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Abstract

This dissertation describes an object-based approach to the problem of reconstructing three-dimensional de-

scriptions of arterial trees from a few angiographic projections. The method incorporatesa priori knowledge

of the structure of branching arteries into a natural optimality criterion that encompasses the entire arterial

tree. This global approach enables reconstruction from a few noisy projection images. We present an efficient

optimization algorithm for object estimation, and demonstrate its performance on simulated, phantom, and

in vivomagnetic resonance angiograms, as well as an X-ray phantom.

The 3-D reconstruction method is based on new nonparametric smoothing algorithms that we present

for both linear and nonlinear measurements. These algorithms provide nonparametric alternatives to the

Kalman filter and the extended Kalman filter. In particular, we describe automatic procedures based on cross-

validation for determining how much to smooth; this adaptation allows the data to “speak for itself” without

imposing a parametric model.
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Chapter 1

Introduction

1.1 Why Quantitative Angiography?

A tremendous amount of research on imaging methods for the circulatory system1 has been motivated

by this astounding statistic [1]: “coronary heart disease causes one third to one half of all deaths of people

between the ages of 35 and 64 years in the United States.” The objectives of this research were summarized

by Skorton [2]:

the ultimate goals of clinical cardiac imaging include the complete structural, functional, and

metabolic characterization of the heart, great vessels, and the pulmonary vasculature in a nonin-

vasive manner. To achieve these goals will require the depiction of cardiac morphology ... and

the anatomy of the coronary arteries.

Accurate descriptions of arterial trees would be useful for quantitative diagnosis of atherosclerosis, for plan-

ning treatment of stenotic2 arteries, for monitoring disease progress or remission, and for evaluating efficacy

of different treatments [3]. This dissertation describes a new approach to the problem of reconstructing three-

dimensional descriptions of arterial trees from a few angiographic projection images.

The conventional method for evaluating angiographic images is human interpretation. The inaccuracy

of human interpretation of angiograms has been well documented, in terms of both intra-observer and inter-

observer variability [4]. Not only is the variability large, but also “the standard approach to assessing the

severity of coronary stenoses—estimation of percent diameter narrowing of the stenotic segment compared to

a presumably normal segment—may not correlate with the physiological significance of the obstruction [2].”

This is due in part to the fact that “the hemodynamic effect3 of coronary artery narrowing is determined by

1Broadly interpreted, the termangiographyincludes any such methods.
2A stenosis is a narrowing of a vessel cross-section.
3The decrease in fluid pressure across a stenosis.

1



CHAPTER 1. INTRODUCTION 2

the absolute (not relative) diameter and also by the length of the stenotic segment [4].” Furthermore, “since

hemodynamic effects are proportional to the diameter of the stenosis raised to the fourth power, a small un-

certainty in border definition may introduce a large uncertainty into the hemodynamic effect calculated from

X-ray measured dimensions [5].” These issues are compounded by the fact that “many [radiologists] use

[percent stenosis] without specifying whether they are referring to a percentage reduction of the diameter

or of the area of the lumen4 [6].” These problems have motivated the development of automated methods

for obtaining quantitative measurements of arterial morphology, because, as concluded by Paulin, “measure-

ments from angiograms can be performed more objectively with advanced imaging technology assisted by

computers [6].”

Current X-ray angiography procedures are applied only to patients with a high risk of having atheroscle-

rosis. This is insufficient, as a summary of recent studies [7] discussed:

a fascinating but disturbing fact: ... asymptomatic subjects with normal results on stress tests

had a much lower mortality rate than asymptomatic subjects with abnormal results. However,

the very large low-risk group with normal responses to exercise testing ... contained, in absolute

terms, the large majority of subjects who subsequently died suddenly.

This observation highlights the importance of non-invasive quantitative angiography, since asymptomatic

patients do not qualify for invasive examinations such as intra-arterial angiography. To identify individuals

at possible risk due to mild plaque build-up, a non-invasive procedure is needed that can quantify lumen

size accurately. Magnetic resonance angiography (MRA), in conjunction with computed reconstructions of

arterial trees, has potential to serve this need5. The 3-D arterial reconstruction algorithm presented in this

dissertation is particularly suited to MR data, though the approach is also applicable to digitally acquired

X-ray angiograms.

1.2 Background

Quantitative angiography has been studied for over two decades, and improvements in imaging technology

and computer speed continue to spur the development of various reconstruction methods for the many dif-

ferent applications. To the best of our knowledge, all previous methods have been applied only to X-ray

angiograms, and have not addressed the unique aspects of MRA. In this section, we review the quantitative

angiography literature. For additional reviews and bibliographies, see [9, 10, 11, 12, 13, 14, 15].

For completeness, we first mention some alternate methods for improving the utility of angiography. One

approach is to combine multiple projection images to form a focussed image of a plane or surface containing

4The lumen is the inner portion of an artery through which blood flows.
5The detectability of mild atherosclerosis remains to be seen. In a recent study [8], Glagovet al. “conclude that human coronary

arteries enlarge in relation to plaque area and that functionally significant stenosis may be delayed until the lesion occupies 40 percent
of the internal elastic lamina area.”
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the arteries of interest, while blurring objects in other planes. This procedure is known as tomosynthesis [16,

17]. Another approach is to acquire a 3-D data set “directly.” Flow-sensitive MR techniques can acquire

a complete 3-D data set [18, 19], but they require a large number of excitations. This requirement makes

cardiac gating impractical, and ungated sequences often suffer from sensitivity to non-uniform flow and

vessel motion. Specialized X-ray equipment [20, 21] with multiple source-detector pairs can acquire enough

projection data to reconstruct a 3-D data set with conventional algorithms, but such equipment is not widely

available. For quantitative diagnosis, one must still apply an algorithm to extract the pertinent information

from such data sets [22, 23, 24, 21].

A so-called “reconstructed arterial tree” is not an actual arterial tree, but rather some symbolic description

of the tree. The nature of the description has profound implications for the applicability and stability of a

reconstruction method. The more rigorous of the methods described below are explicitly based on either a

parametric or a nonparametric description of the arterial tree. Unfortunately, many papers invoke only an

implicit model, such as those in which “diameter” is computed from a single view without mentioning the

assumption of a circular lumen cross-section.

The most general representation for an arterial tree is to consider it an unknown three-dimensional density

functionµ(x, y, z; t). In general,µ is also a function of time due to the motion of blood and of the arteries. In

X-ray imaging,µ represents the linear attenuation coefficient of iodinated blood, while in subtraction MRA,

µ represents the density of inverted spins that have flowed into the readout region [25, 26]. We use “contrast”

or “density” throughout to refer toµ, although no contrast agent is administered in MRA. Our goal is to

estimateµ from as few views as possible.

Since the time-variation of arteries makes acquisition of only a few (almost) simultaneous views possible

with practical equipment, the number of views required by a reconstruction method affects its clinical feasi-

bility significantly. Thus, our review is categorized into single-view methods, stereo and bi-plane methods,

and multiple-view methods.
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1.2.1 Single-View Methods

Before the proliferation of digital angiography units, methods for quantitative angiography were based pri-

marily on digitized film [27, 28, 29, 30]. Most film-based methods considered only a single view, perhaps

because multiple-view methods require calibration of a 3-D reference coordinate system—a cumbersome

procedure with film.

The earliest methods for processing angiograms were based on applying gradient operators, such as the

Sobel and Hueckel operators [31], followed by thresholding to identify edges. Wiener-like filters for edge

estimation were also applied [32]. To avoid missing any edges, the thresholds were set fairly low, leading

to many false-alarm edges. The detected edges were then linked to form objects and to prune spurious

edges [33, 34]. The difficulty with global image operators is that the intensity of an arterial projection can

vary with the artery’s diameter, so a single threshold is insufficient. Furthermore, gradient operators are

sensitive to noise, and fail to exploit any properties of the arterial images of interest.

The inadequacy of edge detection methods led to the development of methods designed specifically for

estimating the projected arterial diameter. A very popular approach has been to smooth the arterial profile in

each scan line, and then use the peak of the first derivative or the zero of the second derivative as an estimate

of the arterial edge [35, 36, 37]. However, these slope-based methods are biased, since an arterial profile

is a semi-ellipse function rather than a rectangular function. (The first-derivative peak underestimates [29]

and the second-derivative zero overestimates [35] arterial diameter.) Kooijmanet al. attempted to combat

this problem by using a weighted average of the two derivates [28], but the weighting must be determined

empirically. A line-by-line Wiener filter was also proposed for vessel edge detection [38].

The above methods are termed “geometric,” while methods that are based on the absolute measured pixel

values are termed “densitometric.” For example, Weber [39] showed that the first zero-crossing of the Fourier

transform of a vessel profile is proportional to arterial diameter and is somewhat insensitive to image blurring.

Shmueli [40, 10, 41] first proposed fitting the projection of a circle to the measurements as a parametric

method for estimating arterial diameter. Kruger [42] showed that vessel diameter is proportional to the ratio

of the sum of the profile pixel values to the center pixel value. Such methods rely on a linear relationship

between the X-ray path length through an iodinated vessel and the measured pixel value. The nonlinearity of

film-based systems perhaps explains why the geometric methods remain popular, despite the fact that Pappas

has shown that the densitometric approaches are more accurate [30, 35, 12]. This accuracy is due in part to

the ability of densitometric methods to estimate diameter to sub-pixel resolution, while slope-based methods

are limited by the detector resolution.

The simplest densitometric operation is accumulating the pixel values across an arterial profile. The

resulting sum is proportional to the cross-sectional area. Unfortunately, the constant of proportionality is

unknown and is difficult to determine since it depends on the concentration of iodine in X-ray angiography

and on the density of excited spins in MRA. Furthermore, this density varies along the arterial length in MRA.
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The unknown constant limits the utility of densitometric area to consideration of relative values. However,

computations of stenosis pressure drop depend on stenosis geometry, including entrance and exit angle [43],

for which relative area alone is insufficient.

Most of the above methods for estimating arterial diameter originally required manual tracing of the pro-

jected artery’s centerline. Many papers have proposed methods for eliminating this interaction. Shmueli [41]

developed an optimal estimation algorithm for computing the position and diameter of a single artery. Nishimura [44]

generalized this to include overlapping arteries. Barth [27] described a single-vessel tracking algorithm based

on a circular search window, while Hoffmann [45] used a pair of rectangular search windows to track an entire

arterial tree recursively. Kitamura [14] described another tracking algorithm that accounts for bifurcations,

but not overlapping arterial projections. Sun [46] exploited position, curvature, diameter, and density conti-

nuity to track an artery, but withoutaccommodation of branching or overlapping arteries.

Sun [46] observed that there are two classes of methods for arterial segmentation: “tracking” methods

that attempt to follow the local ridge of an arterial projection, and “scanning” methods that are applied more

globally. Nguyen [47, 48] proposed one scanning method that requires several steps for ridge detection and

merging. Stansfield [49] reported a edge-linking region-growing method controlled by a rule-based system,

but concluded that the rules were inadequate. An expert-system based multi-resolution algorithm was also

presented by Ergener [50]. Eichel [51] described a completely automated edge-tracking algorithm based

on a Markovian edge model. After enhancing the edges with a Gaussian-weighted gradient operator, the

edges are linked with a tree search based on communication theory. Morphological filters have recently

shown promise for segmentation problems, and Besson [52] combined these filters with region growing and a

“snake transform” to produce a segmentation algorithm that is well suited to angiograms. Another matched-

filter/thresholding scheme was reported by Chaudhuri [53] for retinal reflectance images. Most scanning

segmentation methods simply produce binary-valued images that distinguish arterial pixels from background

pixels. To be useful, these methods must be followed by a method to compute the parameters of interest, such

as arterial diameter.

All single-view methods are limited by the fact that the projected diameter can be misleading for ec-

centric cross-sections. This is a significant problem, since, as Brown reported [4], “the diseased lumen is

commonly eccentric in cross-section.” Another limitation is that distinguishing between overlapping, cross-

ing, and bifurcating arteries is very difficult from only one view. These problems are important motivations

for multiple-view methods.
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1.2.2 Two-View Methods

There have been two motivations for considering two-view methods over one-view methods: 1) a better esti-

mate of the lumen dimensions can be computed from two views, and 2) if the corresponding projections of an

arterial segment can be identified in the two views, then the 3-D location of the artery can be computed. These

two motivations have had a one-to-one correspondence with the following two paradigms for quantification:

1) process each pair of image rows to estimate arterial lumen, possibly accounting for some correlation be-

tween adjacent lumens, and 2) first process the two views individually to extract arterial segments, and then

match corresponding segments between views.

In an early paper, Chang [54] discussed reconstruction of a binary matrix (representing lumen cross-

section) from two orthogonal projections, and showed that the reconstruction was unique only for convex

objects symmetric about both projection directions. Gerbrands [55] and Reiber [56] also used binary matri-

ces to represent a single artery’s cross-sections, but they also included a cost function to quantify the similarity

of adjacent cross-sections, inhopes of overcoming the non-uniqueness for asymmetric lumens. Any method

based on binary discretizations of cross-sections requires knowing or calibrating the constant of proportional-

ity between the X-ray path length and the measured pixel intensity. Reiber [56] used a “normal” segment with

an elliptical cross-section for this calibration. Fenster [57] used a binary matrix to approximate a crescent-

shaped lumen within a circle whose radius is assumed known, and demonstrates reconstructions from two

orthogonal simulated projections. These binary methods have had mixed reviews; Suetens [58] found that it

was “next to impossible to reconstruct any part of a blood vessel.”

Brown et al. [4] used the second view to obtain a better estimate of the cross-sectional area by using

the expression:area = π
4 d1d2, whered1 andd2 were hand-traced projected diameters in the two views.

This formula is correct for an elliptical cross-section with axes of lengthd1 andd2, but is incorrect if the

ellipse axes are not aligned with the projection directions. Spears [59] calculated the error due to assuming

aligned ellipse axes. Despite the potential error, several investigators have made this assumption [4, 60, 43,

36]. Kitamura [61] claimed that although the densitometric information in two views does not determine an

ellipse uniquely, there are only two possible ellipses, and proposed arbitrarily choosing the more circular one.

Furthermore, if the two projections are orthogonal, then Kitamura claimed that only the orientation of the two

possible ellipses differs, so the area is uniquely determined. These statements are true only if the contrast

density is known, as Figure 1.1 demonstrates.

For some neurosurgical applications, estimates of arterial centerlines and relative areas may suffice, and

algorithms have been published for obtaining those features from just two views [62, 14, 63]. These algo-

rithms usually require two steps: tracking arteries in each view, and then identifying corresponding arterial

segments between the two views. Gerbrands [64] used a region growing algorithm to generate an arte-

rial skeleton in each view, converts the skeleton to a graph withnodes at the bifurcations, and applies a

minimum-cost tree-matching procedure to identify corresponding bifurcations in the two views. Kim [65]
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Figure 1.1: Two ellipses with differenteccentricities and densities that have identical biplane projections.

used the iodine bolus edge as the feature for matching segments. Suetens [58] exploited a consistency prop-

erty motivated by consideration of the human stereopsis by matching arterial segments with similar orienta-

tion, width, and intensity. The correspondence problem is considerably easier with stereo angiograms since

the difference in projection angle is small. Hoffmann [66] correlated image rows to compute the shift that

determines arterial depth in stereo projections. Parker [62] entered landmarks in each view by hand, and

matched segments between views using a dynamic programming algorithm. Kitamura [14] used manually

identified segment correspondences. Venaille [67] proposed acquiring a third projection to reduce the number

of consistent matches between arterial segments. Each of the detectors in most bi-plane systems can acquire

a time sequence ofN arterial projections within the duration of the iodine bolus. Wu [63] identified corre-

sponding segments in all2N ungated projections, and then used a weighted average of the2N densitometric

areas. Nevertheless, Wu [63] concluded that obtaining more reliable measurements will require “developing

algorithms which include information from more than two projection views.”

1.2.3 Multiple-View Methods

The arterial descriptions that have been computed from two views have usually consisted of only arterial

position and cross-sectional area. Though adequate for some applications, this hardly meets Skorton’s goal

of a complete characterization of cardiac morphology. For applications where veryaccurate quantification

of stenosis geometry is critical, one can justify acquiring a few views. The additional views should allow

one to overcome the limitations of two-view methods byaccommodating overlapping arterial projections and

bifurcations.

To circumvent the ill-conditioned nature of reconstruction from just a few views, virtually all methods

attempt to reduce the dimensionality by considering some special class of densities. The least restrictive class

of descriptions considersµ to be a discretized 3-D voxel set. Jiya [68] described an algebraic reconstruction

technique (ART) requiring three orthogonal views for reconstructing a 3-D voxel representation of symmetric

objects, but with no consideration of noise. Spearset al. [69] used a maximum entropy algorithm for recon-

structing a single asymmetric cross-section from three to nine projections. Consideration of a single object

is unrealistic for multiple-view methods, since it is very unlikely that one can acquire more than one or two

overlap-free views of an artery.

Recently, investigators have recognized that ill-conditioned inverse problems such as limited-view re-

construction need to beregularizedby incorporatinga priori knowledge about the structures of interest.

Haneishiet al.[70] used two properties for regularization: 1) the background pixels and the arterial pixels (at

least ideally) have different values, and 2) arterial pixels are connected. They incorporated these properties
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into a penalized-likelihoodoptimality criterion, and used a simulated-annealing optimization algorithm. They

demonstrated reconstructions from five to twenty simulated projections. Rougee [71] combined the sparse-

ness, non-negativity, and connectedness properties of arterial trees into a detection-estimation scheme based

on detecting a region of support, and compared it with ART and with the extreme-value technique (EVT).

She reconstructed an X-ray phantom from fifteen views. Trousset [72] reduced the computational cost of

this method by introducing a multiscale implementation, and demonstrated reconstruction of a phantom from

thirty-two views.

Though the voxel-based methods have the ability to represent any arterial shape,accurate reconstruction

seems to require several views. To reduce the number of views required while maintaining robustness to low

SNR, stronger assumptions are necessary. As observed by Rossi [73], “the ultimate goal of processing the

projection measurements is typically far more modest than obtaining high resolution cross-sectional imagery.”

In fact, the goal is typically to obtain quantitative descriptions of arterial shape (perhaps as an intermediate

step towards the goal of evaluating hemodynamic properties). Therefore, rather than making a futile attempt

to reconstruct an arbitrary cross-section, Rossi [74, 75, 73] proposed using a parametric model for objects,

and analyzed reconstruction of a circular disk from a few projections. A parametric object model reduces

the number of unknowns, by exploiting oura priori knowledge of the structure of arteries, and translates the

reconstruction problem into an estimation problem. Pappas [12] later demonstrated the accuracy of using

elliptical cross-sections to represent arteries, since ellipses can better approximate a wider class of cross-

sections than can circles. Rossi [76] further evaluated ellipse reconstructionaccuracy. Bresler [77, 78] and

Kitamura [14] both used generalized cylinders to represent a set of ellipses describing an artery.

The elliptical model capturesa priori knowledge about the shape of arterial cross-sections in a simple

parametric form. The equally importanta priori knowledge that arteries are smooth, i.e., that ellipse pa-

rameters vary slowly along an arterial segment, is more difficult to quantify. Shmueli [41] and Bresler [78]

used explicit stochastic Gauss-Markov models to parametrically quantify this smoothness. Using this model,

Bresler [77, 79, 80, 78] presented an optimal minimum mean-squared error (MMSE) algorithm for recon-

structing a single object with elliptical cross-sections from a few projections. Realizing that a single-object

algorithm is impractical, Bresler also presented a suboptimal algorithm for reconstructing several disjoint

objects from a few views, based on a hierarchical divide-and-conquer approach [81, 15]. In a joint effort,

Bresler and this author demonstrated the hierarchical algorithm [82] on a set of four simulated projections of

a few synthetic objects. Despite its suboptimality, the hierarchical algorithm performed nearly as well as the

MMSE algorithm in reconstructing a single synthetic object from four simulated projections [83].
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1.3 The New Method

This dissertation presents a new method for object-based reconstruction from a few views that overcomes

several limitations of the previous work. In particular, the novel aspects of the method we present are:

• it is based on a global criterion—to maintain accuracy at the low SNR typical ofnon-invasive methods,

• bifurcating arteries are explicitly modeled, there are no empirically determined thresholds,

• overlapping vessel projections are accommodated,

• and the time-dependence of contrast density is modeled.

The new method is a mixture of parametric and nonparametric methods. We use a parametric model

(ellipses) for arterial cross-sections, but a nonparametric method (splines) for arterial smoothness. Although

the previously used parametric smoothness models allowed the derivation of theoretically satisfying MMSE

estimators, there are two problems with that approach: 1) the parameters of a Gauss-Markov model are

unknown and not easily determined, and 2) in general, these models imply that thea priori covariances of

the cross-sections vary along the length of an artery. This implied variation is inconsistent with our intuition:

prior to examining an angiogram, our uncertainty about cross-sectional shape is uniform along the arteries.

We instead propose a nonparametric smoothing approach, described in Chapter 6, that captures oura priori

knowledge of arterial smoothness with minimal assumptions. Bresler eventually came to agree with this

approach [84]:

Parametric methods are useful when parsimony is important, as is the case when the measure-

ments are few (e.g. limited projection angles), since the number of estimated parameters must be

smaller than the number of measurements. However, we typically acquire many measurements

along the length of an artery, so a nonparametric method for smoothness gives the greatest flexi-

bility. Hence, mixed parametric/nonparametric methods make perfect sense when the degrees of

freedom in the problem can be split into two sets: one which is well observed, and one which is

poorly observed.

A significant limitation of the hierarchical algorithm [81, 15, 82] is that it was based on disjoint objects.

Since a single ellipse is inadequate for representing bifurcations, where stenoses frequently occur, the hi-

erarchical algorithm was applied only to simulated data. This dissertation describes a new extension of the

generalized-cylinder object model that overcomes this limitation,allowing the first application of a parametric

reconstruction method toin vivo projections of branching arteries.

Several algorithm developers have termed their methods “optimal,” and in some cases this may be inad-

vertently misleading. For example, Fleagelet al. [13] report a method for vessel border estimation based on
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a multi-step process: an artery’s projection is resampled perpendicular to its medial axis, a derivative oper-

ator is applied to each row of the resampled data, and a graph-searching technique is used to estimate the

left and right vessel edges from the derivative values. Although the graph searching is performed optimally,

this method is suboptimal overall because the derivative operation is an irreversible process. Thus, by the

data-processing inequality [85], the estimated vessel boundaries are lessaccurate than a method that uses the

original pixel values. The approach presented in this dissertation is based on a global optimality criterion that

encompasses both the entire arterial tree and all of the measured data.
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1.4 Outline

This thesis is organized in two parts. In Part I (Chapters 2 to 7), we describe the models and methods for

object-based 3-D reconstruction. The methods are based on new nonparametric estimation algorithms that

are detailed in Part II. These algorithms are of independent interest and have other applications, so Chapters 8

and 9 are self contained.

A reconstruction method is optimal only if the underlying models hold; in Chapter 2, we present a sta-

tistical model relating the projection images to the unknown arterial tree, and in Chapter 3, we describe a

new object model, tailored for representing arterial trees. In Chapter 4, we apply the object and measurement

models to the single-artery/single-view estimation problem. In Chapter 5, we consider algorithms for estimat-

ing a set of ellipses given their projections, and discuss selection of the projection angles. In Chapter 6, we

propose a new optimality criterion for the problem of estimating an arterial tree from noisy projections, and

describe the estimation algorithm. In Chapter 7, we show the results of applying this algorithm to simulated

angiograms, to MR phantom data, to MRA projections of carotid arteries, and to X-ray phantom projections.

Chapters 8 and 9 describe the nonparametric smoothing algorithms that are the theoretical core of this thesis.

(The reader may find it useful to scan these chapters before reading Part I.) We discuss the results and the

future directions of this research in Chapter 10.



Part I

Object-Based Reconstruction from

Projections
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Chapter 2

Measurement Model

Reconstruction from projections belongs to the mathematical class calledinverseproblems. Solutions to

such problems depend heavily on the assumptions one makes about the correspondingforward processes.

In this chapter, we present a statistical model for projection angiography that relates an unknown arterial

tree to its acquired measurements. This model accounts for overlapping arterial projections, space-invariant

blurring, and additive noise. In the next chapter we will restrict our attention to a specific class of arterial

tree descriptions, but for this chapter we represent an arterial tree by an arbitrary three-dimensional density

function.

A projection is a mapping of some physical property of a three-dimensional object into a 2-D image, and

that mapping is determined by the acquisition geometry. This dissertation considers the cylindrical geometry

shown in Figure 2.1, where the projection planes are rotated about a common axis, defined to be thez axis.

The symbolsu andv denote the local coordinates in the projection planes (so thez andv axes are parallel).

MR systems can generate projections in arbitrary directions, and a more general model could exploit this

versatility. However, X-ray systems are usually restricted to a single rotation axis, which motivates the

cylindrical geometry used here.

13
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Figure 2.1: Projection geometry, showing projections of a bifurcation.

In X-ray imaging the property of interest is the linear X-ray attenuation coefficient. The attenuation

coefficient of blood does not differ significantly enough from that of soft tissue for blood to be visualized, so a

bolus of iodine (contrast agent) is injected into the arteries immediately prior to imaging. In MR imaging, the

pertinent property is the density of excited hydrogen spins. The contribution of flowing blood is differentiated

from static tissue by exciting a region containing blood that is about to flow into the volume of interest. Note

that in both modalities it is only the flowing blood that is imaged, so strictly speaking we will be reconstructing

descriptions of the lumens of arterial trees.

Our goal is to develop a measurement model that is useful for both X-ray and MR angiograms. Although

it may occasionally seem pedantic, we carefully state all the assumptions and approximations used while

developing the model; these approximations are rather different for X-ray and MR imaging, so they are

derived separately. Virtually all of the assumptions made in this chapter will have consequences for the

results shown in Chapter 7.

The density function for an arterial tree varies with time, and a reconstruction paradigm that requires

multiple views mustaccount for this variation. Although one can minimize the variation of arterial tree

position by using cardiac gating, the contrast will still vary from view to view as iodine (or excited spins)

flow through the arteries. The object-based approach can easilyaccommodate this variation, as we discuss in

the next chapter. We pay particular attention to the time sequencing of MR and X-ray angiography methods,

since these differ considerably. These details are necessary since multiple-view methods inherently require

more data acquisition time than single-view methods.

2.1 Parallel X-ray Geometry

For simplicity, we begin by considering a fictitious X-ray system with a plane wave of X-ray energy photons

impinging on the object of interest1. X-ray photons are absorbed and scattered as they pass through tissue,

though for this section we assume the scattered photons are eliminated by collimation. The energy from

unabsorbed X-ray photons is converted into a signal by an imaging chain. In a fluoroscopic system, this

chain typically includes a scintillating phosphor screen, an image intensifier, and a television camera. The

curved surface of an image intensifier introduces an image warping known as pincushion distortion [4]. Our

first assumption is that this distortion has been corrected.

Assumption 2.1 Pincushion distortion eliminated.

1Though fictitious, this parallel geometry becomes increasinglyaccurate and useful as the ratio of the object size to the source-to-
object distance decreases.
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Correcting this distortion usually requires acquiring images of a calibration grid, since pincushion distortion

“cannot be described by a simple analytic function.” [28] Once this distortion is corrected, the projection

mapping is expressed as parallel line-integrals through the density,according to the following form for the

mean output of an imaging chain on the opposite side of the object from the source [86]:

I(u, v; t; θ) =

I0

∫
ηs(E)ηd(E) exp

[
−

∫
µl(s cos θ + u sin θ, s sin θ − u cos θ, v; t, E) ds

]
dE,

whereI0 is the incident source intensity. The functionsηs(E) andηd(E) are the normalized source spectrum

and the detector efficiency at photon energyE respectively, i.e.,
∫
ηs(E)dE = 1. The termµl(x, y, z; t, E)

represents the “total” linear X-ray attenuation coefficient corresponding to the sum of the contribution of the

iodinated arteries of interest (µ) and the background tissue (µb), i.e.:

µl(x, y, z; t, E) = µ(x, y, z; t, E) + µb(x, y, z; t, E).

This acquisition is known as the “live” image.

Assumption 2.2 Snapshot acquisition.

We assume each projection (or possibly pair of projections in bi-plane systems) is acquired very quickly,

thereby “freezing” the density momentarily. Assume we acquireP projections, at time instantst1, . . . , tP

and at projection anglesθ1, . . . , θP . For example, with a dual bi-plane DSA system [87] we could have:

P = 4, t1 = t2, t3 = t4, θ1 = 0◦, θ2 = 90◦, θ3 = θr , andθ4 = θr + 90◦. The snapshot assumption allows

us to drop the explicit dependence ofI on t, yielding:

I(u, v; θp) =

I0

∫
ηs(E)ηd(E) exp

[
−

∫
µl(s cos θ+ u sin θ, s sin θ − u cos θ, v; tp, E) ds

]
dE.

Assumption 2.3 Monoenergetic source:

ηs(E) = δ(E − E0).

The consequence of this assumption has been carefully evaluated by Simons [88, 89], who observed: “if one

assumed a linear relationship between logarithmically subtracted video density and iodine density, only a

small inaccuracy resulted.” Under this assumption, we can drop the dependence onphoton energy:

I(u, v; θp) = I0 ηd(E0) exp

[
−

∫
µl(s cos θ + u sin θ, s sin θ− u cos θ, v; tp) ds

]
.

The contribution of background tissues is significant in general, and cannot be ignored. Two methods

have been used to circumvent this problem. At least conceptually, the simplest method is to acquire addi-

tional projection images of the background only (before the iodine injection or after the bolus has diluted), and
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to perform logarithmic subtractions as discussed below. One potential problem with this approach is that any

patient motion between the acquisitions will produce artifacts due to incomplete subtraction. This problem

is germane to both single and multiple-view procedures, and several “rubber-sheet” algorithms for warping

the background image to match the iodinated image have been proposed [90, 91]. A multiple-view approach

may require moving the X-ray gantry to acquire the additional views, and then repositioning the X-ray gantry

to acquire the background images. Since many angiographic systems are not precisely repositionable, the

background image might not quite align with the corresponding iodinated image, which introduces another

possible error source. The other compensation method is to just use the unsubtracted images and to ap-

proximate the background by global [12] or local [92, 14, 87], low-order polynomials, whose coefficients are

estimated. This approach is also not without its problems: the background signal may be poorly approximated

by low-order polynomials near bone edges.

Assumption 2.4 Repositional system.

If the X-ray system can be accurately repositioned, say, after the iodine bolus has diluted, then we can acquire

another set of projections at anglesθ1, . . . , θP at timest1,b, . . . , tP,b of the background tissues only:

Ib(u, v; θp) = I0 ηd(E0) exp

[
−

∫
µb(s cos θ + u sin θ, s sin θ − u cos θ, v; tp,b) ds

]
.

(Note that this implicitly assumes the source intensityI0 is repeatable as well.) This acquisition is known as

the “mask” image.

One could relax this assumption by using a separate smaller iodine injection for each view, and acquiring

both the live and the mask images before rotating the X-ray gantry. However, this may lengthen the imaging

procedure, thereby increasing the likelihood of patient motion.

Assumption 2.5 Background synchronization:

µb(x, y, z; tp,b) = µb(x, y, z; tp).

If the acquisitions are cardiac gated, and possibly respiratory gated, then the only differences between the

background or “mask” imageIb(u, v; θp) and the iodinated imageI(u, v; θp) are due to the contribution of

the iodinated blood. Thus a logarithmic subtraction:

lθp(u, v;µ)
4
= log Ib(u, v; θp)− log I(u, v; θp),

yields the structure of interest:

lθp(u, v;µ) =

∫
µ(s cos θp + u sin θp, s sin θp − u cos θp, v; tp) ds. (2.1)

In this final form,lθp(u, v;µ) is the ideal projection ofµ at angleθp and at timetp. We postpone discussion

of blurring and sampling until Section 2.4.
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2.2 Parallel MR Geometry

The MR images discussed in Chapter 7 are based on the selective inversion-recovery (SIR) method [25]. “SIR

bears some similarities to X-ray digital subtraction angiography (DSA). While DSA involves the subtraction

of two images, one with and the other without contrast agent, SIR involves the subtraction of two images, one

with and the other without inversion excitation of blood prior to its entering the region of interest.” [93] By

using a multiple-readout selective inversion-recovery (MRSIR) sequence [26], we can acquire arterial views

at a few projection angles without using invasive contrast agents or ionizing radiation. For a four minute

MRSIR sequence, the signal-to-noise ratio is inversely related to the number of projections acquired, which

necessitates optimal use of the projection data.

Most MR imaging takes advantage of the fact that the resonant frequency of a hydrogen proton in a

magnetic field is proportional to the strength of the field. Spatially varying magnetic fields (gradients) are used

to introduce an encoding of position into temporal frequency, so that at any given time during the acquisition

interval, the received signal corresponds to a sample of the spatial-frequency content of the object being

imaged. If one acquires enough samples of the spatial-frequency content, an image can be reconstructed.

Linear gradients are most commonly used to encode position into frequency, and any deviation from

linearity produces a warping of the image that is somewhat analogous to pincushion distortion in an X-ray

image intensifier. The analogy is functional in the sense that in both modalities one can image a rectangular-

grid phantom to measure the geometric distortion and then “unwarp” other images. This was not necessary

for the system (GE Signa) used to acquire the results of Chapter 7, but it may be necessary for other systems.

Thus, the following assumption is inherent in our derivation:

Assumption 2.6 No geometric distortion.

The excited spins emit a radio-frequency (RF) signal that is received by an RF coil. An RF coil receives

signals from the entire volume (within its sensitive region) with no directional selectivity, so there is a volume

integral inherent in the system. Thus, if gradients are used to encode frequency only alongx andz, then all the

spins alongy will contribute signal in unison, effecting a line-integral alongy. Therefore, the line-integrals

in an MR projection image are truly parallel. The basic imaging equation for a projection MR signal is:

s(t) =∫ ∫ [∫
µ(s cos(θ) + u sin θ, s sin θ− u cos θ, v; t) ds

]
e−jkx(t)ue−jky(t)v du dv.

wherej =
√
−1 and the spin densityµ is now weighted by the spatial sensitivity of the receiver coil. We

assume this sensitivity varies slowly over space. Thek-space (spatial-frequency space) trajectorieskx(t) and

ky(t) are determined by the imaging sequence.

Assumption 2.7 Neglible dephasing in a projection voxel.
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Figure 2.2: MRSIRk-space trajectory and timing diagram.

The spin densityµ is in fact a complex quantity for MR angiography, due especially to dephasing induced

by an inhomogeneous field. The effect can be minimized by using short echo-times [93], by selectively pro-

jecting only a slab containing the branches of interest [26] (rather than the entire volume), and by shimming

the main field carefully [94]. Thus, we assume the dephasing is negligible, so thatµ can be considered a real

quantity. It may be necessary to generalize our results to a complexµ for systems with poor homogeneity.

We also minimize velocity-dependent phase effects by using projection-reconstruction selective inversion-

recovery (PRSIR) imaging [95, 96] and by using offset-echo acquisitions [93]. These considerations are part

of the motivation for the PRSIR method, which may become the preferred sequence if the imaging time can

be reduced by using multiple-readouts.

Assumption 2.8 Effective extraction of real-valued images.

The received signal is nevertheless complex, and we use a homodyning method [97, 98] to extract the in-

phase component of interest. We assume that the necessary assumptions for homodyning [98] are met,

including the assumption of slowly varying image phase. Though the phase in the 3-D volume may vary

slowly, the projection of an arterial tree may superimpose two arteries of different phase, leading to signal

loss. An interesting area for future work would be to use the reconstructed arterial tree to obtain a better

phase reference under the assumption that the phase varies slowly along an artery’s length.

Since an MR readout measures only a sample of the spatial-frequency content of the selected region

at a given time instant, the “snapshot” assumption used in the previous section needs careful examination.

Full detail would be beyond the scope of this thesis, but the basic time sequence for MRSIR is displayed

in Figure 2.2. At time A, an ECG R-wave triggers an inversion pulse that tags blood about to flow into the

region of interest. To maximize wash-in for the carotid arteries, this tagging occurs just before the peak flow

rate. At time B, about 400 ms later (during diastole), the firstk-space line of the first projection is read. The

duration of this readout is limited by the gradient strength and SNR considerations, and takes about 6 ms on

our system, which brings us to time C. A 21 ms wait brings us to time D, when different gradients are used

to readout the firstk-space line of the second projection. This is repeated for allP projection images, so

that after400 + P ∗ 27 ms, we arrive at time E. At some later time F, another R-wave triggers an identical

sequence of readouts—only this time no inversion pulse is used. There are typically 256 samples ineach row

of k-space, and the above procedure is repeated 128 times to acquire 128 rows ink-space.

To form projection images, the corresponding projection data (with and without inversion) are then sub-

tracted and Fourier transformed. This subtraction should form images of the spins that flowed into the readout

region. The following assumptions are implicit in this subtractive method:

Assumption 2.9 No motion of “static” tissue.
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If there is no such motion, then the difference between the inverted and uninverted readouts will be due only

to the flowing material.

Assumption 2.10 Consistent wash-in and periodic gating.

The readout foreach row ink-space is triggered by a different heart beat. If the heart beats were very irregular

and different amounts of spins were washed-in aftereach inversion pulse, then the acquired rows ofk-space

would correspond to the spatial-frequency content ofdifferent images, and there would be artifacts in the

reconstructed images. Furthermore, the static tissues would have differentT1 relaxation periods, leading to

imperfect subtraction.

Assumption 2.11 Negligible wash-in during a readout.

Similarly, if significant wash-in occurred during a readout, then that row ofk-space would be inconsistent,

also leading to artifacts. These artifacts are minimized by using the shortest readouts possible.

Of these assumptions, the last is perhaps the most questionable. We have often observed significant

differences in contrast between the different projection images. There are two potential sources for these

differences: more contrast in the later images due to additional wash-in, and errors in the tip-angle of the

RF excitation, leading to different signal strengths. If the differences in contrast between images are due in

part to wash-in, then the contrast almost certainly is changing during a readout, since the readout interval is a

significant fraction of the time between readouts.

Provided all these assumptions hold, then the same basic projection relationship (2.1) holds for MR

projections. We consider deviations from these assumptions in Section 2.4.

2.3 Point-source X-ray Geometry

In this section, we generalize the parallel-projection measurement model (2.1) by developing an approximate

point-source projection model. Since the rays that pass from a point source to an area detector form a solid

cone, this geometry is known as the cone-beam geometry. In addition to the assumptions of Section 2.1, we

add the following:

Assumption 2.12 Ideal point X-ray source.

Real X-ray sources are of finite size and are tilted with respect to the detector plane [86]. This introduces

additional blurring that we lump into the blur model of the next section. From [86], the ideal projection

function due to a point source is (cf. (2.1)):

l•θp(u, v;µ) =√
1 +
u2 + v2

d2

∫
µ

(
s cos θ +

u

M(s)
sin θ, s sin θ −

u

M(s)
cos θ,

v

M(s)
; tp

)
ds,
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where

M(s) =
d

d− d0 + s
=

d

d− d0
·

1

1 + s
d−d0

is the position-dependent magnification,d is the source-to-detector distance, andd0 is the distance from the

center of rotation to the detector. Note that asd→∞,M(s)→ 1.

Assumption 2.13 Small centered object:(s� d− d0).

For objects that are close to the center of rotation, the magnification is approximately constant:M(s) ≈

M(0). Using this approximation, it is easy to see that

l•θp(u ·M(0), v ·M(0);µ) ≈

∫
µ(s cos θ + u sin θ, s sin θ− u cos θ, v; tp) ds,

which is just a scaled version of the expression (2.1) for the parallel projection ofµ. The accuracy of this

approximation improves with increasing source-to-detector separation and with decreasing object breadth.

Thus, by simply replacing∆h in (2.2) with∆h/M(0), we can apply our method to cone-beam projections,

as we have done in Chapter 7. In Section 6.4 we discuss another method that may be useful for moreaccurate

modeling and reconstruction from cone-beam projections.

2.4 Blurring, Sampling, and Noise

In the above sections, we derived expressions for ideal continuous projections. Actual imaging systems

produce noisy, discrete samples of a blurred version of the ideal projections, andaccurate estimation requires

accounting for these distortions.

Angiographic images can contain significant high-frequency information due to the fine structure of small

arteries. Since MR images are reconstructed from a finite number of spatial-frequency samples, they are vir-

tually always undersampled. The resulting point-spread function (PSF) is determined by the frequency-space

sampling and weighting, and is spatially invariant. In addition, any patient motion during the acquisition will

introduce artifacts that may in part be modeled as blurring. In X-ray imaging, sources of blurring include

the finite source and detector sizes and image-intensifier veiling glare. Although subtracting the mask image

from the live image will eliminate X-ray scatter from the background tissues, any scatter from the iodinated

arteries will remain. This object-dependent scatter also blurs the artery projection. Thus, in some situations

it may be useful to estimate the PSF as well as the arterial tree [12, 14]. However, Pappas [12] has observed

that even “if we assumed that there is no blurring, we would still get good estimates of the parameters.” Here,

we assume the PSF is known,2 spatially invariant, and denoted byh(u, v).

Assumption 2.14 Known, spatially invariant point-spread function.

2In fact, for the X-ray phantom example of Chapter 7 that has an unknown PSF, we first used a local estimation algorithm similar to
that of [12] to estimate the PSF, which was then held fixed for the global arterial tree reconstruction.
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Digital imaging systems acquire samples of the blurred projections in the form of images. Let these

images consist ofN rows ofW pixels each. Ifsθp,n,i(µ) denotes the ideal (mean)ith pixel value in thenth

row of the projection image at angleθp, then fori = 1, . . . ,W ; n = 1, . . . , N ; andp = 1, . . . , P :

sθp,n,i(µ)
4
=
[
h(u, v) ∗ ∗ lθp(u, v;µ)

]∣∣
u=(i−ih−

1
2 )∆h,v=zn

, (2.2)

wherezn
4
= (N − n)∆v, the horizontal and vertical pixel dimensions are∆h and∆v respectively,ih is

the distance (in pixels) from the projection of the rotation axis to the left edge of a projection image, and

∗∗ denotes the 2-D convolution operator. The offsetih may differ from its usual value ofW/2 since X-ray

detectors are usually not perfectly centered on the rotation axis and since any extra linear phase in an MR

system leads to a shift in the reconstructed images.

Blurring along the length of an artery’s projection is less important for reconstruction than lateral blurring

that smooths the artery’s edges. In the next chapter we will restrict our attention to arteries whose medial axes

are roughly parallel to thez axis, so it is reasonable to ignore blurring along this axis. This approximation

simplifies the estimation algorithm discussed in Chapter 6.

Assumption 2.15 Ignore vertical blurring:h(u, v) = h(u)δ(v).

Assumption 2.16 Smooth PSF.

If the PSF is smooth, then we can approximate (2.2) by a discrete convolution that is more easily implemented.

In the appendix we show that:

sθp,n,i(µ) ≈ hi ∗ lθp,i(zn;µ), (2.3)

where∗ now indicates discrete convolution with respect toi, and

hi
4
= h(i∆h), lθp,i(v;µ)

4
=

∫ i∆h
(i−1)∆h

lθp(u− ih∆h, v;µ) du.

Assumption 2.17 Independent, Gaussian distributed measurement errors.

Finally, the actual measured pixel values are corrupted by noise. Ifyp,n,i denotes the measurement corre-

sponding tosθp,n,i, then we assume

yp,n,i = sθp,n,i(µ) + εp,n,i,

where the additive measurement errorεp,n,i has a Gaussian distribution with (possibly unknown) variance

σ2. In MR imaging, the “source of this noise is thermally generated, randomly fluctuating noise currents in

the body which are picked up by the receiving antenna,” [99] so it is correct to assume that the measurement

errors are Gaussian and independent. With X-ray imaging, the Gaussian model is an approximation to the
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Poisson noise distribution. The approximation improves with increasing photon count. One motivation for

this assumption is that it leads to the computationally feasible algorithms of Chapters 8 and 9.

It is convenient to group the ideal projection and measurement samples in the different ways defined

below. First group the samples by rows:

yp,n
4
= [yp,n,1, . . . , yp,n,W ]

′, sθp,n(µ)
4
= [sθp,n,1(µ), . . . , sθp,n,W (µ)]

′,

where “′” denotes matrix transposition. Next group the corresponding rows of theP images:

yn
4
= [y′1,n, . . . , y

′
P,n]

′, sn(µ)
4
= [sθ1,n(µ)

′, . . . , sθP ,n(µ)
′]′. (2.4)

Finally, let

y
4
= [y′1, . . . , y

′
N ]
′, s(µ)

4
= [s1(µ)

′, . . . , sN(µ)
′]′

be the aggregates of all the samples. The vectory has lengthNPW . We similarly defineε, yielding the final

measurement model:

y = s(µ) + ε, (2.5)

which simply says that the (known) measurements are equal to the sampled and blurred projection of the

(unknown) arterial tree density plus noise.

2.5 Summary

In summary, we have defined a statistical measurement model (2.1) (2.3) (2.5) that relates the unknown 3-D

arterial tree density to the measured projections. The final form of our model is identical for both MR and

X-ray angiography, but the assumptions involved are quite different.

It is worth noting that none of the assumptions used above are unique to our object-based approach. In

fact, all paradigms must contend with inaccuracies that result from modeling error. Since our reconstruction

approach uses global information, it clearly has the potential to be more robust to local deviations from the

measurement models.
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2.6 Appendix: Discrete Blur Approximation

In this appendix, we derive a simple approximation for discrete implementation of the blur convolution.

Since we ignore the vertical blurring, we derive the approximation only in terms of the horizontal blurring.

From (2.2), the expression for the ideal discrete sample is:

si = [h(u) ∗ l(u)]|u=(i−ih− 12 )∆h

=

∫ ∞
−∞
l(τ )h((i− ih − 1

2 )∆h − τ ) dτ

=
∑
j

∫ j∆h
(j−1)∆h

l(τ )h((i− ih − 1
2 )∆h − τ ) dτ.

If the PSFh is nearly constant over the interval[(j − 1)∆h, j∆h], then:

si ≈
∑
j

∫ j∆h
(j−1)∆h

l(τ )h(((i − ih − 1
2 )− (j − 1

2 ))∆h) dτ

=
∑
j

ljhi−j,

where

li
4
=

∫ i∆h
(i−1)∆h

l(τ − ih∆h) dτ,

hi
4
= h(i∆h).

Note that if the blur function is the discrete impulse response, i.e.hi = δi, then the ideal sample is the average

of the signal intensity over the pixel size. This is a sensible upper bound on the performance.



Chapter 3

Object Model

As discussed in the introduction, the information provided by only a few projections is insufficient for re-

constructing a general three-dimensional function. Any solution therefore hinges on restricting consideration

to a smaller class of descriptions. In this chapter, we introduce an extension of the generalized cylinder (GC)

object model, tailored to the task of representing arterial trees (the terms ‘object’ and ‘arterial segment’ are

interchangeable). In particular, our model is designed to represent bifurcations accurately. This accuracy

is essential since atherosclerotic lesions are prevalent near arterial branches [100, 101]. Binford [102, 103]

introduced the GC model for computer vision applications. According to Agin [103], “A generalized cylinder

consists of a space curve, or axis, and a cross-section function defined on that axis.” For this chapter, we take

that cross-section function to be an ellipse.

3.1 SGC object model

A true GC would have arbitrarily oriented ellipses, as in Figure 3.1. Reconstruction of such general objects

from projections is still an open problem; to our knowledge, the only work on this problem is a hierarchical

algorithm proposed, but never implemented, by Bresler [15]. The comments of Marr [104, pp. 223–224]

suggest that GC reconstruction may be challenging to implement from projections acquired around a single

rotation axis. We instead adopt the popular approach [14, 78, e.g.] of parameterizing objects by their cross-

sections parallel to thexy plane, an approach ideally suited to the cylindrical geometry. As argued in [14], a

GC with slowly varying elliptical cross-sections can be approximated by a set of parallel ellipses as shown

in Figure 3.1. Such a set of ellipses can be parameterized byz, hence we call the collection a single-valued

generalized cylinder (SGC). Objects that wind back upon themselves (e.g. U shaped) must be represented by

more than one SGC, and are called ‘multi-valued.’ The further an object is tilted away from the rotational

axis, the poorer its SGC representation. Thus, as in most imaging procedures, proper patient positioning

24
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Figure 3.1: A GC (left) and an approximating SGC (right).

is essential, and the arteries of interest should be aligned as close as possible to the rotational axis. The

examples of Chapter 7 demonstrate successful reconstruction of objects with tilts exceeding45◦. Though we

parameterize objects by parallel cross-sections, the cross-sections perpendicular to an artery’s medial axis are

more important for quantitative diagnosis. Hence, we present formulae for converting between GC and SGC

parameters in Section 3.6.

Each SGC cross-section has three attributes: position, shape, and content. An ellipse’s position attribute

is parameterized by thexy coordinates of its center, denoted by(cx, cy). We parameterize an ellipse’s shape

attribute by its radius (geometric mean of long and short axes), eccentricity1 (ratio of long to short axis2),

and orientation, denoted byr, λ, andφ respectively (see Figure 3.5). The content attribute parameterizes the

density within an artery, and can have a profound, though often underestimated, impact on a reconstruction

algorithm’s accuracy and applicability. Some methods assume the content is known or is computable from

“normal” sections of an artery, usually assumed to have a circular cross-section. Having more than two views

allows us to relax these assumptions. We do not assume the contrast density is known, and we allow it to vary

along the length of an artery, from artery to artery, and possibly even between projection images, as discussed

next.

Though the measurement model (2.5) allows a general time-varying density, we now consider only SGCs

whose position and shape attributes are invariant at timest1, . . . , tP , but we account for the time variation

of the content attribute3. This approach is necessary since the contrast often varies between MRA projection

images, and is approximately sufficient since cardiac gating can synchronize position and shape. We assume

each particular arterial cross-section is uniformly filled with contrast agent, so we parameterize an ellipse’s

content by a vector denoted byρ = [ρ1, . . . , ρP ]′, whereP is the number of projections. For some imaging

techniques, we may be able to equate some of theρp ’s. For example, with bi-plane DSA, the contrast is

identical for each pair of projection images, so we would assumeρ1 = ρ2 andρ3 = ρ4. Note that ideal data

sets would haveρ1 = · · · = ρP , since estimating additional parameters often decreases estimation accuracy,

but we have found the full generality presented here necessary for some MRA data.

We now define notation for a hierarchy consisting of ellipses, objects, and trees. The symbolxwill denote

1The radius/eccentricity parameterization is preferable to the long-axis/short-axis parameterization for our approach, since indepen-
dence of radius and eccentricity is a more realistic assumption, particularly in stenotic arteries.

2Another definition of ellipseeccentricity is
√
1− λ−2.

3We could also account for lateral vessel motion between acquisitions [87].
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a particular set of5 + P ellipse parameters. In particular,

xk(z) =



cx(z)

cy(z)

r(z)

λ(z)

φ(z)

ρ(z)


denotes the (unknown) ellipse parameters of thekth object at vertical positionz. An object is uniquely

determined by specifying its starting planezb, its ending planeze, and the collection of parameters of its

elliptical cross-sections between those planes. We use the symbolOk to denote thekth object, i.e.,

Ok
4
= {Zk, Xk},

where

Zk
4
= [zb,k, ze,k]

denotes the vertical domain of thekth object, and

Xk
4
= {xk(z) : z ∈ Zk}

denotes the collection of ellipse parameters. We will say more aboutZk later in this section.

An arterial tree is a collection ofK objects, or ‘object-set,’ denoted by the symbolΨ:

Ψ
4
= {K, O1, . . . ,OK} = {K, Z1, X1, . . . , ZK , XK}. (3.1)

The notational hierarchy forΨ directly corresponds to a hierarchical data structure [62] that we used to

implement the algorithm described in Chapter 6. Due to the simplicity of the ellipse parameterization, this

representation forΨ is considerably more compact than a discretized 3-D voxel set. More importantly, the

significant factors for quantitative diagnosis, such as percent stenosis and stenosiseccentricity, are directly

computable fromΨ.

With these definitions, we have translated the problem of reconstructing a densityµ from projections into

the problem of estimating an object-setΨ from projections. That is, we must estimate the number of objects,

the vertical extent of each object, and the parameters of the ellipse cross-sections foreach object.

3.2 Branching object model

In earlier efforts [83, 82], we assumed that theK objects to be reconstructed were disjoint. Although con-

venient, this assumption precluded accurate modeling of branching vessels. Histological sections of bifur-

cations [100, 101] suggest that pairs of intersecting ellipses can approximate cross-sections of a bifurcation



CHAPTER 3. OBJECT MODEL 27

Figure 3.2: Convention defining content attribute of a cross-section formed by two intersecting ellipses with
different densities.

accurately, even a diseased one. Therefore, we discard the disjointedness assumption by allowing SGC ob-

jects to intersect and by accounting4 for their intersections [105]. The importance of this accounting is clear

from early GC-based vision algorithms [103] that were prone to failure near the intersection of GCs. (For

simplicity, we consider bifurcations only; the extension to trifurcations involves only additional notation.)

When two SGC objects intersect, their position and shape attributes are unaffected, but we must specify

their content attributes more carefully. Although it may be reasonable to assume that two intersecting ellipses

must share the same density, we can simplify our reconstruction algorithm by not enforcing this constraint.

This also provides a self-test for the reconstruction: if the estimated densities differ significantly for two

arterial branches near a bifurcation, then something is clearly amiss. For mathematical consistency, we must

specify a symmetrical definition for the content of two intersecting ellipses with different densities. Our

convention is described pictorially in Figure 3.2, where we define the density of the common area of two

ellipses to be the average of the two ellipse densities. If the two densities are the same, then the area of

overlap will have that same density.

With the above definitions, we can now specify the unique 3-D density function generated by a given

object-set. LetE(x) be the set of points within the ellipse parameterized byx, i.e., if x = [cx cy r λ φ ρ′]′,

then

E(x) =

{
(x, y) :

(
(x− cx) cos φ− (y − cy) sinφ

r
√
λ

)2
(3.2)

+

(
(x− cx) sinφ+ (y − cy) cos φ

r/
√
λ

)2
≤ 1

}
.

The relationship between an object-setΨ and its densityµΨ is then:

µΨ(x, y, z; tp) =

K∑
k=1

ρk,p(z) 1E(xk(z))(x, y) 1Zk(z) (3.3)

−
K∑
k1=1

K∑
k2=1

ρk1,p(z) + ρk2,p(z)

2
1E(xk1(z))(x, y) 1E(xk2(z))(x, y) 1Zk1 (z)1Zk2 (z),

where

1Z(z) =

 1, z ∈ Z0, z /∈ Z
.

The first summation would suffice for a set of disjoint objects, and the second summation accounts for the

areas of overlap.

4More perspiration than inspiration: compare Sections 3.4 and 3.5.
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Figure 3.3: Two equivalent object sets. Note that althoughZ2 6= Z3, µ{O1,O2} = µ{O1,O3}.

Figure 3.4: Example demonstrating the four ways arteries can terminate.

The reverse relationship to (3.3) is not unique because many different object-sets generate the same den-

sity function. One trivial reason for this non-uniqueness is that an ellipse’s shape is the same for orientations

φ andφ + π, but the parameter vectors differ. Also, if one changedΨ by adding objects with zero density,

there would be no change inµΨ. More significantly, the union of two identical ellipses is indistinguish-

able from a single ellipse. We will say two object-sets areequivalentif the density functions they generate

from (3.3) are equal. For example, if the three objects shown in Figure 3.3 all have the same density, then the

object-set formed by combiningO1 andO2 is equivalent to the object-set formed by combiningO1 andO3.

Technically then, we will be reconstructing anequivalence classof object-sets from projections.

Since a given object-setΨ generates a unique density functionµΨ by (3.3), we can speak of the projection

of an object-set, denoted bys(µΨ). Althoughs is linear inµ, it is not linear inΨ sinceµ is a nonlinear

function ofΨ. In fact, since we are not assuming disjoint objects,s is not even additive in general, i.e., the

projection of an object collection differs from the sum of each object’s projection. Nevertheless, we can write

expressions fors(µΨ) in closed form using the formulae derived in Sections 3.4 and 3.5.

The non-uniqueness of an object-set actually works to our advantage since we need not estimatezb or ze

exactly for objects near bifurcations, as demonstrated by Figure 3.3. What defines the endpoints of an arterial

segment? There are four possibilities for SGC objects:

• an artery may leave the region of interest (ROI),

• an artery may ‘fade-out’ due to incomplete filling by contrast agent,

• an artery may be occluded or taper down to a size below the effective resolution,

• or an artery may connect to another artery (branching).

These four possibilities are illustrated in Figure 3.4. Of these, only the first possibility has a unique value

of zb (or ze), and this value is easily determined. For the others, we can always conservatively make the

object extra long, and let the density or radius become vanishingly small. For a multi-valued GC object, the

endpoints of its SGC approximation are poorly defined, and are determined in practice by the manual-entry

described in Chapter 6.
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Figure 3.5: Projections of an elliptical cross-section.lθ: ideal,sθ,i: blurred and sampled.

3.3 Summary

We have described an extension of the generalized-cylinder object model based on elliptical cross-sections.

By allowing objects to intersect, the model can represent arterial trees accurately. This model defines the

class of 3-D density functions considered, namely those that can be expressed in the form (3.3).

The following three sections derive mathematical expressions that are only necessary for implementing

the reconstruction method described in Chapter 6.

3.4 Appendix: Ellipse Projection

Consider a collection of ellipses in a given plane, some of which may intersect. Since we restrict our model

to bifurcations, the collection’s projections are the superposition of the projections of those ellipses that are

isolated, plus the sum of the projections of the pairs of intersecting ellipses. Thus we need two types of

formulae: projections of a single ellipse, and projections of intersecting ellipses (cf. (6.8)). In this section

and the next, we present expressions for these projections and their partial derivatives. These are needed

by the nonlinear vector-spline smoothing algorithm described in Chapter 9, since it is a gradient-descent

optimization method.

Consider a single isolated ellipse with parametersx = [cx cy r λ φ ρ]′. Since we consider projections

only in the plane of this ellipse, we drop the dependence onz (and hencev andn). From (2.1), (3.2), and

(3.3), the ideal continuous line-integral of an ellipse is:
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lθ(u;x) =

∫
ρ 1E(x)(s cos θ + u sin θ, s sin θ − u cos θ) ds

= 2ρhp

√
r2p − (u − up)

2 1|u−up|≤rp ,

where

up
4
= cx sin θ − cy cos θ, (3.4)

rp
4
= r ·

√
a+, hp

4
= a−1+ ,

and

a± =
1

2

(
(λ± λ−1)− (λ∓ λ−1) cos(2(φ− θ))

)
.

Then from (2.2) and (2.3),

sθ,i(x) = hi ∗ lθ,i(x),

where

lθ,i(x) =

∫ (i−ih)∆h
(i−ih−1)∆h

lθ(u;x) du

= ρhp

[
u
√
r2p − (u− up)

2 + r2p arcsin

(
u

rp

)]∣∣∣∣u=uR
u=uL

,

where

uL
4
= max

{
(i− ih − 1)∆h

rp
,−1

}
, uR

4
= min

{
(i− ih)∆h
rp

, 1

}
,

for i in the range

{i : |(i− ih − 1
2 )∆h − up| ≤ rp + 1

2∆h} ,

otherwise the values are 0. By the linearity of convolution, the partial derivatives ofsθ,i(x) are the blurred

partial derivatives oflθ,i(x), which are given below fori in the same range:

∂lθ,i(x)

∂cx
= −(sin θ)(lθ(uR;x)− lθ(uL;x)),

∂lθ,i(x)

∂cy
= (cos θ)(lθ(uR;x)− lθ(uL;x)),

∂lθ,i(x)

∂r
= 2ρ r

(
arcsin

(
uR

rp

)
− arcsin

(
uL

rp

))
,

∂lθ,i(x)

∂λ
= ρ

−a−
λa2+

(√
r2p − (uR − up)

2 −
√
r2p − (uL − up)

2
)
,

∂lθ,i(x)

∂φ
= ρ

−(λ − λ−1) sin(2(φ− θ))

a2+

(√
r2p − (uR − up)

2 −
√
r2p − (uL − up)

2
)
,

∂lθ,i(x)

∂ρ
= lθ,i(x)/ρ.

s(µΨ) could be implemented as a subroutine that accepts an object-set as its argument and returns a vector

of lengthNPW . However, we achieve substantial memory and computational savings by exploiting the fact
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Figure 3.6: Line integral through overlapping ellipses.

that projections of ellipses are semi-ellipse ‘bump’ functions whose supports are only small fractions of the

size of the projection vector.

3.5 Appendix: Projection of Intersecting Ellipses

The projection of two intersecting ellipses is more complicated due to the region of overlap. Consider two

intersecting ellipses with parametersx1 = [cx,1 cy,1 r1 λ1 φ1 ρ1] andx2 = [cx,2 cy,2 r2 λ2 φ2 ρ2], and let

E1 andE2 denote the corresponding ellipse sets (3.2). For reasons that will become clear in Chapter 6, we are

more interested in the signal that results from the difference of the projection of the union of the two ellipses

and the projection ofx2. This signal is denoted bys∗θ,i(x1), where the dependence onx2 is suppressed since

it will be held fixed. The definition of this signal (cf. (6.8)) is:

s∗θ,i(x1) = hi ∗ l
∗
θ,i(x1),

where

l∗θ,i(x1)
4
=

∫ (i−ih)∆h
(i−ih−1)∆h

l∗θ (u;x1) du,

and

l∗θ(u;x1)
4
= lθ(u;x1,x2) − lθ(u;x2).

Applying (2.1) and (3.3) and using an overline to represent set complements:
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l∗θ(u;x1) =∫
{(x,y):x sin θ−y cos θ=u}

[(
ρ1 1E1 + ρ2 1E2 −

ρ1 + ρ2
2

1E1⋂ E2)− (ρ2 1E2
)]
dl

=

∫
{(x,y):x sin θ−y cos θ=u}

[
ρ1 1E1 1E2 +

ρ1 − ρ2
2

1E1 1E2
]
dl

= (ρ1) f1(dθ(u;x1), lθ(u;x1)/ρ1, dθ(u;x2), lθ(u;x2)/ρ2)

+
(
ρ1−ρ2
2

)
f2(dθ(u;x1), lθ(u;x1)/ρ1, dθ(u;x2), lθ(u;x2)/ρ2),

where forj = 1, 2:

dθ(u;xj)
4
= cx,j cos θ + cy,j sin θ − (u− up,j)(λj − λ

−1
j )

1

2a+,j
sin(2(φj − θ))

is the distance shown in Figure 3.5. The path length functions shown in Figure 3.6 are:

f1(d1, l1, d2, l2)
4
= length([d1 − l1/2, d1+ l1/2]

⋂
[d2 − l2/2, d2+ l2/2]),

f2(d1, l1, d2, l2)
4
= length([d1 − l1/2, d1+ l1/2]

⋂
[d2 − l2/2, d2+ l2/2]),

where

length([a, b]
⋂
[c, d])

4
=


(b− a)− (d− c), a ≤ c, b ≥ d

b− d, a ≥ c, b ≥ d, a ≤ d

c− a, a ≤ c, b ≤ d, b ≥ c

0, otherwise

,

and

length([a, b]
⋂
[c, d])

4
=



d− c, a ≤ c, b ≥ d

d− a, a ≥ c, b ≥ d, a ≤ d

b− c, a ≤ c, b ≤ d, b ≥ c

b− a, a ≥ c, b ≤ d

0, otherwise

.

Our implementation uses the following approximation, obtained by interchanging the order of the convo-

lution and the ‘length’ (min/max) operations:

l∗θ,i(x1) ≈ ( ρ1 ) f1(dθ,i(x1), lθ,i(x1)/ρ1, dθ,i(x2), lθ,i(x2)/ρ2)

+
(
ρ1−ρ2
2

)
f2(dθ,i(x1), lθ,i(x1)/ρ1, dθ,i(x2), lθ,i(x2)/ρ2),

where

dθ,i(x) = dθ ((i− ih − 1
2 )∆h;x) .

From these formulae, we see that the partial derivatives ofs∗(x) are combinations of those given for

lθ,i(x) in the previous section, and those ofdθ,i(x), given below:

∂dθ,i

∂cx
= cos θ + (sin θ)(λ − λ−1)

1

2a+
sin(2(φ− θ)),
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∂dθ,i
∂cy

= sin θ − (cos θ)(λ − λ−1)
1

2a+
sin(2(φ− θ)),

∂dθ,i
∂r

= 0,

∂dθ,i

∂λ
= −((i− ih − 1

2 )∆h − up) sin(2(φ− θ))/(λa+),

∂dθ,i

∂φ
= ((i− ih − 1

2 )∆h − up)(λ − λ
−1)
a−

a2+
,

∂dθ,i

∂ρ
= 0.

3.6 Appendix: SGC to GC conversion

Our reconstruction algorithm provides estimates of the parameters of the elliptical cross-sections of a SGC,

as shown in Figure 3.1. However, it is the variations in eccentricity, radius, and area perpendicular to an

artery’s axis that are important diagnostically. In this section, we present equations for converting between

the parameters of a GC and a SGC. These relations are derived by approximating a SGC locally by an

elliptical cone. The position attribute is identical for the GC and SGC models. To first order, the content

attribute is also the same, since density usually varies quite slowly. Suppose the estimated shape parameters

are[rS λS φS], and that the local slope of the SGC isβx andβy. Letβ =
√
1 + β2x + β

2
y , then

r =
rS√
β

and

λ + λ−1 = β−1λS + βλ
−1
S + (β − β

−1)(λS − λ
−1
S ) sin

2(φS − arctan(βy/βx)).

Ellipse orientation is not well defined for an arbitrary GC axis [15] in general.



Chapter 4

Single Object Estimation

In this chapter, we describe several methods for quantifying a single artery given only a single projection

image. (The problem of three-dimensional reconstruction of a single object from multiple views is just a

special case of the algorithm to be presented in Chapter 6.) The single-view problem has been considered by

numerous investigators, and is useful for comparative evaluation of new methods for quantitativeangiography.

Though a single-object algorithm has limited applications, the exposition gives us an opportunity to introduce

the philosophy behind our 3-D reconstruction method in a much simpler setting.

The information provided by a single view is insufficient for determining the three shape parameters of an

ellipse, so it is futile to consider an elliptical cross-section. Therefore, we restrict our attention in this chapter

to arteries with circular cross-sections. It is also important to emphasize that the assumption of a parallel

geometry is implicit in this chapter. The distance between an object and the detector is unavailable from a

single view, so it is impossible to account for any depth-dependent magnification. One could use the image

of the catheter as a scaling device, but this requires making the questionable assumption that the catheter and

the artery lie in the same plane parallel to the detector.

4.1 Problem Setup

The geometry of this single-view problem is shown in Figure 4.1. This problem was first studied from an

optimal estimation perspective by Shmueli [40, 41]. This perspective is the foundation for our work as well,

but part of the purpose of this chapter is to relax four assumptions inherent in Shmueli’s method: circular

projected cross-sections, known fixed density, parametric Gauss-Markov model, and vessel discretization. Of

Figure 4.1: Single circular artery and single view geometry.

34
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course, the most restrictive assumption is that of a single artery, which precludes overlapping projections and

branches.

As shown in Figure 4.1, the measurements of an artery lie on a grid ofN rows, each withW pixels. Each

row of this image consists of samples of the projection of an arterial cross-section. Shmueli assumed that

theseparallel cross-sections of an artery were circles. However, it is clear from Figure 4.1 that if an artery

with a circular cross-section is at all tilted, then the projected cross-section is actually an ellipse. Fortunately,

the relationship between the true radius, denoted byr(z) and the projected radiusrp(z) depends only on the

tilt parallel to the imaging plane, which is an observable.

Shmueli also assumed that the density of the artery was known and constant. This is unrealistic, partic-

ularly for MR images, so we include an additional parameter to represent the density, denoted byρ(z). The

final parameter of interest is thex position of the artery, denoted byτ (z).

4.1.1 Projected Parameters

It is useful to note some relationships among the parameters, which follow from Sections 3.4 and 3.6. Letβx

andβy denote the tilt of the artery with respect to thex andy axes respectively. The intersection of the artery

with a plane that is perpendicular to the image and intersects the image at slicez is an ellipse with radius,

eccentricity, and orientation denoted byre, λe, andφe, respectively, where

re(z) = r(z) 4
√
1 + β2x(z) + β

2
y (z),

λe(z) =
√
1 + β2x(z) + β

2
y (z),

φe(z) = tan−1(βy(z)/βx(z)).

These parameters are projected to form the semi-ellipse function shown in Figure 4.1, whose half-width and

height are denoted byrp andhp, respectively, where

rp(z) = re(z)
√
a+(z) = r(z)

√
1 + β2x(z) (4.1)

hp(z) = ρ(z)2re(z)/
√
a+(z) = ρ(z)2r(z)

√
1 + β2x(z) + β

2
y(z)/

√
1 + β2x(z),

where

a+(z) = (1 + β
2
x(z))/

√
1 + β2x(z) + β

2
y (z).

Note thathp depends onβy, the tilt out of the plane, which is unobservable. However,βx is observable, since

βx(z) =
∂cx(z)

∂z
= τ̇(z).

If we accumulated the pixel values in a row of a (noiseless) image, we would get the density-weighted area

of the semi-ellipse:

Ap(z) = ρ(z)πr
2
e (z) = ρ(z)

[
πr2(z)

]√
1 + β2x(z) + β

2
y(z). (4.2)
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Note that this area consists of the true artery areaπr2, scaled by the unknown density and by a factor that

again depends on the unobservableβy , which rendersAp essentially useless. This point has been overlooked

repeatedly in the literature. For example, the percent area stenosis is often computed as follows:

% stenosis?=
Ap(zstenosis)

Ap(z“normal”)
,

i.e., by dividing the computed area in a stenotic segment by the area in a presumed normal segment. If

βy(zstenosis) 6= βy(z“normal”), i.e. they tilts are different at the two segments, then this percent-stenosis

estimate will be incorrect.

Kruger [42] noticed that the true arterial radius is proportional to the semi-ellipse area divided by the peak

projection value. The ellipse area can be estimated by summing a row of pixels, the peak can be estimated

by choosing the maximum pixel value, and the slope can be estimated from the estimated arterial centerline,

leading to the following simple estimate:

r̂(z) =
2

π

Âp(z)

ĥp(z)

√
1 + β̂2x(z)

.

The problem with this densitometric approach is thatĥp is very variable at low SNR. We prefer to estimaterp

andτ using the algorithms given below, and then to convert back to the object’s radius using this expression

(cf. (4.1)):

r̂(z) =
r̂p(z)√
1 + β̂2x(z)

.
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Figure 4.2: Simulated projection of a synthetic artery, SNR=1.1 to 2.0.

4.1.2 Projection Measurements

The three parameters are of course continuous, but we observe only discrete, noisy samples of their projec-

tions (cf. (2.5)):

yn = s(x(zn)) + εn, n = 1, . . . , N,

where

x(zn)
4
= xn

4
=


τ (zn)

rp(zn)

ρ(zn)

 . (4.3)

The projection functions has components defined as follows:

si([τ r ρ]
′)
4
= 2

∫ i
i−1
ρ
√
r2 − (s− τ )2 1{|s−τ|≤r} ds (4.4)

=

[
r2
(
κ+

√
1− κ2+ + arcsinκ+

)
− r2

(
κ−

√
1− κ2− + arcsinκ−

)]
1{|i−τ−1/2|≤r+1/2},

where

κ−
4
= max

{
−1,

∣∣∣∣ i− 1− τr

∣∣∣∣} , κ+ 4
= min

{
1,

∣∣∣∣i− τr
∣∣∣∣} .

Our objective is to estimate the parameters{xn}Nn=1 from the measurements{yn}Nn=1.

4.2 Maximum Likelihood Criterion

Now that we have defined an object model and a measurement model, the problem becomes one of estimation.

The easiest approach would be simply to find the artery whose computed projections are the closest to the

measurements in some sense. Under the AWGN assumption, the least-squares estimate is also the maximum-

likelihood (ML) estimate, defined by:

x̂n,ML
4
= argmin

x
‖yn − s(x)‖

2, n = 1, . . . , N. (4.5)

This criterion was studied extensively by Pappas [12], and was shown to be more accurate than methods

based on finding zero-crossings of a profile’s derivatives.

To evaluate the ML estimator, we created the synthetic projection image shown in Figure 4.2. These

measurements were generated using (4.4) with added pseudo-random white Gaussian noise with variance

σ2 = 16. The resulting SNR(
4
= hp/σ) ranges from 1.1 to 2.0. For each row of this image, we computed the

estimatêxn,ML using criterion (4.5). To perform this nonlinear minimization, we used Powell’s method [106],

with the true parameters as the starting point. Despite this ideal initialization, the ML results are poor!
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Figure 4.3: Four example ML fits, measurements: (·), true: (solid), estimated: (dashed).

Figure 4.4: Projections of ML estimates of cross-sections from Figure 4.2.

Figure 4.3 compares four of the true profiless(xn), the measured profilesyn, and the projected estimates

s(x̂n,ML); the four were chosen at random. At least in this display, the results look reasonable. However,

Figure 4.4 shows the projections of the estimates in image format, and the results look unacceptable. The

difference in our interpretation of Figures 4.3 and 4.4 is due to the fact that the former shows onlylocal

properties, while the latter revealsglobalproperties of the estimates, and the inconsistencies from line to line

conflict with our concept of arterial smoothness. This variability is due to noise and the “threshold effect” of

ML estimation [107] for low SNR.

Many researchers have attempted to introduceknowledge of smoothness “after the fact” by post-processing

the ML estimates with various smoothing filters [27, 28, 11, 13, 55, 43, 66, 14]. The smoothing filter is usually

chosen heuristically, with an empirically determined bandwidth. Such two-step approaches are suboptimal,

and are not robust to the heavy tails of the ML estimate error at low SNR. Both the Gauss-Markov crite-

rion and the nonparametric optimality criterion presented below attempt to incorporate directly oura priori

knowledge of arterial smoothness into the estimation.

4.3 Gauss-Markov Criterion

Shmueli’s approach to accounting for arterial smoothness was to model the artery as a realization of a first-

order discrete-time Gauss-Markov random process, i.e.:

xn+1 = Fxn +Gun,

whereun is normally distributed system noise with covarianceQ. Under this assumption, the maximuma

posteriori(MAP) estimate of the states minimizes this criterion:

N∑
n=1

‖yn − s(xn)‖2

σ2
+

N−1∑
n=1

(xn+1 − Fxn)
′(GQG′)−1(xn+1 −Fxn).

The practical problem with this approach is that the parameters of this model (F,G, andQ) are unknown and

not easily determined. In addition, this Gauss-Markov model is an inherently discrete formulation, whereas

an artery is continuous. The nonparametric criterion of the next section addresses both of these problems.



CHAPTER 4. SINGLE OBJECT ESTIMATION 39

4.4 Nonparametric Optimality Criterion

Smoothing always involves a tradeoff between the conflicting goals of fit to the measurements and smooth-

ness of the estimated functions. Nonparametric regression offers a solution to this tradeoff, and requires only

an assumption of integrability of the square of the second derivative of the estimand. Most nonparametric re-

gression literature has been concerned with estimating scalar functions from linear, scalar measurements. The

natural generalization of these “penalized-likelihood” [108] or “regularized” [109] methods to our nonlinear,

multi-dimensional, object estimation problem is the following estimator and optimality criterion1:

x̂(·)
4
= argmin

x(·)

[
N∑
n=1

‖yn − s(x(zn))‖
2 +α′

∫
ẍ2(z) dz

]
, (4.6)

whereẍ(z) is the3-dimensional vector containing the second partial derivatives of the components ofx(z)

with respect toz. The right-hand term in (4.6) quantifies arterial smoothness and prohibits excessive object

wiggliness due to noise. The tradeoff is controlled by the smoothing factorα = [α1 α2 α3]
′; for small

α, the estimate fits the data closely, and for largeα, the estimate becomes very smooth. Intuitively, we

would use a fairly large value forα1 since the arterial position varies relatively slowly, a very large value for

α3 since density typically varies very slowly, and a smaller value forα2 to avoid oversmoothing the radius

function. These qualitative statements are unsatisfying theoretically. Fortunately, nonparametric regression

offers a solution: we can estimateα from the data itself using cross-validation [110], as we discuss in detail

in Chapters 8 and 9. In practice, essentially onlyα2 changes with disease, and the other elements ofα could

be fixed for a given imaging technique.

In Chapters 8 and 9 we present a computationally efficient algorithm for computing estimates of the form

given by (4.6). Since it is a modified gradient-descent method, this algorithm requires that the user provide

analytical derivatives of the projection functions, which are given by:

∂si([τ r ρ]
′)

∂τ
= −ρ2r

(√
1− κ2+ −

√
1− κ2−

)
1{|i−τ−1/2|≤r+1/2},

∂si([τ r ρ]
′)

∂r
= 2(arcsin(κ+)− arcsin(κ−)) 1{|i−τ−1/2|≤r+1/2},

∂si([τ r ρ]
′)

∂ρ
= 2

∫ i
i−1

√
r2 − (s− τ )2 1{|i−τ−1/2|≤r+1/2}.

Note that we donot apply any derivative operations to the noisy measurements.

To apply the nonparametric algorithm of Chapter 9 to the data shown in Figure 4.2, the only remaining

requirement is to provide an initial estimate. For the case of a single artery this is simple to do automatically.

We chose the following heuristic: a temporary copy of each row of the image was convolved with a “boxcar”

kernel: [11111], (a crude matched filter), and the index of the pixel with maximum value in each row was

1This criterion is nonparametric in the sense that we have avoided using a parametric (e.g. Gauss-Markov) model for the evolution
of cross-section parameters along an artery. The cross-sections are still modeled parametrically.
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Figure 4.5: Nonparametric radius estimates from Figure 4.2, true: (solid), estimated: (dashed).

Figure 4.6: Nonparametric position estimates from Figure 4.2, true: (solid), estimated: (dashed).

stored. This set ofN = 128 numbers was then seven-point median filtered and the result was the initial

position estimate. We arbitrarily initialized the radius to be 4 pixels based on visual image inspection; in a

typical clinical setting the initial radius would be set to the normal size of the particular artery being studied.

We initialized the density parameter to be 0.9, the sum of all of the image pixel values and divided byNπ42

(cf. (4.2)).

Figure 4.5 and Figure 4.6 are plots of the true and the estimated radius and position functions, where the

smoothing parameters were chosen by using cross-validation2. The RMS estimation errors for position and

radius were 0.19 and 0.16 pixels, respectively. Such subpixel estimationaccuracy justifies the computational

effort of this global approach.

When using the cross-validation score to automatically selectα, there is always some risk that the selected

α2 will be too large, thereby oversmoothing a stenosis. To prevent this occurrence, we can forceα2 to be

zero, i.e., no smoothing of the radius function. Figure 4.7 shows the estimated radius function from Figure 4.2

with α1 andα3 set to the values chosen by cross-validation, butα2 set to zero. For comparison, Figure 4.8

shows a plot of the radius estimated by the ML estimator. The nonparametric approach is clearly superior.

Apparently, incorporating oura priori knowledge of the smoothness of the position and density functions

is a significant improvement, even without making any assumptions regarding the smoothness of the radius

function. In some respects, the estimated radius shown in Figure 4.7 may be visually preferable to the smooth

radius shown in Figure 4.5 since the former gives one an impression of the variability of the estimates. If the

variations were very large, then one might suspect that an apparent stenoses was just estimation error, but the

decrease in radius shown in Figure 4.7 is clearly significant compared to the small variations, so we can be

confident of the presence of a severe stenosis.

4.5 Smooth Background

Consider the simulated angiogram shown in Figure 4.9. This image is identical to Figure 4.2, except that an

unknown background component has been added to the image. The change in intensity shown in Figure 4.9

is typical of image intensifier based systems.

2Specifically, we used theCV0 score of Section 9.4.

Figure 4.7: Nonparametric radius estimates from Figure 4.2, true: (solid), estimated: (dashed), withα2 = 0.
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Figure 4.8: ML radius estimates from Figure 4.2, true: (solid), estimated: (dashed).

Figure 4.9: Simulated projection of a synthetic artery with unknown background added.

As discussed in Section 2.1, one way to accommodate this background is to model it locally by a low-

order polynomial [92, 12, 14, 87]. In this context, “locally” means across the artery’s profile, with perhaps

a few pixels on either side. To estimate the coefficients of the polynomials, we need only augment the state

vector:

x(zn)
4
= xn

4
=



τ (zn)

rp(zn)

ρ(zn)

γ0(z)

γ1(z)


,

and redefine the projection function (cf. (4.4)):

si([τ r ρ γ0 γ1]
′)
4
= (γ0 + iγ1) 1{|i−τ|≤r+2} + 2

∫ i
i−1
ρ
√
r2 − (s− τ )2 1{|s−τ|≤r} ds.

The partial derivatives of this new projection function with respect toγ0 andγ1 are simply1 andi respectively,

so we can again apply the algorithm of Chapter 9. The smoothness of the background will be reflected inα4

andα5, as determined by cross-validation.

Figures 4.10 and 4.11 compare the true and estimated position and radius parameters from Figure 4.9.

Again the errors are all below a pixel. However, the RMS error for the position and radius were 0.29 and

0.27 respectively, which are slightly higher than the RMS errors found in the previous section (without the

unknown background). Naturally, allowing the two extra degrees of freedom for the background has increased

the estimation variance.

Figure 4.10: Nonparametric radius estimates from Figure 4.9, true: (solid), estimated: (dashed).

Figure 4.11: Nonparametric position estimates from Figure 4.9, true: (solid), estimated: (dashed).
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4.6 Summary

We have presented three optimality criteria for the problem of quantifying a single artery given a single

view: maximum likelihood, maximuma posterioriusing a parametric Gauss-Markov model, and the new

nonparametric approach (4.6).

Our formulation has been in terms of the state vector defined in (4.3). The second component of this

vector is theprojectedradius. One could argue that smoothness should be expressed in terms of thetrue

object radius, rather than the projected radius. Since the projected radius is related to the true radius and the

derivative of the object’s position, an alternative to (4.6) would be:

x̂(·) = arg min
x(·)

[
N∑
n=1

‖yn − sa(x(zn))‖
2 + [α1 0 α2 α3]

′

∫
ẍ2(z) dz

]
,

where

xn =


τ (z)

τ̇ (z)

r(z)

ρ(z)

 ,
and

sa([τ τ̇ r ρ])
4
= s([τ r/

√
1 + τ̇2 ρ]).

Since the projection functionsa(x) depends oṅτ , one would have generalize the algorithm of Chapter 9 to

use this formulation. However, if the position function varies smoothly withz, then the transformation (4.1)

that relates the true radius to the projected radius function will be smooth, so the projected radius function is

approximately as smooth as the true radius function. Thus, the approach of Section 4.4 is adequate for SGC

objects. An interesting extension of this work would be to consider the multi-valued case in a single view.
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Single Slice Estimation

Most automatic methods for 3-D reconstruction first process the individual 2-D views using algorithms

similar to those of Chapter 4, and then attempt to identify corresponding structures from view to view. An

interesting exception to that paradigm is the hierarchical algorithm proposed by Bresler [15]. As proposed,

his method would have first estimated a collection of short 3-D object segments, and then combined them

together using a Bayesian criterion. As we actually implemented it [83, 82], our algorithm first estimated a

set of ellipses on a slice-by-slice basis and then attempted to combine ellipses from adjacent slices to form

objects. Thus, as a complement to Chapter 4, in this chapter we compare two algorithms for estimating a

collection of ellipses from a few noisy projections. The algorithms apply to parallel and cylindrical imaging

geometries. These algorithms are presented only for completeness; we found the global approach described

in Chapter 6 to be more effective, and the results in Chapter 7 used that method.

The two methods to be compared are the Estimate-Maximize (EM) algorithm and the Alternate-Maximize

(AM) algorithm. These two algorithms originated in rather different places; the EM algorithm is rooted in

statistics [111], while the AM algorithm is a simple method for nonlinear optimization [106, p. 310]. The

ellipse estimation problem is a special case of the general problem of estimating the parameters of superim-

posed signals observed in additive white Gaussian noise, to which both the EM and the AM algorithms have

been applied [112, 113]. Many other methods have also been considered [114, 115, 116]. The side by side

comparison presented in this chapter provides insight into both algorithms.

In addition to the estimation algorithms, Section 5.5 discusses how many projection angles are needed for

ellipse reconstruction, and Section 5.6 derives the optimal projection angles.

43
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Figure 5.1: Overlapping projections of multiple ellipses.

5.1 Superimposed Signals

Consider a vector observation of superimposed signals in i.i.d. Gaussian noise:

y =
K∑
k=1

sk(xk) + ε, (5.1)

where the collection of unknowns is defined by:

x
4
= [x′1, . . . ,x

′
K ]
′.

Eachsk(xk) is a vector ofL samples of a signal that is a known function of the unknown parametersxk,

which we define to be vectors of lengthM . For the ellipse estimation problem illustrated in Figure 5.1,each

xk corresponds to the unknown ellipse parameters(M = 5 + P ), andsk(xk) corresponds to the discrete

sampled projections(L = PW ), as defined in Chapter 2.

Our goal is to compute the maximum likelihood (ML) estimate ofx giveny:

x̂ML = argmax
x
fY(y;x) = argmin

x

∥∥∥∥∥y −
K∑
k=1

sk(xk)

∥∥∥∥∥
2

, (5.2)

where the second equality follows from assuming the measurement errorε is AWGN. If the number of signals

is large (2 or more), brute force minimization of (5.2) would require a global search over many parameters,

which is computationally impractical. The EM and AM algorithms are iterative methods for estimating the

parameters.

Throughout this chapter, we assume the number of signalsK is known. If the number is unknown, then

it must be estimated as well. However, the ML criterion is inappropriate for estimatingK, since adding

parameters will in general increase the “likelihood” (5.2). The MDL and AIC criteria [117, 118, 119, 120,

121] are more suitable candidates for the problem of estimating the number of signals.

5.2 Estimate-Maximize Algorithm

The difficulty in multiple signal estimation problems lies in the reduction of information due to the superpo-

sition of the signals. Ifeach signal were observed in isolation, then the parameter estimation problem (5.2)

would decompose intoK separate minimization problems. For ellipse reconstruction, these minimizations

would correspond to matched filters (for position estimates, with a bank of matched filters for shape parame-

ters). The EM algorithm is suited to problems with this characteristic reduction in dimension [111].
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We begin by presenting the EM algorithm in its most general setting. Suppose that the measurementsy

are a realization of a random vectorY which has a known distributionfY(y;x). Furthermore, suppose that

the measurements can be expressed as the following observation:

Y = HZ (5.3)

whereZ is a random vector representing the “complete data,” whose distribution depends on the unknown

parametersx. We assumeH has more columns than rows, so that the mapping fromZ toY is many to one.

If we define

U(x;x◦) = E {log fZ(z;x)|Y = y;x◦} ,

then the EM algorithm for parameter estimation can be expressed by the following iteration:

E-step:

ComputeU(x; x̂(i)),

M-step:

x̂(i+1) = argmax
x
U(x; x̂(i)),

wherex̂(i) denotes the parameter estimate after theith iteration. The basic idea is to computeU , the condi-

tional expectation of the complete data given the most recent parameter estimate, and then to maximize the

parameter’s likelihood as though the complete data were actually observed [111].

Under certain regularity conditions, the EM algorithm is known to be monotone in likelihood. Since it is

bounded by the maximum likelihood, it will converge [111, 122]. If the algorithm is initialized sufficiently

close (in parameter space) to the ML estimates, then:

x̂(i) → x̂ML.

The distinction between the E-step and the M-step is somewhat artificial in this general setting, but is

more clear in the important Gaussian case. If the complete data are normally distributed with meanµ(x) and

covarianceΛ:

Z ∼ N(µ(x),Λ),

then it follows from the appendix of [112] that:

U(x;x◦) =

c1 −
1

2

(
µ(x)′Λ−1µ(x) − 2µ(x)′Λ−1

[
µ(x◦) +ΛH

′(HΛH′)−1(y −Hµ(x◦))
])

= c2 −
∥∥∥Λ 1

2

(
µ(x) −

[
µ(x◦) +ΛH

′(HΛH′)−1(y −Hµ(x◦))
])∥∥∥2 ,

wherec1 andc2 are independent ofx. In this case, the EM iterations can be rewritten:

E-step:

µ̂(i) = µ(x̂(i)) +ΛH′(HΛH′)−1(y −Hµ(x̂(i))), (5.4)
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M-step:

x̂(i+1) = argmin
x

∥∥∥Λ 1
2

(
µ̂(i) −µ(x)

)∥∥∥2 . (5.5)

In this case, the E-step consists of estimating the mean of the complete data, and the M-step attempts to find

the parameters that agree most closely with that estimate.

In general, there is no guarantee that the EM algorithm will be any more tractable computationally than a

brute force search or an iterative descent algorithm. The key lies in the selection of the complete dataZ. As

mentioned above, the parameter estimation would be relatively straightforward if the signals were observed

separately. Therefore, a natural choice for the complete data is the concatenation of the individual signals.

Since (5.3) does not contain an additive noise term, we must also distribute the measurement errorε within

the complete data. Therefore, we define:

z =


z1
...

zK

 = µ(x) + n =

s1(x1)

...

sK(xK)

+

n1
...

nK

 ,
where

nk ∼ N(0, βkσ
2I),

K∑
k=1

βk = 1, βk ≥ 0.

The constantsβk are arbitrary, and are generally set to1/K or to the normalized SNR [112]:

βk =
‖sk(x̂k)‖2∑K
j=1 ‖sj(x̂j)‖

2

Since
∑K
k=1 nk is equal (in law) toε, the original measurement model (5.1) can be rewritten in terms of the

EM measurement model (5.3) by defining:

y = Hz

where

H = 1′ ⊗ IL,

1 = [1 · · ·1]′︸ ︷︷ ︸
K terms

,

and⊗ denotes the Kronecker product. The covariance of the complete data is then given by:

Λ = D(β) ⊗ IL,

where

β
4
= [β1, . . . , βK ]

′, D(β)
4
= diag(β).
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After substituting these definitions into (5.4), simple matrix algebra yields:

µ̂(i) = µ(x̂(i)) + (β ⊗ IL)(y −Hµ(x̂
(i))).

Substituting this expression into (5.5) yields the following iterative algorithm for estimating the parameters

of superimposed signals:

E-step:

ε̂(i) = y −
K∑
k=1

sk(x̂
(i)
k ), (5.6)

ŝ
(n)
EMref,k = βk ε̂

(i) + sk(x̂
(i)
k ), k = 1, . . . , K,

= βk

y − K∑
j=1,j 6=k

sj(x̂
(i)
j )

+ (1− βk)sk(x̂(i)k ), (5.7)

M-step: for k = 1, . . . , K:

x̂
(i+1)
k = argmin

xk
‖ŝ(n)EMref,k − sk(xk)‖

2.

The E-step computeŝs(n)EMref,k, the reference estimate of thekth signal based on the current parameter es-

timate. The M-step then finds a new set of parameters whose signals agree most closely with the reference

signals. We now see the potential for computational savings, since the minimizations within the M-step can

be performed independently. In fact, this algorithm is very amenable to a parallel implementation since most

of the computational cost is in the M-step. Unfortunately, this gain may be negated by the fact that the EM

algorithm may require many iterations for convergence [111].

5.3 Alternate-Maximize Algorithm

A very simple approach to nonlinear minimization is to minimize iteratively the objective function over each

unknown, while holding the other unknowns fixed. For the superimposed signals problem, it is more natural

to group together the parameters corresponding toeach signal, i.e., to estimate each signal’s parameters

iteratively while holding the other signals fixed. This leads to the following iterative algorithm for computing

the ML estimates:

for i = 0 to convergence

for k = 1, . . . , K

x̂
(i+1)
k = argmin

xk

∥∥∥∥∥∥
y − k−1∑

j=1

sj(x̂
(i+1)
j ) −

K∑
j=k+1

sj(x̂
(i)
j )

− sk(xk)
∥∥∥∥∥∥
2

end

end.
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Again, since we are increasing the likelihood ateach iteration, and since the likelihood is bounded above by

the ML estimate, this sequence of parameter estimates is guaranteed to converge.

To compare the EM and the AM algorithms directly, we first express the innermost loop of the AM

algorithm in a two-step form analogous to the EM algorithm:

for k = 1, . . . , K:

E step:

ε̂(i,k) = y −
k−1∑
j=1

sj(x̂
(i+1)
j ) −

K∑
j=k

sj(x̂
(i)
j ), (5.8)

ŝ
(n)
AMref,k = ε̂(i,k) + sk(x̂

(i)
k )

= y −
k−1∑
j=1

sj(x̂
(i+1)
j ) −

K∑
j=k+1

sj(x̂
(i)
j ), (5.9)

M step:

x̂
(i+1)
k = argmin

xk

∥∥∥ŝ(n)AMref,k − sk(xk)∥∥∥2 (5.10)

end.

There are two important distinctions between the two algorithms. First, the timing of the updates is dif-

ferent because the reference signalŝ(n)AMref,k, and hence the estimatêx(i+1)k , depends on̂x(i+1)1 , . . . , x̂
(i+1)
k−1 .

This is due to the fact that the residual estimateε̂(i,k) is updated at every parameter update (compare (5.8)

and (5.6)). Therefore, the AM algorithm is not amenable to a parallel implementation. However, it may

converge in fewer iterations in a serial implementation since the most recent estimates are used to form the

reference signal (5.9). Second, the reference signals themselves are formed rather differently (compare (5.7)

and (5.9)). Both the EM and the AM algorithm compute an estimate of the residualε̂(i), but the EM algorithm

adds only a fractionβk of that residual to the previous signal estimatesk(x̂
(i)
k ) to form the reference signal.

Note that the residual signal is important because it contains any remaining signal error as well as the mea-

surement noise. Thus, the EM algorithm is more cautious about straying away from the initial estimate, which

may explain why it can be slow to converge. On the other hand, we see from the second equality in (5.9) that

the AM reference is formed with total disregard forsk(x̂
(i)
k ), which makes it a greedier algorithm.

The importance of caution depends on how much confidence one has in the initial estimates. In the next

section we discuss one simple method for obtaining the initial estimates. Based on our empirical work with

ellipse reconstruction, the caution of the EM algorithm was unjustified and only delayed the convergence. A

theoretical illustration of the slow convergence of the EM algorithm is given in Section 5.8.
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5.4 Initialization

Both of the above iterative algorithms require an initial estimate for the parametersx1, . . . ,xK. We found

the following variation on the approach of Kwakernaak [123] useful for the multiple ellipse estimation prob-

lem [83, 82]. First, estimate the parameters as though there were only one ellipse. Second, subtract the

projection of the estimated ellipse (i.e. the estimated signal) from the measurements. Then repeat those steps

untilK signals have been estimated suboptimally. This initialization procedure is actually equivalent to the

firstK steps of the AM algorithm with all of the initial parameters set to zero. We found empirically that this

approach worked well, provided that the projections of each ellipse were overlap free in at least two of theP

projections. When there was overlap in all but one projection, then the initial estimate was often sufficiently

far from the ML parameters that the subsequent iterations by the AM or EM algorithms led only to local

extrema.

5.5 Number of Views

Any method for reconstruction from projections should beaccompanied by a theorem that ensures the unique-

ness of the reconstruction. In conventional computerized tomography, the projection-slice theorem provides

the necessary theoretical justification [124]. However, if we have only a small number of projections, then

the projection-slice theorem is insufficient.

Bresler [15] addressed the problem of determining how many projection angles are required to determine

a set of ellipses uniquely. The two main results of his analysis are as follows:

Theorem 5.1 (Thm. 2.12 of [15])Any set ofK disjoint ellipses can be reconstructed uniquely from any set

of itsK+2 distinct continuous projections.

Theorem 5.2 (Thm. 2.13 of [15])The reconstruction of any randomK-ellipse distribution from its projec-

tions at any three [different] view-angles is unique with probability one.

These theorems guarantee sufficiency provided the projections are sampled at an interval smaller than 1/4

the minimum of the lengths of the minor axes of the ellipses [15]. In fact, if the sampling interval is greater

than 3/8 the minimum minor axis, then unique reconstruction cannot be guaranteed [15]. Furthermore, these

theorems assume that the projections are noiseless. In the presence of measurement error and blurring, we

conjecture that four views is the minimum plausible number.
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5.6 Optimal Projection Angles

Although Theorem 5.2 guarantees the uniqueness of reconstructing from only three views, it does not provide

any insight for selecting projection angles in the presence of noise. In this section, we present an analysis

of the error in estimating the ellipse position, which suggests an optimal set of view angles. At first this

approach may seem inappropriate, since an ellipse’s shape parameters are often more important diagnostically

than its position parameters. However, we have found empirically that estimates of the shape parameters are

rather sensitive to errors in the position parameters. Fortunately, the position can usually be estimated quite

accurately by incorporating arterial smoothness.

For simplicity, we consider only a single ellipse, since the optimal projection angles for a set of el-

lipses would depend on the ellipse locations in general. Thus, consider an ellipse with parametersx =

[cx cy r λ φ ρ]
′, and with projections

yp = sθp(x) + εp,

for p = 1, . . . , P . The ML estimate of the ellipse parameters is given by:

x̂ML = argmin
x

P∑
p=1

‖yp − sθp(x)‖
2.

The most natural approach to finding the optimal projection angles would be to find the angles that minimize

the MSE:

θ̂1, . . . , θ̂P = arg min
θ1,...,θP

E
{
‖x̂ML − x‖

2
}
,

where the latter expectation should be taken with respect to a random distribution forx to remove any depen-

dence onφ. This criterion can be evaluated numerically through Monte Carlo simulation, but we gain more

insight by considering the following approximate analysis.

Recall from Figure 3.5 that the projectionsθp of an ellipse is a semi-ellipse function whose position

depends on the ellipse position. From (3.4), the relationship is given by:

uθp
4
= cx sin θp − cy cos θp,

whereuθp denotes the position in the projection. If the ellipse radius is known approximately, then a simple

matched filter can be used to estimateuθp independently in each of theP projections. Due to noise, there

will be some errorδp in this estimation, i.e.:

ûθp = uθp + δp.

By the symmetry of a semi-ellipse, the estimation errorδp will be unbiased. TheP estimates can be aggre-

gated as follows:

û
4
= A(θ)c + δ,
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where

u
4
= [uθ1, . . . , uθP ]

′,

c
4
= [cx cy]

′,

δ
4
= [δ1, . . . , δP ]

′,

θ
4
= [θ1, . . . , θP ]

′,

and

A(θ)
4
=


sin θ1 − cos θ1

...

sin θP − cos θP

 .
We can obtain an estimate forc from û by linear least-squares:

ĉ = (A(θ)′A(θ))−1A(θ)′û.

To find the optimal projection angles, we consider the error covariance ofĉ:

Cθ
4
= Cov{ĉ− c}

= E{(ĉ− c)(ĉ − c)′; θ}

= Cov{(A(θ)′A(θ))−1A(θ)′û− c}

= Cov{(A(θ)′A(θ))−1A(θ)′(A(θ)c + δ) − c}

= Cov{(A(θ)′A(θ))−1A(θ)′δ}.

Since the projections are processed independently, the components ofδ are independent. To make the prob-

lem tractable, we assume the components ofδ have equal variance1:

δ ∼ N(0, σδI).

Therefore:

Cθ = (A(θ)′A(θ))−1A(θ)′E{δδ′}A(θ)(A(θ)′A(θ))−1

= σ2δ(A(θ)
′A(θ))−1

= σ2δ

 ∑Pp=1 sin2 θp −
∑P
p=1 sin θp cos θp

−
∑P
p=1 sin θp cos θp

∑P
p=1 cos

2 θp

−1

= σ2δ

 ∑Pp=1 cos2 θp ∑P
p=1 sin θp cos θp∑P

p=1 sin θp cos θp
∑P
p=1 sin

2 θp


(∑P

p=1 cos
2 θp

)(∑P
p=1 sin

2 θp

)
−
(∑P

p=1 sin θp cos θp

)2 .
1In X-ray imaging, the noise variance will differ between the projections that pass through the long and short axes of the body, so the

components ofδ may have different variance.
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It is interesting to examine the special case whereP = 2:

C[0,θ] = σ
2
δ

 1+cos2 θ
sin2 θ

cot θ

cot θ 1

 .
For θ close to zero, thex error variance grows very large. This is a classic problem with 3-D reconstruction

from a pair of stereo angiograms, and with triangulation methods in general.

To minimize the error variance, we would like the diagonal elements ofCθ to be small. We first introduce

two constraints.

Constraint 5.1 Position-independent error variance.

For symmetry, we would like thex andy errors to have the same variance, so
∑P
p=1 sin

2 θp =
∑P
p=1 cos

2 θp.

Note that this constraint implies that:

P∑
p=1

sin2 θp =

P∑
p=1

cos2 θp

=

P∑
p=1

(1− sin2 θp)

= P −
P∑
p=1

sin2 θp

⇒
P∑
p=1

sin2 θp =

P∑
p=1

cos2 θp = P/2.

Constraint 5.2 Uncorrelated position errors.

For rotational invariance, we would like thex and y position errors to be uncorrelated, which requires∑P
p=1 sin θp cos θp = 0. Under these two constraints:

Cθ = σ
2
δ

 2
P
0

0 2
P

 ,
so there is not much left to minimize! In fact, the problem reduces simply to finding sets of angles that satisfy

the two constraints. One such set of angles is:

θ =

[
0,
π

P
, . . . ,

(P − 1)π

P

]
,

i.e., an equally spaced set of angles spanning[0, π] is an optimal set.

ForP = 4, another set of projection angles which satisfies the two constraints isθ = {0◦, θr, 90◦, 90◦ +

θr}, which, for smallθr , may be more practical for bi-plane X-ray systems than a full45◦ rotation. We can

now see the inadequacy of this position-only analysis, since, unlike the position error varianceCθ , the shape
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error variance will be dependent onθr . Furthermore, this result is incomplete for multiple objects, since the

position error variance for two ellipses would also depend onθr .

Although this analysis is incomplete, it is comforting that a simple analysis confirms the intuitive choice

of an equally spaced set of projection angles. An interesting extension of this result would be to examine the

shape error variance as a function ofθr .

5.7 Conclusion

Though interesting theoretically, we abandoned the hierarchical approach of estimating ellipses on a slice-by-

slice basis in favor of the object-based approach of Chapter 6. The hierarchical method was most appropriate

for disjoint objects, which limited its applicability to simulations [83, 82]. In particular, an object-based

approach is more appropriate for branching objects, since the information that identifies a bifurcation is more

global than the information that is available in a single slice.
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5.8 Appendix: Slow EM Convergence

As a simple example of how slow the EM convergence can be, we consider the case where the signals are a

linear function of the parameters, i.e.,sk(xk) = Akxk, so that:

y =

K∑
k=1

Akxk + ε = Ax, (5.11)

where

A
4
= [A1, . . . ,AK ].

For the ML estimate to be unique,Amust have full column rank.

In this case, the EM iterations can be expressed as the following recursion:

for k = 1, . . . , K

x̂
(i+1)
k = (A′kA)

−1A′k[βk(y −Ax̂
(i)) +Akx̂

(i)
k ]

end.

These updates can be aggregated as follows:

x̂(i+1) = x̂(i) +BA′(y −Ax̂(i))

= (I −BA′Ax̂(i)) +BA′y, (5.12)

where

B
4
=


β1(A

′
1A1)

−1

. . .

βK(A
′
KAK )

−1

 .
The exact solution for this problem is the standard least-squares estimate:

x̂ = (A′A)−1A′y.

If we let δi denote the error at theith iteration, i.e.:

x̂(i) = x̂+ δi,

then (5.12) can be rewritten:

δi+1 = (I −BA
′A)δi.

It follows from this recursive relationship that the rate of convergence is limited by the maximum absolute

eigenvalue, orspectral radius, of I−BA′A, denoted byρ(I −BA′A).
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Suppose the columns ofA are orthogonal. In this case, the AM algorithm will converge in one iteration

(K evaluations of (5.10)). How slowly will the EM algorithm converge? It is easy to show that:

I−BA′A =


(1− β1)I

. . .

(1− βK)I

 ,
so thatρ(I − BA′A) = maxk(1 − βk). The diagonal factors(1 − βk) can be very close to1, so the EM

algorithm can converge very slowly even in the simple case of orthogonal, linear measurements.



Chapter 6

3-D Object Estimation

Equipped with the measurement and object models of Chapters 2 and 3, we can define criteria for the

problem that is the focal point of this dissertation: estimating an unknown object-setΨ from noisy projection

measurementsy. After presenting the maximum-likelihood criterion and noting its shortcomings, we intro-

duce the proposed nonparametric optimality criterion and present a computationally efficient optimization

algorithms for both the parallel and the cone-beam projection geometries.

6.1 Maximum Likelihood Criterion

We showed that the single-object ML estimator is inadequate in Chapter 4. It has even more problems in the

multiple-object case. Again, the ML estimate is the object-set whose computed projections are the closest to

the measurements in the least-squares sense (cf. (3.1)):

Ψ̂ML
4
= argmin

K
min

Z1,...,ZK
min

X1,...,XK
‖y − s(µΨ)‖

2.

This estimator is severely under-regularized; one can always add tiny objects whose parameters fit some bit

of noise, thereby increasing the “likelihood,” but certainly not improving the estimate. Even if the number

of objects is fixed so thatK cannot grow without bound, the results will be unsatisfactory at low SNR since

arterial smoothness is not taken into account, as discussed in Chapter 4.

6.2 Nonparametric Optimality Criterion

The nonparametric method of Chapter 4 is, at least conceptually, easy to generalize to the arterial tree recon-

struction problem, leading to the following estimator and optimality criterion:

Ψ̂
4
= argmin

K
min

Z1,...,ZK
min

x1(·),...,xK(·)
Φ(Ψ),

56
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Φ(Ψ)
4
= ‖y − s(µΨ)‖

2 +α′
K∑
k=1

∫
Zk

ẍ2k(z) dz, (6.1)

whereẍ(z) is the(5 +P )-dimensional vector containing the second partial derivatives of the components of

x(z) with respect toz.

Again, the smoothing factorα = [α1, . . . , α5+P ]′ controls the tradeoff between fit to the measurements

and smoothness of the estimated objects. Intuitively, we would use the same fairly large value forα1 and

α2 since ellipse position varies relatively slowly, very large identical values forα6, . . . , α5+P , since density

typically varies slowly, and smaller values forα3, α4, andα5 to avoid oversmoothing the important shape

features. Again, cross-validation can be used to estimateα from the data itself.

Why this criterion? The first term of (6.1) is the measurement negative-log-likelihood, which we would

like to be small, but not at the expense of excessive object wiggliness. Functions that minimize, subject to

specified constraints, the second term turn out to be splines, the smoothest functions (in curvature sense)

satisfying those constraints. We argue that for maximum effectiveness, arteries attempt to be as smooth as

possible, subject to anatomic constraints. An example is carotid arteries, which make very smooth trajectories

from their origins at the aorta to their destinations in the head. These arguments are heuristic, and the reader

may disagree; we hope this discussion prompts proposals of other criteria. Our main point here is that (6.1) is

a natural optimality criterion that encompasses the entire arterial tree globally, and therefore promises better

results than local methods.

At least in theory, the optimality criterion (6.1) could be used to solve all of the unsolved problems

discussed in Chapter 10. By using different projection functions fors(µΨ), arbitrary projection geometries

could be considered, by interpretingz as the distance along an artery’s medial axis, multi-valued objects

could be considered, and by using the outer two minimizations of (6.1), the method could be automated.

The practical difficulty lies in finding a computationally efficient algorithm for computingΨ̂, and perhaps

more importantly, ensuring that such an algorithm is numerically stable. We restrict our attention here to a

semi-automatic method for estimating SGC objects from a parallel geometry.

The particular algorithm for minimizing (6.1) we describe here relies heavily on the fact that, for a parallel

(or cylindrical) imaging geometry, the projections of an elliptical cross-section fall on the same row ineach

of the projection images. This fact is embodied in (2.1) and (2.4), which allows us to rewrite (6.1) as:

Ψ̂ = argmin
K

min
Z1,...,ZK

min
x1(·),...,xK(·)[

N∑
n=1

‖yn − s(x1(zn), . . . ,xK(zn))‖
2 +α′

K∑
k=1

∫
ẍ2k(z) dz

]
, (6.2)

where (cf. (2.4)) the 2-D projection of an ellipse collection is given by:

s(x1(zn), . . . ,xK(zn)) = sn(µ{E(x1(zn)),...,E(xK(zn))}). (6.3)
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By standard arguments [125, 126] based on the Euler equations for the functional (6.2), the infimum ofΦ

is achieved, and any object-set that achieves that infimum is composed of objects whose component functions

are cubic-splines with knots at some subset ofz1, . . . , zN . A cubic-spline function is determined completely

by its values at the knots (sample points). We use this fact to simplify the continuous variational problem (6.2)

into a tractable discrete problem. Note that this discretization is a natural consequence of the form of (6.2).

Define the sample points for thekth object by:

Nk
4
= {n : zn ∈ Zk, n = 1, . . . , N},

nb,k = minNk, ne,k = maxNk,

and the samples by:

Xk
4
= [xk(znb,k)

′, . . . ,xk(zne,k)
′]′,

whereXk denotes the parameters of thekth object on those planes within its length. With these definitions,

we can rewrite (6.2) as:

Ψ̂ = argmin
K

min
N1,...,NK

min
X1,...,XK[

N∑
n=1

‖yn − s(x1(zn), . . . ,xK(zn))‖
2 +

K∑
k=1

X′kSkXk

]
. (6.4)

The matrixSk, defined by (8.8), depends onNk andα, and serves to discretize the integral in (6.2).

Though many desirable properties of spline smoothers are known [108, 127], the nonlinearity of (6.4)

limits how much we can say about its theoretical properties. There are probably local minima, and even

the global minimum is not unique in general, due to the non-uniqueness discussed in Chapter 3. However,

regularization methods have shown promise in other applications [109], and the empirical results of Chapter 7

likewise are encouraging.

We have defined an optimality criterion for the object reconstruction problem. This criterion can be used

to compare suboptimal algorithms, or can be minimized to generate an arterial tree estimate. In the next

section, we present an algorithm for such minimizations.
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6.3 Parallel-Projection Estimation Algorithm

Having defined optimality criterion (6.4), the object estimation problem becomes simply the problem of

designing an algorithm that can computeΨ̂ with a reasonable computational load. A general nonlinear

minimization technique would be completely impractical, since there are thousands of parameters to estimate.

Fortunately, we can exploit the sparseness of arterial trees and the special matrix structures of vector-spline

smoothing to tailor an algorithm to this problem.

The outer two minimizations in (6.4) can be thought of as a detection operation: estimating the number

of arteries and their endpoints. In the remainder of this chapter, we focus on the innermost minimization:

the problem of estimating the objects’ cross-section parameters given the number of objects and an initial

estimate.

An initial estimate could come from the output of any of the sub-optimal 3-D reconstruction schemes,

but we currently use manual entry. A trained operator determines the number of objects, and then enters

coarse centerlines using a technique similar to [128]. After tracing a coarse piecewise-linear approximation

of each object’s centerline on one view, the operator traces the centerline in the (e.g.) orthogonal view

using auxiliary lines, observing the other views to confirm object correspondence. Since there are multiple

views, the correspondence problem that confounds two view reconstruction is alleviated. From cubic-spline

interpolants of the 2-D centerlines, an initial 3-D skeleton is generated automatically by analytical back-

projection. A typical arterial radius for the anatomy of interest is used as the radius for an initially circular

cross-section. The result of this procedure is a crude estimate ofΨ that initializes the iterative algorithm

presented below.

If the objects were disjoint, and if their projections were overlap free, then the minimization of (6.4) would

decompose intoK independent minimizations - one for each object. This fact, combined with the sparseness

of arterial trees, suggests that the alternating minimization (AM) algorithm [82, 113] is appropriate for this

problem. Here, we use the AM algorithm on an object by object basis: the parameters of each object are

estimated in turn, while holding the other objects fixed, and the procedure is iterated1. If there was no overlap,

convergence would occur in one iteration, but in general the number of iterations depends on the degree of

overlap. That describes the “outer loop” of the algorithm; we now focus on the algorithm for estimating the

parameters of a particular object, holding the other objects fixed.

Suppose we are considering thekth object, and let̂Xj denote the current parameter estimates of thejth

object. Then from the inner minimization of (6.4):

X̂k = argmin
Xk ne,k∑

n=nb,k

‖yn − s(x̂1(zn), . . . , x̂k−1(zn),xk(zn), x̂k+1(zn), . . . , x̂K(zn))‖
2 +X′kSkXk


1In [82], the AM algorithm was applied on an ellipse by ellipse basis, and the sparseness argument was weaker.
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= argmin
Xk

 ne,k∑
n=nb,k

‖y∗n − s
∗
n(xk(zn))‖

2 +X′kSkXk

 , (6.5)

where

Xk
4
= [xk(znb,k)

′, . . . ,xk(zne,k)
′]′,

y∗n
4
= yn − s(x̂1(zn), . . . , x̂j−1(zn), x̂j+1(zn), . . . , x̂K(zn)), (6.6)

and

s∗n(x)
4
= s(x̂1(zn), . . . , x̂j−1(zn),x, x̂j+1(zn), . . . , x̂K(zn))

− s(x̂1(zn), . . . , x̂j−1(zn), x̂j+1(zn), . . . , x̂K(zn)). (6.7)

y∗n is the difference between the measurements and the projections of the fixed objects. By our restriction to

bifurcations, thekth ellipse on slicen is either isolated, or it intersects one other ellipse, with indexkn, say.

Thus,

s∗n(x) =

 s(x), xk isolated

s(x,xkn) − s(xkn), xk and xkn intersect
, (6.8)

wheres(x,xkn) is defined by (6.3). Formulas fors∗n(x) are given in Section 3.5. Note that if the objects

were disjoint thens∗n(x) ands(x) would be equivalent.

We have finally reduced the original optimization problem (6.4) down to the form (6.5), which is pre-

cisely the problem addressed by the algorithm of Chapters 8 and 9. That algorithm uses the nonlinear

pseudo-measurement functions∗n(x) and its derivatives. The computational efficiency of our nonparamet-

ric smoothing algorithm, combined with arterial sparseness, results in an efficient object estimation method.

The cross-validation method described in Chapter 9 could be used to select the smoothing parameterα

automatically in several different ways for this problem. A computationally efficient alternative to cross-

validating the entire object-set is the following approach. First, estimate the objects using an educated guess

for the smoothing parameter. Then, subtract the projections of all of the objects except one (e.g. the longest)

from the measurements, leaving (approximately) only the selected object’s contribution. Next, apply the

cross-validation method of [129] to chooseα automatically for that single-object data set. Finally, estimate

the entire object-set using the smoothing factor chosen by cross-validation. The examples of Chapter 7, were

based on this approach. Unfortunately, the cross-validation score may have local minima, and a descent from

the initialα may not yield the truly optimalα. A global search forα on a patient-by-patient basis would be

too time consuming; a more practical approach would be to search globally for the bestα on a training set of

images, and then to apply that value ofα to subsequent patient studies.

The object reconstruction algorithm is summarized in Table 6.1. The result of this estimation algorithm

is a set of parametrically described SGC objects that are converted to GC parameters using Section 3.6. One
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Obtain initial estimatesK andO1, . . . ,OK .
repeat {

for k = 1, . . . , K
for n = nb,k, . . . , ne,k

y∗n = yn − s(x̂1(zn), . . . , x̂k−1(zn), x̂k+1(zn), . . . , x̂K(zn)).

s∗n(xk(zn)) =

{
s(xk(zn)), xk(zn) isolated
s(xk(zn),xkn)− s(xkn), xk(zn) intersects xkn

Compute Jacobians ofs∗n(x) atxk(zn).
end
Apply algorithm of Chapter 9 to{y∗n}
to obtain new estimates forxk(znb,k), . . . ,xk(zne,k).

end
} until Φ(Ψ) decreases insignificantly.

Table 6.1: Iterative object estimation algorithm.

can use these parameters in several ways:

• generate 3-D shaded surface displays directly,

• generate synthetic projections at any angle,

• plot cross-sections, and

• graph parameters (especially radius) versus arterial axis to examine percent stenosis.

Each of these uses is demonstrated in Chapter 7. A bonus for this parametric method is that shaded surface

displays are particularly easy to generate since the estimated ellipses are essentially surface descriptions.
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6.4 Cone-Beam Reconstruction Algorithm

The algorithm described in the previous two sections is an exact method for computing the optimal arterial

tree with respect to criterion (6.1) for parallel or cylindrical projections. In Section 2.3 we presented an

approximation that allows us to apply the above algorithm to cone-beam projections of objects close to the

axis of rotation. In this section, we generalize the reconstruction algorithm to cone-beam projections.

The exactness of the parallel algorithm is due to the fact that the Euler equations for (6.1) specify that

the optimal solution is a set of cubic splines. Thus, the problem of representing a continuous artery by a

finite number of ellipses is determined automatically by the mathematics. In fact, the locations of the knots

(the ellipse samples) are determined by the measurement resolution, with one ellipse per image row. In the

cone-beam case, any object that is away from the axis of rotation will project onto different numbers of rows

of pixels in different views due to the position-dependent magnification (fewer pixels in those views to which

it is closer). Therefore, there is no mathematically determined discretization. This is a common problem in

many engineering optimization applications. The obvious solution is simply to impose a discretization using

common sense. Since an object that lies on the axis of rotation would project onto the same rows in each

view, we propose using one ellipse per image row to discretize the object. If the vertical resolution is∆v,

and the on-axis magnification isM(0), then we represent objects by a discrete number of ellipses separated

by the distance∆v/M(0). We denote the sample points byzi, where

zi
4
= i

(
∆v
M(0)

)
.

We have now made the problem tractable by discretizing it, but the parallel algorithm is still inapplicable

since off-axis objects will project onto different numbers of rows. Fortunately, for typical cone-beam geome-

tries, the numbers of rows differ by only a small number. For example, Tables 6.2 and 6.3 list the starting

and ending rows of the objects in the X-ray phantom discussed in Chapter 7. In addition to the row indices at

four different projection angles, these tables show the row index that results from using a fixed magnification

M(0) as discussed in Section 2.3. This is the ‘ideal’ row index that would result from an on-axis object.

Many of the objects end on the rotation axis (see Figure 7.20), so their ending rows{ne,k}Kk=1 are identical.

However, even the starting rows for these objects (that begin up to 5cm off axis) agree to within a few pixels.

Thus, simple interpolation should be effective, as we describe below.

Consider the reconstruction algorithm of Table 6.1. This algorithm has two key steps: 1) subtract the

contributions of all objects but one from the projection measurements (6.6), and 2) estimate the parameters

of the remaining object (6.5) (6.7). These two steps must both be modified for cone-beam projections since

there is not a one-to-one relationship between object samples and measurement samples.
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k M(0) 18◦ 72◦ 108◦ 138◦

0 −6.2 −6.2 −6.2 −6.2 −6.2
1 −6.2 −7.6 −6.7 −5.8 −5.2
2 −10.5 −8.0 −8.6 −10.0 −11.4
3 −10.5 −12.5 −9.9 −8.5 −7.9
4 −6.2 −7.0 −8.7 −8.7 −7.9
5 −6.2 −6.7 −4.7 −4.0 −4.1
6 −6.2 −8.4 −8.4 −7.3 −6.1
7 −6.2 −5.3 −5.9 −6.5 −6.9

Table 6.2: Starting rows (nb,k) of objects in CGR phantom (see Figure 7.20).

k M(0) 18◦ 72◦ 108◦ 138◦

0 220.7 220.7 220.7 220.7 220.7
1 90.9 90.9 90.9 90.9 90.9
2 108.7 108.7 108.7 108.7 108.7
3 41.0 41.0 41.0 41.0 41.0
4 146.7 146.7 146.7 146.7 146.7
5 80.5 80.1 80.1 80.3 80.6
6 52.6 52.8 52.9 52.9 52.8
7 38.5 38.6 38.6 38.5 38.4

Table 6.3: Ending rows (ne,k) of objects in CGR phantom (see Figure 7.20).

6.4.1 Cone-Beam Projections of a SGC

We first consider the problem of subtracting the contributions of an object from the measurements. By

“contribution” we mean the object’s projections, which for a cone-beam geometry were given in Section 2.3

by:

l•θ(u, v;µ) =

√
1 +
u2 + v2

d2∫
µ

(
s cos θ +

u

M(s)
sin θ, s sin θ −

u

M(s)
cos θ,

v

M(s)

)
ds, (6.9)

where

M(s) =
d

d− d0 + s
=

d

d− d0
·

1

1 + s
d−d0

.

The density for a SGC object is given by:

µ(x, y, z) = ρ(z) 1E(x(z))(x, y),

wherex(z) = [cx(z) cy(z) r(z) λ(z) φ(z) ρ′(z)]′. The coordinates of the medial axis of the object are

given by(cx(z), cy(z), z). Consider a particular projection angleθ, then for a givenz, let (uz, vz) denote the
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coordinates of the projection of the medial axis. Then it is easy to see from (6.9) thatsz , uz, andvz are given

by the solutions to the following system of equations:

cx(z) = sz cos θ +
uz
M(sz)

sin θ,

cy(z) = sz sin θ −
uz

M(sz)
cos θ,

z =
vz
M(sz)

.

The solution to the system is:

sz = cx(z) cos θ + cy(z) sin θ,

uz = Mθ,z(cx(z) sin θ − cy(z) cos θ)

vz = zMθ,z,

where

Mθ,z
4
= M(cx(z) cos θ + cy(z) sin θ).

These formulae are for computing the projection of the medial axis; the key step for computing the

projection of the object is recognizing that the position-dependent magnification changes insignificantly over

an elliptical cross-section. Therefore, foru ≈ uz:

l•θ(u, vz;µ) ≈√
1 +
u2 + v2z
d2

∫
µ

(
s cos θ +

u

Mθ,z
sin θ, s sin θ −

u

Mθ,z
cos θ,

vz

Mθ,z

)
ds,

so that:

l•θ (Mθ,zu,Mθ,zvz;µ) ≈

∫
µ (s cos θ + u sin θ, s sin θ − u cos θ, vz) ds,

= lθ(u, vz;µ).

Therefore, to compute the cone-beam projection of an ellipsex(zi) at angleθ, we must compute the position-

dependent magnification factorMθ,z, and then apply a scaled version of the formulae forlθ(u, v;x(zi)) that

we derived in Chapter 3.

There is one tricky matter here though. We have decided above to discretizeµ by a set of equally spaced

ellipses at sample points{zi}. The projections of the ellipses will lie on image rowsvzi that will be unequally

spaced in general. Since we want to subtract the object’s projections from the equally spaced measurement

samples, we must generate equally spaced samples of its projections. To do this, we once again exploit the

arterial smoothness. Given equally spaced image row coordinates{vn}Nn=1, we can find the corresponding

points along the medial axis by finding thez(n)’s that satisfyz(n)Mθ,z(n) = vn. The set{z(n)}Nn=1 will

be unequally spaced for objects that are away from the rotation axis. Ifz(n) lies between ellipse samples at

zi andzi+1, then simple interpolation ofx(zi) andx(zi+1) will produce an ellipse parameter vector that we

can then project onto rowvn. Note that the mapping fromvn to z(n) depends on the projection angleθ.
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6.4.2 Parameter Estimate Updates

The second step of the algorithm that must be modified for cone-beam projections is the parameter estimation.

Given measurementsy∗p,n and a previous estimate[x̂(zib,k), . . . , x̂(zie,k)], compute new estimates. The

complicating factor is that we have(ie,k − ib,k + 1) sets of ellipse parameters to estimate, but a slightly

different number of measurementsy∗p,n in each view. For this step, since the ellipse parameters are the most

important, it is more convenient to interpolate the measurements from their original equally-spaced samples

to (unequally spaced) samples centered at the points where the ellipses project (vzi). This is in contrast to the

discussion in the previous section, where we interpolated the parameters, since the projections needed to be

equally spaced.

The image rows were sampled originally at valuesvn, wherevn = n∆v. By resampling each column

of the images at sample points{vzi}
ie,k
i=ib,k

, we will create a new set of measurements with the same number

of samples at each projection angle. The estimation algorithm of Chapter 9 can then be applied to these re-

sampled measurements. A potential problem with this approach is that the interpolation used to resample the

measurements will introduce some measurement correlation. Fortunately, as Tables 6.2 and 6.3 demonstrate,

very little interpolation is needed, so the induced correlation should be small.
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6.5 Summary

We have described a nonparametric optimality criterion for reconstructing an arterial tree from a few pro-

jections. We presented an iterative algorithm for optimizing the criterion given an initial estimate that is

currently obtained by manual entry. We proposed a generalization of the algorithm for reconstructing from

cone-beam projections, based on resampling of the measurements. It is worth emphasizing that this resam-

pling is object dependent, and is made possible by the fact that we estimate one object at a time iteratively.

This type of resampling would be inapplicable to voxel-based cone-beam reconstruction methods, since the

different voxels would have conflicting resampling requirements. This is another example of the flexibility

of object-based reconstruction.



Chapter 7

Experimental Results

In this chapter, we report the results of applying the algorithm of Chapter 6 to four data sets: simulated

projection images, MR projections of a branching flow phantom, MR angiograms of a healthy volunteer’s

carotid arteries, and X-ray projections of an aluminum phantom. The SNR per view, defined by2ρhprp/σ,

and the important imaging parameters for these case studies are summarized in Table 7.1.

7.1 Simulation

Figure 7.1 shows four noisy projection images of a simulated arterial tree. These images were generated

using the projection model of Chapter 2. Table 7.2 displays the convergence of the algorithm for the smooth-

ing parameter chosen by cross-validating the longest object. Each iteration through all five objects required

about 35 seconds on a SUN Sparcserver. As expected, the first few iterations improve the estimates consid-

erably, with little further improvement after the fourth iteration. The RMS errors for ellipse orientationφ

Simulation MR phantom MR carotid X-ray phantom
K 5 2 4 7
W 256 160 128 256
N 256 128 160 145
∆h [mm] 1 0.478 0.7 0.83
∆v [mm] 1 0.478 0.35 0.83
P 4 4 4 4
σ2 3 0.0025 0.015 5.7
SNR 2.8–6.7 6.3–40.6 2.8–20.2 11.2–179.7
θ1, . . . , θP 0,45,90,135 22,67,112,157 0,45,108,143 0,45,90,135

Table 7.1: Imaging parameters for the data sets used to evaluate the reconstruction method.

67
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RMS error
Iteration cx cy r λ φ ρ

0 1.188 0.9704 1.528 0.06325 23.05 0.2044
1 0.2884 0.2345 0.1943 0.1352 38.25 0.03376
2 0.1859 0.1568 0.136 0.07881 34.66 0.01879
3 0.1783 0.1386 0.1133 0.06639 34.95 0.0145
4 0.1606 0.1174 0.1048 0.07071 34.94 0.01396
5 0.1573 0.1312 0.104 0.06435 34.61 0.01451
6 0.1456 0.1365 0.1081 0.06774 35.2 0.0138
7 0.1556 0.1363 0.1055 0.067 35.05 0.01354
8 0.1507 0.1376 0.1031 0.06741 36.76 0.01365

Table 7.2: RMS parameter estimation errors for eight iterations.

Figure 7.1: Simulated angiograms;θ = 0◦, 45◦, 90◦, 135◦.

are misleadingly large; many of the cross-sections are very close to circular, in which case the orientation is

irrelevant.

A more meaningful evaluation of the shape estimates can be made from Figure 7.2, Figures 7.3 and 7.4.

(The estimates are taken from the fourth iteration hereafter.) Figure 7.2 compares the true and the estimated

cross-sections of the main branch over the stenotic portion. The reconstruction has estimated this eccentric

stenosis accurately. Similarly, Figures 7.3 and 7.4 compare the true and the estimated cross-sections of two

bifurcations. The overlapping ellipses with very different shapes are estimatedaccurately.

For a more quantitative comparison, Figure 7.5 compares the true and the estimated radii (both in SGC

parameters) for this example, and shows the presence of a stenosis quite clearly. These parameters are trans-

lated into GC parameters using the formulae of Section 3.6. Figure 7.6 displays the resulting radius estimation

errors for the five objects. The larger radius “errors” at the endpoints of some of the objects are artifacts that

are explained by object-set ambiguity discussed in Section 3.2: when one ellipse is almost completely inside

another ellipse, it contributes very little to the cross-section. Figures 7.3 and 7.4 show that the cross-sections

were in fact estimated accurately.

Graphs such as Figure 7.5 are useful for computing percent stenosis, but morphology is best viewed

through an interactive 3-D display with cut-planes. Figures 7.7 and 7.8 show two shaded surface displays of

the reconstruction, generated using the simplest aspects of the shading method presented in [130].

The results from this data set demonstrate the potential performance of object-based reconstruction, and

highlight an important advantage of the parametric approach: despite the low SNR, the estimates are of

sub-pixel accuracy. Discrete voxel representations ofµ, on the other hand, are typically limited by the

measurement resolution.
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Figure 7.2: True (above) versus estimated (below) stenosis cross-sections;n = 160, . . . , 180.

Figure 7.3: True (above) versus estimated (below) bifurcation cross-sections;n = 130, . . . , 141.

Figure 7.4: True (above) versus estimated (below) bifurcation cross-sections;n = 80, . . . , 94.

Figure 7.5: True (solid) versus estimated (dashed) object radii.

Figure 7.6: Radius estimation errors for the simulated objects.

Figure 7.7: 3-D surface display of reconstructed simulated arteries;θ = 0◦.

Figure 7.8: 3-D surface display of reconstructed simulated arteries;θ = 45◦.
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Figure 7.9: Simulated angiograms measurements,θ = 0◦, 45◦, 90◦, 135◦.

Figure 7.10: True cross-sections (top) versus one-ellipse estimates (bottom).

7.2 Crescent Cross-Section Simulation

One of the most common criticisms of an approach based on a elliptical model is that “these parametric

approaches usually suffer from a high sensitivity to the exactness of the assumptions used for modelling.

This can be redhibitory [sic] when actual objects, such as physiological ones, offer a geometry too complex

and variable to be easily modelled with few parameters” [71]. In this section, we show a simple example

of the versatility of the elliptical model that suggests the parametric approach is less sensitive than might be

imagined.

Consider Figure 7.9, these simulated projections are identical to those of Figure 7.1, except that a crescent-

shaped stenosis has been added to one of the branches. Obviously, a crescent shape is a severe violation of

the elliptical assumption. How “sensitive” are the estimates to this crescent shape? Figure 7.10 displays a

comparison between the actual crescent-shaped cross-sections and the estimated elliptical cross-sections. The

area of the best-fit ellipses shows remarkable agreement to the area of the crescent lumens. The estimated

ellipse shape also seems reasonably robust, considering the non-ellipticity of a crescent.

If a physician wished to test whether a particular arterial segment was crescent shaped, then we can

augment the ellipse model by using two ellipses, one for the normal lumen and one for the plaque, and

then repeat the estimation. Just as the projection of two overlapping ellipses was computed by considering

the set union, here we consider the set difference of the two ellipses:E(xlumen)
⋂
E(xplaque). A simple

algorithm for estimating the parameters of the two sets of ellipses is as follows. 1) Identify (by hand) the

artery containing a potentially crescent-shaped stenosis, and indicate the extent of the stenosis. 2) Estimate

the remainder of the arterial tree using the algorithm of Chapter 6 and interpolate the normal section of the

identified artery. 3) Subtract the projections of the estimated arterial tree from the measurements, leaving

(the negative of) the projection of the plaque ellipses. 4) Estimate the plaque ellipses from the residual

measurements using the algorithm of Chapter 4.

This method was applied to the images in Figure 7.9, and the resulting ellipse estimates are displayed in

Figure 7.11. The crescent shape is clearly displayed by the estimates. Note that we have not enforced the

constraint that the plaque ellipse should touch the lumen ellipse. Enforcing this constraint would significantly

improve the accuracy since the number of degrees of freedom would be reduced.

Figure 7.11: True cross-sections (top) versus two-ellipse estimates (bottom).



CHAPTER 7. EXPERIMENTAL RESULTS 71

Figure 7.12: MR tube-phantom projections;θ = 22◦, 67◦, 112◦, 157◦.

Figure 7.13: Histogram of radius estimation error.

7.3 MR Phantom Data

The images in Figure 7.12 are MR projections of a MnCl solution flowing through a plastic Y-shaped

connector attached to Tygon tubing. We used the projection-reconstruction selective inversion-recovery

(PRSIR) [95, 96] method to collect the data. The inner diameter of the Y connector was 3.75mm. Fig-

ure 7.13 displays a histogram of the radius estimation error over the Y section. The RMS error in radius was

only 0.04 mm. As a verification of the geometric consistency of the estimates, Figure 7.14 displays the outline

of the projection of the estimates superimposed on another view that was also acquired, but was not used for

the reconstruction. The overall correspondence is quite good, though the sharp transitions between the small

branch and the larger tubes would be better modeled by a GC than a SGC, since some of the image rows

intersect both the small tube and a corner of the larger tube. The shaded-surface displays of the estimated

objects shown in Figures 7.15 and 7.16 are remarkably similar to the physical phantom.

Figure 7.14: Reprojection of estimates (solid line) on an unused view;θ = 0◦.
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Figure 7.15: 3-D surface display of reconstructed tube phantom;θ = 45◦.

Figure 7.16: 3-D surface display of reconstructed tube phantom;θ = −45◦.
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7.4 MR Carotid Arteries

Figure 7.17 shows four MRSIR projections of a slab containing a healthy volunteer’s right carotid artery.

A surface coil was placed on the right side of the subject’s neck, to maximize SNR. We have no means of

making a quantitative evaluation of the results, but Figures 7.18 and 7.19 show 3-D displays of the estimated

arteries. This example clearly motivates extending this work beyond single-valued objects, since this facial

artery is clearly a multi-valued function ofz.

Figure 7.17: MRin vivocarotid angiograms;θ = 0◦, 45◦, 108◦, 143◦.



CHAPTER 7. EXPERIMENTAL RESULTS 74

Figure 7.18: 3-D surface display of reconstructed carotid arteries;θ = 143◦.

Figure 7.19: 3-D surface display of reconstructed carotid arteries;θ = −50◦.
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Figure 7.20: GE-CGR X-ray phantom projections;θ = 18◦, 72◦, 108◦, 138◦.

Figure 7.21: Radius estimation errors for the GE-CGR X-ray phantom.

7.5 X-ray Phantom Data

Figure 7.20 shows four X-ray projections of an aluminum phantom built by GE-CGR, acquired on a dig-

ital fluoroscopic system. Rougeeet al. have demonstrated their ART-based reconstruction method on this

phantom [71]. These projections have been corrected for the image intensifier’s pincushion distortion. The

phantom was placed on a rotating turnable for the acquisitions, so the axis of rotation is parallel to the image

columns, as we assume.

This data set consists of cone-beam projections, but the objects were close enough to the axis of rotation

that we felt it would be worth attempting to use the parallel reconstruction algorithm. As mentioned in

Chapter 2, we first applied a local estimation algorithm similar to that of [12] to estimate the PSF on a few

of the overlap-free objects, assuming a Gaussian PSF. The estimatedσ for the Gaussian PSF was near 0.5

consistently, which corresponds to the following impulse response:[0.15 0.7 0.15]. This PSF was held fixed

for the 3-D reconstruction.

One of the objects in this phantom is completely horizontal. Since our method does not accommodate

multi-valued objects, the image rows containing the horizontal portion were ignored. Figure 7.21 displays a

histogram of the radius estimation error. Although most of the errors are below a pixel, there are a few sig-

nificant errors. These should be corrected by applying the cone-beam reconstruction algorithm. Figures 7.22

and 7.23 show the outline of the reprojections of the estimates superimposed on views that were not used for

the estimation.

Figures 7.24 and 7.25 display 3-D shaded displays of the reconstructed objects.

Figure 7.22: Reprojection of estimates (solid line) on an unused view;θ = 0◦.
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Figure 7.23: Reprojection of estimates (solid line) on an unused view;θ = 48◦.

Figure 7.24: Shaded surface of estimate;θ = 72◦.

Figure 7.25: Shaded surface of estimate;θ = 238◦.
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Chapter 8

Linear Nonparametric Smoothing

This chapter presents a novel nonparametric algorithm for smoothing linear vector-valued measurements1.

This algorithm is the core of the nonlinear smoothing algorithm presented in the next chapter, which in

turn is the basis of the object-based reconstruction approach described in the previous chapters. However,

the development of this algorithm is independent of the preceding chapters, and the algorithm itself is of

independent interest, as it provides a nonparametric alternative to the classical Kalman filter.

Spline smoothing has become a popular method for nonparametric exploration and estimation of scalar-

valued functions, but its generalizations to vector-valued functions have been underutilized. This chapter

presents a computationally efficient algorithm for nonparametric smoothing of vector signals with general

measurement covariances. This new algorithm provides an alternative to the prevalent “optimal” smooth-

ing algorithms that hinge on (possibly inaccurate) parametric state-space models. We develop and compare

automatic procedures that use the measurements to determine how much to smooth; this adaptation allows

the data to “speak for itself” without imposing a Gauss-Markov model structure. We present a nonparamet-

ric approach to covariance estimation for the case of i.i.d. measurement errors. Monte Carlo simulations

demonstrate the performance of the algorithm.

8.1 Linear Smoothing

The goal of fixed-interval smoothing is to estimate a smooth function from a finite number of noisy measure-

ments. We consider here the linear measurement model:

yn = Hnxn + εn, n = 1, . . . , N, (8.1)

1This chapter is derived largely from [131].
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where

εn,yn ∈ <
L, xn ∈ <

M , andHn ∈ <
L×M .

We assume that the additive measurement errorεn is normally distributed with mean zero and (positive

definite) covariance matrixΣn, and that the errors are independent between samples. The states{xn} are

(possibly unequally spaced) samples of a processg(tn):

xn = [g1(tn), . . . , gM (tn)]
′ 4= g(tn), tn < tn+1 ∀n,

where “′” denotes matrix transposition. The goal of smoothing is to estimateg (and/or its derivatives) from

the measurements{yn}Nn=1.

One justifies smoothing bya priori knowledge that the component functions ofg(t) vary slowly in some

sense. The smoothness ofg is frequently quantified by assuming that the states{xn} adhere to a parametric

Gauss-Markov discrete-time state-space model:

xn+1 = Anxn +Bnun, un ∼ N(0,Qn), x0 ∼ N(µ0,Π0). (8.2)

Using such models, one can derive optimal smoothing algorithms [132] that provide minimum mean-square

error estimates of the states. However, in many applications the parameters (state evolution matrices and co-

variances) of the state evolution model (8.2) are unknown, and they must be estimated from the measurements

or from a training set [133]. This estimation may result in an inaccurate parametric model.

Rather than impose a possibly inaccurate parametric model, we would sometimes prefer to “let the

data speak for itself,” particularly for off-line data exploration. This motivates nonparametric approaches

to smoothing [127].

Nonparametric spline smoothing has proven to be successful at estimating scalar-valued functions from

noisy data. Therefore, it is not surprising that the nonparametric approach has also been applied in some sit-

uations similar to the vector measurement model (8.1). In this chapter, we derive a computationally efficient

algorithm for nonparametric smoothing of vector measurements, allowing for general measurement covari-

ancesΣn. This has also been considered by Miller and Wegman [134], but their algorithm requires that the

covariance matrices be simultaneously diagonalizable. For independent, identically distributed (i.i.d.) mea-

surement errors, we recommend the transformation approach of [134], as it requires fewer computations than

the algorithm presented below. Wegman [135], Woltring [136, 137], and Sidhu and Weinert [138] all discuss

approaches that assume effectively that the covariance matrices are diagonal. Note that the approach of Sidhu

and Weinert [138] does allow for a more general measurement model than (8.1). In the special case of diago-

nal covariance matrices, the vector-spline smoothing algorithm reduces to repeated applications of the scalar

algorithm. However, one can take advantage of any known similarity between the component functions when

choosing the smoothing parameters [136, 137], Non-diagonal, non-i.i.d. measurement covariances arise in

several problems, including in the nonlinear smoothing algorithm of the next chapter.
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Although, as observed by Silverman [108], “non-parametric regression is not as widely known or adopted

as perhaps it should be,” spline smoothing concepts have previously had several other generalizations that we

list for didactic reasons: estimating a function’s derivatives [108, 139], estimating branching curves [140],

smoothing multivariate functions (scalar valued functions of several variables) [141, 127], and estimating

curves with discontinuities [142]. Source code for spline smoothing is available2 from thegcv andtoms

directories ofnetlib [143].

This chapter is organized as follows. In Section 8.2, we review the derivation of the cubic-spline based

algorithm for smoothing scalar measurements, following the approach and notation of Reinsch [126, 144].

In Section 8.3, we present the new algorithm for smoothing vector measurements. In Section 8.4, we con-

sider methods that use the measurements to choose automatically the parameters that control the degree of

smoothing. In Section 8.5, we describe a nonparametric method for measurement error covariance estima-

tion. In Section 8.6, we outline the algorithm implementation and discuss computational requirements. In

Section 8.7, we compare these methods using simulated measurements.

8.2 Spline Smoothing of Scalar Measurements

The Problem

Assume that the scalar measurementsyn satisfy the model

yn = g(tn) +wnεn, n = 1, . . . , N,

εn ∼ N(0, σ
2), E{εnεm} = 0 if n 6= m,

wheret1 < . . . < tN . The weightswn are assumed known, but the varianceσ2 may be unknown. Estimation

of g by smoothing theyn’s always involves a tradeoff between fit to the data and smoothness of the estimated

functionĝ. For normally distributed measurement errors, the natural measure of fit to the data is the weighted

residual sum of squares,

RSS(g)
4
=

N∑
n=1

(
yn − g(tn)

wn

)2
.

Spline smoothing is based on the following nonparametric measure of the roughness (lack of smoothness) of

g:

Rk(g)
4
=

∫ tN
t1

(g(k)(t))2dt.

General differential operators have also been considered, e.g. [138, 134]. For simplicity, we consider here

only the casek = 2, though the algorithm derived below is fully generalizable.R2(g) is related to the

2An e-mail message tonetlib@research.att.com containing the request ‘send index ’ or ‘ send index from gcv ’
will generate a reply containing instructions.
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curvature ofg, so it weights functions that are very wiggly more heavily. This measure also has the desirable

property thatR2(g) = 0 if and only if g is linear.

We would like to minimizeRSS(g) andR2(g) simultaneously, but these are conflicting goals in general3.

The standard nonparametric solution is to use the curve that minimizes a weighted combination of the two:

ĝα
4
= argmin

g

[
N∑
n=1

(
yn − g(tn)

wn

)2
+ α

∫
(g̈(t))2 dt

]
. (8.3)

The smoothing parameterα controls the tradeoff between fit to the data and smoothness. Asα → 0, ĝα

approaches the cubic-spline interpolant of the measurements, and asα → ∞, ĝα approaches the linear

regression of the measurements. Automatic selection ofα will be discussed in Section 8.4.R2(g) acts as a

“roughness penalty” [108] that prevents excessive local variation in the curveg. This idea is related to the

regularization methods of computer vision [109].

The Solution

As a consequence of the Euler equation corresponding to the variational problem (8.3), the minimizing

function ĝα is a cubic spline [126]. A functiong is a cubic spline with knots{tn}Nn=1 if and only if there

exist coefficients{an, bn, cn, dn}Nn=0 such that:

g(t) = an + bn(t − tn) +
cn

2
(t − tn)

2 +
dn

6
(t − tn)

3, t ∈ [tn, tn+1], (8.4)

and

g(t), ġ(t), g̈(t) are all continuous. (8.5)

(t0 is any number less thant1, andtN+1 is any number greater thantN .)

The continuity conditions (8.5) impose a system of equations on the polynomial coefficients that are knot

dependent. These equations are [126]:

bn = −
1

6
hn(cn+1 + 2cn) + h

−1
n (an+1 − an), n = 0, . . . , N − 1,

dn = h−1n (cn+1 − cn), n = 0, . . . , N − 1,

bN =
1

6
hN−1cN−1 + (aN − aN−1)/hN−1,

h−1n an − (h
−1
n + h

−1
n+1)an+1 + h

−1
n+1an+2 =

1

6
hncn +

1

3
(hn + hn+1)cn+1 +

1

6
hn+1cn+1, n = 0, . . . , N − 2, (8.6)

wherehn = tn − tn−1. There are a total of4(N + 1) unknowns, so by adding 4 boundary conditions to

the above3N equations, we can express all of the coefficients in terms of(a1, . . . , aN). Table 8.1 presents

two possible boundary conditions. We restrict our attention here to natural cubic-splines by imposing the

3The solution to the problem of minimizingR2(g) subject tog(tn) = yn∀n is cubic-spline interpolation. Interpolation is useful
only if the measurements are noiseless [126].
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Left Boundary Right Boundary
Natural Splines

c0 = 0 cN = 0
d0 = 0 dN = 0

Not-a-Knot Splines
a0 = a1 + b1h1 +

1
2c1h

2
1 +

1
6d1h

3
1 aN = aN−1 + bN−1hN−1 +

1
2 c1h

2
N−1 +

1
6dN−1h

3
N−1

d0 = d1 dN = dN−1

Table 8.1: Boundary conditions for spline smoothing.

boundary condition that̂gα(t) is linear fort > tN andt < t1. Other boundary conditions, e.g. periodic and

complete splines, are possible, which may be important if derivatives ofg are to be estimated [139, 145].

For natural cubic-splines, the most important constraints are summarized by the following matrix relation:

Q′a = Tc, (8.7)

wherea = (a1, . . . , aN)′, andc = (c2, . . . , cN−1)′. Q andT areN × (N − 2) and(N − 2)× (N − 2) band

matrices respectively:

Qji
4
=


h−1i , j = i

−(h−1i + h
−1
i+1), j = i+ 1

h−1i+1, j = i+ 2

0, otherwise

, Tij
4
=



1
6
hi, j = i− 1
1
3(hi + hi+1), j = i

1
6hi+1, j = i+ 1

0, otherwise

.

(The B-spline version ofQ andT is known to result in a numerical algorithm that is more stable [145]; we

present this version for simplicity.)

Let y = (y1, . . . , yN)′ andW = diag(w1, . . . , wN). If g is a natural cubic-spline with expansion (8.4),

then it was shown in [146] that

R2(g) =

∫
(g̈(t))2dt = c′Tc = a′QT−1Q′a, (8.8)

and

RSS(g) = (y − a)′W−2(y − a).

Therefore the coefficients of the smoothing splineĝα minimize the quadratic:

â = argmin
a

[
(y − a)′W−2(y − a) + αa′QT−1Q′a

]
.

One can find the solution to this minimization by solving the following system of equations forâ andĉ [126]:

Q′y = (T/α+Q′W2Q)(ĉα)

â = y −W2Q(ĉα). (8.9)
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SinceT andQ are band matrices, we can solve (8.9) in O(N ) operations [147]. These band matrices will

also be important to the efficiency of the algorithm for smoothing vector measurements. Having computedâ

andĉ, we can computêb andd̂ from (8.6), thereby obtaining the piecewise-cubic expansion ofĝα. In many

cases, onlŷa is needed sincêgα(tn) = ân.

8.3 Spline Smoothing of Vector Measurements

The Problem

We now generalize the results of the previous section by considering thevectormeasurement model4:

yn = g(tn) + εn, n = 1, . . . , N, (8.10)

g(tn), εn,yn ∈ <
M , εn ∼ N(0,Σn), E{εnε

′
m} = 0, n 6= m.

Although we assume the error covariancesΣn are known for the derivation below, they can be estimated

(Section 8.5) if the errors are identically distributed. The goal is to estimateg from the measurements{yn}.

Again we must compromise between fit to the data and smoothness of the estimated functions. Assuming

the errors are normally distributed, the natural measure of fit to the data is

RSS(g) =

N∑
n=1

(yn − g(tn))
′Σ−1n (yn − g(tn)).

Although we assume that the component functionsgm(t) of g(t) are smooth, they may have different degrees

of smoothness, different scales, and different marginal measurement-error variances. Hence,M smoothing

parameters,α = (α1, . . . , αM), are required to formulate the problem. However, if a group of the component

functions are known to have similar properties, then we equate the corresponding smoothing parameters. The

multidimensional generalization of (8.3) is then

ĝα = argmin
g

[
N∑
n=1

(yn − g(tn))
′Σ−1n (yn − g(tn)) +

M∑
m=1

αm

∫
(g̈m(t))

2 dt

]
. (8.11)

Before presenting the solution to this general minimization problem, we note two special cases. If the

covariancesΣn are diagonal, then (8.11) separates intoM independent terms of the form (8.3), soĝα can

be computed byM evaluations of (8.9). Similarly, if the covariances are simultaneously diagonalizable, then

a transformation of (8.11) yields a separable expression [134].

4The objection could be raised that model (8.10) is not as general as model (8.1), which contains the additionalHn term. However,
if the measurement matricesHn are all of rankM , then multiplying both sides of (8.1) by(H′nΣ

−1
n Hn)

−1H′nΣ
−1
n transforms (8.1)

into (8.10). In general, the measurement matrices may not all be of rankM . If they are not, then even optimal Kalman filters, derived
from the state-space model (8.2), will be effective only if the pairs(Hn,An) satisfy the technical condition ofstochastic observabil-
ity [148]. This condition is usually satisfied because of the presence of delay or difference terms inxn . Any such (application dependent)
a priori information should be incorporated into the nonparametric paradigm presented here.
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The Solution

Again, by the Euler equations for (8.11), the solutionĝα is a vector spline with component functions

{ĝm,α}Mm=1 that are each natural cubic-splines. Their piecewise polynomial expansions (8.4) have coeffi-

cients denoted bŷa(m), b̂(m), ĉ(m), andd̂(m), where

â(m) = (â
(m)
1 , . . . , â

(m)
N )

′,

ĉ(m) = (ĉ
(m)
2 , . . . , ĉ

(m)
N−1)

′, ĉ
(m)
1 = ĉ

(m)
N = 0,

and the coefficientŝb(m) andd̂(m) satisfy (8.6).

As shown in Appendix A,̂a andĉ are computed inO(M3N) operations by solving the following banded

equations (cf. (8.9)):

(Q′ ⊗ IM )y = ((T⊗D(α)−1) + (Q′ ⊗ IM )Σ(Q ⊗ IM ))ĉα,

â = y −Σ(Q ⊗ IM )ĉα, (8.12)

where⊗ denotes matrix tensor product,IM is anM ×M identity matrix,

a = (a
(1)
1 , . . . , a

(M)
1 , . . . , a

(1)
N , . . . , a

(M)
N )′, (8.13)

c = (c
(1)
2 , . . . , c

(M)
2 , . . . , c

(1)
N−1, . . . , c

(M)
N−1)

′,

cα = (IM(N−2) ⊗D(α))c,

D(α) = diag(α1, . . . , αM),

y = (y′1, . . . ,y
′
N)
′,

and

Σ = diag(Σ1, . . . ,ΣN).

The matrixΣ is theNM ×NM block diagonal covariance ofy.

The minimization (8.11) has resulted in a linear relationship,â = A(α)y, between the measurements

and the estimates, where from (8.12),

A(α) = INM −Σ(Q ⊗ IM )((T ⊗D(α)
−1) + (Q′ ⊗ IM )Σ(Q ⊗ IM ))

−1(Q′ ⊗ IM ). (8.14)

In statistics,A(α) is called thehat or influencematrix and will be used in the next section for automatic

selection ofα.

8.4 Choosing the Smoothing Parameters

If the smoothing parameterα is too large or too small, then the measurements will be over-smoothed or under-

smoothed, respectively. In the scalar case, Reinsch [126] suggested choosingα so thatRSS(ĝα) ≈ Nσ2.
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However, Craven and Wahba [149] showed that this led to consistent over-smoothing. Ideally, we would like

to choose the smoothing parameters to minimize the mean square error:

MSE(α)
4
=

1

N

N∑
n=1

‖ĝα(tn) − g(tn)‖
2,

αMSE
4
= argmin

α
MSE(α). (8.15)

In practice, this minimization is impossible sinceg is unknown. For the scalar measurement problem, several

methods have been suggested for estimatingαMSE from the data [127], including two due to Akaike [150].

We present below three of these methods,each generalized to apply to our vector measurement problem.

They are compared empirically in Section 8.7. Note that for small samples one may prefer to use robust

variants of these estimators [150].

The estimators discussed below all depend on the central bands of the influence matrixA(α). Hutchinson

and de Hoog [151, 152] presented algorithms for computing these bands in O(M3N ) operations. Their

algorithm is directly applicable to the vector measurement problem, so we do not present it here.

8.4.1 Unbiased Risk

In the scalar case with known error standard deviation, Craven and Wahba [149] have suggested using the

value of the smoothing parameter that minimizes an unbiased estimator of the expected mean square error

(risk). This idea can be extended directly to the vector measurement case. One can easily show that

UR(α)
4
=
1

N
‖(I −A(α))y‖2 −

2

N
trace(Σ(I −A(α))) +

1

N
trace(Σ)

is an unbiased estimator ofE{MSE(α)}. The unbiased risk estimate ofαMSE is thus

αUR
4
= argmin

α
UR(α).

The estimatorsαCV andαGCV discussed below have been more popular thanαUR in the scalar case,

perhaps because the latter depends on the (oftenunknown) error varianceσ2. For the vector measurement

problem, all three estimates depend on the covariance matrices{Σn}.

8.4.2 Cross Validation

Wahba and Wold [110, 153] have suggested using the smoothing parameter that minimizes the cross-validation

(CV) score:

CV(α)
4
=

1

N

N∑
n=1

(yn − ĝα,−n(tn))
′Σ−1n (yn − ĝα,−n(tn)), (8.16)

αCV
4
= argmin

α
CV(α).
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ĝα,−n is the solution to the smoothing problem (8.11) with N-1 data points, posed without the data pair

(tn,yn), i.e.:

ĝα,−i
4
= argmin

g

 N∑
n=1,n 6=i

(yn − g(tn))
′Σ−1n (yn − g(tn)) +

M∑
m=1

αm

∫
(g̈m(t))

2 dt

 .
Each data pair is dropped in turn, the smoothed curveĝα,−n is estimated, and the predicted valueĝα,−n(tn)

is compared with the unused measurement. If the CV score is small, then we have chosen the smoothing

parameter that makes the estimated curve a good self predictor.

Although equation (8.16) illustrates the idea behind cross-validation, it is computationally inefficient. We

show in Appendix B that (8.16) can be rewritten

CV(α) =
1

N

N∑
n=1

‖Σ
− 12
n (IM −A(nn)(α))

−1(yn − ĝα(tn))‖
2, (8.17)

whereA(nn)(α) is thenth M ×M block diagonal submatrix of the influence matrix (8.14). By using the

Hutchinson and de Hoog algorithm [151], (8.17) is computed in only O(M3N ) operations.

8.4.3 Generalized Cross-Validation

Craven and Wahba [149] have also suggested using the smoothing parameter that minimizes the generalized

cross-validation (GCV) score, whose vector spline generalization is:

GCV(α)
4
=

1
N
RSS(ĝα)

( 1
N
trace(I −A(α)))2

=
1
N
(y − ĝα)Σ−1(y − ĝα)

( 1
N
trace(I −A(α)))2

,

αGCV
4
= argmin

α
GCV(α).

In the scalar case, the GCV score is a weighted version of the CV score that is invariant to rotations of the

data when periodic end conditions are imposed [150]. See [127] for a discussion of the asymptotic properties

of GCV. Again, [151] is used to evaluateGCV(α) in O(M3N ) operations.

8.5 Error Covariance Estimation

For the scalar measurement case with unknown error variance, Wahba [154] (see also discussion in [155])

proposed the following estimator:

σ̂2 =
‖(I −A(α))y‖2

trace(I−A(α))
, (8.18)

where the denominator is the natural extension of “degrees of freedom” to nonparametric regression. For

the vector measurement case with unknown error covariance, if the measurement errors are identically dis-

tributed, that isΣn = Σ ∀n, then we can generalize this idea to estimateΣ by the following algorithm:
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Figure 8.1: True curves (-) and noisy measurements (◦,*).

Figure 8.2: Comparison ofMSE,UR,CV, andGCV for scalar measurements.

1. For eachm = 1, . . . ,M , smooth themth measurement component{yn,m}Nn=1 to computeĝm,αm

using the scalar algorithm of Section 8.2, and using, for example, the CV score to chooseαm.

2. Estimate the elements ofΣ using the standard correlation estimate:

Σ̂ij =

∑N
n=1 (yn,i − ĝi,αi(tn))(yn,j − ĝj,αj(tn))√
trace(I −A(αi))

√
trace(I −A(αj))

,

(which simplifies to (8.18) for the diagonal elements ofΣ). For the non-i.i.d. case, Silverman’s iterative

reweighting approach may be useful [108].

8.6 Algorithm

Table 8.2 outlines the organization of the algorithm’s implementation (C source code is available asvspline

from netlib [143]). The first set of computations are independent ofα. The second set computes the

smoothed estimateŝa, and the third set evaluates the cross-validation score. The computational requirements

for this algorithm are of the same order as those for Kalman filter smoothers [156], whenα is known. The

second and third set are typically repeated for several values ofα to find the minimum CV score. This search

is the computational penalty for our uncertainty about the smoothness of the functions we are estimating. The

computational requirements are based on the operation counts given in Table 8.3, most of which follow from

the algorithms given in [147]. For the i.i.d. case, the transformation method of Miller and Wegman [134] is

preferable as it requires onlyO(M2N) computations for the transformations, andO(MN) computations for

smoothing.

8.7 Simulation Results

To demonstrate the new smoothing algorithm and to compare the three methods of choosing the smoothing

parameterα automatically, we applied the methods to simulated data. Figure 8.1 is a plot of two functions,g1,

a decaying sinusoid, andg2, a hyperbolic tangent, and one realization of their noisy sampled measurements.

We generated the measurements by adding pseudo-random Gaussian noise vectors with covariance matrix

Σ =

 2.25 2.4
2.4 4


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Computation Flops
I. Initialization
Q,T N(7)− 7
(Q′ ⊗ IM )y N(5M)− 5M
B0 = (Q

′ ⊗ IM )Σ(Q ⊗ IM ) N(9M2 + 6)− 23M2 − 16
Subtotal:N(9M2 + 5M + 13)− 23M2 − 5M − 23

II. Regression
(T ⊗D(α)−1) N(2M)− 5M
B = (T ⊗D(α)−1) +B0 N(2M2) − 4M2

[L,D] = Cholesky(B) N( 272 M
3 − 3

2M
2 −M)

−54M3 + 12M2 + 2M
Solve (LDL′)ĉα = (Q

′ ⊗ IM)y N(12M2 − 3M)− 42M2 + 12M
(Q′ ⊗ IM )ĉα N(6M)− 12M
Σ(Q′ ⊗ IM )ĉα N(2M2 −M)
â = y −Σ(Q′ ⊗ IM )ĉα N(M)

Subtotal:N( 272 M
3 + 29

2M
2 + 4M)− 54M3 − 34M2 − 3M

III. Compute CV Score
B−1 = Invert(LDL′) [151] N(18M3 − 6M2) − 2M(3M − 1)(12M − 1)
F = (Q ⊗ IM )B−1(Q′ ⊗ IM ) N( 272 M(M + 1))− 39

2M(M + 1)
en = yn − ĝα(tn) N(M)
Solve (F(nn))fn = Σ

−1
n en N( 12M

3 + 5
2M

2 −M)

CV(α) = 1
N

∑N
n=1 f

′
nΣ
−1
n fn N(2M2 +M − 1)

Subtotal:N( 372M
3 + 11M2 + 29

2M − 1)− 72M
3 + 21

2M
2 − 43

2M

Table 8.2: Computational requirements of linear smoothing algorithm.

Computation Flops
Kron (J, n) with diag(M) n(M(J + 1))− M

2 J(J + 1)
Kron (J, n) withM ×M n(M2J + 1

2M(M − 1))− 1
2M

2(J2 + J)
Chol(J, n) n( 32J

2 + 5
2J)− J(J + 1)

2

Solve(J, n) n(1 + 4J)− 2J2 − J
Invert (J, n) n(2J(J + 1))− 2

3J(J + 1)(2J + 1)

Table 8.3: Computational requirements for band matrix operations.
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Figure 8.3: True curves (solid) and estimated curves (dashed) using CV score.

toN = 100 samples of the function drawn uniformly on[0, 1].

First we applied the scalar smoothing algorithm to the noisy samples ofg1 shown in Figure 8.1. Figure 8.2

showsUR(α), CV(α),GCV(α), andMSE(α) over a range of the smoothing parameter. The minima of the

UR, CV, and GCV scores (denoted by the small circles) occur very close to the minimum of the MSE; thus,

at least for this scalar example, each of the three methods would select a good smoothing parameter. It is

interesting that the UR, CV, and GCV scores are all flatter than the MSE nearαMSE.

To evaluate the three scores in the vector measurement case, we did a Monte Carlo simulation with 400

runs, each with a different measurement noise realization. For each run we computedαMSE,αUR,αCV, and

αGCV using Powell’s method for nonlinear minimization as given in [106, p. 315]. Our intent was to compare

the estimators’ best possible performances, so we initialized the minimization procedure at a value ofα that

resulted in low MSE for a few initial runs. To compare the estimators, we use their relative efficiencies,

defined by:

ηi(α)
4
=
MSE(αMSE,i)

MSE(α)
,

wherei indicates theith run. By definition (8.15),ηi ∈ [0, 1].

Table 8.4 shows summary statistics of the computed relative efficiencies for the 400 runs. Three other

cases are included for comparison; “None”: no smoothing, “diag(Σ)”: smoothing with just the diagonal

components of the covariances (with minimum CV score), and “Σ̂”: smoothing with the estimated covariance

procedure described in Section 8.5 (also with minimum CV score).

From the summary statistics for this example, we conclude that the CV and GCV scores perform equally

well, and both slightly outperform the UR score. Those three were significantly more efficient than smoothing

the components individually, which was expected since the measurement correlation was 0.8. All smoothing

approaches decreased the MSE by a factor of approximately 10. It was a pleasant surprise that the perfor-

mance using the estimated covariance matrix was about as good as the performance using the true covariance.

This suggests that the approach described in this chapter may be preferable to smoothing the components in-

dividually, even when the error covariance is unknown. The off-diagonal elements of the covariance matrices

clearly play an important role, even when estimated.

There is still no consensus on the relative theoretical merits of the UR, CV, and GCV scores, even in the

scalar case. We have derived and presented the vector generalizations of all three since their performances

may be application dependent.

As a representative example, Figure 8.3 shows the smoothed estimates (dashed) superimposed on the true

curves (solid) for the data shown in Figure 8.1, usingαCV. The estimated functions agree well with the true

functions, and the overall smoothness is qualitatively similar as well.
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Summary statistic Smoothing approach
of {ηi}400i=1 None UR CV GCV diag(Σ) Σ̂

meanη 0.076 0.812 0.841 0.846 0.754 0.839
5th %-ile 0.034 0.532 0.578 0.605 0.463 0.555
25th %-ile 0.054 0.731 0.762 0.767 0.664 0.757
50th %-ile 0.071 0.836 0.877 0.877 0.777 0.883
75th %-ile 0.092 0.924 0.947 0.945 0.868 0.946
95th %-ile 0.130 0.991 0.992 0.990 0.945 0.993
ση = ση/

√
400 0.002 0.007 0.007 0.006 0.007 0.007

Table 8.4: Relative efficiencies of the different smoothing approaches.

8.8 Summary

We have presented a computationally efficient algorithm for nonparametric fixed-interval smoothing of noisy

measurements with arbitrary measurement covariances. The effectiveness of the approach was demonstrated

on a numerical example. The approach promises to be an attractive alternative to parametric Kalman smooth-

ing for off-line applications.

Possible extensions of this work would include developing a more robust approach to covariance esti-

mation, and applying Silverman’s iterative reweighting approach [108] for non-i.i.d. covariance estimation.

The relationship of nonparametric estimation to state-space methods could also be explored more completely,

which could result in a recursive formulation of the solution.

8.9 Appendix A: Spline Smoothing Derivation

In this appendix, we derive the solution (8.12) to the minimization problem (8.11):

ĝα = argmin
g
RSS(g) +

M∑
m=1

αmR(gm).

By (8.13),

RSS(g) = (y − a)′Σ−1(y − a),

and by (8.8),
M∑
m=1

αmR(gm) = (c
(m))′Tc(m) = c′(T⊗D(α))c.

Since the minimizing component functions areeach natural cubic-splines, they must each satisfy the

constraintQ′a(m) = Tc(m) of (8.7). These constraints can be aggregated to form the constraint(Q′ ⊗

IM )a = (T⊗ IM )c. The optimal coefficients thus minimize

(y − a)′Σ−1(y − a) + c′(T ⊗D(α))c (8.19)
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subject to

(Q′ ⊗ IM )a = (T ⊗ IM )c. (8.20)

Since(T⊗ IM ) is symmetric and invertible,c = (T⊗ IM )−1(Q′⊗ IM )a, which, substituted into (8.19)

yields

(y − a)′Σ−1(y − a) + ((T ⊗ IM )
−1(Q′ ⊗ IM )a)

′(T ⊗D(α))(T ⊗ IM )
−1(Q′ ⊗ IM )a

= y′Σ−1y − 2a′Σ−1y + a′(Σ−1 + (Q⊗D(α))(T ⊗ IM )
−1(Q′ ⊗ IM ))a.

Minimizing overa by setting the partial derivative with respect toa equal to zero yields

Σ−1y = (Σ−1 + (Q ⊗D(α))(T ⊗ IM )
−1(Q′ ⊗ IM ))â. (8.21)

Solving forâ:

â = (Σ−1 + Sα)
−1Σ−1y, (8.22)

where

Sα
4
= (Q⊗ IM)(T ⊗D(α)

−1)−1(Q′ ⊗ IM ) = (QT
−1Q′)⊗D(α). (8.23)

We could computêa directly from equation (8.22), but a few manipulations [126] yield a banded form that is

easier to evaluate. Multiplying both sides of (8.21) byΣ and using (8.20), we get

y = â+Σ(Q ⊗ IM )(IM(N−2) ⊗D(α))ĉ.

Multiplying both sides by(Q′ ⊗ IM )Σ and using (8.20) yields:

(Q′ ⊗ IM)y = ((T ⊗ IM ) + (Q
′ ⊗ IM )Σ(Q ⊗ IM )(IM(N−2) ⊗D(α)))ĉ. (8.24)

Symmetric band matrices are the easiest to use, so definecα = (IM(N−2) ⊗ D(α))c. Combining this

definition with (8.24) yields:

(Q′ ⊗ IM )y = ((T ⊗D(α)
−1) + (Q′ ⊗ IM )Σ(Q⊗ IM ))ĉα.

Thus the minimizing coefficientŝa andĉ are the solutions to the following system of equations:

((T ⊗D(α)−1) + (Q′ ⊗ IM )Σ(Q ⊗ IM ))ĉα = (Q
′ ⊗ IM )y,

ĉ = (IM(N−2) ⊗D(α)
−1)ĉα,

â = y −Σ(Q ⊗ IM )ĉα.
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8.10 Appendix B: CV Score Derivation

In this appendix, we show that equation (8.16) is equivalent to equation (8.17). Again we useA(nn)(α) to

denote thenthM×M central diagonal submatrix ofA(α). The same arguments used in the proof of Lemma

3.1 by Craven and Wahba [149] imply that for alln andi

ĝα,−n(ti) =

N∑
k=1, k 6=n

A(ik)(α)yk +A(in)(α)ĝα,−n(tn).

By the definition ofA(α),

yn − ĝα(tn) = yn −
N∑
i=1

A(ni)(α)yi

= yn −
N∑

i=1, i 6=n

A(ni)(α)yi −A(nn)(α)ĝα,−n(tn)−A(nn)(α)(yn − ĝα,−n(tn))

= yn − ĝα,−n(tn) −A(nn)(α)(yn − ĝα,−n(tn))

= (I −A(nn)(α))(yn − ĝα,−n(tn)).

Therefore

yn − ĝα,−n(tn) = (I−A(nn)(α))
−1(yn − ĝα(tn)),

which can be substituted into (8.16) to yield (8.17).



Chapter 9

Nonlinear Nonparametric Smoothing

This chapter generalizes the linear smoothing algorithm of Chapter 8 to the problem of estimating a smooth

vector-valued function given noisy nonlinear vector-valued measurements of that function1. We present a

nonparametric optimality criterion for this estimation problem, and develop a computationally efficient itera-

tive algorithm for its solution. The new algorithm provides an alternative to the extended Kalman filter, as it

does not require a parametric state-space model. We also present an automatic procedure that uses the mea-

surements to determine how much to smooth. The preceding chapters have demonstrated the performance

of this algorithm on the object-estimation problem; here, the algorithm demonstrates subpixel estimation

accuracy on a problem from picture processing: estimation of a curved edge in a noisy image.

9.1 Introduction

This chapter considers the problem of estimating a smooth vector-valued function from noisy measurements

observed through a nonlinear mapping. We assume the following nonlinear measurement model:

yn = hn(xn) + εn, n = 1, . . . , N, (9.1)

where

εn,yn ∈ <
Ln , xn ∈ <

M , and hn : <
M → <Ln .

We assume the additive measurement errors are independent between samples and are normally distributed

with mean zero. Without loss of generality, we assume the covariance matrix ofεn is σ2I, whereσ2 may be

1This chapter is derived largely from [129].

93
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unknown2. The states{xn} are (possibly unequally spaced) samples of a smooth vector-valued functiong:

xn = [g1(tn), . . . , gM (tn)]
′ 4= g(tn), tn < tn+1 ∀n, (9.2)

where “′” denotes matrix transposition. The goal is to estimateg from the measurements{yn}Nn=1.

The prevalent approach to this estimation problem is the extended Kalman filter (EKF) [132]. The EKF

hinges on an assumption that the states adhere to a parametric Gauss-Markov state-space model. However, in

applications such as the edge-estimation example given in Section 9.6, the parameters required by the EKF

formulation (state evolution matrices and covariances) are unknown and are difficult to determine. Further-

more, the state-space formulae imply thea priori variance of the function varies witht. Although it is natural

for tracking applications, where one is given a starting state that evolves with increasing uncertainty over

time, this variation is counter-intuitive for off-line applications such as image processing, wheret often rep-

resentsspacerather thantime. For example, when detecting and estimating an edge in an image, thea priori

variance of the position of the edge (the uncertainty before actually seeing the image) is the same through-

out the image. Despite these objections to parametric methods, we must use oura priori knowledge of the

smoothness of the underlying functions if we are to obtainaccurate estimates. This necessity has motivated

nonparametric approaches to smoothing [108, 127], and is the basis for the new algorithm presented in this

chapter.

In Chapter 8, we presented a computationally efficient algorithm for nonparametric smoothing for the

special case whenhn is linear, and we presented the rationale behind “penalized likelihood”estimation. Here,

just as in the linear case, we must compromise between the agreement with the data and the smoothness of

the estimated functions. Thus we propose the following optimality criterion:

ĝ
4
= argmin

g
Φ?(g),

Φ?(g)
4
=

N∑
n=1

‖yn − hn(g(tn))‖
2 +

M∑
m=1

αm

∫
(g(k)m (t))

2 dt. (9.3)

This criterion is the natural generalization of (8.11). O’Sullivan [157] considered this criterion for the case

of scalar measurements. For simplicity, we assumek = 2. The parameterα = (α1, . . . , αM) controls the

influence of the penalty term, and in Section 9.4 we describe how to estimateα from the measurements

automatically. Until then, we assumeα is known.

By the “minimal property of splines” proven in Theorem 2 of [125], any functionĝ that achieves the

minimum ofΦ? is a vector spline with component functions that are cubic splines (fork = 2). (We restrict

our attention here to natural cubic-splines by imposing the end conditions thatgm(t) is linear fort < t1 and

t > tN .) However, unlike in the linear case, in general there may be multiple minima3. Physical constraints

2If the measurement error has the (positive definite) covariance matrixσ2Σn, then we can premultiplyyn andhn by Σ−1/2n .
Singular covariances may be the result of linearly dependent measurements, indicating that other constraints should be incorporated.

3Considerhn(x) = x2, thenΦ?(g(t)) = Φ?(−g(t)).
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will usually rule out the irrelevant solutions. The EKF suffers the same ambiguity, a fact usually ignored

since the filter update equations are initialized at some (presumably meaningful) starting state. The iterative

algorithms we present below also require an initial estimate.

Since the component functions ofĝ are natural cubic-splines, we need only estimate the coefficients of

their piecewise-polynomial expansions (or, for better numerical stability, their B-spline expansion [145]). In

fact, if we computêg(t) at t1, . . . , tN , then we can compute all the coefficients from (8.6). From (9.2), this

is equivalent to estimating the states{xn}Nn=1. From Section 8.9,

M∑
m=1

αm

∫
(g(2)m (t))

2 dt = x′Sαx,

whereSα is defined by (8.23), and

x
4
= [x′1, . . . ,x

′
N ]
′.

Therefore, the variational problem (9.3) is equivalent to the following penalized nonlinear least-squares prob-

lem:

x̂α = argmin
x
Φα(x),

Φα(x) = ‖y− h(x)‖2 + x′Sαx,

where

y
4
= [y′1, . . . ,y

′
N ]
′, h(x)

4
= [h1(x1)

′, . . . ,hN(xN )
′]′.

Sα, which also depends onk in general, is the spline penalty matrix that prohibits excessive local variation

in ĝ.

In Sections 9.2 and 9.3, we develop an iterative method for computingx̂α. This method is summarized

as a computationally efficient algorithm in Section 9.5, after we discuss selection ofα in Section 9.4. We

demonstrate the algorithm on a curved-edge estimation problem in Section 9.6, and conclude with open

problems in Section 9.7.



CHAPTER 9. NONLINEAR NONPARAMETRIC SMOOTHING 96

9.2 Linearization Approach

We first consider estimatingx by a linearization method similar to the EKF approach. Assumex◦
4
=

[x′◦,1, . . . ,x
′
◦,N ]

′ is an initial estimate4 of x. By the first-order Taylor’s expansion ofhn aboutx◦,n:

hn(xn) ≈ hn(x◦,n) +Hn(xn − x◦,n), (9.4)

whereHn is theLn ×M Jacobian ofhn evaluated atx◦,n. Substituting (9.4) into (9.1), we get

yn ≈ hn(x◦,n) +Hn(xn − x◦,n) + εn.

Multiplying both sides by(H′nHn)
−1H′n and rearranging yields

zn ≈ xn + vn, (9.5)

where

zn
4
= x◦,n + (H

′
nHn)

−1H′n(yn − hn(x◦,n)).

The transformed measurement errorvn is normally distributed with mean zero and covariance matrixΠn =

(H′nHn)
−1. This procedure requires5 that(H′nHn) be invertible, or equivalently that the Jacobians all have

rankM . A necessary condition is therefore thatLn ≥M ∀n. (One special case is worth noting: if the initial

estimate is the (unpenalized) maximum-likelihood estimate, i.e.,x◦,n = argminxn ‖yn − hn(xn)‖
2, then

zn = x◦,n, and each covariance matrixΠn is a corresponding Fisher information matrix.)

We have transformed the nonlinear measurements (9.1) into a set of linearized measurements (9.5) that are

now in a form suitable for the linear vector-spline smoothing algorithm of Chapter 8. The resulting estimate,

denoted bŷxLin, satisfies

x̂Lin = argmin
x
Φ◦(x),

Φ◦(x) = (z − x)′Π−1(z − x) + x′Sαx,

where

z
4
= [z′1, . . . , z

′
N ]
′, Π = diag(Πn).

Φ◦ is a quadratic form, and its minimizer (cf. (8.22)) is:

x̂Lin = (Π
−1 + Sα)

−1Π−1z. (9.6)

In the implementation of this algorithm, we computex̂Lin with theO(M3N) algorithm of Chapter 8, rather

than by direct evaluation of (9.6).

4Obtaining an initial estimate is clearly application dependent. The transform approach of Bresler [158] is well suited fornonlinear-
ities that separate into “shift” and “shape” parameters.

5It is not strictly necessary that all the Jacobians exist or have rank M. Spline smoothing can be applied to non-uniformly spaced
measurements, so one could simply discard any measurements violating the existence or rank conditions.
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A significant difference between this nonparametric approach and the EKF approach is the timing of the

linearization. Here, we first independently linearize all the measurements, and then smooth. For the EKF,

the measurements are linearized about the most recent estimate from the recursiveupdate formulae [132].

Though our approach therefore requires more effort “up front” in obtaining initial estimates, it does avoid

some of the potential problems of EKF mistracking [78, 158].

Since the accuracy of̂xLin depends on the accuracy of (9.4), we would usually iterate by usingx̂Lin as a

new “initial” estimate and repeating the above procedure. Unfortunately, there is no guarantee such iterations

will accomplish our original goal of minimizingΦ? or will even converge. The most we can claim is that

the optimal estimatêxα is a fixed-point of the iterations, i.e., ifx◦ = x̂α thenx̂Lin = x̂α. The standard

solution to this dilemma is to introduce a relaxation parameter. It is not clear how to do this from the above

derivation, despite its intuitive appeal. With an eye towards applying the Levenberg-Marquardt relaxation

method [159], in the next section we derive the Hessian estimate ofx.

9.3 Hessian Approach

The Hessian approach [106] for nonlinear least-squares problems is to approximate the functionalΦα locally

by a quadratic:

Φα(x) ≈ Φα(x◦) − 2d
′(x − x◦) + (x − x◦)

′D(x− x◦).

The estimate is then given as

x̂Hess = x◦ + δ,

whereδ is the solution to

Dδ = d. (9.7)

Neglecting second derivatives [106], one can easily computed andD:

d = −
1

2

∂Φα
∂x

∣∣∣∣
x=x◦

=H′(y − h(x◦)) − Sαx◦,

and

D =
1

2

{
∂Φα
∂xi

∂Φα
∂xj

}
= (Π−1 + Sα),

where

H
4
= diag(Hn).

Therefore, the Hessian estimate is:

x̂Hess = x◦ + (Π
−1 + Sα)

−1[H′(y − h(x◦)) − Sαx◦]. (9.8)
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The Levenberg-Marquardt (LM) approach [159] to relaxation of the Hessian nonlinear least-squares

method is equally applicable to our penalized nonlinear least-squares problem, since the penalty is a quadratic.

Instead of (9.7), the LM approach (see discussion in [106,§14.4]) is to compute the update as follows:

(D+ λΛ)δλ = d,

yielding the estimate

x̂Hess,λ = x◦ + δλ.

The matrixΛ is diagonal, and its elements are a measure of scale; we takeΛ to be the diagonal elements

ofΠ−1. The LM algorithm provides a procedure for choosing the relaxation parameterλ to ensure that the

new estimate is better than the previous estimate, i.e.,Φα(x̂Hess,λ) < Φα(x◦). This procedure guarantees

convergence to a local minimum when one iterates the Hessian method.

By applying (9.5), (9.6), and (9.8):

x̂Lin = (Π−1 + Sα)
−1Π−1z

= (Π−1 + Sα)
−1Π−1[ΠH′(y − h(x◦)) + x◦]

= (Π−1 + Sα)
−1[H′(y − h(x◦)) +Π

−1x◦ + Sαx◦ − Sαx◦]

= x◦ + (Π
−1 + Sα)

−1[H′(y − h(x◦))− Sαx◦]

= x̂Hess,

we see that the Hessian approach and the linearization approach of Section 9.2 are equivalent, i.e.,x̂Lin =

x̂Hess. Using this equivalence, we can translate the relaxation parameter idea back into the spline-smoothing

formulation. By the same arguments as above, if we define

x̂Lin,λ
4
= (Π−1λ + Sα)

−1Π−1λ zλ,

where

zλ
4
= ΠλH

′(y − h(x◦)) + x◦,

and

Π−1λ
4
= Π−1 + λΛ,

then x̂Lin,λ = x̂Hess,λ. In words, rather than smoothing the pseudo-measurementszn (with covariances

Πn), we smoothzn,λ (with covariancesΠn,λ). This estimation procedure is translated into an algorithm in

Section 9.5.
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9.4 Choosing the Smoothing Parameters

As in the linear case, we want to choose the smoothing parameterα to provide good estimates ofg. One

method with intuitive appeal and high (statistical) efficiency (as shown in Chapter 8) in the linear case is to

choose the smoothing parameter that minimizes the cross-validation (CV) score, defined by

CV(α)
4
=
1

N

N∑
n=1

‖yn − hn(ĝα,−n(tn))‖
2, (9.9)

where

ĝα,−i
4
= argmin

g

N∑
n=1,n 6=i

‖yn − hn(g(tn))‖
2 +

M∑
m=1

αm

∫
(g̈m(t))

2 dt.

ĝα,−i is the solution to the smoothing problem posed without data pointyi. Exact evaluation of (9.9) is

impractical since it would requireN iterative smoothing problems for each value ofα. Motivated by the

corresponding formula for the linear case (8.17), we propose the following approach: for a given value of

α, computêxα, and usêxα to compute the linearized measurementz, the JacobianH, and the covariance

Π = (H′H)−1. Then an approximation forCV(α) is

CV0(α)
4
=
1

N

N∑
n=1

‖Π
− 12
n (IM −A(nn)(α))

−1(zn − x̂α,n)‖
2, (9.10)

where (cf. (9.6))

A(α)
4
= (Π−1 + Sα)

−1Π−1,

andA(nn)(α) is thenth M ×M block diagonal submatrix ofA(α). This approximation is based on the

expectation that̂xα will be close enough tog that the Taylor expansion (9.4) will be accurate. Oncex̂α

is computed, (9.10) is evaluated inO(M3N) operations as discussed in Chapter 8. The accuracy of the

approximation used in derivingCV0 is less important than whether or not the minimum ofCV0 occurs at a

value ofα for which x̂α is a good estimate. In Section 9.6 we show an empirical result that indicates the

utility of CV0.

9.5 Algorithm

The algorithm depicted in Table 9.1 computesx̂α iteratively for a particular value ofα. The computational

complexity is onlyO(M3N). We have borrowed ideas from [106,§14.4], substituting in our optimality

criteria. All operations containing terms with the subscriptn are repeated forn = 1, . . . , N . Source code

for this algorithm is available asvspline from netlib [143]. The dominant computational requirements

are the vector-spline smoothing and the computation ofCV0. Since these computations are required even

in the linear measurement case, the principle “penalty” incurred when considering nonlinear problems is the

necessity of iteration.
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The algorithm of Table 9.1 is implemented as a procedure that returnsCV0(α). This procedure is typi-

cally called with several different values ofα to minimizeCV0(α). We used the subroutine given in [106]

for Powell’s method for this minimization. We can make considerable computational savings by using the

smoothed estimates for one value ofα as the initial state when smoothing for a nearby value ofα. Using this

procedure, we have found empirically that although the smoothing algorithm may require six to ten iterations

for the first value ofα, on subsequent calls the smoothing procedure typically converges to within 0.1% of

minx Φα(x) in just one or two steps.

In the examples of Section 9.6, the “else” section of this procedure rarely executed, hence the iterations

converged nearly quadratically to the estimatex̂α.
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Computation Flops
Obtain initial estimatex◦ ?
x̂ := x◦
λ := 0.001
ŷn := hn(x̂n) ?
Hn := Jacobian ofhn at x̂n ?
en := yn − ŷn N(L)
wn := H

′
nen N(2ML)

Π−1n := (H
′
nHn) N(2M2L)

fbest := Φα(x̂) N(14M)
Λn := diagonal elements ofΠ−1n
repeat{

Π−1n,λ :=Π
−1
n + λΛn N(2M)

InvertΠ−1n,λ N(M3)

zn,λ := x̂n +Π
−1
n,λwn N(2M2)

x̂Lin,λ := vector-spline smooth{zn,λ}, covariances{Πn,λ} N( 272M
3)

ˆ̂y n = hn(x̂Lin,λ) ?
ˆ̂e n = yn − ˆ̂y n N(L)
fnew := Φα(x̂Lin,λ) N(7M)
if (fnew < fbest)

x̂ := x̂Lin,λ
fbest := fnew
ŷn := ˆ̂y n
Hn := Jacobian ofhn at x̂n ?
wn := H

′
n
ˆ̂e n N(2ML)

Π−1n := (H
′
nHn) N(2M2L)

Λn := diagonal elements ofΠ−1n
λ := 0.1λ 1

else
λ := 10λ 1

} untilΦα(x̂) decreases insignificantly.
computeCV0 score forx̂α N( 372M

3)

Table 9.1: Iterative nonlinear estimation algorithm and computational requirements.
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Figure 9.1: Noisy image data for curved edge estimation example.

Figure 9.2: Noisy image data for straight edge estimation example.
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9.6 Edge Estimation Application

One simple application of the nonlinear smoothing algorithm described above is to the problem of estimating

the position of edges in digital images. Consider Figures 9.1 and 9.2;each of the(N = 64) rows of these

images contains(L = 64) samples of a step function of unknown shift(M = 1). If the edge is known to be

straight, then high accuracy techniques exist for estimating the edge [160]. However, if the edge is smoothly

varying curve, the nonlinear estimation approach of this chapter is applicable.

An approximate model for the measurement function for this problem is:

hi(τ )
4
=

∫ i
i−1

1{s≤τ} ds, (9.11)

where

1{s≤τ} =

 1, s ≤ τ0, s > τ
,

with corresponding Jacobian:
∂hi(τ )

∂τ
= 1{|i−τ−1/2|≤1/2}.

We generated the data displayed in Figures 9.1 and 9.2 by using (9.11) and adding Gaussian noise with

varianceσ2 = 0.25. The resulting SNR (= 1/σ) is 2.

Assuming that the underlying edge is smoothly varying (which Figures 9.1 and 9.2 do seem to suggest),

the only remaining requirement for the nonlinear smoothing algorithm is to provide an initial estimate. We

used the following simple heuristic: a temporary copy of each row of the image was convolved with an

approximate matched filter kernel[1, 1, 1, 1, 1, 1, 0,−1,−1,−1,−1,−1,−1], and the index of the pixel with

maximum value was stored. This set ofN = 64 numbers was then median filtered, and the result was the

initial estimate of the edge position.

We do not have any reason to stipulate a particular smoothing parameter, so we use cross-validation. To

verify theCV0 approximation, we show in Figure 9.3 a plot of the mean-squared error and theCV0 score as

a function ofα for the data set shown in Figure 9.1, where

MSE(α)
4
=
1

N

N∑
n=1

‖ĝα(tn)− g(n)‖
2.

The minimum of theCV0 curve is very close to the minimum of the MSE curve, thus our approximation for

the CV score is useful for achieving accurate estimates. Theunderlying curve in Figure 9.2 is truly a straight

line. Hence, as shown in Figure 9.4, the MSE is monotonically decreasing with increasingα. Because of the

low signal to noise ratio, theCV0 score decreases to a certain point and then increases again. Nevertheless,

the minimum ofCV0 does occur where the MSE is reasonably small.

Figures 9.5 and 9.6 show a comparison of the true and the estimated position functions for the optimal

α’s. The algorithm adapted itself to both the curved edge and the straight edge—choosing a much larger value
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Figure 9.3: Comparison ofMSE andCV0 for curved edge example.

for the smoothing parameter in the latter case. This example highlights the versatility of this nonparametric

paradigm. Figure 9.7 shows plots of the estimation errors for the above examples. The subpixel errors

demonstrate the estimation accuracy of this approach.

Figure 9.4: Comparison ofMSE andCV0 for straight edge example.
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Figure 9.5: True (solid) and estimated (dashed) edge position from Figure 9.1.

Figure 9.6: True (solid) and estimated (dashed) edge position from Figure 9.2.

Figure 9.7: Estimation errors for edge estimation examples.
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9.7 Summary

We have presented an iterative algorithm for nonlinear estimation of a smooth vector-valued function, based

on a nonparametric optimality criterion. This algorithm provides an alternative to the EKF that is useful

for off-line processing. We have suggested one approximate method for choosing the smoothing parameter

automatically. There are a plethora of methods in use for the linear case, including robust choices [150]; a

detailed comparison of these methods in the nonlinear case is an open problem.

That our algorithm requires an initial estimate for every state is a mixed blessing. Recursive formulae

have also been developed for linear spline smoothing [161, 138]. Perhaps an extension of this work would

yield a recursive nonlinear smoother that would only require a single initial state.

In this chapter, we have demonstrated the potential of this algorithm on a simple edge-estimation problem.

In addition to the 3-D reconstruction problem of this thesis, other potential applications include biomechan-

ics [139] (tracking the movement of limbs from photographic images), and geophysics [162] (estimating

continental plate motion from surface measurements).



Chapter 10

Discussion

10.1 Summary of Contributions

This thesis has described a new object-based method for reconstructing 3-D descriptions of arterial trees

from a few projections. The method captures oura priori knowledge of the structure of arterial trees in a para-

metric object model, and quantifies arterial smoothness using new nonparametric smoothing algorithms. By

incorporating thisa priori knowledge into an optimality criterion, we have translated the reconstruction prob-

lem into a parameter estimation problem. We developed and implemented an estimation algorithm tailored

to this problem, and demonstrated subpixelaccuracy reconstructions from as few as four noisy projection

images.

We have generalized the measurement model to account for the time-variations of contrast density; an

essential extension for MR angiography. We have generalized the object model to accommodate branching

arteries. These generalizations allowed us to break through the ‘simulated data’ barrier, and we demonstrated

the firstin vivo reconstructions of an arterial tree with an object-based method. We have also demonstrated

the robustness and versatility of the elliptical model by applying it to simulated projections of crescent-shaped

cross-sections.

Essential to these low-SNR reconstructions was our use of the smoothness properties of arteries. We gen-

eralized the linear, scalar spline smoothing technique to nonlinear, vector measurements. We also generalized

the method of cross-validation to these cases. The nonparametric smoothing algorithms are very practical for

natural scenes such as angiograms, since the difficult task of deciding how much to smooth is addressed

automatically.

The promise of this method is perhaps best demonstrated by Figures 7.3 and 7.4, which show that accurate

reconstruction of bifurcations is achievable with parametric models. Note that an attempt to reconstruct

intersecting ellipses on a local, slice-by-slice basis would be too sensitive to noise; it is the powerfula
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priori knowledge of smoothness that makes our global approach effective. Figures 4.7 and 4.8 are also

very encouraging results; they show that accurate estimation of the arterial radius is achievable even without

assuming that the radius function is smooth, provided that the position and density functions are smooth.

As noted by Rosset al. [3]: “Some digital techniques are in use in clinical practice, but application of

these promising approaches is not yet widespread.” The author hopes that by having addressed some of the

limitations of the previous methods, this dissertation will be a step towards a clinically useful method. Unfor-

tunately, a possible disadvantage of this approach is its complexity; our implementation consists of over ten

thousand lines of C programs. However, computer capabilities have risen while the prices have dropped, and

our reconstruction times are reasonable (a few minutes) on an affordable workstation. The emphasis on reduc-

ing computations that pervaded earlier work in quantitative angiography is unjustifiable now, and researchers

will be able to address the remaining challenges by considering increasingly sophisticated models.

10.2 Open Problems

The theory we present has the potential of providing a fully automatic reconstruction algorithm. However, like

many methods, the current implementation of our algorithm requires some manual initialization. Automating

this will be a necessary step towards making the algorithm useful clinically. Once possible approach would

use a detection algorithm based on the outer two minimizations of (6.4). Brute force minimization of (6.4)

would be impractical computationally; one will need to exploit the structure of arterial trees as done in

Chapter 6. Automating the procedure should be relatively easier in the high-SNR case, as with intra-arterial

contrast studies [58].

The most important areas for future work are implementing and demonstrating the cone-beam reconstruc-

tion algorithm for X-ray angiography, and extending the models to accommodate multi-valued generalized

cylinders. A more extensive analysis of the constraints under which the approximations used to develop

the cone-beam algorithm is also needed. When addressing the multi-valued problem it should be useful to

consider the paradigm that has led to the single-valued object reconstruction algorithm: first consider a sin-

gle object in a single view, then a single object in multiple views, and perhaps apply the AM iterations to

accommodate multiple branching objects. The author suspects it will be more fruitful to first consider the

multi-valued problem in a more general projection geometry than the cylindrical one considered here. For

example, since three ideal projections are sufficient for reconstructing an ellipse, it should be possible to

reconstruct a multi-valued object from projections in six directions: the three coordinate axes and the three

bisectors of pairs of those axes.

In addition, there remain a wealth of unanswered questions pertaining to 3-D reconstruction. How should

one best choose the smoothing factorα for arterial trees? Shouldα be the same for every object, or should

α scale with object size since smaller arteries tend to be more tortuous? In MR, increasing the resolution by
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decreasing the field-of-view (FOV) causes a decrease in signal energy. What is the optimal FOV for a given

anatomical region? How large a rotation angle (θr) is required for a dual bi-plane projection geometry for a

given desired accuracy?

We have demonstrated single-object reconstruction with a smooth background from a simulated projec-

tion. The accuracy of such an approach needs to be examined more carefully on real X-ray angiograms. In

intra-arterial angiography, the typical signal-to-noise ratio is quite high, but the signal-to-background ratio

may be poor. The regular characteristics of arterial projections suggest that morphological filters should be

useful for reducing background interference.

Although we have designed a method thataccounts for statistical measurement noise, there is another

source of error that needs further attention. Most X-ray systems are not positionable precisely, so the 3-D

coordinate system for each projection must be calibrated indirectly, typically from projections of a phantom.

What is the sensitivity of a parametric reconstruction algorithm to errors in this calibration? The author

suspects that the multiple-view methods that use the fewest views are the most vulnerable to such errors,

since small errors might tend to ‘average out’ when dozens of views are used. However, calibration errors are

similar in character to the errors introduced by the parallel approximation to a cone-beam geometry, so in light

of the results of Section 7.5, perhaps the sensitivity is reasonable. For reconstruction from MR angiograms,

the consequences of vessels of different phase being superimposed in a projection needs further examination.

This may be challenging to study since plastic phantoms induce susceptibility artifacts into MR images.

In our object-based approach, the ellipse area is not a parameter, but it can be computed directly (byπr̂2)

once the radius is estimated. For arterial segments with overlap-free projections, one could also compute the

density-weighted area. Deviations from the elliptical model could then be tested by applying a generalized

likelihood-ratio test that compares the densitometric area withρ̂πr̂2. The p-value of the deviations could

be reported graphically1 to indicate potential non-elliptical lesions to the physician. It would also be useful

to report confidence intervals for the parameter estimates to the physician. Unfortunately, the theory of

confidence intervals for nonparametric smoothing is not developed firmly. One could certainly report the

Cramer-Rao lower bound, but we frequently exceed thatbound by exploiting smoothness. One approach may

be to ‘simulate the posterior’ by generating synthetic projections of the estimated arterial tree with comparable

SNR, re-estimating the arterial tree from the synthetic projections, and then looking at the variations over

several noise realizations. This may be less time-consuming than one might expect, since one could use the

originally estimated arterial tree to initialize the iterative algorithm at a point reasonably close to the optimal

estimate.

Our approach has been to avoid enforcing plausible constraints such as equality of the density of overlap-

ping ellipses. Though such constraints could reduce the degrees of freedom and thereby decrease the estimate

variance, they could also increase potential modeling error. Nevertheless, if the SNR is very low, it may be

1At the risk of being ridiculed, one might suggest using color for this purpose.
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necessary to use even morea priori knowledge. The branching-spline method of Silverman [140], applied

to agricultural data originally, may be a one useful approach to enforcing tighter constraints between objects

that branch.

As mentioned in Chapters 8 and 9, several research opportunitiesalso remain in nonparametric smoothing.

In particular, the cross-validation score for nonlinear measurements is an approximation that needs to be

evaluated more carefully. We have based our smoothness penalties on a squared second-derivative criterion.

This is certainly appropriate for the position parameters, but for the other parameters a squared first-derivative

may be more appropriate. This is true especially for the ellipse orientation parameter. A careful examination

of Figure 7.24 reveals a ‘spiral’ character to some of the smaller objects. This is due to a linear orientation

function that is completely unpenalized by the second-derivative, even though intuition tells us that such an

object is less likely than a non-spiral object. The nonparametric smoothing algorithm and software could be

easily generalized to accommodate different penalty functions for the different parameters.

As the above theoretical issues are resolved, increasing attention should be paid to improving the user-

interface software, if the method has hopes of being used clinically. Fortunately, the arterial tree descriptions

in an object-based approach are very amenable to user interaction. Shaded-surface displays can be gener-

ated very rapidly at any projection angle, particular segments of the tree can be identified easily for closer

examination, and hemodynamic factors can be computed directly from the parametric description.

One of the most compelling motivations for using as few projections as possible is the practical difficulty

in acquiring more than a few ‘simultaneous’ projections. However, perhaps simultaneous projections are

unnecessary for arterial reconstruction, since arterial tree motion is constrained. Wu [63] made effective use

of multiple cine-projections for simple position and area estimates; it would be interesting to incorporate that

approach into the global estimation framework of this thesis to utilize the 4-D information available from

cine-projections more completely.
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