s ideas [23, 24] to transmission tomography to get

a separable function that is tangent to the negative log-likelihood and lies above it

everywhere when it is convex. It can be based on rewriting the sum

[Gµ]i =
p∑
j=1

gijµj =
p∑
j=1

αij

(
gij

αij
(µj − µ

n
j ) + [Gµ

n]i

)
, (5.5)

where
p∑
j=1

αij = 1, ∀i and αij ≥ 0. (5.6)

Using the convexity of qi, we can show that:

qi([Gµ]i ; l
n
i ) ≤

p∑
j=1

αijqi

(
gij

αij
(µj − µ

n
j ) + [Gµ

n]i ; l
n
i

)
. (5.7)

The form of the right hand side of (5.7) ensures that the function value and gradient

of the left hand side are equal to those of the right hand side at the current iterate

µ = µn. In other words the curves are tangent at the current iterate. One possible

choice for αij that has been used in [23, 71] is:

αij =
gijµ

n
j

[Gµn]i
. (5.8)

We call this choice of αij’s as “multiplicative” form. Using the inequality (5.7) with

these αij’s, we get a separable surrogate function for Q1(µ;µ
n) as follows:

QM2 (µ;µ
n) =

N∑
i=1

p∑
j=1

αijqi

(
[Gµn]i µj

µnj
; lni

)
.

This is the separable surrogate obtained using the “multiplicative” form (5.8), hence

we use M in the superscript.

Another possible set of αij’s is given in [42]:

αij =
gij

γi
,

86



where γi =
∑p
k=1 gik is the projection of an image of all ones. We call this choice the

“additive” form, which results in a separable surrogate as follows:

Q2(µ;µ
n) =

N∑
i=1

p∑
j=1

gij
γi
qi
(
γi(µj − µ

n
j ) + [Gµ

n]i ; l
n
i

)
.

The function Q2(µ;µ
n) is separable in j and quadratic, so that the exact minimization

is reduced to minimization of p 1D parabolas each of which depend on one pixel value

µj only.

The separable surrogate obtained from the multiplicative form has some problems

with convergence speed due to the fact that the curvature is inversely proportional

to the current iterate value µnj :

∂2

∂2µj
QM2 (µ

n
j ;µ

n
j ) =

1

µnj

N∑
i=1

gij [Gµ
n]i ci(l

n
i ).

The surrogate parabola becomes infinitely thinner when µnj gets close to zero and slows

down the convergence for zero regions in the image. The convergence rates of the two

algorithms based on multiplicative and additive forms (PL problem with optimum

curvature (5.4)) are shown in Figure 5.1. This figure reveals that the additive form

yields a faster algorithm than the multiplicative form does. Hence, we focus on the

additive form for the rest of the chapter.

5.3.2 The Penalty Part

Section 5.3.1 derived separable surrogate functions for the log-likelihood function.

A similar separable surrogate is needed for the penalty part R(µ) to obtain a simulta-

neous update for the PL objective function. We exploit the convexity of the potential

function ψ(t) to obtain the surrogate. For completeness, we repeat the arguments in

[24, 71]:

ψ(µj − µk) = ψ

(
1

2

[
2µj − µ

n
j − µ

n
k

]
+
1

2

[
−2µk + µ

n
j + µ

n
k

])

≤ ψ̂jk(µ;µ
n)
4
=
1

2
ψ(2µj − µ

n
j − µ

n
k) +

1

2
ψ(2µk − µ

n
j − µ

n
k). (5.9)
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Figure 5.1: Comparison of additive form with optimum curvature (AO), with pre-

computed curvature (AP) and multiplicative form with optimum curvature (MO)

SPS algorithms for PL image reconstruction.

Using this inequality, one gets the following separable surrogate function for the

penalty:

S(µ;µn)
4
=
1

2

p∑
j=1

∑
k∈Nj

wjkψ̂jk(µ;µ
n) ≥ R(µ), ∀µ ∈ IR. (5.10)

One can verify that this surrogate function is tangent to R(µ) at the current iterate

and lies above it for all µ values. Furthermore, the curvature of the surrogate at the

current iterate µn is exactly twice the curvature of the original penalty function.

5.3.3 The SPS Algorithm

We designed separable surrogate functions for both the likelihood and the penalty

parts in the preceding sections. By combining those, we define the global surrogate

function

φ(µ;µn)
4
= Q2(µ;µ

n) + βS(µ;µn),

which satisfies φ(µ;µn) ≥ −L(µ)+βR(µ) = Φ(µ), ∀µ ≥ 0, and is tangent to Φ(µ) at

current iterate µn, i.e.

Φ(µn) = φ(µn;µn), ∇Φ(µn) = ∇φ(µn).
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We minimize (or decrease) the function φ(µ;µn) at each iteration and repeat the

procedure iteratively,

µn+1 = argmin
µ≥0

φ(µ;µn).

We call this algorithm separable paraboloidal surrogates (SPS) algorithm. One can

show [30] that decreasing the surrogate function φ(µ;µn) also decreases the original

objective function Φ(µ). Hence, this algorithm is intrinsically monotonic. The min-

imization of φ(µ;µn) is easy. Due to the additive separability, the update for each

parameter only involves the parameter itself and µn. When a quadratic penalty is

used, i.e. ψ(t) = t2/2 and the nonnegativity constraint is ignored, the maximization

can be done exactly in a single step via Newton’s algorithm as follows:

µn+1 = µn −D−1∇′Φ(µn), (5.11)

where ∇′Φ(µn) is the column gradient of Φ at µn and D is a p × p diagonal matrix

with diagonal entries

Djj = d
n
j + 2β

∑
k

wjk, for j = 1 . . . p.

The factor 2 in the denominator comes from the curvature of the separable surrogate

S(µ;µn) in (5.10). The denominator terms dnj are:

dnj =
N∑
i=1

gijγici(l
n
i ). (5.12)

For transmission tomography, it is advantageous to use edge-preserving non-

quadratic penalties, such as [68]:

ψ(t) = δ2 [|t/δ| − log(1 + |t/δ|)] , (5.13)

where δ > 0 is predetermined. We used this penalty in our PL reconstruction results.

In the nonquadratic penalty case, exact minimization of φ(µ;µn) is not easy, but

one can monotonically decrease the surrogate objective by doing one or more of the

following Newton-Raphson type subiteration(s):

µ̂j :=


µ̂j −

∂
∂µj
φ(µ̂;µn)

dnj + 2β
∑
k∈Nj

wjkωψ(µ̂j − µnk)



+

, (5.14)
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where ωψ(t) = ψ̇(t)/t. The detailed explanation of the ωψ(t) function can be found

in [30, 38]. The partial derivative of the surrogate φ with respect to µj can be found

as:

∂

∂µj
φ(µ̂;µn) =

N∑
i=1

gijḣi(l
n
i ) + d

n
j (µ̂j − µ

n
j ) + β

∑
k∈Nj

wjkψ̇(µ̂j − µ
n
k), (5.15)

where ḣi(l) =
(

yi

bie−l + ri
− 1

)
bie
−l.

Next, we apply the ordered subsets idea to the simultaneous update algorithm

developed above.

5.3.4 Ordered Subsets

The ordered subsets principle can be used with any algorithm that involves sums

over sinogram indices. The SPS algorithm (5.14) contains sums over sinogram indices

in computing the denominator dnj terms (5.12) and the gradient terms
∂
∂µj
φ (5.15).

We apply the ordered subsets idea to this algorithm.

Ordered subsets methods group projection data into an ordered sequence of sub-

sets or blocks and processes each block at once. These blocks are usually chosen so

that the projections within one block correspond to projections of the image with

downsampled projection angles. It was reported [60] that it is best to order the

subsets such that the projections corresponding to angles with maximum angular

distance from previously used angles are chosen at each step. This accelerates con-

vergence as compared to random or sequential ordering of the subsets. This is due to

the fact that the rows of the system matrix corresponding to subsets are chosen to

be as orthogonal as possible to previously used subsets.

Let M be the number of subsets chosen in the projection domain. Let S1, . . . , SM

denote the subsets in the order selected. At step m the following objective function

corresponding to the subset Sm should be minimized (or decreased):

Φm(µ) =M



∑
i∈Sm

hi([Gµ]i)


+ βR(µ). (5.16)

The scaling of the negative log-likelihood function ensures that effective β value is

independent of the number of subsets. Note that the original objective function can
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be written in terms of the objective functions (5.16) as follows:

Φ(µ) =
M∑
m=1

1

M
Φm(µ). (5.17)

The success of the ordered subsets methods depends on the following approximation:

Φ(µ) ≈ Φm(µ), (5.18)

which should be reasonable if the subsets are chosen by subsampling the projection

angles.

One iteration is completed when the algorithm cycles through all the projections

by using all the subsets. An update performed using a single subset is called a

subiteration. The modification of the SPS algorithm to incorporate ordered subsets

idea is relatively easy. We call the resulting algorithm ordered subsets transmission

(OSTR) algorithm. The algorithm outline is shown in Table 5.1.

The form of the update (5.22) requires the gradient and curvature associated with

the penalty term to be computed for each subset. Although the contribution of that

computation is only about 4 − 5% in SPS, it might be costly for a large number of

subsets since it is repeated for each subset. Other approaches might be possible such

as to consider the penalty function as one of the subsets and update it separately at

the end of each cycle [25]. It might also be possible to break down the penalty term

similar to the likelihood part to reduce computation at each iteration. The choice we

made in this work follows naturally from the approximation (5.16) of the PL objective

function. Further investigation is required to reduce this computation.

The OSTR algorithm reduces to the SPS algorithm (5.14) whenM = 1. Since the

projections and backprojections are performed for only the elements of a single block,

processing of each block in an OSTR algorithm with M subsets (OSTR-M) roughly

takes 1/M of time that it would take for one iteration of the SPS algorithm for the

ML problem. For PL problem, actually it would take more than 1/M of the time

since the CPU time required for computing the gradient and curvatures of the penalty

surrogate at each full iteration is multiplied by the number of subsets. Yet, one hopes

that processing of one block increases the objective function as much as one iteration

91



Precompute dj if possible

for each iteration n = 1, . . . , niter

for each subset m=1,. . . ,M

l̂i =
p∑
j=1

gijµ̂j , ḣi =

(
yi

bie−l̂i + ri
− 1

)
bie
−l̂i , ∀i ∈ Sm (5.19)

µold = µ̂

for j = 1, . . . , p

L̇j =M
∑
i∈Sm

gijḣi (5.20)

dj =M
∑
i∈Sm

gijγici(l̂i) (5.21)

µ̂j :=

[
µ̂j −

L̇j + β
∑
kwjkψ̇(µ̂j − µ

old
k )

dj + 2β
∑
kwjkωψ(µ̂j − µ

old
k )

]
+

(5.22)

end

end

end

Table 5.1: OSTR algorithm outline

of the original algorithm. That is, the objective increase for M iterations of OSTR-1

should be close to that increase for one full iteration of OSTR-M . This intuition is

verified in the initial iterations and for up to a reasonable number of subsets in the

results section.

5.3.5 Precomputed Denominator OSTR

We obtained the OSTR algorithm above from a monotonic simultaneous update

algorithm. However, the monotonicity is destroyed by doing ordered subsets itera-

tions. So, the algorithm is monotonic only when one subset is used which is equivalent

to SPS.

Since the monotonicity is destroyed at the end anyway, we can remove the condi-

tion that the surrogate paraboloid Q1(µ;µ
n) lie above the original objective function
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and obtain a yet faster algorithm [30]. Our aim is to precompute the denominator

terms dnj before iterating and save computation by not updating them. This “pre-

computed curvature” idea was introduced in [42, 30] for algorithms that used all the

data at once unlike the OS algorithms. We can generalize this idea to ordered subsets

easily. First, we notice that we can replace the curvature ci(l
n
i ) terms with the Newton

curvatures ḧi(l
n
i ) in (5.21) and obtain a new algorithm which is no longer guaranteed

to be monotonic (even for single subset). We notice that the second derivative of

hi does not change very rapidly and the projections remain very close to the values

l∗i
4
= log

(
bi

yi − ri

)
during the iterations (which is actually the minimum for hi(l) over

l). So, as a second approximation, we replace ḧi(l
n
i ) with ḧi(l

∗
i )
2. The third approx-

imation is to replace M times the sum of the curvatures ḧi(l
∗
i ) over the subset Sm

in (5.21) with the sum over all sinogram indices {1, . . . , N}. This is an accurate ap-

proximation if the projections l∗i vary slowly with respect to the projection angle and

each subset is chosen by subsampling the projection angles. So, we can precompute

and fix the denominator terms dnj by:

dnj = M
∑
i∈Sm

gijγiḧi(l
n
i )

≈ d∗j
4
=

N∑
i=1

gijγiḧi

(
log

(
bi

yi − ri

))
=

N∑
i=1

gijγi
(yi − ri)2

yi
. (5.23)

This approximation further reduces CPU time. The minimization step is similar

to (5.14) but the gradient terms in (5.20) are computed using just a subset of the

data. We also found that doing more than one subiteration (5.14) does not improve

“convergence” and costs a lot computationally in the ordered subsets case. So, we

only perform one subiteration to improve “convergence” and CPU time.

The algorithm looks very simple for the ML problem. The updates are done as

follows in ML reconstruction using the fast precomputed denominator:

Precompute and store: d∗j =
∑N
i=1 gijγi(yi − ri)

2/yi, where γi =
∑
j gij

2l∗i can only be evaluated when yi > ri. Otherwise, hi(l) is a convex function which is monotoni-
cally decreasing as l→∞. When ri ≥ yi, liml→∞ ḧi(l) = 0, so we replace ḧi(l

∗
i ) with zero or a very

small number in that case.
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for each subset Compute: l̂i, ḣi as in (5.19) in Table 5.1

Update:

µj :=

[
µj −

M
∑
i∈Sm gij ḣi

d∗j

]
+

. (5.24)

end

This ML-OSTR algorithm is very easy to implement using any kind of system matrix.

Precomputed denominator is applicable to PL problem as well. Figure 5.1 shows

that PL-OSTR with precomputed denominators converge faster than PL-OSTR with

optimum curvature. We used this precomputed denominator approach for the results

presented next.

5.4 Phantom Data Results

We acquired a 15-hour blank scan (bi’s) and a 12-min transmission scan data (yi’s)

using a Siemens/CTI ECAT EXACT 921 PET scanner with rotating rod sources for

transmission scans. The phantom used was an anthropomorphic thorax phantom

(Data Spectrum, Chapel Hill, NC). Delayed coincidence sinograms were collected

separately in each scan. There were 0.920 million prompt coincidences for the recon-

structed slice and the delayed coincidences were about 2.6% of the prompt ones. The

blank and transmission scan delayed-coincidence sinograms were shown to be numer-

ically close [121], so we used a time-scaled version of blank scan delayed coincidences

as the ri factors with no other processing. The projection space was 160 radial bins

and 192 angles, and the reconstructed images were 128 × 128 with 4.2 mm pixels.

The system matrix gij was computed by using 3.375 mm wide strip integrals with

3.375 mm spacing, which roughly approximates the system geometry.

5.4.1 Reconstructions

The attenuation map was reconstructed for both ML and PL methods using OSTR

algorithm with 1, 2, 4, 8, 16 and 32 subsets. In all OSTR reconstructions, precom-
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Figure 5.2: Maximum Likelihood L(µ0)− L(µn).

puted denominator (5.23) was used. For PSCD reconstructions, we used the optimum

curvature (4.33). Figure 5.2 shows objective function decrease for the ML reconstruc-

tions initialized with a uniform image. The order-of-magnitude acceleration can be

seen by the horizontal dashed lines in this plot for initial iterations. One iteration of

ML-OSTR-16 decreases the objective almost as much as 16 iterations of ML-OSTR-1

and 4 iterations of ML-OSTR-4 for initial iterations. Although, when M > 1, the

algorithm does not converge to the true ML solution, in practice one would only do

a few iterations using ML-OSTR-M . In the ML problem, exact maximization is not

desired since the ML image is extremely noisy.

Figure 5.3 shows objective function decrease versus iterations for PL reconstruc-

tions (β = 210 and nonquadratic Lange’s penalty (5.13) with δ = 0.004). The itera-

tions are initialized with an FBP image. There is a speed-up in using more subsets,

but as the number of subsets increase, the order-of-magnitude acceleration does not

hold. For example, one iteration of PL-OSTR-16 decreases the objective more than

one iteration of PL-OSTR-32 (not shown). So, more than 16 subsets did not seem to

improve “convergence” for this configuration and data. For comparison, the image

is also reconstructed with the optimum curvature paraboloidal surrogates coordinate
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Figure 5.3: Penalized-likelihood Φ(µ0)− Φ(µn).

descent (PL-PSCD) method which is a fast monotonic algorithm [30]. The CPU

times for one iteration of PL-PSCD and one iteration of PL-OSTR-1 are similar. It

is clearly seen that PL-OSTR-M algorithms do not converge to the true minimum

when M > 1. To assure convergence, one could sequentially decrease the number of

subsets with each iteration.

5.4.2 Mean Squared and Segmentation Errors

The reconstructions were done using real data. We wished to find mean squared

errors and segmentation errors on the reconstructed images. The true image of course

was unknown. We acquired a long 14 hour scan of the thorax phantom which was

almost noise free. We reconstructed the data with FBP with a sharp filter. Then, we

performed a 4 level hard thresholding segmentation on this image with attenuation

map parameters assumed to be average standard attenuation map values for air, soft

tissue, lungs and bone. We obtained regions for each attenuation level. Then, we

eroded these regions with a 5 × 5 window to get more conservative estimates of the

regions and calculated the average value of the FBP image in these regions. These

new values were assumed to be the true attenuation coefficient levels for the image (air
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= 0, lungs = 0.035, soft tissue (water) = 0.093, bone (teflon) = 0.164 cm−1). Then,

the FBP image was segmented by thresholding using new levels to obtain the “true”

phantom image shown in Figure 5.4. It is possible to use a PL image reconstructed

from the 14 hour data as the “true” image as well. The reason we used FBP was not

to bias the results in favor of the statistical methods.

Figure 5.4: Image obtained by hard segmentation of the FBP image reconstructed

from the 14-hour scan assumed as the true image.

We computed normalized mean squared errors (NMSE) for each reconstruction

method by comparing to the true phantom image in Figure 5.4. The reconstructed

images were also hard-segmented with the thresholds found above and we evaluated

their segmentation performance by counting the number of misclassified pixels.

We also applied the emission ML-OSEM algorithm to the logarithm of the trans-

mission data − log {(yi − ri)/bi}. Although there is no theoretical basis for this ap-

proach, it has nevertheless been used by many groups. Our results show that this

approach is inferior to the ML-OSTR method and that it should be avoided.

Figure 5.5 shows NMSE versus iterations for ML-OSTR, ML-OSEM, PL-OSTR

and PL-PSCD methods. Figure 5.6 shows the percentage of segmentation errors

versus iterations for the same methods. These results show that ML-OSTR algo-

rithms get noisy after a certain number of iterations and that the iterations should be

stopped before convergence. For this transmission scan, the ML-OSTR-16 algorithm

should be stopped at the third iteration for lowest NMSE. ML-OSEM applied to the
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Figure 5.5: Normalized mean squared errors versus iterations for various methods of

reconstruction.

logarithm of the transmission data is inferior in quality to all other methods we tried,

regardless of number of subsets. PL reconstructions have better quality than ML

reconstructions in terms of both lower mean squared errors and lower segmentation

errors. Although PL-OSTR-16 algorithm does not converge to the minimum of Φ in

Figure 5.3, remarkably it appears to be comparable to the convergent PL-PSCD algo-

rithm in terms of NMSE and segmentation performance. In fact, the normalized mean

squared difference between images reconstructed by PL-PSCD and PL-OSTR-16 is

less than 0.015% at iteration 30 of each algorithm.

Figure 5.7 shows reconstructed images and their segmentations for FBP, ML-

OSTR, ML-OSEM, PL-OSTR and PL-PSCD methods. Each image is the best among

their kind. For example, to obtain the FBP image, we performed 20 different FBPs

with Hanning windows with different cutoff frequencies and picked the one with lowest

NMSE. ML-OSTR image is obtained by 8 subsets at 3 iterations. ML-OSEM image is

obtained by 8 subsets at 2 iterations. We used the images obtained at 10th iteration

of PL-PSCD and 4th iteration of PL-OSTR-16. The bars show the levels of NMSE

and segmentation errors. We conclude that PL reconstruction images are much better

than the images obtained using other methods.
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5.5 Patient Data Results

We applied the new OSTR algorithm to patient transmission and FDG emission

data obtained from ECAT EXACT 921 scanner. A total of 47 slices were acquired

for both transmission and emission scans with the delayed coincidences subtracted

from the prompt data in both cases. Emission data was acquired for 15 minutes and

had total prompt counts of 0.6 million per slice on the average. Transmission data

was acquired for 12 minutes before injection and had total average prompt counts of

1.5 million per slice. The randoms were 14% for the emission scan and 6% for the

transmission scan. We reconstructed emission images using ACFs obtained from the

transmission scan. ACFs were computed using two different methods: 1) conventional

(or FBP reconstructed and reprojected) and 2) Nonquadratic penalty PL-OSTR-

16 reconstructions with precomputed denominators and 5 iterations. Attenuation

maps were both post-smoothed axially with the same Gaussian shaped filter with 5

mm FWHM to reduce noise. Emission reconstructions were done with 1) FBP and

2) Quadratic penalty PL-SAGE [44]. The resolutions of the emission images were

matched at 6.6 mm FWHM.

There was only a 12 minute transmission scan data available. The transmission
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Figure 5.7: Reconstructed (left) and segmented (right) attenuation map images using

various methods. The numbers in parentheses show the iteration number. The bar

plots show the relative NMSE and segmentation error levels. The middle lines in the

right hand side bars for ML methods indicate the segmentation error reduction after

median filtering.
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randoms were pre-subtracted, so we used the shifted Poisson model (5.2) for the

data. The randoms were assumed uniform and the percentage of randoms were es-

timated from total delayed counts which was available in the file header. To obtain

the 2 minute transmission data, we thinned the 12 minute transmission data ysi +2ri

by generating binomial random variables with parameters n = max{0, ysi + 2ri} and

p = 2/12. Here, n is an approximately Poisson random variable with mean n̄. This

binomial thinning approach yields a new (approximately) Poisson random variable

with a reduced mean of pn̄. The 2 minute scan randoms level was adjusted to 2 min-

utes as well. Transmission regularization parameter β was adjusted automatically

by the method in [46] for the 2 minute scan as well to yield an image with similar

resolution properties as the 12 minute image. We also used shifted Poisson model

and uniform randoms estimate for the emission data. Scatter and deadtime effects

were ignored.

In Figures 5.8, 5.9, and 5.10, we show transaxial, coronal and sagittal emission

images reconstructed using ACFs obtained from a 12 minute transmission scan. The

image obtained using the statistical method shows some improvement in the image

quality over the conventional or hybrid methods. Figures 5.11, 5.12, and 5.13 show

transaxial, coronal and sagittal emission images obtained from different combina-

tions of image reconstruction methods with a 2 minute transmission scan. With the

2 minute transmission scan, the improvements in image quality are more apparent

for the statistical methods as compared to the conventional methods. These images

show that statistical image reconstruction in transmission scans is more important

than that in emission scans especially for short transmission scan times.

5.6 Conclusion

We introduced a new ordered subsets algorithm for ML and PL image recon-

struction in transmission tomography. Although the algorithm does not converge for

number of subsets greater than one, it seems to rapidly decrease the objective function

value in the early iterations. The images reconstructed from real PET data with ML
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method are worse in quality than images reconstructed with PL method. However,

ML-OSTR is superior to ML-OSEM applied to the logarithm of transmission data for

this particular data. The new algorithm is easy to implement with any type of sys-

tem model and does not require column access to the system matrix unlike sequential

update algorithms such as coordinate descent. It is also easily parallelizable.

Kudo et al. [67] claim that for a general convex objective function, it is possi-

ble to obtain convergent ordered subsets algorithms by using appropriate relaxation

schemes. The general form in [67] includes OSTR algorithm as a special case. So

it might be possible to obtain convergent algorithms by incorporating a relaxation

parameter to the OSTR algorithm.

We conclude that if an approximate minimum is acceptable due to practical time

and programming constraints, then the OSTR algorithm offers faster convergence

than prior methods. However, for guaranteed global convergence to the minimum,

other methods must be used, such as [30].
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Figure 5.8: FBP (denoted E-FBP) and quadratically penalized PL (denoted E-PL)

emission image reconstructions with attenuation correction factors obtained using

conventional (denoted T-FBP) and nonquadratic penalty PL (denoted T-PL) atten-

uation map reconstructions using the OSTR algorithm. Transaxial images of slice

36 (of total 47 slices) are presented. Emission scan was 15 minutes and transmission

scan was 12 minutes. Emission images were all reconstructed at the same resolution

of 6.6 mm FWHM.
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Figure 5.9: Coronal images (slice 64) of the patient data with parameters same as

Figure 5.8.
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Figure 5.10: Sagittal images (slice 75) of the patient data with parameters same as

Figure 5.8.
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Figure 5.11: Same as Figure 5.9 but with a 2 minute transmission scan which is

obtained by thinning the original 12 minute transmission scan.
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Figure 5.12: Coronal images of the patient data with parameters same as Figure 5.11.
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Figure 5.13: Sagittal images of the patient data with parameters same as Figure 5.11.
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CHAPTER 6

Image Reconstruction Techniques for PET with

Post-injection Transmission Scans

6.1 Post-Injection Transmission Scans

Conventional PET protocols utilize a transmission scan that precedes the radio-

tracer injection in order not to have interference of emission counts from the body. For

example, in a cancer imaging study using FDG to detect lung tumors, the patient

should be injected 50 minutes before scanning, in order for the radiotracer to get

distributed in the body and obtain accurate readings. Since the transmission scan

is done before injection, the patient must lie still in the scanner for this 50 minute

period before starting an emission scan. Pre-injection transmission scans have a few

disadvantages: 1) The patient throughput is reduced due to the waiting time; 2) It is

inconvenient for the patient to lie in the scanner for a time longer than necessary; 3)

The likelihood of patient motion is increased between transmission and emission scans

due to misregistration of attenuation and emission images. Significant movement

produces glaring artifacts, while subtle motions produce small, less easily detected,

biases [14].

To overcome these problems, transmission scans can be done after the injection.

In a post-injection protocol, the patient is injected before getting inside the scanner

and can wait 50 minutes in a waiting room without any restriction. The emission and
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transmission scans are done without any delay in between. This technique avoids the

problems with the pre-injection transmission scans. There are other advantages of

them as well. Whole-body emission scans are very important for detection and staging

of cancer. In a whole-body scan, multiple bed positions are utilized with a very short

scan time for each position to cover the whole body of the patient. In whole-body

scans, transmission scans are often not performed due to time constraints. If better

methods of image reconstruction are developed for post-injection transmission scans,

a short one can be utilized in whole-body scans to reconstruct quantitatively correct

whole-body emission images. Another use of post-injection transmission scans is

determination of correct axial position in cancer imaging with a short post-injection

transmission scan which would give anatomical information without a need to guess

the position and without any loss of time. Hence, there is no doubt that post-injection

protocols are clinically very useful and will increase patient throughput considerably.

In return, one has to deal with the contamination of the transmission scan with

undesirable emission counts.

There have been studies addressing post-injection transmission scans [14, 21, 117,

75], most of which employ the subtraction of a fraction of a separate emission scan

from the post-injection transmission scan. The use of transmission rod sources and

sinogram windowing of the measurements reduce the emission contamination consid-

erably to a much smaller percentage as compared to the case when ring sources are

used. Emission contamination was also estimated by performing a transmission scan

with sinogram windowing without the rods present [103]. Some researchers utilized

simultaneous emission scans to estimate emission contamination [57]. These methods

subtract the estimated emission contamination as well. The subtraction method is

shown to work satisfactorily on brain scans with rotating rod sources [21]. In a thorax

scan however, the emission counts for some rays traversing the body will exceed the

transmission counts. In this case, subtraction approach results in noisy attenuation

correction factors and emission images with streak artifacts. We propose that statisti-

cal methods can overcome this problem by incorporating the emission contamination

into the statistical measurement model.
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Our methods will be useful for clinical post-injection studies of the thorax since

statistical methods will decrease the effect of emission contamination. Better regular-

ization of the attenuation map will also help us reconstruct more accurate attenuation

maps in post-injection as well as pre-injection scans which will result in less noisy and

more accurate emission images.

6.1.1 Rod Sources and Sinogram Windowing

Earlier transmission scans in PET were performed using ring sources. Using rotat-

ing rod or pin sources for transmission scanning were proposed [13] and applied [112]

in the 1980s. The scanner monitors the source position as it rotates about the patient

aperture and reject coincidences that do not intersect the source position [14]. This

process, called sinogram windowing, removes most scattered and random coincidences

from the transmission measurement. The sinogram window changes in real time ac-

cording to the location of the rotating rods. Some researchers suggested to use the

“rejected” data (which primarily contains emission counts) to acquire simultaneous

emission/transmission (SET) scans [114, 113, 78]. The simultaneous emission data

has some problems with a very high rate of scatter, randoms and deadtime. Cur-

rently, we do not use the simultaneous emission data and use a conventional emission

scan either before or after the transmission scan. However, our model is very general

and can incorporate simultaneous scans as well.

An illustration of the rod geometry is given in Figure 6.1. The lines of response

that are collinear with the center of a rod at a given position can be found roughly

using the following equation

d = rrod sin(θ − φ),

where rrod is the radius of the rod orbit, d and θ characterize the projection (distance

and angle) and φ is the rod angle at current position. This is a sine wave in sinogram

domain, but the peaks are cut off because the rods are outside the FOV, so it is

almost linear.

A more accurate equation which takes the nonuniform spacing of the constant
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FOV

Figure 6.1: Transaxial rod geometry in a rotating rod scanner with three rods.

angle projection lines into account is (spacing is bigger in the middle of FOV, but

smaller at the edges) [62]:

d =
N

2π
arcsin

[
rrod

rdetector
sin(θ − φ)

]
,

where rdetector is the detector ring radius and N is the number of detectors per ring.

We take a radial window of width W around this curve to form the sinogram

window. The data received only within this dynamic window are recorded since the

rest does not contain true transmission counts. The optimal width which maximizes

the noise equivalent counts (NEC) is reported to be W = 5 for ECAT EXACT

scanners [62]. This sinogram window is shown in Figure 6.2 for a single rod. One to

three rods are used in current scanners.

We describe the model for the post-injection measurements in the next section.

6.1.2 The Model

The models for the measurements are very similar to the ones in Chapter 2, but

transmission scans include emission contamination.

Let λ = [λ1, . . . , λp]
′ denote the vector of unknown emission counts originating

from image pixels, and µ = [µ1, . . . , µp]
′ be the vector of linear attenuation coeffi-
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Figure 6.2: Sinogram window illustration for a fixed position of a single rod. This

window is changed real time as the rod moves.

cients (having units of inverse length). Let yT = [yT1 , . . . , y
T
N ]
′ denote the vector of

post-injection transmission scan counts, and yE = [yE1 , . . . , y
E
N ]
′ denote the vector of

emission scan counts.

We define the survival probabilities as follows:

αi(µ) = e
−li(µ),

where li(µ) represents the line integral along projection i of the attenuation map µ:

li(µ) =
∑
j

gijµj.

We also define the emission contamination count rate

κi(λ, µ) = kiεiαi(µ)pi(λ). (6.1)

Here ki is the fraction of emission counts contaminating the transmission data and

includes some other factors, pi(λ) represents the geometric projections of the true

emission image:

pi(λ) =
∑
j

gijλj ,

and εi denotes the detector efficiencies.
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We assume that the emission scan measurements yE and the transmission scan

measurements yT are independent Poisson measurements with corresponding means:

ȳTi (µ, λ) = τTdTi
(
biαi(µ) + r

T
i + κi(λ, µ)

)
, (6.2)

ȳEi (λ, µ) = τEdEi

(
εiαi(µ)pi(λ) + r

E
i

)
, (6.3)

for i = 1 . . . N . Here, τT and τE are transmission and emission scan times respec-

tively. dTi and d
E
i are deadtime correction factors for each scan. li(µ) and pi(λ) are

geometric tomographic projections of parameters µ and λ. bi, r
T
i and r

E
i are blank

scan, transmission scan randoms and emission scan randoms count rates respectively.

We assume {bi}, {ki}, {rTi }, {εi}, {r
E
i } and {gij} are known constants throughout this

chapter.

ki should contain these factors for accurate modeling of the emission contamina-

tion:

1. The proportion of time the ith ray is included in the transmission sinogram

window during a whole scan. This value might be space variant depending on

the design of the sinogram windows and typically the mean is less than 0.1.

2. The radioactive decay correction between emission and transmission scans. This

might be less than or greater than one depending on the scan order.

3. Rod attenuation factors should also be included in ki. This factor is less than

one.

Our final goal is to estimate λ from the two set of measurements. But, an estimate

for the attenuation map µ is also found in the process for statistical reconstruction

methods.

6.1.3 Resolution

Generally, for reducing noise in the transmission scan, radial sinogram smoothing

is employed. Although this reduces the noise in the attenuation correction factors,

it introduces a resolution mismatch between two scans. It is well known that when
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the transmission data is smoother than the emission data, the outcome is serious

artifacts at the edges which can be misinterpreted as pathological changes [16, 79].

Particularly, the photon activity at or around the edges of the attenuation map will

be underestimated at the high attenuation side, and overestimated at the low side,

an artifact caused by oversmoothed attenuation map.

We found that using smooth ACFs in statistical methods causes a similar effect on

the emission image, as might be expected. If we include a biased (blurred) estimate

of survival probabilities e−li in the emission data model, this bias propagates to the

final image, causing visually disturbing images. This is illustrated in Figure 6.3.
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Figure 6.3: The artifacts caused by mismatch of resolutions. Attenuation is recon-

structed from noiseless data using quadratic penalty with log2 β = 7.6 resulting in a

psf of FWHM 14 mm. The emission image is reconstructed by PL again from noise-

less data with ACFs from µ-map using quadratic penalty with log2 β = 3.0 yielding

a psf of FWHM 6 mm.

It is possible to overcome the mismatch problem in non-statistical reconstructions

by smoothing the emission sinogram to the resolution of the attenuation correction

factors [16]. However, when one uses statistical methods, the same procedure cannot

be done, since it will destroy the Poisson nature of the data. Consequently, for the

statistical methods, it is necessary to use attenuation reconstructions having as small

113



bias as possible. This suggests use of nonquadratic penalties which result in sharper

edges in the attenuation map [68].

6.1.4 Non-statistical Methods

Conventional Subtract/Smooth/FBP Method

To precisely estimate the attenuation map, we need to get an initial estimate of

emission contamination in the transmission window. Conventional methods estimate

this contamination from either a preceding emission scan or from the simultaneous

emission data. The emission contamination estimate is subtracted from the trans-

mission measurements in an effort to correct the data.

The conventional method of ACF computation is described as follows.

1. Estimate emission contamination using (6.1) (6.2) and (6.3) as:

ki(y
E
i /(τ

EdEi )− r
E
i ).

2. Subtract the emission contamination rate and randoms estimate from the trans-

mission data:

3. Divide the result by the blank scan to obtain a survival probability estimate

(α̂).

4. Smooth α̂ to reduce noise:

α̂i = smooth

{
(yTi /(τ

TdTi )− r
T
i − ki(y

E
i /(τ

EdEi )− r
E
i ))

bi

}
.

5. To reconstruct the emission image, we correct the emission data for the effects

of attenuation as well as randoms and detector efficiencies. We smooth the

randoms-corrected emission rates with a Gaussian 2-D kernel to achieve the

same resolution as the α̂i in the sinogram domain. The kernel size is determined

from the best Gaussian match to the survival probabilities α̂:

p̂i =
smooth{(1/εi)(yEi /(τ

EdEi )− r
E
i )}

α̂i
.
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6. After attenuation is corrected by division, the emission image is reconstructed

by FBP with a ramp filter. That is:

λ̂ = FBPramp {p̂} .

This conventional “subtraction” method is the simplest way to reconstruct emis-

sion images.

Subtract/Segment/Reproject/Smooth/FBP Method

In this method [79, 78], the attenuation map is reconstructed by FBP from the

log(α̂i) and then segmented in the image domain. The attenuation maps consist of

homogeneous regions because attenuation parameter µ depends on the tissue type.

For example, in a thorax scan there are roughly three types of distinguishable tissue

types: air(µair), lung (µlung) and soft tissue (µst) with µair < µlung < µst. The

segmentation is performed by the following procedure. The histogram of attenuation

values in the image is calculated. The histogram contains peaks corresponding to lung

and soft tissue. Then, a Gaussian function is mapped to each peak and two PDFs

are calculated for two tissue types. Then, for each pixel value µj, the probabilities

that it belongs to lung or soft tissue is calculated from the PDFs by P (µlung |µj) and

P (µst|µj). The new value for pixel j is then calculated by [81]:

µ′j = µair if µj < µlung and P (µlung |µj) < 0.25,

µ′j = µst if µj > µst,

µ′j =
µlungP (µlung |µj) + µsP (µst|µj)

P (µlung |µj) + P (µst|µj)
otherwise.

After this soft-segmentation, the attenuation map is forward projected and smoothed

with a one dimensional Gaussian kernel. The emission image is obtained by FBP after

emission scan is divided by the survival probability estimates.

This method will misclassify some pixels for short transmission scan times since

it does not use the local information about the pixels, so we have not implemented

it.
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6.2 Sequential Statistical Methods

Statistical methods have been used in emission and transmission tomography for

more than a decade. However until recently, they have not been used extensively in

the clinic because of problems like long reconstruction times, problems with modeling

and resistance to change in the medical society. Most statistical methods have been

applied to simulated data with sometimes optimistic assumptions. One of the as-

sumptions in emission tomography is that the ACFs are known beforehand, whereas

in reality they are determined from a transmission scan which results in noisy ACF es-

timates. This noise propagates to the final emission image and should not be ignored.

We study the effects of this noise in this chapter and in Chapter 7.

In penalized likelihood estimation for both transmission and emission tomography,

we utilize an objective function consisting of a log-likelihood function and a regular-

izing penalty function. Thus, the two formulations are similar. There might be two

kinds of approaches to estimate the emission image. In the “sequential” approach, one

estimates the attenuation map µ and the ACFs first from the transmission scan. We

then use these ACFs in the emission log-likelihood and estimate the activity image,

λ, from the emission counts. On the other hand, in a “joint estimation” approach,

two sets of parameters µ and λ can be estimated at the same time from two scans.

This might improve the results better especially in post-injection case where both

scans depend on both parameters.

In a post-injection protocol and if we employ a “sequential” approach, both ob-

jective functions are directly or indirectly affected by both scans. The emission scan

counts enter in the transmission log-likelihood due to emission contamination and

the emission scan log-likelihood depends on the noisy ACF estimates which in turn

depend on transmission scan counts.

We describe the problem formulation for emission and transmission case in the

following for the sequential approach. The two formulations are very similar.

Let yE = [yE1 , . . . , y
E
N ]
′ and yT = [yT1 , . . . , y

T
N ]
′ be emission and post-injection

transmission scan count vectors, and let µ = [µ1, . . . , µp]
′ and λ = [λ1, . . . , λp]

′ be
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attenuation and emission image vectors respectively.

To use a sequential statistical method to reconstruct the emission image, we need

to plug in some estimates for the contamination and ACFs to avoid coupling in the

optimizations. After plugging in those estimates, the mean values and the objective

functions are only functions of the parameter that is to be estimated. The κ and α’s

should be estimated from the data that is available and used in the Poisson model.

Let κ̂ and α̂ be estimates of κ(λ, µ) and α(µ) respectively. We assume that yE

and yT are independent Poisson measurements with means:

ȳTi (µ, κ̂) = τTdTi

(
bie
−li(µ) + rTi + κ̂i

)
,

ȳEi (λ, α̂) = τEdEi

(
εipi(λ)α̂i + r

E
i

)
.

With the equations above for the mean counts kept in mind, we present the

formulation for the transmission problem as follows:

µ̂ = argmin
µ
Φµ(µ; y

T , κ̂),

Φµ(µ; y
T , κ̂) = −

1

τT
Lµ(µ; y

T , κ̂) + βµRµ(µ),

where

Lµ(µ; y
T , κ̂) =

∑
i

yTi log(ȳ
T
i (µ, κ̂))− ȳ

T
i (µ, κ̂),

Rµ(µ) =
K∑
k=1

ψµk ([Cµ− z]k).

Here µ = [µ1 . . . µp]
′ are the attenuation map pixel values to be estimated, and

yT = [yT1 . . . y
T
N ]
′ are the transmission scan counts. κ̂ denote the estimated emission

contamination vector. The roughness penalty function Rµ(µ) has the same form as

the penalty explained in detail in Chapter 3.

We use the algorithms we present in Chapters 4 and Chapter 5 to minimize this

objective function. No special treatment is necessary for post-injection case once

the emission contamination estimates are included in the algorithm as part of the

randoms.
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Similarly, the emission problem can be formulated as follows:

λ̂ = argmin
λ
Φλ(λ; y

E , α̂),

Φλ(λ; y
E , α̂) = −

1

τE
Lλ(λ; y

E, α̂) + βλRλ(λ),

where

Lλ(λ; y
E , α̂) =

∑
i

yEi log(ȳ
E
i (λ, α̂))− ȳ

E
i (λ, α̂),

Rλ(λ) =
K∑
k=1

ψλk ([Cλ− z]k).

Here λ = [λ1, . . . , λp]
′ are the emission parameters (pixel values) to be estimated,

and yE = [yE1 , . . . , y
E
N ]
′ are the emission scan counts. α̂ denote the survival probability

vector which is usually estimated from the transmission scan.

It is straightforward to use the available algorithms with this formulation. We

include the survival probability estimates α̂i as a multiplicative factor along with the

detector efficiencies. We used a PSCD algorithm [41] to reconstruct emission images

presented in this thesis.

6.2.1 One-step Sequential Estimation

As outlined in detail in the previous section, the easiest statistical estimation

can be done by first estimating the attenuation map from the transmission scan by

including emission contamination estimate in the model. Similarly, emission image

can be estimated from the emission scan by including the survival probabilities in the

statistical model. We can estimate the parameters µ and λ by the following sequential

algorithm:

1. κ̂ = diag {ki}
(
diag

{
1

τEdEi

}
ByE − rE

)

2. µ̂ = argmax
µ
Φµ(µ; y

T , κ̂)

3. α̂ = e−[Gµ̂]i

4. λ̂ = argmax
λ
Φλ(λ; y

E, α̂).
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We refer to the above method as one-step sequential approach. Here, B is a

smoothing matrix applied to reduce noise, and G = {gij} is the system matrix for

the transmission problem.

6.2.2 Alternating Estimation

In the one-step sequential approach, we notice that we can improve our first

estimate of the emission contamination κ̂ after we find λ̂ at step 4. This suggests the

following algorithm:

First perform a one-step sequential method as above and get (λ̂, µ̂). Then:

for k=1 to Niter

1. κ̂ = diag
{
εikie

−[Gµ̂]i
}
Gλ̂

2. µ̂ = argmax
µ
Φµ(µ; y

T , κ̂)

3. α̂ = e−[Gµ̂]i

4. λ̂ = argmax
λ
Φλ(λ; y

E, α̂)

end

Since the emission contamination estimate is improved at each iteration, we expect

better results with this method. This can also be seen as an ad hoc attempt to do

joint estimation.

Another alternative is not to fix the µ̂ term in κ̂ at step 1 and actually set it free

for maximization at second step. This might be a little better as compared to above,

but we do not expect considerable improvement.

This method is not guaranteed to converge to a reasonable emission image. In our

practical experience, we have seen cases where for more than three iterations of this

alternating sequential approach, the algorithm started to diverge and we obtained

bad emission images.
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6.3 Joint Estimation

6.3.1 Introduction

Nowadays, PET scans consist of two separate scans, namely transmission and

emission. Transmission scans are performed to estimate the attenuation characteris-

tics of the medium. The attenuation information gathered from transmission scans are

used to correct for its effects on the emission data to reconstruct quantitatively accu-

rate emission images. Conventional method consists of linear processing (smoothing)

of transmission data to obtain attenuation correction factors (ACFs) and multiplying

the smoothed emission data with these factors to correct for the effects of attenuation

[16]. Statistical penalized-likelihood methods reconstruct the attenuation map image

with a local smoothing penalty and reproject them to obtain ACFs. These ACFs

are then used in the penalized-likelihood reconstruction of the emission data by in-

corporating them in the emission data statistical model [85]. Both of these methods

employ a sequential approach. First, ACFs are obtained from transmission scans and

then emission data is reconstructed using the ACFs.

In this section, we propose a different approach to image reconstruction which

attempts to utilize all the information in transmission and emission scans. In the

post-injection transmission scans, certain portion of emission counts contaminate the

transmission scan, so there is information about the emission scan in the transmis-

sion scan. On the other hand, in an emission scan, there is information about the

attenuation properties of the medium. So, to make optimal use of the information

in these two scans, one can derive a joint objective function based on both scans to

jointly estimate attenuation and emission parameters. This approach should yield

better results than the standard sequential statistical estimation.

6.3.2 The Problem

We use the models in (6.2) and (6.3) for transmission and emission scan counts.

Our final goal is to estimate λ from the measurements. However, the unknown atten-

120



uation map µ (or the ACFs) has to be estimated to get an accurate estimate of λ. The

quality of the emission image should be the performance criteria of any algorithm.

Joint estimation is theoretically more advantageous as compared to sequential meth-

ods since all the data is used to estimate all the unknown parameters. So we approach

the problem as a joint estimation problem. In this method, we maximize one joint

objective function to find the optimum values for µ and λ. We simply concatenate

the measurements yE and yT to form the measurement vector and also λ and µ to

form the parameter vector. Since, emission and transmission counts are statistically

independent from each other, a joint penalized likelihood objective function can be

written by summing up individual log-likelihoods and the individual penalty terms.


 λ̂

µ̂


 = argmin

λ,µ
Φ




 λ

µ


 ;

 yE

yT




 ,

Φ




 λ

µ


 ;

 yE

yT




 = ΦT (µ, λ; yT ) + ΦE(µ, λ; yE),

where

ΦT (µ, λ; yT ) =
N∑
i=1

hTi (li(µ), pi(λ)) + βµRµ(µ)

and

ΦE(µ, λ; yE) =
N∑
i=1

hEi (li(µ), pi(λ)) + βλRλ(λ),

where we view the marginal negative log-likelihood functions hTi and h
E
i as a function

of the projections li and pi. The objective function only depends on the parameters

λ and µ through their projections pi and li :

hTi (li, pi) = ȳ
T
i (li, pi)− y

T
i log ȳ

T
i (li, pi)

and

hEi (li, pi) = ȳ
E
i (li, pi)− y

E
i log ȳ

E
i (li, pi).

Note that the mean values of two measurements ȳEi and ȳ
T
i both contain the

emission and attenuation projections li and pi in them. In general the objective is

nonconvex and the global minimization is very hard.
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6.3.3 The Method

We propose to minimize1 the objective function Φ by alternatingly updating the

emission and attenuation images. We make use of the paraboloidal surrogates idea

presented in Chapter 4 to obtain an algorithm that monotonically decreases the ob-

jective function assuring convergence to at least a local minimum. First we make this

observation: Once either λ or µ is fixed, the form of the functions hTi and h
E
i are

similar to their counterparts in statistical (penalized likelihood) estimation for the

other parameter. We use this observation to derive the following algorithm.

We describe the algorithm using induction. Say, µ = µn and λ = λn are the

current estimates of two parameters obtained after iteration n. We fix the terms λn

at their current value and allow only the terms µ to change. We denote the current

values of the projections as pni
4
= pi(λ

n) and lni
4
= li(µ

n). The form of the mean values

for both scans when the λ terms are fixed and assumed constant is:

ȳSi = A
S
i e
−li +BS

i , for S ∈ {T,E}.

where AS
i = AS

i (p
n
i ) and B

S
i are constants independent of li. Furthermore A

S
i > 0

and BS
i ≥ 0 for both scans. These conditions satisfy the conditions in Theorem 1

in Appendix B, and we can find surrogate parabolas qTi (li) and q
E
i (li) that lie above

hTi (li) and h
E
i (li) and tangent to them at the current projection l

n
i . The sum of these

two parabolas qi(li)
4
= qTi (li) + q

E
i (li) is still a parabola. Once the curvature and gra-

dient of the parabola is determined, they can be fed into the paraboloidal surrogates

coordinate descent (PSCD) algorithm to update the attenuation parameters to obtain

the next iterate µn+1.

Similarly, we now fix the attenuation map values µn+1 and allow only the λ’s to

change. Then, the form of the means for both scans is as follows:

ȳSi = C
S
i pi +D

S
i , for S ∈ {T,E}. (6.4)

Here once again CS
i = C

S
i (l

n+1
i ) andDS

i are constants independent of pi. The objective

function viewed as only a function of λ (or pi’s) is convex, and strictly convex if

1Or at least achieve a local minimum.
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ySi > 0. Hence, the form of (6.4) makes it possible for h
E
i (pi) and h

T
i (pi) (viewed as

functions of pi only) to satisfy the conditions of Theorem 1 in [30]. Hence, similar to

the attenuation parameter update, one can obtain parabolas that lie above these h

functions and tangent to them at the current iterate pni [41]. After the parabolas are

obtained, it is easy to implement a PSCD algorithm similar to [41].

This joint estimation algorithm is easy to implement and results in a very fast

algorithm. Once the gradient and curvatures of the parabolas are determined, the

problem turns into a PWLS optimization problem and the computations of updates

become very fast [30, 41].

We present images reconstructed with this joint method from simulation data in

section 6.5.

6.4 Conventional versus One Step Sequential Meth-

ods

To compare the proposed statistical methods with conventional FBP based meth-

ods, we have carried out some numerical simulations. We reconstructed images with

sequential statistical methods and conventional methods as well as hybrid methods.

We think of the sequential reconstruction as two steps: 1. Finding the survival prob-

abilities (or ACFs), 2. Finding the emission image. For both steps we have many

alternatives, statistical or not. We performed reconstructions using various combina-

tions of our alternatives for each. The alternatives for step 1 are:

1. RAW: Ignore emission contamination and find ACFs by linear methods.

2. SUB: Subtract emission contamination and find ACFs by linear methods.

3. MPL-Q: PL reconstruction with quadratic penalty and reprojection to find

ACFs.

4. MPL-N: PL reconstruction with non-quadratic penalty.

And the alternatives we tried for step 2 are:
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1. FBP: FBP reconstruction.

2. MPL-Q: Quadratic penalty PL image reconstruction.

6.4.1 The Phantom and The Parameter Values

We used a synthetic attenuation map and emission distribution shown in top left

corners of Figures 6.7 and 6.8 as µtrue and λtrue. The attenuation map represents

a human thorax cross section with linear attenuation coefficients 0.16 cm−1, 0.096

cm−1, 0.025 cm−1, for bone, soft tissue and lungs, respectively. The emission image

represents sample activity in the same cross section with values 1, 2 and 4 for lungs,

soft tissue and heart, respectively. The pixel size is 4.22 mm. We simulated PET

transmission and emission scans with 160 radial bins and 192 angles uniformly spaced

over 180◦. The gij factors corresponded to 3.375 mm wide strip integrals with 3.375

mm center to center spacing, which is an approximation to ideal line integral that

accounts for finite detector width.

We set the number of counts of transmission scan to 2 million and of emission

scan to 1 million. The randoms rate were 10% in both scans. There was emission

contamination of 10% (ki) in the transmission window.

We generated M = 100 realizations of pseudorandom Poisson transmission and

emission measurements according to the models, then reconstructed images using the

listed methods. For the PL reconstructions, we used the grouped ascent algorithm

for transmission [42], and SAGE algorithm for emission reconstructions [45].

6.4.2 Results

We present the average bias versus standard deviation estimate graphs for both

attenuation and emission image reconstructions in Figures 6.4, 6.5 and 6.6. In these

figures, the horizontal axis values are obtained from the sample mean image of M

reconstructions. We take the average of absolute differences between the true image

and the sample mean within a region of interest (W ). The values are normalized

by the average value of the true image in that region. Let θn, n = 1..M denote the
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reconstructions obtained from M realizations, and let θ̄ denote their sample mean,

then:

b(θ) =

∑
j∈W |θ̄j − θ

true
j |∑

j∈W |θ
true
j |

x 100%, (6.5)

is the estimate of the average bias. We choose the window W to be a central rectan-

gular region containing both lungs for bias estimates.

The vertical axis values are the average standard deviation estimate found from

M realizations in another region of interest, i.e:

σ(θ) =
1

|W |

∑
j∈W

√√√√ 1

M − 1

M∑
n=1

(θnj − θ̄j)2. (6.6)

The window W for the attenuation map is the same as the bias window. For emission

standard deviation estimates, we choose a smaller region around the cardiac activity

area.
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Figure 6.4: Bias vs standard deviation trade-offs for attenuation map reconstructions.

Labels indicate different reconstruction methods.

The plot in Figure 6.4 clearly indicates that both MPL methods have better per-

formance than the subtraction method for transmission processing. The raw estimate

is severely biased as expected. Also, MPL-N has a better bias-variance trade-off than

MPL-Q reconstruction. Non-quadratic penalties appear to be preferable for trans-

mission reconstruction.
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Figure 6.5: Bias vs standard deviation trade-offs for FBP emission reconstructions.

Labels indicate the attenuation map that is used.

In Figure 6.6, we used an emission MPL-Q reconstruction with fixed β = 26.4

giving a resolution of about 12 mm. Thus, the difference in the bias values are only

due to different transmission reconstructions. The bias increases as we use smoother

attenuation maps, but the standard deviation estimates do not go down as much. It

can be seen that MPL-N transmission followed by MPL-Q emission reconstruction

seems to give the best result.

Figure 6.5 presents a similar plot for FBP emission reconstructions. In this case,

the resolutions of emission data are matched to attenuation resolution and no further

smoothing is done. Thus, actually initial points on the graph are very noisy which

results in the strange curves in the plot. This is due to the fact that, even the mean

images corresponding to these reconstructions are noisy, which show up in the bias

estimate. Actually, in the ideal case, we should put error bars to show the accuracy

of our bias and standard deviation estimates. However, since the resolutions are

matched, there should not be any contribution from systematic artifacts at the edges

unlike MPL-Q estimates. The bias values in this case are proportional to FWHM

values for reasonably smooth reconstructions. The plot indicates that FBP method

is inferior to MPL-Q for low values of bias. But, for higher values of bias (≥ 13%),

FBP seems comparable to MPL-Q because of the resolution mismatch problem in the
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Figure 6.6: Bias vs standard deviation trade-offs for quadratic penalty emission re-

constructions. Labels indicate the attenuation map that is used.

statistical method.

We also present sample reconstruction images from a single realization. In Fig-

ure 6.7, the attenuation maps can be observed. The MPL-N looks much better than

MPL-Q or SUB reconstructions. Here, note that the resolutions of the last two es-

timates are almost matched, but the first one is sharper at the edges. Even then,

MPL-N looks less noisy.

Emission images are presented in Figures 6.8 and 6.9. Overall, MPL-Q estimates

look better qualitatively than FBP ones which contain disturbing streak artifacts.

The reconstructions with RAW ACFs have systematic negative bias. Visually, the

best one is the combination of MPL-N for attenuation and MPL-Q for emission,

which seems to reduce the noise inside the lungs appearing as hot spots in other

reconstructions. This noise is apparently coming from noisy transmission data, which

is successfully reduced in the MPL-N attenuation map estimate.

6.5 Conventional versus Joint Methods

We have done simulations to test the performance of joint statistical estimation

method with the conventional method for post-injection scans. We have used the
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Attenuation Map Reconstructions
ORIGINAL MPL−N

MPL−Q SUB

Figure 6.7: Attenuation Maps obtained through various reconstructions from a single

noisy measurement realization.

models (6.2) and (6.3) to generate Poisson data using the dimensions and parameters

of the ECAT EXACT scanner. We assumed the emission contamination factor to

be ki = 0.2. The total transmission and emission counts were nine million and six

million respectively. The randoms were assumed to be uniform with 5% and 10% of

the transmission and emission counts respectively. The deadtime and scatter effects

were ignored in the simulations. The images reconstructed by joint and conventional

methods are shown in Figure 6.10. The smoothing parameters were chosen to yield

similar images. Nonquadratic Lange’s penalty [68] was used for the attenuation image

and quadratic penalty for the emission image. Further investigation of bias and

variance properties of the joint methods are necessary to evaluate these methods. We

leave this as future work.
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Figure 6.8: FBP reconstructions obtained from a single realization.
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Figure 6.9: MPL-Q reconstructions obtained from the same noisy data as the FBP

reconstructions.

Figure 6.10: Images obtained from joint and conventional image reconstruction meth-

ods.
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CHAPTER 7

Noise Analysis and Scan Time Optimization

7.1 Introduction

For PET reconstruction, one has to do two sets of scans, namely transmission

and emission scans. One uses the attenuation correction information obtained from

the former scan to aid in estimating the radiotracer emission image from the lat-

ter one. Conventional methods of reconstruction are based on linear processing of

the transmission and emission data, multiplicative correction of attenuation factors

in the sinogram domain followed by FBP to reconstruct the emission image. This

approach ignores Poisson nature of the data. Recently, there is growing interest on

reconstruct/reproject methods for attenuation correction in which one reconstructs

the attenuation map and, after possibly some processing in the image domain, this

map is reprojected to be used in the attenuation correction factors (ACF) compu-

tation. The use of statistical methods for reconstructing attenuation maps as well

as emission images is becoming attractive in the medical research community, espe-

cially due to faster computers and faster algorithms. In this chapter, we reconstruct

ACFs using both conventional and penalized-likelihood reconstruct/reproject (PL)

methods for post-injection transmission scans. For brevity, we reconstruct emission

images with FBP only. Resolution matching is critical in attenuation correction,

so we add a post-filtering step to statistical reconstructions to yield approximately

Gaussian point spread functions which reduces artifacts from point spread function
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mismatches. This post-filter reduces the negative sidelobes from the point spread

function of penalized-likelihood reconstructions [46].

In this chapter, we study the effects of emission and transmission scans on the

variance of the reconstructed emission image for different reconstruction methods.

Particularly we are interested in the optimum scan time fractions under a fixed total

scan time constraint, which would result in the smallest variance in a region of inter-

est in the final emission image estimate. Previous studies of scan time optimization

[3] were based on NEC criteria with multiple acquisitions of emission and transmis-

sion data and focused on conventional reconstructions. Some of the intermediate

(co)variance approximations developed here might also be useful for other purposes

such as determining the weights in a 3D weighted least-squares image reconstruction

[18]. We analyze both the conventional and statistical reconstruction cases. We give

approximate analytical formulas for conventional and quadratic penalty attenuation

map reconstructions and compare empirical results with the analytical predictions.

Our analysis is based on Poisson statistics and mathematical approximations [37].

Let yE = [yE1 . . . y
E
N ]
′ and yT = [yT1 . . . y

T
N ]
′ be emission and post-injection trans-

mission scan count vectors, and let µ = [µ1 . . . µp]
′ and λ = [λ1 . . . λp]

′ be attenuation

map and emission image pixel value vectors respectively.

We define the survival probabilities as follows:

αi(µ) = e
−li(µ),

where li(µ) represents the line integral along projection i of the attenuation map µ.

We also define the emission contamination count rate

κi(λ, µ) = kiεiαi(µ)pi(λ).

Here ki is the fraction of emission counts contaminating the transmission data (the

portion in the transmission window for rotating rod sources), pi(λ) represents the

geometric projections of the true emission image λ, and εi contains the detector

efficiencies and a scaling factor that accounts for emission scan count rate. We assume

that the emission scan measurements yE and the transmission scan measurements yT
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are independent Poisson measurements with corresponding means:

ȳTi (µ, λ) = τT
(
biαi(µ) + r

T
i + κi(λ, µ)

)
, (7.1)

ȳEi (λ, µ) = τE
(
εiαi(µ)pi(λ) + r

E
i

)
. (7.2)

Here, τT and τE are transmission and emission scan times respectively. li(µ) =

[Gµ]i
4
=
∑p
j=1 gijµj and pi(λ) =

∑p
j=1 gijλj are geometric tomographic projections of

parameters µ and λ. bi, r
T
i and r

E
i are blank scan, transmission scan randoms and

emission scan randoms count rates respectively. We assume {bi}, {rTi }, {εi}, {r
E
i } and

{gij} are known constants throughout this chapter.

7.2 ACF Estimation

Attenuation correction is a must for quantitatively accurate emission image recon-

struction. We define attenuation correction factors (ACFs) γi(µ) = eli(µ) = 1/αi(µ).

This is the multiplicative factor that corrects for the effects of attenuation in the emis-

sion data. We consider two different ways of estimating the ACFs: 1) Conventional

smoothing method and 2) Reconstruct/reproject penalized-likelihood (PL) method.

In the non-statistical conventional method, we estimate the emission contamina-

tion by:

κ̂i = smooth
{
ki
(
yEi /τ

E − rEi
)}
, (7.3)

and we estimate the ACFs by reciprocating the survival probabilities, that is γ̂i =

1/α̂i, where

α̂i = smooth
{
(yTi /τ

T − rTi − κ̂i)/bi
}
. (7.4)

The smoothing operation is often used to reduce noise in the ACFs. We also use

smoothing to reduce noise in the emission contamination estimate in (7.3).

In a statistical reconstruction, one estimates the ACFs by γ̂i = e
li(µ̂) where µ̂ is the

attenuation map estimate computed by the reconstruction algorithm. The emission

contamination estimate (7.3) is included in the model. The statistical reconstruction

is considered in detail in Section 7.5.
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7.3 Emission Image Reconstruction

For brevity, we consider here the conventional FBPmethod to reconstruct emission

images. We define the attenuated emission projections function as

zi(λ, µ) = pi(λ)αi(µ).

A linear unbiased estimate of this function is the following:

ẑi = smooth
{
(yEi /τ

E − rEi )/εi
}
. (7.5)

Then, an estimate of the projections pi(λ) can be obtained by:

p̂i = γ̂iẑi.

The emission image is reconstructed by standard FBP method. We use the ramp

filter only because the estimate p̂i is already a smooth estimate of pi(λ). Thus,

λ̂ = FBPramp {p̂i} .

7.4 Emission Covariance Estimates

The covariance of the emission image estimate vector λ̂ obtained by the above

procedure can be written as follows:

Cov
{
λ̂
}
= P Cov{p̂}P ′, (7.6)

where the matrix P represents the linear FBP operation with a ramp filter. We need

to find the covariance of the random vector p̂ = [ẑiγ̂i]
N
i=1. The computation of the

exact covariance of this expression is computationally intensive and is not desirable.

Instead, we prefer to evaluate this covariance as a separable sum of the covariances of

the vectors ẑ and γ̂. For this purpose, we consider the Taylor series expansion of ẑiγ̂i

in the neighborhood of z̄iγ̄i where z̄ and γ̄ are mean values of ẑ and γ̂ respectively.

Then:

p̂i = ẑiγ̂i ≈ z̄iγ̄i + γ̄i(ẑi − z̄i) + z̄i(γ̂i − γ̄i) (7.7)

= z̄iγ̂i + γ̄i(ẑi − z̄i), (7.8)
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and consequently,

Cov{p̂} ≈ D {z̄i} Cov{γ̂}D {z̄i}+D {γ̄i} Cov{ẑ}D {γ̄i} . (7.9)

The ACFs γ̂i are not linearly related to variables with known covariances. In the

conventional method, γ̂i = 1/α̂i. In the statistical method γ̂i = e
li(µ̂). These are both

nonlinear functions. Since the covariance of α̂ can be found exactly for the conven-

tional method and the covariance of µ̂ can be approximated for the statistical method,

we can linearize these formulas around ᾱi and l̄i to get an estimate of the covariance

of γ̂. This linearization was the method used in [107] to estimate the variances of

the ACFs. But, this linearization is not very accurate for especially the conventional

method, because the function f(x) = 1/x cannot be closely approximated by a linear

function especially when the denominator (survival probabilities) is close to zero and

the variance of the denominator is high.

To overcome this problem, we propose an approximation for the probability dis-

tribution function of the ACFs. We assume that γ̂i are lognormal distributed. A

random variable is lognormal distributed if its logarithm is normally distributed. We

believe this is a very accurate assumption because γ̂i is an estimate of e
li(µ) and the

projections of any random variable (here li(µ̂)) should be approximately Gaussian

due to the Central Limit Theorem. This provides us extra information about the

ACFs. With this assumption, one can compute the mean and variance of γ̂i’s directly

in terms of mean and variance of α̂i in the conventional method and in terms of mean

and variance of l̂i in the statistical method.

So, for the conventional method, we get:

γ̄i =
ᾱ2i + σ

2
α̂i

ᾱ3i
(7.10)

and

σ2γ̂i =
(ᾱ2i + σ

2
α̂i
)2σ2α̂i

ᾱ8i
. (7.11)

Even with the lognormality assumption, the covariance matrix of γ̂ is not easy

to compute directly. But, the diagonal of the matrix is known. So, we propose this
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approximation for the covariances:

Cov{γ̂i, γ̂j} ≈
σγ̂iσγ̂j
σα̂iσα̂j

Cov{α̂i, α̂j} (7.12)

= σγ̂iσγ̂jρ(α̂i, α̂j), (7.13)

where ρ(α̂i, α̂j) represents the correlation coefficient of the vector α̂. In matrix form:

Cov{γ̂} ≈D1Cov{α̂}D1,

where

D1 = D

{
σγ̂i
σα̂i

}
= D

{
ᾱ2i + σ

2
α̂i

ᾱ4i

}
.

We make sure that the diagonal of the covariance matrix of γ̂ matches the variances

we get from the lognormal assumption. This formula assumes that the correlation

coefficient of γ̂ is largely determined by the smoothing operator B and is the same

as the correlation coefficient for α̂.

Plugging in the approximation (7.9) for γ̂ and writing z̄i ≈ ᾱismooth{pi(λtrue)},

we get the following

Cov{p̂} ≈ DE Cov{ẑ}DE +DT Cov{α̂}DT , (7.14)

where

DE
4
= D

{
ᾱ2i + σ

2
α̂i

ᾱ3i

}

and

DT
4
= DED

{
smooth{pi(λ

true)}
}
.

The mean and covariance of ẑ can be found easily from the expression (7.5) since

it is linearly related to yE . A simple analysis yields: z̄i = smooth
{
pi(λ

true)e−li(µ
true)

}
and from (7.5) and (7.2):

Cov{ẑ} =
1

τE
BD {qi}B

′, (7.15)

where

qi
4
= (εiαi(µ

true)pi(λ
true) + rEi )/ε

2
i , (7.16)
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and B is a smoothing convolution matrix along the radial direction of the projection

space. It was argued in [20] that angular smoothing is not desirable in attenuation

correction, so we smooth only in radial direction.

For conventional ACF computation, ignoring the noise in the emission contami-

nation estimate, the covariance of α̂ can be found from (7.4) and (7.1).

Cov{α̂} =
1

τT
BD {si}B

T , (7.17)

where

si
4
= (biαi(µ

true) + rTi + κ̄i)/b
2
i .

Here, B is the same smoothing matrix as in (7.15). The same operator B is used to

obtain both ẑ and α̂ to avoid artifacts from resolution mismatch [16, 28]. We used

Gaussian smoothing as suggested in [16] which avoids artifacts in the reconstructed

image. The mean of emission contamination can be determined from (7.3) as

κ̄ = B
[
kiεiαi(µ

true)pi(λ
true)

]N
i=1

.

The variance of α̂i can be found from (7.17) as

σ2α̂i = si/τ
T
∑
k

B2ik.

Using (7.4), one can find the mean values of α̂ as

ᾱ = B[αi(µ
true)]Ni=1. (7.18)

The variance of the sum over a region of interest in the emission image can be

found from (7.6), (7.14), (7.15) and (7.17) as

Cov
{
u′λ̂

}
= u′Cov

{
λ̂
}
u =

1

τE
vE +

1

τT
vT, (7.19)

with

vE =
N∑
i=1

qi(w
E
i )
2 and vT =

N∑
i=1

si(w
T
i )
2,

and where u is a vector of ones in the region of interest and zeros elsewhere and we

define the wE and wT vectors as follows:

wE
4
= B′DEP

′u, wT
4
= B′DTP

′u.
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7.5 Penalized-Likelihood Attenuation Reconstruc-

tion

While conventional method of ACF computation has been used for some time,

reconstruct/reproject methods have gained some interest recently. In a statistical

reconstruct/reproject method for ACF computation, an attenuation map estimate µ̂ is

found from noisy transmission data by maximizing the penalized-likelihood objective

function

Φ(µ; yT ) = L(µ; yT )− βR(µ),

where L(µ, yT ) is the log-likelihood function and R(µ) is a regularizing roughness

penalty function. After estimating the attenuation map µ̂, we estimate the ACFs by:

γ̂i = e
li(µ̂),

where li(µ̂) = [Gµ̂]i is the geometric projection of the attenuation map estimate µ̂. If

one uses FBP for emission reconstruction, then ẑ should be smoothed to yield similar

resolution with the γ̂ [36] in order to reduce resolution mismatch artifacts.

7.5.1 Resolution

Penalized likelihood (PL) or penalized weighted least squares (PWLS) methods

are very attractive image reconstruction methods due to their superb noise reduc-

tion properties. The variance weighting in PWLS method reduces the variance of

the estimates as compared to penalized unweighted least squares (PULS) or FBP

reconstructions, because it makes use of the statistical information in the measure-

ments. However, attenuation maps reconstructed with PL or PWLS methods have

non-uniform resolution [46] even with a quadratic penalty. This non-uniform resolu-

tion is caused by the variance weighting in PWLS (or PL) method and hence does

not exist in a PULS reconstruction. Due to this non-uniform resolution, ACF com-

putation by PL method from a real transmission scan causes resolution mismatch

between the emission data and reconstructed ACFs. This mismatch reveals itself as

artifacts in the final reconstructed emission image.
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Fessler’s certainty based penalty [36] yields more uniform resolution in terms of

the average FWHM of the point spread function over the image. But, it still has non-

uniform resolution in that the psf is not circularly symmetric but the level contours

look like ellipses whose orientation are image dependent and space-variant. Stayman

and Fessler have recently proposed a new modification to the quadratic penalty [106]

which yields more circularly symmetric uniform resolution properties. We used this

modification in our reconstructions. This modification makes the resolution properties

of the PL method close to PULS method. Quadratic PULS method was shown to

be essentially equivalent to FBP method with the following constrained least-squares

(CLS) filter defined in spatial frequency domain by (equation (50) in [36])

Fp(u; β) =
sinc(ku) / sinc(u)

sinc(ku)
2
+ cβu3

, u ∈ [0, 0.5] (7.20)

where u denotes spatial frequency, k is the ratio of the detector strip width to the pixel

size of the system model, and c is a constant dependent on system geometry. This

CLS filter has high negative sidelobes in the space domain. The filters that smooth the

ACFs and emission data have to be matched. So, the emission data should be blurred

with the same filter (7.20). But, due to high negative sidelobes of filter in (7.20), after

dividing the appropriately blurred emission data to computed survival probabilities

from reconstructions, we get artifacts especially for higher blurring amounts (higher

βs) around the boundaries of the image. So, we conclude that the results in [16] only

hold for Gaussian smoothing.

To overcome this problem, we first reconstruct a higher resolution image using

a smaller β value than desired and then we filter the projections with the following

filter to obtain a Gaussian smoothing effect:

F2(u) =
Fp(u; β)Fg(u;w)

|Fp(u; β)|2+ 0.1(1− cos(2πu))
, u ∈ [0, 0.5],

where Fg(u;w) is the desired Gaussian filter with desired FWHM w. Now, the emis-

sion data is also filtered with the Gaussian shaped filter Fg(u;w). This approach

reduces artifacts and yields acceptable images. The ACF computation in this case is

done as follows:

µ̂ = argmax
µ
Φ(µ; yT ),
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l̂ = B2Gµ̂, (7.21)

γ̂i = el̂i,

where B2 is the convolution matrix corresponding to F2(u) above.

7.5.2 Covariance Approximations

The covariance formula in (7.9) is still valid in PL transmission reconstruction.

We use the following first order Taylor series expansion for the ACFs:

γ̂ = el̂i ≈ el̄i + el̄i(l̂i − l̄i), (7.22)

where l̄ = B2Gµ̌ is the mean projection vector where µ̌ = argmax
µ≥0

Φ(µ; ȳT ) is the

image reconstructed with noiseless data. µ̌ is a very good approximation for the mean

of µ̂ [37]. We do not use the lognormality assumption here, because we believe that

the above approximation is accurate enough and lognormal assumption leads to much

more computation. From (7.22) and (7.21),

Cov{γ̂} = D
{
el̄i
}
B2GCov{µ̂}G

′B′2D
{
el̄i
}
.

To find the covariance of the implicitly defined estimator µ̂, we use the formulas

introduced in [37].

The general form of penalized-likelihood estimates is µ̂ = argmax
µ
Φ(µ; yT ), where

µ is the parameter vector and yT is the measurement vector. This defines an implicit

function µ̂ = h(yT ). A first order Taylor expansion of the equation ∇Φ(µ; yT ) = 0

around (µ̌, ȳT ) yields the following approximation [37]:

Cov{µ̂} ≈ QCov
{
yT
}
Q′, (7.23)

where

Q =
[
−∇20Φ(µ̌, ȳT )

]−1
∇11Φ(µ̌, ȳT).

We use this formula to evaluate the covariance of the penalized-likelihood estimate

of the attenuation map µ. We again ignore the noise in the emission contamination

estimate and use the mean value for it in our approximations. The formula yields:

Cov{µ̂} ≈
1

τT
H−1G′D

{
(bie

−ľi)2(bie
−ltruei + r̃Ti )

(bie−ľi + r̃Ti )
2

}
GH−1,
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where

H = G′D

{
bie
−ľi

(
1−
(r̃Ti )(bie

ltruei + r̃Ti )

(bie−ľi + r̃Ti )
2

)}
G+ βR.

Here R is the Hessian of the penalty function and includes the modified penalty

weights [106] and r̃Ti = r
T
i + κ̄i.

In this case, the variance of the sum over a region can be predicted with a formula

similar to (7.19). The emission part of the formula is now

wE = B′D
{
el̄i
}
P ′u,

and qi remains the same as (7.16). The transmission part changes a lot due to

statistical method as term wT should be changed to:

wT = GH−1G′B′2D
{
z̄ie

l̄i
}
P ′u,

and the si term should be

si =
(bie

−ľi)2(bie
−ltruei + r̃Ti )

(bie−ľi + r̃Ti )
2

.

The most computationally intensive part in this computation is the part whereH−1v∗

should be computed for v∗ = G′B′2D
{
z̄ie

l̄i
}
P ′u. This operation can be performed

by solving the equation:

Hx = v∗ (7.24)

using iterative methods such as conjugate gradient. Also, we assume the mean for γ̂

is now, γ̄ = el̄i.

These variance predictions are useful, because they do not require hundreds of

empirical reconstructions of data [37]. However, they require knowing the true pa-

rameters and noiseless sinograms. For real data, these are not known, but one can

still get a good approximation of variances by replacing the true parameters by their

noisy counterparts [37].

Finally, the optimal time fraction for the emission scan can be found by minimizing

the variance in (7.19) with respect to the emission scan time when total scan time is

fixed. For the QPL method, the simple analysis yields

τEopt = τ
totalv

E −
√
vEvT

vE − vT
.

141



Note that for the conventional method, the above formula is invalid because the vT

term is not independent from the scan time duration τT .

7.6 Results

We have done a series of simulations to test the proposed variance predictions

and to find the optimal scan times under a total scan time constraint. We used two

2-D images corresponding to an attenuation map and an emission image to gener-

ate noisy transmission and emission data with 150000 and 50000 counts per minute

respectively. The true images are shown in Figure 5.4. The transmission scan had

5% randoms and an emission contamination of 5%. Emission scan had 10% randoms.

Randoms rates were assumed to be constant. The total scan time was 20 minutes. To

obtain empirical standard deviations, 300 realizations were generated for each scan

time distribution. The emission images were reconstructed with FBP with a smooth-

ing filter that yields about 9 mm FWHM resolution in the image domain. ACFs

were computed using the conventional and quadratic penalized-likelihood statistical

methods. The resolutions for the ACFs were matched for these two methods. The

standard deviations of these parameters in the reconstructed emission images were

found empirically and predicted analytically using the derived formulas. 35 iterations

were used to solve (7.24). The predicted and empirical standard deviations are plot-

ted versus emission scan time fraction in the corresponding figures: 1) Figure 7.1:

The sum over the heart region; 2) Figure 7.2: The sum over a rectangular region in

the heart; 3) Figure 7.3: A single pixel in the heart. The predicted and empirical

results agree to a certain level, but there are still discrepancies in the predictions

which we believe are due to nonlinearities and nonnegativity contraints in the image

reconstruction process. Better strategies should be developed for more accurate pre-

dictions. Note that the prediction will be more challenging for nonquadratic penalties

which result in multimodal probability distribution functions for image estimates [40].

The statistical method not only reduces the overall variance, but also yields a larger

optimum emission scan time fraction (about 40%) as compared to the conventional
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method (about 30%). The standard deviation is reduced by about 15-20% in the

statistical method as compared to the conventional method.

The predictions seem to match the empirical data for the statistical reconstruc-

tion, but the predictions for the conventional method seem to underestimate the

standard deviations. We conjecture that, the approximations used in deriving the

variance formulas causes the mismatch. We are currently working on improving our

approximations. Due to highly nonlinear processing of data however, it is likely that

there will be some discrepancy between predicted and empirical standard deviation

estimates.
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Figure 7.1: Standard deviation of the sum over the heart region estimates versus

emission scan time fraction for conventional and statistical ACF computations.
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Figure 7.2: Standard deviation estimates of the sum over the a rectangular region

in the heart versus emission scan time fraction for conventional and statistical ACF

computations.

7.7 Conclusion

We presented new approximate formulas for covariances of reconstructed emission

images with conventional and statistical ACF computation for post-injection scans.

These formulas can be used to predict the variance of the sum over a region of interest

in the final reconstructed emission image instead of expensive empirical reconstruc-

tions. These formulas can also be used to determine optimal scan times devoted to

emission and transmission scans under a total scan time constraint. Results show

that, statistical ACF computation not only reduces the overall standard deviation

but also yields higher optimum emission scan time fraction than the conventional

method.

We considered only 2D smoothing for the transmission reconstructions. In real
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Figure 7.3: Standard deviation estimates of a single pixel value versus emission scan

time fraction for conventional and statistical ACF computations.

PET transmission scans, usually axial smoothing is employed to further reduce the

noise in the attenuation correction factors. In addition, 3D regularization penalties

can be used in PL reconstructions. If such z-smoothing or 3D regularization is used,

then the optimal scan time fractions and variance levels will change possibly reducing

the noise contribution from the transmission scan and increasing the time that should

be devoted to the emission scan.

There is some discrepancy between the empirical and predicted variance approxi-

mations. The differences might be due to linearization of nonlinear operations such as

division and exponentiation, slow convergence of (7.24) and nonnegativity constraints

for PL image reconstruction and others. The covariance approximations for statistical

method work well for quadratic penalties, but not for non-quadratic penalties. The

extension to non-quadratic penalties is left as future work.
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CHAPTER 8

Conclusions and Future Work

8.1 Summary

We introduced new algorithms for penalized-likelihood transmission image recon-

struction based on paraboloidal surrogates principle. The PSCD algorithms intro-

duced in Chapter 4 converge very fast to the optimum. We introduced the optimum

curvature which yields fastest convergence while still guaranteeing monotonicity. Pre-

computed curvatures do not guarantee monotonicity, but practically they almost al-

ways converge with a benefit of reducing the CPU time further. The SPS algorithm

described in Chapter 5 is a separable simultaneous update algorithm which can also

be made monotonic by choosing the optimum curvature. SPS is parallelizable and

easy to implement. The OSTR algorithm which is obtained by applying the ordered

subsets principle to SPS algorithm accelerates it for both maximum likelihood and

penalized likelihood problems. OSTR is a fast and easy to implement algorithm for

transmission tomography. We recommend to use monotonic PSCD algorithms for

guaranteed convergence to the PL solution. However, if very fast methods are re-

quired, then parallelizable OSTR algorithms can be used to reconstruct acceptable

images very close to the true optimum.

We analyzed post-injection transmission and emission scans in Chapter 6. The

statistical model including the emission contamination is developed and image re-

construction methods are described for this problem. The results indicate statistical
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methods outperform conventional methods in bias-variance tests conducted by Monte

Carlo simulations.

A noise analysis on emission images reconstructed using the ACFs from noisy

transmission data and noisy emission data is described in Chapter 7. The effects of

transmission and emission noise on the emission image variance is attempted to be

separated to enable scan time optimization. The variance predictions give a general

idea but they are not very accurate due to nonlinear processing and nonnegativity

constraints.

8.2 Conclusions

• We conclude that penalized-likelihood reconstruction of attenuation maps fol-

lowed by reprojection to correct the emission data for attenuation yields much

better emission images as compared to ones that are reconstructed using con-

ventional attenuation correction methods. Especially for low count transmission

scans, PL reconstruction is much more preferable to conventional methods.

• One can get fast converging algorithms by making use of the optimization trans-

fer principle in optimization. Iteratively optimizing a complex objective func-

tion by finding simpler surrogate functions at each iteration which can be opti-

mized easily results in much faster algorithms.

• In a post-injection transmission scan, including the emission contamination in

the statistical model and making use of statistical techniques is superior to

subtraction based conventional methods. Statistical methods result in lower

noise images.

• The noise propagating from transmission scans to emission images affect recon-

structions considerably. Sometimes transmission noise is more dominant than

the emission noise in the final image. To reduce this noise, edge preserving

penalized-likelihood methods should be employed for transmission scans.
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8.3 Future Work

The research presented in this thesis is only part of a long term effort to make

statistical image reconstruction methods practical for PET. We focused on developing

fast and stable algorithms for transmission tomography. Our efforts can be extended

by further analyzing the convergence properties of our algorithms, by applying similar

ideas to emission tomography and improving our ideas to find faster algorithms. There

are many improvements and analysis to be made for the post-injection problem and

noise analysis chapter. We itemize some possible future work as follows:

• Penalized likelihood objective for transmission tomography is nonconvex when

there are background counts in the data. However, it is likely that for a cer-

tain range of background parameters, the objective function might be unimodal

which would imply global convergence for our monotonic PSCD algorithm. Our

practical experience suggests that the objective function is most probably uni-

modal for small background percentages. This problem requires further in-

vestigation to determine a range of background values at which the objective

function remains unimodal.

• The algorithms introduced in Chapter 4 and Chapter 5 of this thesis were

specifically targeted towards transmission scans. However, it is possible to apply

the ideas to emission scans as well. Both PSCD and OSTR algorithms can be

adopted to emission image reconstruction [41]. There are some difficulties when

rEi = 0 in the emission scans which can be overcome with a modification of the

algorithms.

• Kudo et al. [67] claim to prove convergence for a general class of algorithms that

cover OSTR as a special case when appropriate relaxation schemes are used as

mentioned in Chapter 5. It might be possible to obtain a convergent OSTR

algorithm by using their idea.

• An ideal algorithm for transmission or emission tomography should be fast,

simple to implement and convergent. It should enforce nonnegativity easily,
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work with any type of system matrix and be parallelizable. This ideal algorithm

is still a future goal for research in this area.

• Further analysis of alternating sequential and joint estimation approaches in-

troduced in Chapter 6 for post-injection scans is required. The effects of the

regularization parameters are different in joint estimation than sequential esti-

mation. A better understanding of their effects will enable one to choose those

parameters optimally. Bias-variance analysis and a thorough comparison of

joint and sequential methods for post-injection scans should be performed for

better assessment.

• Resolution mismatch between survival probabilities and emission data result in

artifacts in the reconstructed images as mentioned in Chapter 6. Even when

penalized-likelihood attenuation maps are used, these artifacts exist. In noisy

reconstructions, these artifacts are hard to notice, but they might result in

misdiagnosis. It is desirable to find new methods to overcome this problem.

• Variance predictions described in Chapter 7 can be improved. The following

three reasons cause problems in variance estimations: 1) propagation of vari-

ance through nonlinear operations such as division, multiplication and expo-

nentiation, 2) nonnegativity constraints, and 3) nonquadratic penalties in a PL

reconstruction. Techniques focusing on each one of these problems are required

for more accurate variance predictions. The predictions can be generalized to

include the effects of axial post-smoothing and 3D regularization penalty as

well.
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APPENDIX A

Proof of Maximum Curvature

We prove in this appendix that the maximum second derivative of hi(l) for l ≥ 0

is given by (4.14). We drop the subscript i for simplicity. We assume b > 0, y ≥ 0,

and r ≥ 0 throughout these appendices.

The form of the h functions is critical in the following. The second and third

derivatives of the function h in (4.3) are:

ḧ(l) =

(
1−

yr

(be−l + r)2

)
be−l, (A.1)

h(3)(l) =

(
yr

[
−be−l + r

(be−l + r)3

]
− 1

)
be−l. (A.2)

The intuition behind the maximum curvature is as follows. The generalized mean

value theorem for twice continuously differentiable functions which is given in [17] at

page 228, states that the maximum second derivative satisfies (4.9). It is possible to

visualize this by considering the first derivative of a twice continuously differentiable

function. The first derivative of q(l; lc) function is a line which has a slope that is

equal to the maximum slope in ḣ(l) for l > 0. When plotted together, we see that

q̇(l; lc) lies above ḣ(l) for l > lc and lies below it for l < lc. This is illustrated in Figure

A.1. Furthermore, for the h(l) function we consider for transmission tomography, the

second derivative is either a decreasing function (lemma 1) or it has a single local

minimum (lemma 2) so that the maximum value is attained either at l = 0 or l =∞.

The second derivative at ∞ is zero, so the maximum second derivative can be given

by
[
ḧ(0)

]
+
. Next, we provide the details.
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Figure A.1: Plot of q̇(l; lc) and ḣ(l) for maximum curvature.

First, we prove two lemmas about properties of the h functions. These lemmas

are used for the proofs in Appendix B as well.

Lemma 1 The following are equivalent for h(l) defined in (4.3):

• (E1) r = 0 or r ≥ y,

• (E2) h is strictly convex,

• (E3) ḣ is strictly concave,

• (E4) ḣ is monotonically increasing,

• (E5) ḧ is monotonically decreasing.

Proof: Since h is three times continuously differentiable, h is strictly convex if

and only if ḧ > 0 and ḣ is strictly concave if and only if h(3) < 0. Clearly, ḧ > 0 if

and only if ḣ is monotonically increasing. So, (E2) ⇐⇒ (E4). For similar reasons

(E3) ⇐⇒ (E5).
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If r = 0 or r ≥ y, then yr < (be−l + r)2, so from (A.1) ḧ(l) ≥ 0, ∀l. Thus, (E1)

⇒ (E2).

To prove (E1)⇒ (E3), from (A.2), it suffices to show that (be−l+r)3 > yr(−be−l+

r). But this is trivial since r3 ≥ yr2 under the conditions (E1).

To prove the opposite, if r 6= 0 and y > r, then one can easily show that ḧ(l) and

−h(3)(l) can take negative values for sufficiently large l considering (A.1) and (A.2).

So, (E2) ⇒ (E1) and (E3) ⇒ (E1).

Lemma 2 When y > r and r 6= 0, the nonconvex function ḣ has the following

properties:

• (P1) ḣ is continuously differentiable,

• (P2) ḣ has exactly one critical point l∗, i.e. ḧ(l∗) = 0 and l∗ is a local maximizer

of ḣ(l),

• (P3) ḣ is strictly concave and monotone increasing for l < l∗,

• (P4) ḣ is monotone decreasing for l > l∗,

• (P5) ḧ has exactly one critical point lz, i.e. h(3)(lz) = 0 and lz is a local mini-

mizer of ḧ(l).

Proof: (P1) is obvious from (4.20) and (A.1).

In the nonconvex case, the equation ḧ(l) = 0 has exactly one solution in IR,

l∗ = log

(
b

√
yr − r

)
. Since h(3)(l∗) = −2

(
√
yr − r)2
√
yr

< 0, l∗ is a local maximum,

proving (P2).

Solutions to the equation h(3)(l) = 0 are the roots of a cubic polynomial in the

variable t = be−l which has only one real solution. The real root is negative when

h is convex resulting no solution for l. But, in the nonconvex case the real root

is positive and results in exactly one solution lz = log(b/(a/3 − yr/a − r)) where

a = 3

√
27yr2 + 3

√
3y3r3 + 81y2r4. So, ḧ(l) has exactly one critical point. We have

shown above that h(3)(l∗) < 0 and one can easily see that h(3)(l) ≈
(
y

r
− 1

)
be−l > 0

for large l. Thus lz > l∗ and h(3)(l) < 0 for l < lz. So, ḧ(l) is monotonically decreasing
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for l < lz. Also for l > lz, h(3)(l) > 0 and ḧ(l) is monotonically increasing. This proves

that lz is a local minimum for ḧ(l). Hence, (P5) is proven.

To prove (P3), we have to show h(3)(l) < 0 and ḧ(l) > 0 for l < l∗. But, as we

found above l∗ < lz and h(3)(l) < 0 for l < lz. Also, ḧ(l) > 0 for l < l∗ since l∗ is the

only critical point and local maximizer of ḣ due to (P2). So, (P3) is also proven.

The function ḧ(l) has exactly one zero crossing l∗ from (P2) which is a local

maximizer of ḣ. Then, ḧ(l) has to be always negative for l > l∗ proving (P4).

To verify, one can easily see that, ḧ(l) ≈
(
1−

y

r

)
be−l < 0 for large l values. So

ḧ(l) < 0 ∀l > l∗.

The following result follows from (E5) of Lemma 1 for the convex case and from

(P5) of Lemma 2 for the nonconvex case.

Corollary 1 The maximum value for ḧ in the region [0,∞) is achieved at the end

points, i.e.

ci(l
n
i ) = max

l∈[0,∞)
{ḧ(l)}

= max{ḧ(∞), ḧ(0)}

=
[
ḧ(0)

]
+
,

=

[(
1−

yr

(b+ r)2

)
b

]
+

.

The result follows since liml→∞ ḧ(l) = 0.
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APPENDIX B

Proof of Optimum Curvature

In this appendix, we prove that the curvature defined in (4.33) is the optimum

curvature that satisfies (4.32), which in turn implies from (4.31) that the choice (4.33)

yields the fastest convergence rate.

The intuition behind the optimum curvature is that it should be possible to ob-

tain better (smaller) curvatures than the conservative maximum curvature for this

problem. A visualization for the optimum curvature is given in Figure B.1. The slope

of the first derivative q̇(l; lc) is adjusted to make it possible to have q(l; lc) lie above

h(l) for l > 0. This is achieved when the areas between the q̇(l; lc) function and the

ḣ(l) function for l < lc cancels each other so that the difference integral (which is

the difference q(l; lc) − h(l)) remains positive for l < lc. We provide details in the

following.

We first prove two lemmas about strictly concave functions.

Lemma 3 A one-dimensional line l(x) = ax+ b can intersect a strictly concave (or

strictly convex) function f(x) at most twice.

Proof: Suppose l(xi) = f(xi) at points x1 < x2 < x3. Then since f(x) is strictly

concave, f(x) > l(x) for x ∈ (x1, x3), which contradicts the initial assumption that

f(x2) = l(x2).

155



0  1     
−100

−80

−60

−40

−20

0

20

40

60

80

100

+
+

−

lc

derivative of h
derivative of q with optimum curvature

Figure B.1: Plot of q̇(l; lc) and ḣ(l) for optimum curvature.

Lemma 4 Let f(x) be a one-dimensional strictly concave function, and let l(x) =

ax+ b be a line that intersects f(x) at the two points x1 < x2. Then

f(x) < l(x) for x ∈ (−∞, x1) ∪ (x2,∞).

Proof: Suppose there exists an x3 > x2 such that f(x3) ≥ l(x3). Consider

the new line m(x) that intersects f(x) at x1 and x3. Since m(x1) = l(x1) and

m(x3) = f(x3) ≥ l(x3), it follows from the affine form of l(x) and m(x) that m(x2) ≥

l(x2) = f(x2), which contradicts the assumption that f(x) is strictly concave. The

case x3 < x1 is similar.

For simplicity in this appendix, we drop the subscript i and the dependence on n

for the variables. Let h(l) be the marginal negative log-likelihood function defined in

(4.3) with derivatives presented in (4.20), (A.1) and (A.2) and let q(l) be the parabolic

surrogate function defined in (4.8) with the “optimum curvature” c defined in (4.33).

We use lc to denote the current projection value lni . The reader may visualize the

156



following proofs by considering the plots of ḣ and q̇ functions shown in Fig. 4.3.

We define the difference function by:

δ(l)
4
= q(l)− h(l). (B.1)

To show that q(l) ≥ h(l) for l ≥ 0 as required by (4.9), it suffices to show that

δ(l) ≥ 0. When lc = 0, it is obvious from Appendix A that δ(l) ≥ 0. Thus we focus

on the case lc > 0 in the following.

Lemma 5 The following conditions are sufficient to ensure δ(l) ≥ 0, ∀l ∈ [0,∞).

• (C1) δ(0) ≥ 0 and δ(lc) = 0,

• (C2) δ̇(l) ≥ 0 for l ≥ lc, and

• (C3) either

– (C31) δ̇(l) < 0, ∀l ∈ [0, lc), or

– (C32) ∃lp ∈ [0, lc) such that δ̇(l) ≥ 0 for l ∈ [0, lp] and δ̇(l) ≤ 0 for l ∈

(lp, lc].

Proof: Since δ(lc) = 0

δ(l) =
∫ l

lc
δ̇(t)dt. (B.2)

• Case l ≥ lc. The integrand in (B.2) is nonnegative due to (C2), so δ(l) ≥ 0.

• Case l ∈ [0, lc]. If (C31) is true, then δ(l) = δ(lc)−
∫ lc
l δ̇(t)dt ≥ δ(l

c) = 0.

If (C32) holds and l ∈ [0, lp], then δ(l) = δ(0) +
∫ l
0 δ̇(t)dt ≥ δ(0) ≥ 0 by (C1).

Likewise if (C32) holds and l ∈ (lp, lc], then δ(l) = δ(lc)−
∫ lc
l δ̇(t)dt ≥ δ(lc) = 0

again by (C1).

Hence, δ(l) ≥ 0 ∀l ≥ 0 under the above conditions.

We now establish the conditions of Lemma 5. (C1) follows directly from the

definition (4.32), so we focus on (C2) and (C3) below. We first treat the case where

h(l) is strictly convex.
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Lemma 6 If h(l) is a convex function and ḣ(l) is concave for l ≥ 0, then the differ-

ence function δ(l) in (B.1) with the curvature c defined in (4.33) satisfies conditions

(C2) and (C32) in Lemma 5. Furthermore, c > 0.

Proof: It is trivial to show that the conditions (E2) through (E5) of Lemma 1

hold in this case for l ≥ 0. First we prove c > 0. Suppose c = 0, so q̇ is a constant.

Since ḣ(l) is increasing by (E4) in Lemma 1 and q̇(lc) = ḣ(lc), it is obvious that

q̇(l) > ḣ(l), ∀l ∈ [0, lc), so δ(0) = −
∫ lc
0 δ̇(t)dt < 0 contradicting (C1). So, c > 0 in

this case and δ(0) = 0 by design.

To prove (C32), consider ḣ. The line q̇ cannot intersect the strictly concave ḣ

at more than two points due to Lemma 3. We know that δ̇(lc) = 0, thus lc is an

intersection point. We have δ(0) = 0 and δ(lc) = 0 by definition. From mean value

theorem, there must be another intersection point lp ∈ [0, lc) such that δ̇(lp) = 0.

We know by Lemma 3 that there cannot be any additional points where δ̇(l) = 0.

δ̇(l) < 0 for l ∈ (lp, lc) due to concavity of ḣ and δ̇(l) > 0 for l ∈ [0, lp) due to Lemma

4. (C32) is proven.

To prove (C2), apply Lemma 4 to the strictly concave function ḣ with two points

lp and lc as the intersection points of the line with the curve.

We now consider the realistic nonconvex case.

Lemma 7 Let h(l) be a nonconvex function with its derivative ḣ satisfying properties

(P1), (P2) and (P3) in Lemma 2. The difference function δ(l) defined in (B.1) with

the curvature defined in (4.33) satisfies (C2) and (C3) in Lemma 5.

Proof:

The reader can refer to Fig. 4.3 for representative plots of h and its first derivative.

Note that in Lemma 2, (P2) ⇒ (P4) directly.

Consider these two cases where l∗ is defined as in Lemma 2:

• CASE lc < l∗.

In this case, by (P3) of Lemma 2, lc is in a concave increasing region. By Lemma

6, (C32) holds as well as the fact that c > 0. To prove (C2), we use property
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(P4), that ḣ is a decreasing function for l > l∗. So, since q̇(l∗) > ḣ(l∗) (as for

(C2) in Lemma 6 again) and c ≥ 0, q̇(l) > ḣ(l), ∀l ≥ lc.

• CASE lc ≥ l∗. Since by (C1), δ(lc) − δ(0) =
∫ lc
0 δ̇(t)dt ≤ 0, δ̇(l) = q̇(l) −

ḣ(l) cannot always be nonnegative over the interval [0, lc). So, either q̇(l) <

ḣ(l), ∀l ∈ [0, lc) or q̇ intersects ḣ (δ̇(l) = 0) at least once in [0, lc). If the former

case occurs, (C31) holds by definition. If the latter case occurs, then we have to

prove that (C32) holds, i.e. there is no more than one point at which q̇ intersects

ḣ in [0, lc). Since c ≥ 0 and ḣ is decreasing in the region l > l∗, the intersection

point(s) lp < l∗. We cannot apply Lemma 3 here to prove that there is no other

intersection point, but we can use Lemma 4 to prove it. Assume there is another

intersection point. Then, the function q̇ > ḣ in the concave region outside the

interval between two intersection points by Lemma 4 which implies δ̇(l∗) > 0

and δ̇(l) > 0 for l > l∗. But this would contradict the fact that δ̇(lc) = 0. So,

(C32) must hold.

In this case, the fact that c ≥ 0 is enough to prove (C2), since ḣ is decreasing

in this region.

Theorem 1 Let h(l) be a one-dimensional function that satisfies either of the fol-

lowing:

• (H1) h(l) is strictly convex and ḣ(l) is strictly concave in the feasible region

l ≥ 0, or

• (H2) ḣ(l) satisfies (P1), (P2) and (P3) of Lemma 2.

Then the curvature defined in (4.33) satisfies the optimality condition in (4.32).

Proof: For h functions that satisfy conditions (H1), Lemma 6 with Lemma 5

prove that the curvature (4.33) satisfies (4.9) for lc > 0. For h functions satisfying

conditions in (H2), Lemma 7 and Lemma 5 similarly prove that the curvature (4.33)

satisfies (4.9) for lc > 0. The rest of the proof applies to both cases (H1) and (H2).
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For lc = 0, c in (4.33) is the maximum second derivative in [0,∞), and (4.9) is satisfied

by mean value theorem as mentioned in Section 4.3.1.

We need to prove that no other nonnegative curvature less than (4.33) satisfies

(4.9).

Assume 0 ≤ c∗ < c, and let

q∗(l) = h(lc) + ḣ(lc)(l − lc) +
1

2
c∗(l − lc)2.

Obviously c∗ can exist only when c > 0 since c = 0 is the minimum curvature we

allow. With c > 0, it is obvious from (4.33) that q(0) = h(0). If lc > 0, this clearly

implies that q∗(0) < q(0) = h(0) which shows that c∗ cannot satisfy (4.9). If lc = 0,

then a curvature c∗ < c would force q̇ to lie under ḣ for some small values of l. That

is, ∃ε > 0 such that q(l) < h(l) for ε > l > 0. Thus c∗ does not satisfy (4.9) even for

lc = 0.

Corollary 2 The “optimum curvature” defined in (4.33) using the marginal negative

log-likelihood function hi(l) defined in (4.3) for the transmission tomography problem

satisfies the optimality condition in (4.32) for bi > 0, yi ≥ 0, ri ≥ 0.

Proof: The function hi(l) defined in (4.3) satisfies the conditions (H1) or (H2)

of Theorem 1 depending on the values of yi and ri as shown in Lemmas 1 and 2.

Hence Theorem 1 is directly applicable to the transmission tomography problem.
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