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Abstract

This dissertation describes an object-based approach to the problem of reconstructing three-dimensional de-
scriptions of arterial trees from a few angiographic projections. The method incorpayaiesi knowledge

of the structure of branching arteries into a natural optimality criterion that encompasses the entire arterial
tree. This global approach enables reconstruction from a few noisy projection images. We present an efficient
optimization algorithm for object estimation, and demonstrate its performance on simulated, phantom, and
in vivo magnetic resonance angiograms, as well as an X-ray phantom.

The 3-D reconstruction method is based on new nonparametric smoothing algorithms that we present
for both linear and nonlinear measurements. These algorithms provide nonparametric alternatives to the
Kalman filter and the extended Kalman filter. In particular, we describe automatic procedures based on cross-
validation for determining how much to smooth; this adaptation allows the data to “speak for itself” without
imposing a parametric model.
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Chapter 1

Introduction

1.1 Why Quantitative Angiography?

A tremendous amount of research on imaging methods for the circulatory $ylstsnbeen motivated

by this astounding statistic [1]: “coronary heart disease causes one third to one half of all deaths of people
between the ages of 35 and 64 years in the United States.” The objectives of this research were summarized
by Skorton [2]:

the ultimate goals of clinical cardiac imaging include the complete structural, functional, and
metabolic characterization of the heart, great vessels, and the pulmonary vasculature in a nonin-
vasive manner. To achieve these goals will require the depiction of cardiac morphology ... and
the anatomy of the coronary arteries.

Accurate descriptions of arterial trees would be useful for quantitative diagnosis of atherosclerosis, for plan-
ning treatment of stenofi@rteries, for monitoring disease progress or remission, and for evaluating efficacy
of different treatments [3]. This dissertation describes a new approach to the problem of reconstructing three-
dimensional descriptions of arterial trees from a few angiographic projection images.

The conventional method for evaluating angiographic images is human interpretation. The inaccuracy
of human interpretation of angiograms has been well documented, in terms of both intra-observer and inter-
observer variability [4]. Not only is the variability large, but also “the standard approach to assessing the
severity of coronary stenoses—estimation of percent diameter narrowing of the stenotic segment compared to
a presumably normal segment—may not correlate with the physiological significance of the obstruction [2].”
This is due in part to the fact that “the hemodynamic effeftcoronary artery narrowing is determined by

1Broadly interpreted, the terangiographyincludes any such methods.
2A stenosis is a narrowing of a vessel cross-section.
3The decrease in fluid pressure across a stenosis.
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the absolute (not relative) diameter and also by the length of the stenotic segment [4].” Furthermore, “since
hemodynamic effects are proportional to the diameter of the stenosis raised to the fourth power, a small un-
certainty in border definition may introduce a large uncertainty into the hemodynamic effect calculated from
X-ray measured dimensions [5]." These issues are compounded by the fact that “many [radiologists] use
[percent stenosis] without specifying whether they are referring to a percentage reduction of the diameter
or of the area of the lumér{6].” These problems have motivated the development of automated methods
for obtaining quantitative measurements of arterial morphologgatbse, as concluded by Paulin, “measure-
ments from angiograms can be performed more objectively with advanced imaging technology assisted by
computers [6].”

Current X-ray angiography procedures are applied only to patients with a high risk of having atheroscle-
rosis. This is insufficient, as a summary of recent studies [7] discussed:

a fascinating but disturbing fact: ... asymptomatic subjects with normal results on stress tests
had a much lower mortality rate than asymptomatic subjects with abnormal results. However,
the very large low-risk group with normal responses to exercise testing ... contained, in absolute
terms, the large majority of subjects who subsequently died suddenly.

This observation highlights the importance of non-invasive quantitative angiography, since asymptomatic
patients do not qualify for invasive examinations such as intra-arterial angiography. To identify individuals
at possible risk due to mild plaque build-up, a non-invasive procedure is needed that can quantify lumen
size accurately. Magnetic resonance angiography (MRA), in conjunction with computed reconstructions of
arterial trees, has potential to serve this feethe 3-D arterial reconstruction algorithm presented in this
dissertation is particularly suited to MR data, though the approach is also applicable to digitally acquired
X-ray angiograms.

1.2 Background

Quantitative angiography has been studied for over temades, and improvements in imaginghtealogy
and computer speed continue to spur the development of various reconstruction methods for the many dif-
ferent applications. To the best of our knowledge, all previous methods have been applied only to X-ray
angiograms, and have not addressed the unique aspects of MRA. In this section, we review the quantitative
angiography literature. For additional reviews and bibliographies, see [9, 10, 11, 12, 13, 14, 15].

For completeness, we first mention some alternate methods for improving the utility of angiography. One
approach is to combine multiple projection images to form a focussed image of a plane or surface containing

4The lumen is the inner portion of an artery through which blood flows.

5The detectability of mild atherosclerosis remains to be seen. éwent study [8], Glagoet al. “conclude that human coronary
arteries enlarge in relation to plaque area and that functionally significant stenosis may be delayed until the lesion occupies 40 percent
of the internal elastic lamina area.”
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the arteries of interest, while blurring objects in other planes. This procedure is known as tomosynthesis [16,
17]. Another approach is to acquire a 3-D data set “directly.” Flow-sensitive MR techniques can acquire
a complete 3-D data set [18, 19], but they require a large number of excitations. This requirement makes
cardiac gating impractical, and ungated sequences often suffer from sensitivity to non-uniform flow and
vessel motion. Specialized X-ray equipment [20, 21] with multiple source-detector pairs can acquire enough
projection data to reconstruct a 3-D data set with conventional algorithms, but such equipment is not widely
available. For quantitative diagnosis, one must still apply an algorithm to extract the pertinent information
from such data sets [22, 23, 24, 21].

A so-called “reconstructed arterial tree” is not an actual arterial tree, but rather some symbolic description
of the tree. The nature of the description has profound implications for the applicability and stability of a
reconstruction method. The more rigorous of the methods described below are explicitly based on either a
parametric or a nonparametric description of the arterial tree. Unfortunately, many papers invoke only an
implicit model, such as those in which “diameter” is computed from a single view without mentioning the
assumption of a circular lumen cross-section.

The most general representation for an arterial tree is to consider it an unknown three-dimensional density
functionp(z, y, z; t). In generaly is also a function of time due to the motion of blood and of the arteries. In
X-ray imaging,u represents the linear attenuation coefficient of iodinated blood, while in subtraction MRA,

1 represents the density of inverted spins that have flowed into the readout region [25, 26]. We use “contrast”
or “density” throughout to refer ta, although no contrast agent is administered in MRA. Our goal is to
estimatey from as few views as possible.

Since the time-variation of arteries makes acquisition of only a few (almost) simultaneous views possible
with practical equipment, the number of views required by a reconstruction method affects its clinical feasi-
bility significantly. Thus, our review is categorized into single-view methods, stereo and bi-plane methods,
and multiple-view methods.
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1.2.1 Single-View Methods

Before the proliferation of digital angiography units, methods for quantitative angiography were based pri-
marily on digitized film [27, 28, 29, 30]. Most film-based methods considered only a single view, perhaps
because mitiple-view methods require calibration of a 3-D reference coordinate system—a cumbersome
procedure with film.

The earliest methods for processing angiograms were based on applying gradient operators, such as the
Sobel and Hueckel operators [31], followed by thresholding to identify edges. Wiener-like filters for edge
estimation were also applied [32]. To avoid missing any edges, the thresholds were set fairly low, leading
to many false-alarm edges. The detected edges were then linked to form objects and to prune spurious
edges [33, 34]. The difficulty with global image operators is that the intensity of an arterial projection can
vary with the artery’s diameter, so a single threshold is insufficient. Furthermore, gradient operators are
sensitive to noise, and fail to exploit any properties of the arterial images of interest.

The inadequacy of edge detection methods led to the development of methods designed specifically for
estimating the projected arterial diameter. A very popular approach has been to smooth the arterial profile in
each scan line, and then use the peak of the first derivative or the zero of the second derivative as an estimate
of the arterial edge [35, 36, 37]. However, these slope-based methods are biased, since an arterial profile
is a semi-ellipse function rather than a rectangular function. (The first-derivative peak underestimates [29]
and the second-derivative zero overestimates [35] arterial diameter.) Koadhsdrattempted to combat
this problem by using a weighted average of the two derivates [28], but the weighting must be determined
empirically. A line-by-line Wiener filter was also proposed for vessel edge detection [38].

The above methods are termed “geometric,” while methods that are based on the absolute measured pixel
values are termed “densitometric.” For example, Weber [39] showed that the first zero-crossing of the Fourier
transform of a vessel profile is proportional to arterial diameter and is somewhat insensitive to image blurring.
Shmueli [40, 10, 41] first proposed fitting the projection of a circle to the measurements as a parametric
method for estimating arterial diameter. Kruger [42] showed that vessel diameter is proportional to the ratio
of the sum of the profile pixel values to the center pixel value. Such methods rely on a linear relationship
between the X-ray path length through an iodinated vessel and the measured pixel value. The nonlinearity of
film-based systems perhaps explains why the geometric methods remain popular, despite the fact that Pappas
has shown that the densitometric approaches are more accurate [30, 35, 12]. This accuracy is due in part to
the ability of densitometric methods to estimate diameter to sub-pixel resolution, while slope-based methods
are limited by the detector resolution.

The simplest densitometric operation is accumulating the pixel values across an arterial profile. The
resulting sum is proportional to the cross-sectional area. Unfortunately, the constant of proportionality is
unknown and is difficult to determine since it depends on the concentration of iodine in X-ray angiography
and on the density of excited spins in MRA. Furthermore, this density varies along the arterial length in MRA.
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The unknown constant limits the utility of densitometric area to consideration of relative values. However,
computations of stenosis pressure drop depend on stenosis geometry, including entrance and exit angle [43],
for which relative area alone is insufficient.

Most of the above methods for estimating arterial diameter originally required manual tracing of the pro-
jected artery’s centerline. Many papers have proposed methods for eliminating this interaction. Shmueli [41]
developed an optimal estimation algorithm for computing the position and diameter of a single artery. Nishimura [44]
generalized this to include overlapping arteries. Barth [27] described a single-vessel tracking algorithm based
on a circular search window, while Hoffmann [45] used a pair of rectangular search windows to track an entire
arterial tree recursively. Kitamura [14] described another tracking algorithm that accounts for bifurcations,
but not overlapping arterial projections. Sun [46] exploited position, curvature, diameter, and density conti-
nuity to track an artery, but withoaccommodation of branching or overlapping arteries.

Sun [46] observed that there are two classes of methods for arterial segmentation: “tracking” methods
that attempt to follow the local ridge of an arterial projection, and “scanning” methods that are applied more
globally. Nguyen [47, 48] proposed one scanning method that requires several steps for ridge detection and
merging. Stansfield [49] reported a edge-linking region-growing method controlled by a rule-based system,
but concluded that the rules were inadequate. An expert-system based multi-resolution algorithm was also
presented by Ergener [50]. Eichel [51] described a completely automated edge-tracking algorithm based
on a Markovian edge model. After enhancing the edges with a Gaussian-weighted gradient operator, the
edges are linked with a tree search based on communication theory. Morphological filteredeviyr
shown promise for segmentation problems, and Besson [52] combined these filters with region growing and a
“snake transform” to produce a segmentation algorithm that is well suited to angiograms. Another matched-
filter/thresholding scheme was reported by Chaudhuri [53] for retinal reflectance images. Most scanning
segmentation methods simply produce binary-valued images that distinguish arterial pixels from background
pixels. To be useful, these methods must be followed by a method to compute the parameters of interest, such
as arterial diameter.

All single-view methods are limited by the fact that the projected diameter can be misleading for ec-
centric cross-sections. This is a significant problem, since, as Brown reported [4], “the diseased lumen is
commonly eccentric in cross-section.” Another limitation is that digtiishing between overlapping, cross-
ing, and bifurcating arteries is very difficult from only one view. These problems are important motivations

for multiple-view methods.
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1.2.2 Two-View Methods

There have been two motivations for considering two-view methods over one-view methods: 1) a better esti-
mate of the lumen dimensions can be computed from two views, and 2) if the corresponding projections of an
arterial segment can be identified in the two views, then the 3-D location of the artery can be computed. These
two motivations have had a one-to-one correspondence with the following two paradigms for quantification:
1) process each pair of image rows to estimate arterial lumen, possilolyraoty for some correlation be-

tween adjacent lumens, and 2) first process the two views individually to extract arterial segments, and then
match corresponding segments between views.

In an early paper, Chang [54] discussed reconstruction of a binary matrix (representing lumen cross-
section) from two orthogonal projections, and showed that the reconstruction was unique only for convex
objects symmetric about both projection directions. Gerbrands [55] and Reiber [56] also used binary matri-
ces to represent a single artery’s cross-sections, but they also included a cost function to quantify the similarity
of adjacent cross-sections,hopes of overcoming the non-uniqueness for asymmetric lumens. Any method
based on binary discretizations of cross-sections requires knowing or calibrating the constant of proportional-
ity between the X-ray path length and the measured pixel intensity. Reiber [56] used a “normal” segment with
an elliptical cross-section for this calibration. Fenster [57] used a binary matrix to approximate a crescent-
shaped lumen within a circle whose radius is assumed known, and demonstrates reconstructions from two
orthogonal simulated projections. These binary methods have had mixed reviews; Suetens [58] found that it
was “next to impossible to reconstruct any part of a blood vessel.”

Brown et al. [4] used the second view to obtain a better estimate of the cross-sectional area by using
the expressionarea = 7d;ds, whered; andd, were hand-traced projected diameters in the two views.
This formula is correct for an elliptical cross-section with axes of lenfgtAndds, but is incorrect if the
ellipse axes are not aligned with the projection directions. Spears [59] calculated the error due to assuming
aligned ellipse axes. Despite the potential error, several investigators have made this assumption [4, 60, 43,
36]. Kitamura [61] claimed that although the densitometric information in two views does not determine an
ellipse uniquely, there are only two possible ellipses, and proposed arbitrarily choosing the more circular one.
Furthermore, if the two projections are orthogonal, then Kitamura claimed that only the orientation of the two
possible ellipses differs, so the area is uniquely determined. These statements are true only if the contrast
density is known, as Figure 1.1 demonstrates.

For some neurosurgical applications, estimates of arterial centerlines and relative areas may suffice, and
algorithms have been published for obtaining those features from just two views [62, 14, 63]. These algo-
rithms usually require two steps: tracking arteries in each view, and then identifyingmumdésg arterial
segments between the two views. Gerbrands [64] used a region growing algorithm to generate an arte-
rial skeleton in each view, converts the skeleton to a graph matthes at the bifurcations, and applies a
minimum-cost tree-matching procedure to identify corresponding bifurcations in the two views. Kim [65]
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Figure 1.1: Two ellipses with differemiccentrities and densities that have identical biplane projections.

used the iodine bolus edge as the feature for matching segments. Suetens [58] exploited a consistency prop-
erty motivated by consideration of the human stereopsis by matching arterial segments with similar orienta-
tion, width, and intensity. The correspondence problem is considerably easier with stereo angiograms since
the difference in projection angle is small. Hoffmann [66] correlated image rows to compute the shift that
determines arterial depth in stereo projections. Parker [62] entered landmarks in each view by hand, and
matched segments between views using a dynamic programming algorithm. Kitamura [14] used manually
identified segment correspondences. Venaille [67] proposed acquiring a third projection to reduce the number
of consistent matches between arterial segments. Each of the detectors in most bi-plane systems can acquire
a time sequence a¥ arterial projections within the duration of the iodine bolus. Wu [63] identified corre-
sponding segments in allV ungated projections, and then used a weighted average 2Miuensitometric

areas. Nevertheless, Wu [63] concluded that obtaining more reliable measurements will require “developing

algorithms which include information from more than two projection views.”

1.2.3 Multiple-View Methods

The arterial descriptions that have been computed from two views have usually consisted of only arterial
position and cross-sectional area. Though adequate for some applications, this hardly meets Skorton’s goal
of a complete characterization of cardiac morphology. For applications whereeeunyate quantification

of stenosis geometry is critical, one can justify acquiring a few views. The additional views should allow
one to overcome the limitations of two-view methodsdegommodating overlapping arterial projections and
bifurcations.

To circumvent the ill-conditioned nature of reconstruction from just a few views, virtually all methods
attempt to reduce the dimensionality by considering some special class of densities. The least restrictive class
of descriptions considepsto be a discretized 3-D voxel set. Jiya [68] described an algebraic reconstruction
technique (ART) requiring three orthogonal views for reconstructing a 3-D voxel representation of symmetric
objects, but with no consideration of noise. Spesral.[69] used a maximum entropy algorithm for recon-
structing a single asymmetric cross-section from three to nine projections. Consideration of a single object
is unrealistic for multiple-view methods, since it is very unlikely that one can acquire more than one or two
overlap-free views of an artery.

Recently, investigators have mgnized that ill-conditioned inverse problems such as limited-view re-
construction need to beegularizedby incorporatinga priori knowledge about the structures of interest.
Haneishiet al.[70] used two properties for regularization: 1) the background pixels and the arterial pixels (at
least ideally) have different values, and 2) arterial pixels are connected. They incorporated these properties
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into a penalized-likelihood optimality criterion, and used a simulated-annealing optimization algorithm. They
demonstrated reconstructions from five to twenty simulated projections. Rougee [71] combined the sparse-
ness, non-negativity, and connectedness properties of arterial trees into a detection-estimation scheme based
on detecting a region of support, and compared it with ART and with the extreme-value technique (EVT).
She reconstructed an X-ray phantom from fifteen views. Trousset [72] reduced the computational cost of
this method by introducing a multiscale implementation, and demonstrated reconstruction of a phantom from
thirty-two views.

Though the voxel-based methods have the ability to represent any arterial abayrate reconstruction
seems to require several views. To reduce the number of views required while maintaining robustness to low
SNR, stronger assumptions arecessary. As observed by Rossi [73], “the ultimate goal of processing the
projection measurements is typically far more modest than obtaining high resolution cross-sectional imagery.”
In fact, the goal is typically to obtain quantitative descriptions of arterial shape (perhaps as an intermediate
step towards the goal of evaluating hemodynamic properties). Therefore, rather than making a futile attempt
to reconstruct an arbitrary cross-section, Rossi [74, 75, 73] proposed using a parametric model for objects,
and analyzed reconstruction of a circular disk from a few projections. A parametric object model reduces
the number of unknowns, by exploiting oaipriori knowledge of the structure of arteries, and translates the
reconstruction problem into an estimation problem. Pappas [12] later demonstrated the accuracy of using
elliptical cross-sections to represent arteries, since ellipses can better approximate a wider class of cross-
sections than can circles. Rossi [76] further evaluated ellipse reconstractioracy. Bresler [77, 78] and
Kitamura [14] both used generalized cylinders to represent a set of ellipses describing an artery.

The elliptical model captures priori knowledge about the shape of arterial cross-sections in a simple
parametric form. The equally importaatpriori knowledge that arteries are smooth, i.e., that ellipse pa-
rameters vary slowly along an arterial segment, is more difficult to quantify. Shmueli [41] and Bresler [78]
used explicit stochastic Gauss-Markov models to parametrically quantify this smoothness. Using this model,
Bresler [77, 79, 80, 78] presented an optimal minimum mean-squared error (MMSE) algorithm for recon-
structing a single object with elliptical cross-sections from a few projections. Realizing that a single-object
algorithm is impractical, Bresler also presented a suboptimal algorithm for reconstructing several disjoint
objects from a few views, based on a hierarchical divide-and-conquer approach [81, 15]. In a joint effort,
Bresler and this author demonstrated the hierarchical algorithm [82] on a set of four simulated projections of
a few synthetic objects. Despite its suboptimality, the hierarchical algorithm performed nearly as well as the
MMSE algorithm in reconstructing a single synthetic object from four simulated projections [83].
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1.3 The New Method

This dissertation presents a new method for object-based reconstruction from a few views that overcomes
several limitations of the previous work. In particular, the novel aspects of the method we present are:

e itis based on a global criterion—to maintain accuracy at the low SNR typicadfinvasive methods,

bifurcating arteries are explicitly modeled, there are no empirically determined thresholds,

overlapping vessel projections are accommodated,

and the time-dependence of contrast density is modeled.

The new method is a mixture of parametric and nonparametric methods. We use a parametric model
(ellipses) for arterial cross-sections, but a nonparametric method (splines) for arterial smoothness. Although
the previously used parametric smoothness models allowed the derivation of theoretically satisfying MMSE
estimators, there are two problems with that approach: 1) the parameters of a Gauss-Markov model are
unknown and not easily determined, and 2) in general, these models imply treapthei covariances of
the cross-sections vary along the length of an artery. This implied variation is inconsistent with our intuition:
prior to examining an angiogram, our uncertainty about cross-sectional shape is uniform along the arteries.
We instead propose a nonparametric smoothing approach, described in Chapter 6, that capaupesmur
knowledge of arterial smoothness with minimal assumptions. Bresler eventually came to agree with this

approach [84]:

Parametric methods are useful when parsimony is important, as is the case when the measure-
ments are few (e.g. limited projection angles), since the number of estimated parameters must be
smaller than the number of measurements. However, we typically acquire many measurements
along the length of an artery, so a honparametric method for smoothness gives the greatest flexi-
bility. Hence, mixed parametric/nonparametric methods make perfect sense when the degrees of
freedom in the problem can be split into two sets: one which is well observed, and one which is

poorly observed.

A significant limitation of the hierarchical algorithm [81, 15, 82] is that it was based on disjoint objects.
Since a single ellipse is inadequate for representing bifurcations, where stenoses frequently occur, the hi-
erarchical algorithm was applied only to simulated data. This dissertation describes a new extension of the
generalized-cylinder object model that overcomes this limitation, allowing the first application of a parametric
reconstruction method a vivo projections of branching arteries.

Several algorithm developers have termed their methods “optimal,” and in some cases this may be inad-
vertently misleading. For example, Fleagéhl. [13] report a method for vessel border estimation based on
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a multi-step process: an artery’s projection is resampled perpendicular to its medial axis, a derivative oper-
ator is applied to each row of the resampled data, and a graph-searching technique is used to estimate the
left and right vessel edges from the derivative values. Although the graph searching is performed optimally,
this method is suboptimal overalebause the derivative operation is an irreversible process. Thus, by the
data-processing inequality [85], the estimated vessel boundaries asedesate than a method that uses the
original pixel values. The approach presented in this dissertation is based on a global optimality criterion that
encompasses both the entire arterial tree and all of the measured data.
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1.4 Outline

This thesis is organized in two parts. In Part | (Chapters 2 to 7), we describe the models and methods for
object-based 3-D reconstruction. The methods are based on new nonparametric estimation algorithms that
are detailed in Part Il. These algorithms are of independent interest and have other applications, so Chapters 8
and 9 are self contained.

A reconstruction method is optimal only if the underlying models hold; in Chapter 2, we present a sta-
tistical model relating the projection images to the unknown arterial tree, and in Chapter 3, we describe a
new object model, tailored for representing arterial trees. In Chapter 4, we apply the object and measurement
models to the single-artery/single-view estimation problem. In Chapter 5, we consider algorithms for estimat-
ing a set of ellipses given their projections, and discuss selection of the projection angles. In Chapter 6, we
propose a new optimality criterion for the problem of estimating an arterial tree from noisy projections, and
describe the estimation algorithm. In Chapter 7, we show the results of applying this algorithm to simulated
angiograms, to MR phantom data, to MRA projections of carotid arteries, and to X-ray phantom projections.
Chapters 8 and 9 describe the nonparametric smoothing algorithms that are the theoretical core of this thesis.
(The reader may find it useful to scan these chapters before reading Part 1.) We discuss the results and the
future directions of this research in Chapter 10.
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Object-Based Reconstruction from

Projections
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Chapter 2

Measurement Model

Reconstruction from projections belongs to the mathematical class éallexseproblems. Solutions to

such problems depend heavily on the assumptions one makes about the corresfiondirthprocesses.

In this chapter, we present a statistical model for projection angiography that relates an unknown arterial
tree to its acquired measurements. This model accounts for overlapping arterial projecioasnspriant
blurring, and additive noise. In the next chapter we will restrict our attention to a specific class of arterial
tree descriptions, but for this chapter we represent an arterial tree by an arbitrary three-dimensional density
function.

A projection is a mapping of some physical property of a three-dimensional object into a 2-D image, and
that mapping is determined by the acquisition geometry. This dissertation considers the cylindrical geometry
shown in Figure 2.1, where the projection planes are rotated about a common axis, defined to ddghe
The symbols: andv denote the local coordinates in the projection planes (se tralv axes are parallel).

MR systems can generate projections in arbitrary directions, and a more general model could exploit this
versatility. However, X-ray systems are usually restricted to a single rotation axis, which motivates the

cylindrical geometry used here.

13
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Figure 2.1: Projection geometry, showing projections of a bifurcation.

In X-ray imaging the property of interest is the linear X-ray attenuation coefficient. The attenuation
coefficient of blood does not differ significantly enough from that of soft tissue for blood to be visualized, so a
bolus of iodine (contrast agent) is injected into the arteries immediately prior to imaging. In MR imaging, the
pertinent property is the density of excited hydrogen spins. The contribution of flowing blood is differentiated
from static tissue by exciting a region containing blood that is about to flow into the volume of interest. Note
thatin both modalitiesitis only the flowing blood that is imaged, so strictly speaking we will be reconstructing
descriptions of the lumens of arterial trees.

Our goal is to develop a measurement model that is useful for both X-ray and MR angiograms. Although
it may occasionally seem pedantic, we carefully state all the assumptions and approximations used while
developing the model; these approximations are rather different for X-ray and MR imaging, so they are
derived separately. Virtually all of the assumptions made in this chapter will have consequences for the
results shown in Chapter 7.

The density function for an arterial tree varies with time, and a reconstruction paradigm that requires
multiple views mustaccount for this variation. Although one can minimize the variation of arterial tree
position by using cardiac gating, the contrast will still vary from view to view as iodine (or excited spins)
flow through the arteries. The object-based approach can easitynmodate this variation, as we discuss in
the next chapter. We pay particular attention to the time sequencing of MR and X-ray angiography methods,
since these differ considerably. These details are necessary since multiple-view methods inherently require
more data acquisition time than single-view methods.

2.1 Parallel X-ray Geometry

For simplicity, we begin by considering a fictitious X-ray system with a plane wave of X-ray energy photons
impinging on the object of interdst X-ray photons are absorbed and scattered as they pass through tissue,
though for this section we assume the scattered photons are eliminated by collimation. The energy from
unabsorbed X-ray photons is converted into a signal by an imaging chain. In a fluoroscopic system, this
chain typically includes a scintillating phosphor screen, an image intensifier, and a television camera. The
curved surface of an image intensifier introduces an image warping known as pincushion distortion [4]. Our
first assumption is that this distortion has been corrected.

Assumption 2.1 Pincushion distortion eliminated.

1Though fiditious, this parallel geometry becomes increasiragigurate and useful as the ratio of the object size to the source-to-
object distance decreases.
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Correcting this distortion usually requires acquiring images of a calibration grid, since pincushion distortion
“cannot be described by a simple analytic function.” [28] Once this distortion is corrected, the projection
mapping is expressed as parallel line-integrals through the deasityrding to the following form for the
mean output of an imaging chain on the opposite side of the object from the source [86]:

I(u,v;t;0) =

Iy / ns(E)na(E) exp [—/M(S cosf +usinf, ssinf —ucosf,v;t, E) ds| dE,

wherel) is the incident source intensity. The function$E) andn,(FE) are the normalized source spectrum
and the detector efficiency at photon enefgyespectively, i.e.[ ns(E)dE = 1. The termu,(z, y, z; t, E)

represents the “total” linear X-ray attenuation coefficient corresponding to the sum of the contribution of the
iodinated arteries of interest) and the background tissugy, i.e.:

m(z,y, zit, E) = p(z,y, 2 t, E) + (2, y, 23 1, E).
This acquisition is known as the “live” image.
Assumption 2.2 Snapshot acquisition.

We assume each projection (or possibly pair of projections in bi-plane systems) is acquired very quickly,
thereby “freezing” the density momentarily. Assume we acqéingrojections, at time instants, ..., tp

and at projection angle, ..., 0p. For example, with a dual bi-plane DSA system [87] we could have:

P =4,t; =tg,t3 = t4,0; = 0° 05 = 90°, 65 = 0,., andd, = 6, + 90°. The snapshot assumption allows

us to drop the explicit dependencelobnt, yielding:

I(u,v;0,) =
Io/ns(E)nd(E) exp [—/m(s cos 0+ usiné, ssinf —ucosf,v;tpy, E) ds| dE.
Assumption 2.3 Monoenergetic source:
ns(E) = 0(E — Ey).

The consequence of this assumption has been carefully evaluated by Simons [88, 89], who observed: “if one
assumed a linear relationship between logarithmically subtracted video density and iodine density, only a
small inaccuracy resulted.” Under this assumption, we can drop the dependeqpiteton energy:

I(u,v;6,) = Io na(Eo) exp [—/M(S cosf + usiné, ssin @ — ucos b, v;t,) ds| .

The contribution of background tissues is significant in general, and cannot be ignored. Two methods
have been used to circumvent this problem. At least conceptually, the simplest method is to acquire addi-
tional projectionimages of the background only (before the iodine injection or after the bolus has diluted), and
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to perform logarithmic subtractions as discussed below. One potential problem with this approach is that any
patient motion between the acquisitions will produce artifacts due to incomplete subtraction. This problem
is germane to both single and multiple-view procedures, and several “rubber-sheet” algorithms for warping
the background image to match the iodinated image have been proposed [90, 91]. A multiple-view approach
may require moving the X-ray gantry to acquire the additional views, and then repositioning the X-ray gantry
to acquire the background images. Since many angiographic systems are not precisely repositionable, the
background image might not quite align with the corresponding iodinated image, which introduces another
possible error source. The other compensation method is to just use the unsubtracted images and to ap-
proximate the background by global [12] or local [92, 14, 87], low-order polynomials, whose coefficients are
estimated. This approach is also not without its problems: the background signal may be poorly approximated
by low-order polynomials near bone edges.

Assumption 2.4 Repositional system.

If the X-ray system can be accurately repiosied, say, after the iodine bolus has diluted, then we can acquire
another set of projections at anglgs. . ., 0p attimest; 4, . . ., tp Of the background tissues only:

Iy (u,v;0p) = Ip na(Eo) exp [—/ub(s cosf +usiné, ssinf —ucos b, v;tpyp) ds| .

(Note that this implicitly assumes the source intengitis repeatable as well.) This acquisition is known as
the “mask” image.

One could relax this assumption by using a separate smaller iodine injection for each view, and acquiring
both the live and the mask images before rotating the X-ray gantry. However, this may lengthen the imaging
procedure, thereby increasing the likelihood of patient motion.

Assumption 2.5 Background synchronization:
Mb('x? y7 Z7 tp,b) = /’Lb(m7 y7 Z7 tp)

If the acquisitions are cardiac gated, and possibly respiratory gated, then the only differences between the
background or “mask” imagé, (u, v; 8,) and the iodinated imaggw, v; 6,) are due to the contribution of
the iodinated blood. Thus a logarithmic subtraction:

lo, (u,v3 1) = 1og Ty(u, v;0,) — log I(u, v50y),
yields the structure of interest:
lo, (u,v; ) = /u(s cos b, + usinbp, ssinf, — ucosby,v;t,) ds. (2.2)

In this final form,ly, (u, v; 1) is the ideal projection of at angled,, and at timet,,. We postpone discussion
of blurring and sampling until Section 2.4.
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2.2 Parallel MR Geometry

The MR images discussed in Chapter 7 are based on the selective inversion-recovery (SIR) method [25]. “SIR
bears some similarities to X-ray digital subtraction angiography (DSA). While DSA involves the subtraction
of two images, one with and the other without contrast agent, SIR involves the subtraction of two images, one
with and the other without inversion excitation of blood prior to its entering the region of interest.” [93] By
using a multiple-readout selective inversion-recovery (MRSIR) sequence [26], we can acquire arterial views
at a few projection angles without using invasive contrast agents or ionizing radiation. For a four minute
MRSIR sequence, the signal-to-noise ratio is inversely related to the number of projections acquired, which
necessitates optimal use of the projection data.

Most MR imaging takes advantage of the fact that the resonant frequency of a hydrogen proton in a
magnetic field is proportional to the strength of the field. Spatially varying magnetic fields (gradients) are used
to introduce an encoding of position into temporal frequency, so that at any given time during the acquisition
interval, the received signal corpends to a sample of the spatial-frequency content of the object being
imaged. If one acquires enough samples of the spatial-frequency content, an image can be reconstructed.

Linear gradients are most commonly used to encode position into frequency, and any deviation from
linearity produces a warping of the image that is somewhat analogous to pincushion distortion in an X-ray
image intensifier. The analogy is functional in the sense that in both modalities one can image a rectangular-
grid phantom to measure the geometric distortion and then “unwarp” other images. This was not necessary
for the system (GE Signa) used to acquire the results of Chapter 7, but it may be necessary for other systems.
Thus, the following assumption is inherent in our derivation:

Assumption 2.6 No geometric distortion.

The excited spins emit a radio-frequency (RF) signal thatéeived by an RF coil. An RF coil receives
signals from the entire volume (within its sensitive region) with no directional selectivity, so there is a volume
integral inherentin the system. Thus, if gradients are used to encode frequency only afahg then all the
spins alongy will contribute signal in unison, effecting a line-integral alongTherefore, the line-integrals
in an MR projection image are truly parallel. The basic imaging equation for a projection MR signal is:

s(t) =
// [/ p(scos(f) + usind, ssin @ — ucos 6, v; t) ds eIk ug—iky (v g0 do.

wherej = y/—1 and the spin density is now weighted by the spatial sensitivity of the receiver coil. We
assume this sensitivity varies slowly over space. Ftspace (spatial-frequencyage) trajectories,.(¢) and
k,(t) are determined by the imaging sequence.

Assumption 2.7 Neglible dephasing in a projection voxel.
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Figure 2.2: MRSIRk-space trajectory and timing diagram.

The spin density: is in fact a complex quantity for MR angiography, due especially to dephasing induced
by an inhomogeneous field. The effect can be minimized by using short echo-times [93], by selectively pro-
jecting only a slab containing the branches of interest [26] (rather than the entire volume), and by shimming
the main field carefully [94]. Thus, we assume the dephasing is negligible, so thatbe considered a real
guantity. It may be acessary to generalize our results to a compldgr systems with poor homogeneity.

We also minimize velocity-dependent phase effects by using projection-reconstruction selective inversion-
recovery (PRSIR) imaging [95, 96] and by using offset-echo acquisitions [93]. These considerations are part
of the motivation for the PRSIR method, which may become the preferred sequence if the imaging time can
be reduced by using multiple-readouts.

Assumption 2.8 Effective extraction of real-valued images.

The received signal is nevertheless complex, and we use adyring method [97, 98] to extract the in-
phase component of interest. We assume that duessary assumptions for homodyning [98] are met,
including the assumption of slowly varying image phase. Though the phase in the 3-D volume may vary
slowly, the projection of an arterial tree may superimpose two arteries of different phase, leading to signal
loss. An interesting area for future work would be to use the reconstructed arterial tree to obtain a better
phase reference under the assumption that the phase varies slowly along an artery’s length.

Since an MR readout measures only a sample of the spatial-frequency content of the selected region
at a given time instant, the “snapshot” assumption used in the previous section needs careful examination.
Full detail would be beyond the scope of this thesis, but the basic time sequence for MRSIR is displayed
in Figure 2.2. Attime A, an ECG R-wave triggers an inversion pulse that tags blood about to flow into the
region of interest. To maximize wash-in for the carotid arteries, this tagging occurs just before the peak flow
rate. At time B, about 400 ms later (during diastole), the firspace line of the first projection is read. The
duration of this readout is limited by the gradient strength and SNR considerations, and takes about 6 ms on
our system, which brings us to time C. A 21 ms wait brings us to time D, when different gradients are used
to readout the firsk-space line of the second projection. This is repeated foPafojection images, so
that after400 4+ P % 27 ms, we arrive at time E. At some later time F, another R-wave triggers an identical
sequence of readouts—only this time no inversion pulse is used. There are typically 256 samgbbsrow
of k-space, and the above procedure is repeated 128 times to acquire 128 kesysite.

To form projection images, the corresponding projection data (with and without inversion) are then sub-
tracted and Fourier transformed. This subtraction should form images of the spins that flowed into the readout
region. The following assumptions are implicit in this subtractive method:

Assumption 2.9 No motion of “static” tissue.
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If there is no such motion, then the difference between the inverted and uninverted readouts will be due only
to the flowing material.

Assumption 2.10 Consistent wash-in and periodic gating.

The readout foeach row ink-space is triggered by a different heart beat. If the heart beats were very irregular
and different amounts of spins were washed-in aftah inversion pulse, then the acquired rows-space
would correspond to the spatial-frequency contendlifferentimages, and there would be artifacts in the
reconstructed images. Furthermore, the static tissues would have differegitixation periods, leading to
imperfect subtraction.

Assumption 2.11 Negligible wash-in during a readout.

Similarly, if significant wash-in occurred during a readout, then that row-sppace would be inconsistent,
also leading to artifacts. These artifacts are minimized by using the shortest readouts possible.

Of these assumptions, the last is perhaps the most questionable. We have often observed significant
differences in contrast between the different projection images. There are two potential sources for these
differences: more contrast in the later images due to additional wash-in, and errors in the tip-angle of the
RF excitation, leading to different signal strengths. If the differences in contrast between images are due in
part to wash-in, then the contrast almost certainly is changing during a readout, since the readout interval is a
significant fraction of the time between readouts.

Provided all these assumptions hold, then the same basic projection relationship (2.1) holds for MR
projections. We consider deviations from these assumptions in Section 2.4.

2.3 Point-source X-ray Geometry

In this section, we generalize the parallel-projection measurement model (2.1) by developing an approximate
point-source projection model. Since the rays that pass from a point source to an area detector form a solid
cone, this geometry is known as the cone-beam geometry. In addition to the assumptions of Section 2.1, we
add the following:

Assumption 2.12 Ideal point X-ray source.

Real X-ray sources are of finite size and are tilted with respect to the detector plane [86]. This introduces
additional blurring that we lump into the blur model of the next section. From [86], the ideal projection
function due to a point source is (cf. (2.1)):

Iy, (u,v; ) =

21 .2
1+ %/N (scose—l— %Sine,ssmﬁ— ﬁcos@, ﬁ;t,,) ds,
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where
d d 1

Td—dots d—do 1+ ;o

is the position-dependent magnificatiahis the source-to-detector distance, alyds the distance from the
center of rotation to the detector. Note thatlas> co, M (s) — 1.

Assumption 2.13 Small centered objecfs < d — dp).

For objects that are close to the center of rotation, the magnification is approximately cogiant
M (0). Using this approximation, it is easy to see that

lg, (u- M(0),v- M(0); ) ~ /,u(scos@—i—usin@,ssin@—ucos@,v;tp) ds,

which is just a scaled version of the expression (2.1) for the parallel projection ©he accuracy of this
approximation improves with increasing source-to-detector separation and with decreasing object breadth.
Thus, by simply replacing\,, in (2.2) with A, /M (0), we can apply our method to cone-beam projections,

as we have done in Chapter 7. In Section 6.4 we discuss another method that may be usefuldocurate

modeling and reconstruction from cone-beam projections.

2.4 Blurring, Sampling, and Noise

In the above sections, we derived expressions for ideal continuous projections. Actual imaging systems
produce noisy, discrete samples of a blurred version of the ideal projectiors;eundite estimation requires
accounting for these distortions.

Angiographicimages can contain significant high-frequency information due to the fine structure of small
arteries. Since MR images are reconstructed from a finite number of spatial-frequency samples, they are vir-
tually always undersampled. The resulting point-spread funcB&fj is determined by the frequency-space
sampling and weighting, and is spatially invariant. In addition, any patient motion during the acquisition will
introduce artifacts that may in part be modeled as blurring. In X-ray imaging, sources of blurring include
the finite source and detector sizes and image-intensifier veiling glare. Although subtracting the mask image
from the live image will eliminate X-ray scatter from the background tissues, any scatter from the iodinated
arteries will remain. This object-dependent scatter also blurs the artery projection. Thus, in some situations
it may be useful to estimate the PSF as well as the arterial tree [12, 14]. However, Pappas [12] has observed
that even “if we assumed that there is no blurring, we would still get good estimates of the parameters.” Here,
we assume the PSF is knowspatially invariant, and denoted tyu, v).

Assumption 2.14 Known, spatially invariant point-spread function.

2|n fact, for the X-ray phantom example of Chapter 7 that has an unknown PSF, we first used a local estimation algorithm similar to
that of [12] to estimate the PSF, which was then held fixed for the global arterial tree reconstruction.



CHAPTER 2. MEASUREMENT MODEL 21

Digital imaging systems acquire samples of the blurred projections in the form of images. Let these
images consist oV rows of W pixels each. Ifsy, ,, ;(1) denotes the ideal (meaif} pixel value in thent®
row of the projection image at andglg, thenfori =1,...,W;n=1,...,N;andp =1, ..., P:

sopmi() 2 [P v) % 5 lo, (0,05 )] i aa (2.2)
wherez,, = (N — n)A,, the horizontal and vertical pixel dimensions @&g and A, respectively;;, is
the distance (in pixels) from the projection of the rotation axis to the left edge of a projection image, and
xx denotes the 2-D convolution operator. The offgetay differ from its usual value di’/2 since X-ray
detectors are usually not perfectly centered on the rotation axis and since any extra linear phase in an MR
system leads to a shift in the reconstructed images.

Blurring along the length of an artery’s projection is less important for reconstruction than lateral blurring
that smooths the artery’s edges. In the next chapter we will restrict our attention to arteries whose medial axes
are roughly parallel to the axis, so it is reasonable to ignore blurring along this axis. This approximation
simplifies the estimation algorithm discussed in Chapter 6.

Assumption 2.15 Ignore vertical blurring:h(u, v) = h(u)d(v).

Assumption 2.16 Smooth PSF.

If the PSF is smooth, then we can approximate (2.2) by a discrete convolution that is more easily implemented.
In the appendix we show that:

50,.n,i(1) = hi * lg, i(2n; 1), (2.3)
wherex now indicates discrete convolution with respect,tand

2

iAp
hi h(iAn), lg,.i(v; ) 2 / lo, (u — inAp,v; p) du.
(

i—1)Ap

Assumption 2.17 Independent, Gaussian distributed measurement errors.

Finally, the actual measured pixel values are corrupted by noisg, .If denotes the measurement corre-

sponding tcsy,, . ;, then we assume

Ypnyi = 80,,m,i(1) T €pnis

where the additive measurement eregy, ; has a Gaussian distribution with (possibly unknown) variance

o2. In MR imaging, the “source of this noise is thermally generated, randomly fluctuating noise currents in
the body which are picked up by theceiving antenna,” [99] so it is correct to assume that the measurement
errors are Gaussian and independent. With X-ray imaging, the Gaussian model is an approximation to the
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Poisson noise distribution. The approximation improves with increasing photon count. One motivation for
this assumption is that it leads to the computationally feasible algorithms of Chapters 8 and 9.

It is convenient to group the ideal projection and measurement samples in the different ways defined
below. First group the samples by rows:

1>
1>

yp n [yp,n,ly ct yp,n,W]/7 SBP,n(M) [50])7”71(/'1/)7 ] SQP,TL,W(M)]/7

)

where “” denotes matrix transposition. Next group the corresponding rows dPtineages:

(1>
(1>

Yo = [Yins oo Yeul's sulp) = [se0n(w)s - s0pn(p)] (2.4)

Finally, let

(1>

Y £ Ity s) 2 [siw), .o, sn(w))

be the aggregates of all the samples. The vectueais lengthv P11, We similarly defines, yielding the final
measurement model:
y =s(p) + ¢, (2.5)

which simply says that the (known) measurements are equal to the sampled and blurred projection of the
(unknown) arterial tree density plus noise.

2.5 Summary

In summary, we have defined a statistical measurement model (2.1) (2.3) (2.5) that relates the unknown 3-D
arterial tree density to the measured projections. The final form of our model is identical for both MR and
X-ray angiography, but the assumptions involved are quite different.

It is worth noting that none of the assumptions used above are unique to our object-based approach. In
fact, all paradigms must contend with inaccuracies that result from modeling error. Since our reconstruction
approach uses global information, it clearly has the potential to be more robust to local deviations from the

measurement models.
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2.6 Appendix: Discrete Blur Approximation

In this appendix, we derive a simple approximation for discrete implementation of the blur convolution.
Since we ignore the vertical blurring, we derive the approximation only in terms of the horizontal blurring.
From (2.2), the expression for the ideal discrete sample is:

Si

[h(u) * Z(U)Hu:(i—ih—%)m

/00 W(r)h((@—ip — DAL —7)dT

—00

JAR
/ Wr)h((@—ip — )AL — 1) dT.
j (j_l)Ah

If the PSFh is nearly constant over the intervéj — 1)Ay, jA], then:

Q

Si

JAR
D / Ur)R(((i — in — ) — (G — 3)An) dr

i JU-DAR
= D Lk,
J

where

(1>

iAp
li / l(T — ihAh) dT,
(

i—1)Ap

hs h(iAy).

Note that if the blur function is the discrete impulse responsei.e. §;, then the ideal sample is the average
of the signal intensity over the pixel size. This is a sensible upper bound on the performance.



Chapter 3

Object Model

As discussed in the introduction, the information provided by only a few projections is insufficient for re-
constructing a general three-dimensional function. Any solution therefore hinges on restricting consideration
to a smaller class of descriptions. In this chapter, we introduce an extension of the generalized cylinder (GC)
object model, tailored to the task of representing arterial trees (the terms ‘object’ and ‘arterial segment’ are
interchangeable). In particular, our model is designed to represent bifurcations accurately. This accuracy
is essential since atherosclerotic lesions are prevalent near arterial branches [100, 101]. Binford [102, 103]
introduced the GC model for computer vision applications. According to Agin [103], “A generalized cylinder
consists of a space curve, or axis, and a cross-section function defined on that axis.” For this chapter, we take
that cross-section function to be an ellipse.

3.1 SGC object model

A true GC would have arbitrarily oriented ellipses, as in Figure 3.1. Reconstruction of such general objects
from projections is still an open problem; to our knowledge, the only work on this problem is a hierarchical
algorithm proposed, but never implemented, by Bresler [15]. The comments of Marr [104, pp. 223-224]
suggest that GC reconstruction may be challenging to implement from projections acquired around a single
rotation axis. We instead adopt the popular approach [14, 78, e.g.] of parameterizing objects by their cross-
sections parallel to they plane, an approach ideally suited to the cylindrical geometry. As argued in [14], a
GC with slowly varying elliptical cross-sections can be approximated by a set of parallel ellipses as shown
in Figure 3.1. Such a set of ellipses can be parameterized lnce we call the collection a single-valued
generalized cylinder (SGC). Objects that wind back upon themselves (e.g. U shaped) must be represented by
more than one SGC, and are called ‘multi-valued.” The further an object is tilted away from the rotational
axis, the poorer its SGC representation. Thus, as in most imaging procedures, proper patient positioning

24
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Figure 3.1: A GC (left) and an approximating SGC (right).

is essential, and the arteries of interest should be aligned as close as possible to the rotational axis. The
examples of Chapter 7 demonstrate successful reconstruction of objects withctkslagds°. Though we
parameterize objects by parallel cross-sections, the cross-sections perpendicular to an artery’s medial axis are
more important for quantitative diagnosis. Hence, we present formulae for converting between GC and SGC
parameters in Section 3.6.

Each SGC cross-section has three attributes: position, shape, and content. An ellipse’s position attribute
is parameterized by they coordinates of its center, denoted 2y, c,). We parameterize an ellipse’s shape
attribute by its radius (geometric mean of long and short axes), eccentrictjo of long to short axfy,
and orientation, denoted by \, and¢ respectively (see Figure 3.5). The content attribute parameterizes the
density within an artery, and can have a profound, though often underestimated, impact on a reconstruction
algorithm’s accuracy and applidéity. Some methods assume the content is known or is computable from
“normal” sections of an artery, usually assumed to have a circular cross-section. Having more than two views
allows us to relax these assumptions. We do not assume the contrast density is known, and we allow it to vary
along the length of an artery, from artery to artery, and possibly even between projection images, as discussed
next.

Though the measurement model (2.5) allows a general time-varying density, we now consider only SGCs
whose position and shape attributes are invariant at ttmes. , tp, but we account for the time variation
of the content attribufe This approach is necessary since the contrast often varies between MRA projection
images, and is approximately sufficient since cardiac gating can synchronize position and shape. We assume
each particular arterial cross-section is uniformly filled with contrast agent, so we parametetilipsarse
content by a vector denoted lay= [p1, ..., pp)’, whereP is the number of projections. For some imaging
techniques, we may be able to equate some opjfe For example, with bi-plane DSA, the contrast is
identical for each pair of projection images, so we would asspime p, andps = p,. Note that ideal data
sets would have, = - - - = pp, since estimating additional parameters often decreases estimation accuracy,
but we have found the full generality presented hexeessary for some MRA data.

We now define notation for a hierarchy consisting of ellipses, objects, and trees. The sywilhdenote

1The radius/eccentricity parameterization is preferable to the long-axis/short-axis parameterization for our approach, since indepen-
dence of radius and eccentricity is a more realistic assumption, particularly in stenotic arteries.

2Another definition of ellipseccentricity isy/1 — A—2.

3We could also account for lateral vessel motion between aitiquis [87].
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a particular set o + P ellipse parameters. In particular,

<

xi(2) = Z

<

z

(2)
(2)
(2)
(2)

z

°

denotes the (unknown) ellipse parameters of ke object at vertical positior. An object is uniquely
determined by specifying its starting plang its ending plane., and the collection of parameters of its
elliptical cross-sections between those planes. We use the syildoldenote thét" object, i.e.,

Ok £ {2k, X},

where
A
Zp = [2b,k Ze k)

denotes the vertical domain of tk&" object, and
AN
X = {xx(2) : z€ 2}

denotes the collection of ellipse parameters. We will say more aBpldter in this section.
An arterial tree is a collection df objects, or ‘object-set,” denoted by the symiol

U 2 (K, 0,...,0x} = {K, 21, X1, ..., Zx, Xg). (3.1)

The notational hierarchy fo¥ directly corresponds to a hierarchical data structure [62] that we used to
implement the algorithm described in Chapter 6. Due to the simplicity of the ellipse parameterization, this
representation foW is considerably more compact than a discretized 3-D voxel set. More importantly, the
significant factors for quantitative diagnosis, such as percent stenosis and stecenisicity, are directly
computable fromb.

With these definitions, we have translated the problem of reconstructing a deffisity projections into
the problem of estimating an object-defrom projections. That is, we must estimate the number of objects,
the vertical extent of each object, and the parameters ofllipeecross-sections faach object.

3.2 Branching object model

In earlier efforts [83, 82], we assumed that thieobjects to be reconstructed were disjoint. Although con-
venient, this assumption precluded accurate modeling of branching vessels. Histological sections of bifur-
cations [100, 101] suggest that pairs of intersecting ellipses can approximate cross-sections of a bifurcation
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Figure 3.2: Convention defining content attribute of a cross-section formed by two intersecting ellipses with
different densities.

accurately, even a diseased one. Therefore, we discard the disjointedness assumption by allowing SGC ob-
jects to intersect and by accountfrfgr their intersections [105]. The importance of this accounting is clear
from early GC-based vision algorithms [103] that were prone to failure near the intersection of GCs. (For
simplicity, we consider bifurcations only; the extension to trifurcations involves only additional notation.)

When two SGC objects intersect, their position and shape attributes are unaffected, but we must specify
their content attributes more carefully. Although it may be reasonable to assume that two intersecting ellipses
must share the same density, we can simplify our reconstruction algorithm by not enforcing this constraint.
This also provides a self-test for the reconstruction: if the estimated densities differ significantly for two
arterial branches near a bifurcation, then something is clearly amiss. For mathematical consistency, we must
specify a symmetrical definition for the content of two intersecting ellipses with different densities. Our
convention is described pictorially in Figure 3.2, where we define the density of the common area of two
ellipses to be the average of the two ellipse densities. If the two densities are the same, then the area of
overlap will have that same density.

With the above definitions, we can now specify the unique 3-D density function generated by a given
object-set. Le€(x) be the set of points within the ellipse parameterizeckbie., if x = [c; ¢, 7 X ¢ p']’,

then
£x) = {(m,y):((m—cx)cosi\;x(y—cy)sin¢> (3.2)
(x —cz)sing + (y — ¢,) cos ¢\ >
+< r/\/X > Sl}'

The relationship between an object-§eand its densityuy is then:

pw(z,y, 25 tp) Zpk,p ) Lo (o) (z,9) 1z, (2) (3.3)
K K
Pk, +,0 2,
- Z Z b ;D b p( ) 18(xk1(z))(m7y) 18(xk2(2))(m7y) 1Zk1 (Z) 1Zk2 (Z)7
ki1=1ko=1
where
1, zeZ
1z(2) =
0, z¢ 2

The first summation would suffice for a set of disjoint objects, and the second summation accounts for the

areas of overlap.

“More perspiration than inspiration: compare Sections 3.4 and 3.5.
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Figure 3.3: Two equivalent object sets. Note that althoBgh Z3, p1(0,,0,}) = 1{0,,05}-
Figure 3.4: Example demonstrating the four ways arteries can terminate.

The reverse relationship to (3.3) is not unique because many different object-sets generate the same den-
sity function. One trivial reason for this non-uniqueness is that an ellipse’s shape is the same for orientations
¢ and¢ + =, but the parameter vectors differ. Also, if one changetly adding objects with zero density,
there would be no change . More significantly, the union of two identical ellipses is indistinguish-
able from a single ellipse. We will say two object-sets ageiivalentf the density functions they generate
from (3.3) are equal. For example, if the three objects shown in Figure 3.3 all have the same density, then the
object-set formed by combining; andO, is equivalent to the object-set formed by combinifgand Os.
Technically then, we will be reconstructing aquivalence classf object-sets from projections.

Since a given object-s&@ generates a unique density functjap by (3.3), we can speak of the projection
of an object-set, denoted g ). Althoughs is linear iny, it is not linear in¥ sincey is a nonlinear
function of ¥. In fact, since we are not assuming disjoint objestis, not even additive in general, i.e., the
projection of an object collection differs from the sum of each object’s projection. Nevertheless, we can write
expressions fog(uy ) in closed form using the formulae derived in Sections 3.4 and 3.5.

The non-unigueness of an object-set actually works to our advantage since we need not gstimate
exactly for objects near bifurcations, as demonstrated by Figure 3.3. What defines the endpoints of an arterial
segment? There are four possibilities for SGC objects:

e an artery may leave the region of interest (ROI),

e an artery may ‘fade-out’ due to incomplete filling by contrast agent,

e an artery may be occluded or taper down to a size below the effective resolution,
e Or an artery may connect to another artery (branching).

These four possibilities are illustrated in Figure 3.4. Of these, only the first possibility has a unique value

of z, (or z.), and this value is easily determined. For the others, we can always conservatively make the
object extra long, and let the density or radius become vanishingly small. For a multi-valued GC object, the
endpoints of its SGC approximation are poorly defined, and are determined in practice by the manual-entry
described in Chapter 6.
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Figure 3.5: Projections of an elliptical cross-sectign.ideal, sy ;: blurred and sampled.

3.3 Summary

We have described an extension of the generalized-cylinder object model based on elliptical cross-sections.
By allowing objects to intersect, the model can represent arterial trees accurately. This model defines the
class of 3-D density functions considered, namely those that can be expressed in the form (3.3).

The following three sections derive mathematical expressions that are only necessary for implementing
the reconstruction method described in Chapter 6.

3.4 Appendix: Ellipse Projection

Consider a collection of ellipses in a given plane, some of which may intersect. Since we restrict our model
to bifurcations, the collection’s projections are the superposition of the projections of those ellipses that are
isolated, plus the sum of the projections of the pairs of intersecting ellipses. Thus we need two types of
formulae: projections of a single ellipse, and projections of intersecting ellipses (cf. (6.8)). In this section
and the next, we present expressions for these projections and their partial derivatives. These are needed
by the nonlinear vector-spline smoothing algorithm described in Chapter 9, since it is a gradient-descent
optimization method.

Consider a single isolated ellipse with parameters: [c,; ¢, 7 A ¢ p|’. Since we consider projections
only in the plane of this ellipse, we drop the dependence @nd hencey andn). From (2.1), (3.2), and
(3.3), the ideal continuous line-integral of an ellipse is:
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lo(u;x) = /p1g(x)(sc059+usin9,ssin9—ucos@)ds

= 2php \/ 7“;,2) - (’U, - U';D)2 1|u—'u.p|§rp7

where
A .
Up = Czsinfd —c,cosb, (3.4)
A N _q
Tp = T a4, hp:a+7
and

(A=A — (AF A1) cos(2(p — 0))) -

aL =

DN | =

Then from (2.2) and (2.3),

597¢(X) = hi * lgﬂ'(X),

where
(i—in)An
loi(x) = / lo(u;x) du
(i—ih,—l)Ah
m U=UR
= phy [u\ [r2 — (u—up)? + Tf, arcsin <—>] ,

Tp u=ur,

where

A {(i—ih—l)Ah } A ,{(i—ih)Ah }
U, = maxy ———,—1¢, ug = miny —,1,,

Tp
for i in the range

{i:]G —in — %)Ah_uﬂ Srp“‘%Ah}:

otherwise the values are 0. By the linearity of convolution, the partial derivatives,;¢k) are the blurred

partial derivatives ofy ;(x), which are given below forin the same range:

alg’iix) = —(sinf)(lg (ur; x) — lp (ur; X)),
algiix) = (cos 0)(lg (ur; x) — lo(ur; X)),

Olg i (x) A . (uL

. = 2pr|arcsin | — ) —arcsin | — ,

or Tp Tp
pi(x) —a- 2 2 2 2
o T e (V72 = (om w2 =\ = (= 2),

Olg i (x) —(A = A"Yysin(2(¢ — 0))
08¢ P aﬁ_ (\/

Olg i(x)
dp

s(uw ) could be implemented as a subroutine that accepts an object-set as its argument and returns a vector

= lgi(x)/p.

of length N PW. However, we achieve substantial memory and computational savings by exploiting the fact
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Figure 3.6: Line integral through overlapping ellipses.

that projections of ellipses are semi-ellipse ‘bump’ functions whose supports are only small fractions of the
size of the projection vector.

3.5 Appendix: Projection of Intersecting Ellipses

The projection of two intersecting ellipses is more complicated due to the region of overlap. Consider two
intersecting ellipses with parametets = [c; 1 ¢y.1 71 A1 1 p1] @ndxa = [cz.2 ¢y2 T2 A2 P2 p2], and let

&, and&; denote the corresponding ellipse sets (3.2). For reasons that will become clear in Chapter 6, we are
more interested in the signal that results from the difference of the projection of the union of the two ellipses
and the projection ak». This signal is denoted by} ;(x1), where the dependence &p is suppressed since

it will be held fixed. The definition of this signal (cf. (6.8)) is:

Sz,i(xl) = h; * lg,i(xl)7

where

A (i—ih)Ah
lg.i(x1) :/ I (u;x1) du,
(i—in—1)An

and

I (u;x1) 2 lo(u;x1,%x2) — lg(u;x2).

Applying (2.1) and (3.3) and using an overline to represent set complements:
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lp(u;x1) =

(n1etmla- 25210, ) - (m 1e) o

~/{(w,y):w sin 0—y cosf=u} 2

= / |:p1 151 154— pL— P2 151 152:| dl
{(z,y):x sin@—y cos f=u} 2

= (p)  filde(u;x1),lo(usx1)/p1, do(u; x2), lo(u; x2)/ p2)
+ (Pl;m) fg(dg(u; Xl), lg(u; X1)/p1, dg(u,; x2), lg(u; Xz)/pg),

where forj =1, 2:

do(u; x5) 2 Cp,j €080 4 ¢y isind — (u—up ;) (A — )\j_l)

sin(2(¢; —0))

204,
is the distance shown in Figure 3.5. The path length functions shown in Figure 3.6 are:

fl(dl, ly,do, lg) é length([ch — 11/2, di + 11/2] n [dg — 12/2, do + 12/2]),
fg(dl,ll,dg,lg) é length([ch —11/2,d1+11/2] n [d2—12/2,d2+12/2]),

where
(b—a)—(d-=¢), a<e, b>d
- A b—d, a>c,b>d, a<d
length([a, b ¢, d]) =
([ ]ﬂ[ ]) c—a, @SC,bSd,bZC
0, otherwise
and

d—c, a<ec, b>d
d—a, a>c,b>d, a<d
b—c, a<ec, b<d,b>c
b—a, a>c, b<d

2

length([a, b] () [c, d])

0, otherwise
Our implementation uses the following approximation, obtained by interchanging the order of the convo-
lution and the ‘length’ (min/max) operations:

Gix1) = ( p1 ) fidei(x1),le,i(x1)/p1,de,i(x2),l0,i(x2)/p2)
+  (2522)  fo(de,i(x1),lo,i(x1)/p1, do,i(x2),lo,i(x2)/p2),

where
do,i(x) = do ((i —in — $)An; x).
From these formulae, we see that the partial derivatives' @f) are combinations of those given for

lg.;(x) in the previous section, and thosedyf;(x), given below:

%Cfi’i = cosf+ (sinf) (A — )\_l)i sin(2(¢ — 0)),
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odgi . ST S _
ey sinf — (cosO)(A — A )2a+ sin(2(¢ — 0)),

or

0dy ; . :

St = (i —in = 1)A — uy)sin(2(6 — 6)/(Nay),
a_

8d0i . . —1

= = (((—in—5)Ar —up)( A=A )=,
06 : a}
0dyg ;
dp

= 07

= 0.

3.6 Appendix: SGC to GC conversion

Our reconstruction algorithm provides estimates of the parameters of the elliptical cross-sections of a SGC,
as shown in Figure 3.1. However, it is the variations in eccentricity, radius, and area perpendicular to an
artery’s axis that are important diagnostically. In this section, we present equations for converting between
the parameters of a GC and a SGC. These relations are derived by approximating a SGC locally by an
elliptical cone. The position attribute is identical for the GC and SGC models. To first order, the content
attribute is also the same, since density usually varies quite slowly. Suppose the estimated shape parameters
are[rs As ¢s], and that the local slope of the SGCGdsandg,. Let3 = ,/1 + 52 + 32, then
rs
~ VB
and
AN =8+ 8Ag 4+ (B - 871 (As — A5 ') sin?(¢s — arctan(B,/8:)).

Ellipse orientation is not well defined for an arbitrary GC axis [15] in general.



Chapter 4

Single Object Estimation

I n this chapter, we describe several methods for quantifying a single artery given only a single projection
image. (The problem of three-dimensional reconstruction of a single object from multiple views is just a
special case of the algorithm to be presented in Chapter 6.) The single-view problem has been considered by
numerous investigators, and is useful for comparative evaluation of new methods for quantitative angiography.
Though a single-object algorithm has limited applications, the exposition gives us an opportunity to introduce
the philosophy behind our 3-D reconstruction method in a much simpler setting.

The information provided by a single view is insufficient for determining the three shape parameters of an
ellipse, so it is futile to consider an elliptical cross-section. Therefore, we restrict our attention in this chapter
to arteries with circular cross-sections. It is also important to emphasize that the assumption of a parallel
geometry is implicit in this chapter. The distance between an object and the detector is unavailable from a
single view, so it is impossible to account for any depth-dependent magnification. One could use the image
of the catheter as a scaling device, but this requires making the questionable assumption that the catheter and

the artery lie in the same plane parallel to the detector.

4.1 Problem Setup

The geometry of this single-view problem is shown in Figure 4.1. This problem was first studied from an
optimal estimation perspective by Shmueli [40, 41]. This perspective is the foundation for our work as well,
but part of the purpose of this chapter is to relax four assumptions inherent in Shmueli's method: circular
projected cross-sections, known fixed density, parametric Gauss-Markov model, and vessel discretization. Of

Figure 4.1: Single circular artery and single view geometry.

34
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course, the most restrictive assumption is that of a single artery, which precludes overlapping projections and
branches.

As shown in Figure 4.1, the measurements of an artery lie on a gitrofvs, each with” pixels. Each
row of this image consists of samples of the projection of an arterial cross-section. Shmueli assumed that
theseparallel cross-sections of an artery were circles. However, it is clear from Figure 4.1 that if an artery
with a circular cross-section is at all tilted, then the projected cross-section is actually an ellipse. Fortunately,
the relationship between the true radius, denoted(by and the projected radiug (z) depends only on the
tilt parallel to the imaging plane, which is an observable.

Shmueli also assumed that the density of the artery was known and constant. This is unrealistic, partic-
ularly for MR images, so we include an additional parameter to represent the density, denpfefl tyhe
final parameter of interest is theposition of the artery, denoted by z).

4.1.1 Projected Parameters

Itis useful to note some relationships among the parameters, which follow from Sections 3.4 and B8,6. Let
andg, denote the tilt of the artery with respect to thandy axes respectively. The intersection of the artery
with a plane that is perpendicular to the image and intersects the image at ®iem ellipse with radius,
eccentricity, and orientation denoted hy A, and¢., respectively, where

r(2) {1+ B2(=) + B2(2),

M(z) = 1+ B0) + B(2),
6u(z) = tan”'(8,(2)/6:(2)).

<
@
—~
I
~—
I

These parameters are projected to form the semi-ellipse function shown in Figure 4.1, whose half-width and
height are denoted by, andh,,, respectively, where

rp(2) = re(2)Vai(z) =7r(2)/1+ 52(2) (4.1)
hp(2) = p(2)2re(z)/Vat(z) = P(Z)QT(Z)\/l +63(2) + B5(2)/v1+ B3(2),

where

ar(z) = (14 B2(2))//1+ B(2) + B2(2).
Note thath,, depends oy, the tilt out of the plane, which is unobservable. Howeygris observable, since

Bu(2) = 8‘3523) = #(2).

If we accumulated the pixel values in a row of a (noiseless) image, we would get the density-weighted area
of the semi-ellipse:

Ap(2) = p(2)1rZ (2) = p(2) [712(2)] \/1 +82(2) + 55 (2)- (4.2)
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Note that this area consists of the true artery arel scaled by the unknown density and by a factor that
again depends on the unobservatjewhich renders4,, essentially useless. This point has been overlooked
repeatedly in the literature. For example, the percent area stenosis is often computed as follows:

% stenosis’. e (Zstenosis)
Ap (Z“normal” )

i.e., by dividing the computed area in a stenotic segment by the area in a presumed normal segment. If
By (Zstenosis) 7 By (z«normar), 1.€. they tilts are different at the two segments, then this percent-stenosis
estimate will be incorrect.

Kruger [42] noticed that the true arterial radius is proportional to the semi-ellipse area divided by the peak
projection value. The ellipse area can be estimated by summing a row of pixels, the peak can be estimated
by choosing the maximum pixel value, and the slope can be estimated from the estimated arterial centerline,

leading to the following simple estimate:
Ap(z) .
hp(2)4/1+ B3(2)

The problem with this densitometric approach is thats very variable at low SNR. We prefer to estimage

o)==

andr using the algorithms given below, and then to convert back to the object’s radius using this expression
(cf. (4.1)):
7p(2)

N

(z) =
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Figure 4.2: Simulated projection of a synthetic artery, SNR=1.1 to 2.0.

4.1.2 Projection Measurements
The three parameters are of course continuous, but we observe only discrete, noisy samples of their projec-
tions (cf. (2.5)):

yn =s(x(z,)) +&n, n=1,..., N,

where
7(2n)

xn 2 | rplza) |- (4.3)
p(zn)

The projection functios has components defined as follows:

o) 22 [ o= L ds (4.4
i—1
= [7'2 (/{,_;,_\/1 — /-@3_ + arcsin /-@+> —r? (/-@_\/1 — k2 + arcsin /-@_>] 1{|i_7_1/2|§T+1/2},

where
A
}, Ky = mln{l, }

Our objective is to estimate the parametfxs }Y_, from the measurements,, }V_, .

t—1—71 =T

A
K_ = maxq —1,

r

4.2 Maximum Likelihood Criterion

Now that we have defined an object model and a measurement model, the problem becomes one of estimation.
The easiest approach would be simply to find the artery whose computed projections are the closest to the
measurements in some sense. Under the AWGN assumption, the least-squares estimate is also the maximum-
likelihood (ML) estimate, defined by:

~ A .
Xn,ML = argrr;ln”yn—s(x)HQ, n=1,...,N. (4.5)

This criterion was studied extensively by Pappas [12], and was shown to be more accurate tiads met
based on finding zero-crossings of a profile’s derivatives.

To evaluate the ML estimator, we created the synthetic projection image shown in Figure 4.2. These
measurements were generated using (4.4) with added pseudo-random white Gaussian noise with variance
o? = 16. The resulting SNR 2 hp/o) ranges from 1.1 to 2.0. For each row of this image, we computed the
estimatex,, 1, using criterion (4.5). To perform this nonlinear minimization, we used Powell's method [106],

with the true parameters as the starting point. Despite this ideal initialization, the ML results are poor!
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Figure 4.3: Four example ML fits, measurementk:t{ue: (solid), estimated: (dashed).

Figure 4.4: Projections of ML estimates of cross-sections from Figure 4.2.

Figure 4.3 compares four of the true profii€s,, ), the measured profilgs,, and the projected estimates
s(%x,,m1); the four were chosen at random. At least in this display, the results look reasonable. However,
Figure 4.4 shows the projections of the estimates in image format, and the results look unacceptable. The
difference in our interpretation of Figures 4.3 and 4.4 is due to the fact that the former showsaaily
properties, while the latter reveatobal properties of the estimates, and the inconsistencies from line to line
conflict with our concept of arterial smoothness. This variability is due to noise and the “threshold effect” of
ML estimation [107] for low SNR.

Many researchers have attempted to introduce knowledge of smoothness “after the fact” by post-processing
the ML estimates with various smoothing filters [27, 28, 11, 13, 55, 43, 66, 14]. The smoothing filter is usually
chosen heuristically, with an empirically determined bandwidth. Such two-step approaches are suboptimal,
and are not robust to the heavy tails of the ML estimate error at low SNR. Both the Gauss-Markov crite-
rion and the nonparametric optimality criterion presented below attempt to incorporate direclypoari
knowledge of arterial smoothness into the estimation.

4.3 Gauss-Markov Criterion

Shmueli's approach to accounting for arterial smoothness was to model the artery as a realization of a first-
order discrete-time Gauss-Markov random process, i.e.:

Xnt1 = Fxp, + Guy,

whereu,, is normally distributed system noise with covariarge Under this assumption, the maximuan
posteriori(MAP) estimate of the states minimizes this criterion:

&

- lyn = sGxa)l? N~
3 Y“T” + 3 (%n41 — Fx0) (GQG) ™} (%041 — Fx).
n=1 n=1

The practical problem with this approach is that the parameters of this niod@l, @ndQ) are unknown and
not easily determined. In addition, this Gauss-Markov model is an inherently discrete formulation, whereas
an artery is continuous. The nonparametric criterion of the next section addresses both of these problems.
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4.4 Nonparametric Optimality Criterion

Smoothing always involves a tradeoff between the conflicting goals of fit to the measurements and smooth-
ness of the estimated functions. Nonparametric regression offers a solution to this tradeoff, and requires only
an assumption of integrability of the square of the second derivative of the estimand. Most nonparametric re-
gression literature has been concerned with estimating scalar functions from linear, scalar measurements. The
natural generalization of these “penalized-likelihood” [108] or “regularized” [109] methods to our nonlinear,
multi-dimensional, object estimation problem is the following estimator and optimality criterion

N
%() £ argmin | 3 lyn = s(x(n))| + o / i2(2) dz] : (4.6)
n=1

wherex(z) is the3-dimensional vector containing the second partial derivatives of the componexngs)of
with respect toz. The right-hand term in (4.6) quantifies arterial smoothness and prohibits excessive object
wiggliness due to noise. The tradeoff is controlled by the smoothing faeter [a; as as]’; for small
«, the estimate fits the data closely, and for latgethe estimate becomes very smooth. Intuitively, we
would use a fairly large value fer; since the arterial position varies relatively slowly, a very large value for
a3 since density typically varies very slowly, and a smaller valuenfpto avoid oversmoothing the radius
function. These qualitative statements are unsatisfying theoretically. Fortunately, nonparametric regression
offers a solution: we can estimatefrom the data itself using cross-validation [110], as we discuss in detalil
in Chapters 8 and 9. In practice, essentially amjychanges with disease, and the other elements ajuld
be fixed for a given imaging technique.

In Chapters 8 and 9 we present a computationally efficient algorithm for computing estimates of the form
given by (4.6). Since it is a modified gradient-descent method, this algorithm requires that the user provide
analytical derivatives of the projection functienwhich are given by:

Osi([rr pl')
— Q5 = —p2r \/l—ﬁi—\/l—/ﬂ% 1{|i—7——1/2|§7“+1/2}7

dsi([rrp|')
or

. ! g
Galrrel) _ 2/ V= (s = 1) L1 a1 <o oy
dp i—1 -

Note that we daotapply any derivative operations to the noisy measurements.

= 2(arcsin(l-i+) - arcsin(/»@_)) 1{|i—7’—1/2|§7‘+1/2}7

To apply the nonparametric algorithm of Chapter 9 to the data shown in Figure 4.2, the only remaining
requirement is to provide an initial estimate. For the case of a single artery this is simple to do automatically.
We chose the following heuristic: a temporary copy of each row of the image was convolved Wwadkaat”
kernel: [11111], (a crude matched filter), and the index of the pixel with maximum value in each row was

1This criterion is nonparametric in the sense that we have avoided using a parametric (e.g. Gauss-Markov) model for the evolution
of cross-section parameters along an artery. The cross-sections are still modeled parametrically.
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Figure 4.5: Nonparametric radius estimates from Figure 4.2, true: (solid), estimated: (dashed).
Figure 4.6: Nonparametric position estimates from Figure 4.2, true: (solid), estimated: (dashed).

stored. This set ofV = 128 numbers was then seven-point median filtered and the result was the initial
position estimate. We arbitrarily initialized the radius to be 4 pixels based on visual image inspection; in a
typical clinical setting the initial radius would be set to the normal size of the particular artery being studied.
We initialized the density parameter to be 0.9, the sum of all of the image pixel values and dividediBy

(cf. (4.2)).

Figure 4.5 and Figure 4.6 are plots of the true and the estimated radius and position functions, where the
smoothing parameters were chosen by using cross-validafidre RMS estimation errors for position and
radius were 0.19 and 0.16 pixels, respectively. Such subpixel estinzttomacy justifies the computational
effort of this global approach.

When using the cross-validation score to automatically seletttere is always some risk that the selected
a Will be too large, thereby oversmoothing a stenosis. To prevent this occurrence, we cansfoockee
zero, i.e., no smoothing of the radius function. Figure 4.7 shows the estimated radius function from Figure 4.2
with «; andag set to the values chosen by cross-validation,dyuset to zero. For comparison, Figure 4.8
shows a plot of the radius estimated by the ML estimator. The nonparametric approach is clearly superior.
Apparently, incorporating oua priori knowledge of the smoothness of the position and density functions
is a significant improvement, even without making any assumptions regarding the smoothness of the radius
function. In some respects, the estimated radius shown in Figure 4.7 may be visually preferable to the smooth
radius shown in Figure 4.5 since the former gives one an impression of the variability of the estimates. If the
variations were very large, then one might suspect that an apparent stenoses was just estimation error, but the
decrease in radius shown in Figure 4.7 is clearly significant compared to the small variations, so we can be
confident of the presence of a severe stenosis.

4.5 Smooth Background

Consider the simulated angiogram shown in Figure 4.9. This image is identical to Figure 4.2, except that an
unknown background component has been added to the image. The change in intensity shown in Figure 4.9
is typical of image intensifier based systems.

23pecifically, we used th€V score of Section 9.4.

Figure 4.7: Nonparametric radius estimates from Figure 4.2, true: (solid), estimated: (dashed}, with
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Figure 4.8: ML radius estimates from Figure 4.2, true: (solid), estimated: (dashed).

Figure 4.9: Simulated projection of a synthetic artery with unknown background added.

As discussed in Section 2.1, one way to accommodate this bmaakdris to model it locally by a low-
order polynomial [92, 12, 14, 87]. In this context, “locally” means across the artery’s profile, with perhaps
a few pixels on either side. To estimate the coefficients of the polynomials, we need only augment the state

vector:

7(2n)

(1>
(1>

x(zn) Xn

and redefine the projection function (cf. (4.4)):

si(lrrpyoml) 2

(o +1im) 1{|i—7’|§7“+2} + 2/ pVr? = (s —7)? 1{|s—T|§T} ds.
i—1

The partial derivatives of this new projection function with respegptandy, are simplyl andi: respectively,
S0 we can again apply the algorithm of Chapter 9. The smoothness of the background will be reflagted in
andas, as determined by cross-validation.

Figures 4.10 and 4.11 compare the true and estimated position and radius parameters from Figure 4.9.
Again the errors are all below a pixel. However, the RMS error for the position and radius were 0.29 and
0.27 respectively, which are slightly higher than the RMS errors found in the previous section (without the
unknown background). Naturally, allowing the two extra degrees of freedom for the background has increased

the estimation variance.

Figure 4.10: Nonparametric radius estimates from Figure 4.9, true: (solid), estimated: (dashed).

Figure 4.11: Nonparametric position estimates from Figure 4.9, true: (solid), estimated: (dashed).
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4.6 Summary

We have presented three optimality criteria for the problem of quantifying a single artery given a single
view: maximum likelihood, maximuna posterioriusing a parametric Gauss-Markov model, and the new
nonparametric approach (4.6).

Our formulation has been in terms of the state vector defined in (4.3). The second component of this
vector is theprojectedradius. One could argue that smoothness should be expressed in termdrakthe
object radius, rather than the projected radius. Since the projected radius is related to the true radius and the
derivative of the object’s position, an alternative to (4.6) would be:

N
() = argmin |3 [y~ su(x()* + for Oz [ dz],

where
7(2)
.|
" r(2) ,
p(2)
and

sa([r 77 p]) 2 s([rr/V/1+ 72 p]).

Since the projection functios), (x) depends or, one would have generalize the algorithm of Chapter 9 to

use this formulation. However, if the position function varies smoothly witthen the transformation (4.1)

that relates the true radius to the projected radius function will be smooth, so the projected radius function is
approximately as smooth as the true radius function. Thus, the approach of Section 4.4 is adequate for SGC
objects. An interesting extension of this work would be to consider the multi-valued case in a single view.



Chapter 5

Single Slice Estimation

M ost automatic methods for 3-D reconstruction first process the individual 2-D views using algorithms
similar to those of Chapter 4, and then attempt to identify corresponding structures from view to view. An
interesting exception to that paradigm is the hierarchical algorithm proposed by Bresler [15]. As proposed,
his method would have first estimated a collection of short 3-D object segments, and then combined them
together using a Bayesian criterion. As we actually implemented it [83, 82], our algorithm first estimated a
set of ellipses on a slice-by-slice basis and then attempted to combine ellipses femenadjlices to form
objects. Thus, as a complement to Chapter 4, in this chapter we compare two algorithms for estimating a
collection of ellipses from a few noisy projections. The algorithms apply to parallel and cylindrical imaging
geometries. These algorithms are presented only for completeness; we found the global approach described
in Chapter 6 to be more effective, and the results in Chapter 7 used that method.

The two methods to be compared are the Estimate-Maximize (EM) algorithm and the Alternate-Maximize
(AM) algorithm. These two algorithms originated in rather different places; the EM algorithm is rooted in
statistics [111], while the AM algorithm is a simple method for nonlinear optimization [106, p. 310]. The
ellipse estimation problem is a special case of the general problem of estimating the parameters of superim-
posed signals observed in additive white Gaussian noise, to which both the EM and the AM algorithms have
been applied [112, 113]. Many other methods have also been considered [114, 115, 116]. The side by side
comparison presented in this chapter provides insight into both algorithms.

In addition to the estimation algorithms, Section 5.5 discusses how many projection angles are needed for
ellipse reconstruction, and Section 5.6 derives the optimal projection angles.

43
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Figure 5.1: Overlapping projections of multiple ellipses.

5.1 Superimposed Signals

Consider a vector observation of superimposed signals in i.i.d. Gaussian noise:

y =) sip(xx)+e, (5.1)

] =

k=1
where the collection of unknowns is defined by:

2

x [x],. .., xk]"

Eachs; (xy) is a vector ofL samples of a signal that is a known function of the unknown parameters
which we define to be vectors of lengiti. For the ellipse estimation problem illustrated in Figure &dgh
X, corresponds to the unknown ellipse parametds = 5 + P), andsy(x) corresponds to the discrete
sampled projectionsl. = PW), as defined in Chapter 2.

Our goal is to compute the maximum likelihood (ML) estimatexafiveny:

K

Y= > sk(xk)

k=1

Xumr, = arg max fy (y; x) = arg min ) (5-2)

where the second equality follows from assuming the measurementésrAWGN. If the number of signals
is large (2 or more), brute force minimization of (5.2) would require a global search over many parameters,
which is computationally impractical. The EM and AM algorithms are iterative methods for estimating the
parameters.

Throughout this chapter, we assume the number of sigidatsknown. If the number is unknown, then
it must be estimated as well. However, the ML criterion is inappropriate for estiméafingince adding
parameters will in general increase the “likelihood” (5.2). The MDL and AIC criteria [117, 118, 119, 120,
121] are more suitable candidates for the problem of estimating the number of signals.

5.2 Estimate-Maximize Algorithm

The difficulty in multiple signal estimation problems lies in the reduction of information due to the superpo-
sition of the signals. Ieach signal were observed in isolation, then the parameter estimation problem (5.2)
would decompose int& separate minimization problems. For ellipse reconstruction, these minimizations
would correspond to matched filters (for position estimates, with a bank of matched filters for shape parame-
ters). The EM algorithm is suited to problems with this characteristic reduction in dimension [111].
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We begin by presenting the EM algorithm in its most general setting. Suppose that the measuyements
are a realization of a random vecfirwhich has a known distributiofiy (y; x). Furthermore, suppose that
the measurements can be expressed as the following observation:

Y = HZ (5.3)

whereZ is a random vector representing the “complete data,” whose distribution depends on the unknown
parameters. We assumé has more columns than rows, so that the mapping ot Y is many to one.
If we define

U(x;%0) = E{log fz(2z;x)[Y = y; %},

then the EM algorithm for parameter estimation can be expressed by the following iteration:
E-step:
Computel/ (x; V),

M-step:

%+ = argmax U (x; %),

wherex(®) denotes the parameter estimate afterithéteration. The basic idea is to compute the condi-
tional expectation of the complete data given the most recent parameter estimate, and then to maximize the
parameter’s likelihood as though the complete data were actually observed [111].

Under certain regularity conditions, the EM algorithm is known to be monotone in likelihood. Since it is
bounded by the maximum likelihood, it will converge [111, 122]. If the algorithm is initialized sufficiently
close (in parameter space) to the ML estimates, then:

)A((i) — )A(ML.

The distinction between the E-step and the M-step is somewhat artificial in this general setting, but is
more clear in the important Gaussian case. If the complete data are normally distributed with(xgand
covarianceA:

Z ~ N(u(x), A),

then it follows from the appendix of [112] that:

U(x;%0) =

¢ — % (1(x)' A" p(x) = 2p(x)' A" [p(xo) + AH'(HAH') ' (y — Hp(xo))])

=y — HA% (H(X) — [;L(Xo) + AH’(HAH/)_l(y - HN(XO))])‘ :

)

wherec; ande; are independent of. In this case, the EM iterations can be rewritten:
E-step:
Al = px®) + AH' (HAH') ! (y — Hp(xY)), (5.4)
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M-step:
, . 2
%+ — arg min HA% (ﬂ(z) - u(x)) H . (5.5)

In this case, the E-step consists of estimating the mean of the complete data, and the M-step attempts to find
the parameters that agree most closely with that estimate.

In general, there is no guarantee that the EM algorithm will be any more tractable computationally than a
brute force search or an iterative descent algorithm. The key lies in the selection of the compl&e Alata
mentioned above, the parameter estimation would be relatively straightforward if the signals were observed
separately. Therefore, a natural choice for the complete data is the concatenation of the individual signals.
Since (5.3) does not contain an additive noise term, we must also distribute the measurementithiar
the complete data. Therefore, we define:

Z1 Sl(xl) n;
z=| ! | =px)+n= : +1
ZK SK(XK) ng

where
ng ~ N(07 ﬁk021)7
K
> B = 1,8 >0.
k=1

The constantg), are arbitrary, and are generally setl{ti or to the normalized SNR [112]:

sk (%) 112

i llsi )12

SinceZkK=1 ny, is equal (in law) tce, the original measurement model (5.1) can be rewritten in terms of the

Br =

EM measurement model (5.3) by defining:

y = Hz
where
H=1' [ IL,
1=1-- -1]’,
———
K terms

and® denotes the Kronecker product. The covariance of the complete data is then given by:
A=D(B) &1L,

where

1>

B 2 [B,....0x), D(B) £ diag(B).
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After substituting these definitions into (5.4), simple matrix algebra yields:

a9 = p(xD) + (B IL)(y — Hu(xD)).

Substituting this expression into (5.5) yields the following iterative algorithm for estimating the parameters
of superimposed signals:

E-step

K
eV = y =Y s, (5.6)

k=1

é%ﬂnl\zlrefk = B 45, &), k=1,... K,
K .
= Be|v- s; (&) | + (1= Bse(x(), (5.7)
J=1,j#k

M-step fork=1,..., K:

%Y = argmin [85p  — sk ()1
The E-step compute:s‘EMref ., the reference estimate of t#&" signal based on the current parameter es-
timate. The M-step then finds a new set of parameters whose signals agree most closely with the reference
signals. We now see the potential for computational savings, since the minimizations within the M-step can
be performed independently. In fact, this algorithm is very amenable to a parallel implementation since most
of the computational cost is in the M-step. Unfortunately, this gain may be negated by the fact that the EM
algorithm may require many iterations for convergence [111].

5.3 Alternate-Maximize Algorithm

A very simple approach to nonlinear minimization is to minimize iteratively the objective function over each
unknown, while holding the other unknowns fixed. For the superimposed signals problem, it is more natural
to group together the parameters correspondingatth signal, i.e., to estimate each signal’'s parameters
iteratively while holding the other signals fixed. This leads to the following iterative algorithm for computing
the ML estimates:
for =0 to convergence

for k=1,....K

k—1

K
fcf;“):argrgin y— s;j(x (H’l) Z Sj(f(‘g-l)) — sg(xx)
o .

—
<
I
ol
+
—

end
end.
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Again, since we are increasing the likelihoodkath iteration, and since the liketiod is bounded above by
the ML estimate, this sequence of parameter estimates is guaranteed to converge.

To compare the EM and the AM algorithms directly, we first express the innermost loop of the AM
algorithm in a two-step form analogous to the EM algorithm:
for k=1,...,K:

E step
k—1 K
~ (1 ~(1+1 ~ (1
o ST S =
j=1 =k
e = &7 Fsu(xy))
k—1 K
~(i+1 ~ (1
oY s S Y s ), (5.9)
j=1 j=k+1
M step
. 2
%+ = argmin Hémreﬂk - sk(xk)H (5.10)

end.
There are two important distinctions between the two algorithms. First, the timing of the updates is dif-

o (i+1) (i+1)
> SRS S

ferent because the reference sig@ﬁﬁ,reﬂk, and hence the estimaté’ "), depends o
This is due to the fact that the residual estimaife®) is updated at every parameter update (compare (5.8)
and (5.6)). Therefore, the AM algorithm is not amenable to a parallel implementation. However, it may
converge in fewer iterations in a serial implementation since the most recent estimates are used to form the
reference signal (5.9). Second, the reference signals themselves are formed rather differently (compare (5.7)
and (5.9)). Boththe EM and the AM algorithm compute an estimate of the regidljdut the EM algorithm
adds only a fractior, of that residual to the previous signal estirrméﬁff)) to form the reference signal.
Note that the residual signal is important because it contains any remaining signal error as well as the mea-
surement noise. Thus, the EM algorithm is more cautious about straying away from the initial estimate, which
may explain why it can be slow to converge. On the other hand, we see from the second equality in (5.9) that
the AM reference is formed with total disregard fm(fcff)), which makes it a greedier algorithm.

The importance of caution depends on how much confidence one has in the initial estimates. In the next
section we discuss one simple method for obtaining the initial estimates. Based on our empirical work with
ellipse reconstruction, the caution of the EM algorithm was unjustified and only delayed the convergence. A

theoretical illustration of the slow convergence of the EM algorithm is given in Section 5.8.
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5.4 Initialization

Both of the above iterative algorithms require an initial estimate for the parameters., xx. We found

the following variation on the approach of Kwakernaak [123] useful for the multiple ellipse estimation prob-
lem [83, 82]. First, estimate the parameters as though there were only one ellipse. Second, subtract the
projection of the estimated ellipse (i.e. the estimated signal) from the measurements. Then repeat those steps
until K signals have been estimated suboptimally. This initialization procedure is actually equivalent to the
first K steps of the AM algorithm with all of the initial parameters set to zero. We found empirically that this
approach worked well, provided that the projections of edlghse were overlap free in at least two of tie
projections. When there was overlap in all but one projection, then the initial estimate was often sufficiently
far from the ML parameters that the subsequent iterations by the AM or EM algorithms led only to local

extrema.

5.5 Number of Views

Any method for reconstruction from projections shouldlseompanied by a theorem that ensures the unique-
ness of the reconstruction. In conventional computerized tomography, the projection-slice theorem provides
the necessary theoretical justification [124]. However, if we have only a small number of projections, then
the projection-slice theorem is insufficient.

Bresler [15] addressed the problem of determining how many projection angles are required to determine
a set of ellipses uniquely. The two main results of his analysis are as follows:

Theorem 5.1 (Thm. 2.12 of [15])Any set of disjoint ellipses can be reconstructed uniquely from any set
of its K'+2 distinct continuous projections.

Theorem 5.2 (Thm. 2.13 of [15]) The reconstruction of any randoki-ellipse distribution from its projec-
tions at any three [different] view-angles is unique with probability one.

These theorems guarantee sufficiency provided the projections are sampled at an interval smaller than 1/4
the minimum of the lengths of the minor axes of the ellipses [15]. In fact, if the sampling interval is greater
than 3/8 the minimum minor axis, then unique reconstruction cannot be guaranteed [15]. Furthermore, these
theorems assume that the projections are noiseless. In the presence of measurement error and blurring, we

conjecture that four views is the minimum plausible number.
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5.6 Optimal Projection Angles

Although Theorem 5.2 guarantees the uniqueness of reconstructing from only three views, it does not provide
any insight for selecting projection angles in the presence of noise. In this section, we present an analysis
of the error in estimating the ellipse position, which suggests an optimal set of view angles. At first this
approach may seem inappropriate, since an ellipse’s shape parameters are often more important diagnostically
than its position parameters. However, we have found empirically that estimates of the shape parameters are
rather sensitive to errors in the position parameters. Fortunately, the position can usually be estimated quite
accurately by incorporating arterial smoothness.

For simplicity, we consider only a single ellipse, since the optimal projection angles for a set of el-
lipses would depend on the ellipse locations in general. Thus, consider an ellipse with parameters
[z ¢y T X ¢ p]’, and with projections

Y;D = Sep (X) + 5;07

forp=1,..., P. The ML estimate of the ellipse parameters is given by:
P
%t = argmin Y |y, —so, (x)||%.
p=1

The most natural approach to finding the optimal projection angles would be to find the angles that minimize
the MSE:

91, .. .,ép = arg min E{Hf{ML —XHQ} ,
01,....0p

where the latter expectation should be taken with respect to a random distributiotofremove any depen-
dence onp. This criterion can be evaluated numerically through Monte Carlo simulation, but we gain more
insight by considering the following approximate analysis.

Recall from Figure 3.5 that the projectiap, of an ellipse is a semi-ellipse function whose position
depends on the ellipse position. From (3.4), the relationship is given by:

A .
Ug, = Cgsinb, — ¢, cos by,

whereu,, denotes the position in the projection. If the ellipse radius is known approximately, then a simple
matched filter can be used to estimaig independently in each of the projections. Due to noise, there

will be some errop,, in this estimation, i.e.:
’O,gp = ug, + (Sp.

By the symmetry of a semi-ellipse, the estimation etpwill be unbiased. Theé” estimates can be aggre-
gated as follows:
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where
u 2 [ua,, -, ugpl,
c 2 [ez ¢y,
§ 2 [61,...,0p),
0 2 [0,...,0p],
and
sinf; —cos6;
A(9) &
sinfp —cosflp

We can obtain an estimate feffrom u by linear least-squares:
¢c=(A0)A(0)'A(8) 0
To find the optimal projection angles, we consider the error covarianée of

Cgp = Covi{c—c}

Since the projections are processed independently, the componénaseoindependent. To make the prob-
lem tractable, we assume the componeni& loéve equal varianée

d ~ N(0,051).
Therefore:
Co = (A(0)A(0))'A(0)E{d'}A(6)(A(0)'A(6))~"
= o3(A(0)A(6)"
-1
_ 2 Z§=1 sin? 6, - Z§=1 sin @, cos 0,
- Z§=1 sin @, cos 0, Z§=1 cos? 6,
Z§=1 cos? 6, Z§=1 sin 6, cos 0,
) Z§=1 sin 0, cos 0, Z§=1 sin? 6,

" (Z§=1 cos? Gp) (Z§=1 sin? Gp) - (Z§=1 sin @), cos Gp) :

1In X-ray imaging, the noise variance will differ between the projections that pass through the long and short axes of the body, so the
components o may have different variance.
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It is interesting to examine the special case where 2:

2
% cot 0

C 0,0] = Ug
0.0 cot 0 1
For 0 close to zero, the error variance grows very large. This is a classic problem with 3-D reconstruction
from a pair of stereo angiograms, and with triangulation methods in general.
To minimize the error variance, we would like the diagonal elemen€gpfo be small. We first introduce
two constraints.

Constraint 5.1 Position-independent error variance.

For symmetry, we would like the andy errors to have the same variance[sjﬁ=1 sin? 6, = Zf;l cos? 0,,.

Note that this constraint implies that:

P

.2 _
E sin® 0, =
p=1

NE

2
cos” 6,

S
Il
—

(1 —sin?6,)

I
M~

S
Il
—

I
N

P
. 2
—Esmﬁp

p=1
P P
= E:sin2 Op = E:cos2 6, = P/2.
p=1 p=1
Constraint 5.2 Uncorrelated position errors.

For rotational invariance, we would like the and y position errors to be uncorrelated, which requires
Zf;l sin 6, cos 6, = 0. Under these two constraints:

ngag

S v
o <@

so there is not much left to minimize! In fact, the problem reduces simply to finding sets of angles that satisfy
the two constraints. One such set of angles is:

i (P—1)m
0 =10, D 2 )
i.e., an equally spaced set of angles spanfling] is an optimal set.

For P = 4, another set of projection angles which satisfies the two constraifitsi$0°, .., 90°, 90° +
6.}, which, for smallf,., may be more practical for bi-plane X-ray systems than adfiflirotation. We can

now see the inadequacy of this position-only analysis, since, unlike the position error v&igntee shape
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error variance will be dependent én. Furthermore, this result is incomplete for multiple objects, since the
position error variance for two ellipses would also depend,on

Although this analysis is incomplete, it is comforting that a simple analysis confirms the intuitive choice
of an equally spaced set of projection angles. An interesting extension of this result would be to examine the
shape error variance as a functiorfpf

5.7 Conclusion

Though interesting theoretically, we abandoned the hierarchical approach of estimating ellipses on a slice-by-
slice basis in favor of the object-based approach of Chapter 6. The hierarchical method was most appropriate
for disjoint objects, which limited its applicability to simulations [83, 82]. In particular, an object-based
approach is more appropriate for branching objects, since the information that identifies a bifurcation is more
global than the information that is available in a single slice.
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5.8 Appendix: Slow EM Convergence

As a simple example of how slow the EM convergence can be, we consider the case where the signals are a
linear function of the parameters, i.8x(x;) = Agxxg, SO that:

K
y= Z Apxy + e = Ax, (5.11)
k=1

where
VAN
A = [Ayq,...,Ak].

For the ML estimate to be uniqud, must have full column rank.
In this case, the EM iterations can be expressed as the following recursion:
for k=1,....K
S = (ALA) AL By — AXD) + Ak

end.
These updates can be aggregated as follows:

%0+ = () 4 BA'(y — A)}(i))
= (I-BA’Ax")+BA'y, (5.12)
where
Bi(ATA)!
B 2
Br (A Ax)™

The exact solution for this problem is the standard least-squares estimate:
x=(A'A)'Ay.
If we let §; denote the error at th&" iteration, i.e.:
%) =%+ 4,

then (5.12) can be rewritten:
dir1 = (I-BA'A)S;.

It follows from this recursive relationship that the rate of convergence is limited by the maximum absolute
eigenvalue, ospectral radiusofI — BA’A, denoted by(I — BA'A).
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Suppose the columns & are orthogonal. In this case, the AM algorithm will converge in one iteration
(K evaluations of (5.10)). How slowly will the EM algorithm converge? It is easy to show that:

(1-p1)1
I-BA'A = ,
(1-p8x)1

so thatp(I — BA’A) = max;(1 — (). The diagonal factor§l — 3;) can be very close td, so the EM
algorithm can converge very slowly even in the simple case of orthogonal, linear measurements.



Chapter 6

3-D Object Estimation

Equipped with the measurement and object models of Chapters 2 and 3, we can define criteria for the
problem that is the focal point of this dissertation: estimating an unknown objegt{setn noisy projection
measurementg. After presenting the maximum-likelihood criterion and noting its shortcomings, we intro-
duce the proposed nonparametric optimality criterion and present a computationally efficient optimization
algorithms for both the parallel and the cone-beam projection geometries.

6.1 Maximum Likelihood Criterion

We showed that the single-object ML estimator is inadequate in Chapter 4. It has even more problems in the
multiple-object case. Again, the ML estimate is the object-set whose computed projections are the closest to
the measurements in the least-squares sense (cf. (3.1)):

I

Typ 2 argmin_min _ min ly —s(uw)
ML= & K Zi,.,2Kk X1,...,XK y py

This estimator is severely under-regularized; one can always add tiny objects whose parameters fit some bit
of noise, thereby increasing the “likelihood,” but certainly not improving the estimate. Even if the number
of objects is fixed so thak” cannot grow without bound, the results will be unsatisfactory at low SNR since

arterial smoothness is not taken into account, as discussed in Chapter 4.

6.2 Nonparametric Optimality Criterion

The nonparametric method of Chapter 4 is, at least conceptually, easy to generalize to the arterial tree recon-
struction problem, leading to the following estimator and optimality criterion:

72 argmin _min min  &(D),
K Zi,.,2Zrk x1(:),..,xKk (")

56
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JAY 2 / = )
3(¥) 2 |y —s(u)P+ ey / $3(2) dz, (6.2)
k=1 2k

wherex(z) is the(5 + P)-dimensional vector containing the second partial derivatives of the components of
x(z) with respect to:.

Again, the smoothing factar = [ay, ..., a5 p]’ controls the tradeoff between fit to the measurements
and smoothness of the estimated objects. Intuitively, we would use the same fairly large valyeafat
a2 since ellipse position varies relatively slowly, very large identical values{or. ., as p, since density
typically varies slowly, and smaller values fag, a4, andas to avoid oversmoothing the important shape
features. Again, cross-validation can be used to estimdtem the data itself.

Why this criterion? The first term of (6.1) is the measurement negative-log-likelihood, which we would
like to be small, but not at the expense of excessive object wiggliness. Functions that minimize, subject to
specified constraints, the second term turn out to be splines, the smoothest functions (in curvature sense)
satisfying those constraints. We argue that for maximum effectiveness, arteries attempt to be as smooth as
possible, subject to anatomic constraints. An example is carotid arteries, which make very smooth trajectories
from their origins at the aorta to their destinations in the head. These arguments are heuristic, and the reader
may disagree; we hope this discussion prompts proposals of other criteria. Our main point here is that (6.1) is
a natural optimality criterion that encompasses the entire arterial tree globally, and therefore promises better
results than local methods.

At least in theory, the optimality criterion (6.1) could be used to solve all of the unsolved problems
discussed in Chapter 10. By using different projection functionsfpag ), arbitrary projection geometries
could be considered, by interpretingas the distance along an artery’s medial axis, multi-valued objects
could be considered, and by using the outer two minimizations of (6.1), the method could be automated.
The practical difficulty lies in finding a computationally efficient algorithm for compuﬁngand perhaps
more importantly, ensuring that such an algorithm is numerically stable. We restrict our attention here to a
semi-automatic method for estimating SGC objects from a parallel geometry.

The particular algorithm for minimizing (6.1) we describe here relies heavily on the fact that, for a parallel
(or cylindrical) imaging geometry, the projections of an elliptical cross-section fall on the same eaghin
of the projection images. This fact is embodied in (2.1) and (2.4), which allows us to rewrite (6.1) as:

v = argmin _min i
K 21,2k x1(-), %K ()
N K
D llya = s(xa(zn), -3 (z0)) 1 +a’2/ii<z> dz] : (6.2)
n=1 k=1

where (cf. (2.4)) the 2-D projection of an ellipse collection is given by:

$(x1(2n); - -+ XK (2n)) = Sn(B{E(x1(20))sor (i (20))})- (6.3)
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By standard arguments [125, 126] based on the Euler equations for the functional (6.2), the infilnum of
is achieved, and any object-set that achieves that infimum is composed of objects whose component functions
are cubic-splines with knots at some subset;0f . ., zx. A cubic-spline function is determined completely
by its values at the knots (sample points). We use this fact to simplify the continuous variational problem (6.2)
into a tractable discrete problem. Note that this discretization is a natural consequence of the form of (6.2).
Define the sample points for thé&" object by:

N 2 {n:z, €2, n=1,...,N},

Ny, = min Ny, nep = max N,

and the samples by:
AN
Xk = [Xk (an,k)/7 sy Xk(zne,k)/]/7
whereX, denotes the parameters of thi& object on those planes within its length. With these definitions,

we can rewrite (6.2) as:

v = argmin min min
K Ni,.. . Nk X1,...Xk
N K
S yn —s(x1(zn)s o xx (@)1 + Y XSk X | - (6.4)
n=1 k=1

The matrixS;, defined by (8.8), depends #}. and«, and serves to discretize the integral in (6.2).

Though many desirable properties of spline smoothers are known [108, 127], the nonlinearity of (6.4)
limits how much we can say about its theoretical properties. There are probably local minima, and even
the global minimum is not unique in general, due to the non-uniqueness discussed in Chapter 3. However,
regularization methods have shown promise in other applications [109], and the empirical results of Chapter 7
likewise are encouraging.

We have defined an optimality criterion for the object reconstruction problem. This criterion can be used
to compare suboptimal algorithms, or can be minimized to generate an arterial tree estimate. In the next

section, we present an algorithm for such minimizations.
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6.3 Parallel-Projection Estimation Algorithm

Having defined optimality criterion (6.4), the object estimation problem becomes simply the problem of
designing an algorithm that can complﬁfewith a reasonable computational load. A general nonlinear
minimization technique would be completely impractical, since there are thousands of parameters to estimate.
Fortunately, we can exploit the sparseness of arterial trees and the special matrix structures of vector-spline
smoothing to tailor an algorithm to this problem.

The outer two minimizations in (6.4) can be thought of as a detection operation: estimating the number
of arteries and their endpoints. In the remainder of this chapter, we focus on the innermost minimization:
the problem of estimating the objects’ cross-section parameters given the number of objects and an initial
estimate.

An initial estimate could come from the output of any of the sub-optimal 3-D reconstruction schemes,
but we currently use manual entry. A trained operator determines the number of objects, and then enters
coarse centerlines using a technique similar to [128]. After tracing a coarse piecewise-linear approximation
of each object’s centerline on one view, the operator traces the centerline in the (elpppood! view
using auxiliary lines, observing the other views to confirm object correspondence. Since there are multiple
views, the correspondence problem that confounds two view reconstruction is alleviated. From cubic-spline
interpolants of the 2-D centerlines, an initial 3-D skeleton is generated automatically by analytical back-
projection. A typical arterial radius for the anatomy of interest is used as the radius for an initially circular
cross-section. The result of this procedure is a crude estimafetbét initializes the iterative algorithm
presented below.

If the objects were disjoint, and if their projections were overlap free, then the minimization of (6.4) would
decompose intd independent minimizations - one for each object. This fact, combined with the sparseness
of arterial trees, suggests that the alternating minimization (AM) algorithm [82, 113] is appropriate for this
problem. Here, we use the AM algorithm on an object by object basis: the parameters of each object are
estimated in turn, while holding the other objects fixed, and the procedure is iferiétbere was no overlap,
convergence would occur in one iteration, but in general the number of iterations depends on the degree of
overlap. That describes the “outer loop” of the algorithm; we now focus on the algorithm for estimating the
parameters of a particular object, holding the other objects fixed.

Suppose we are considering th&¢ object, and Ieff(j denote the current parameter estimates ofjthe
object. Then from the inner minimization of (6.4):

Xk = argmin
g e
Ne,k

Z [yn —s(X1(zn), - Xe—1(2n), Xk (2n), K41 (2n), - - -:iK(Zn))HZ + X3Sk X

n=np

1In [82], the AM algorithm was applied on an ellipse by ellipse basis, and the sparseness argument was weaker.
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=argmin | > ly; -7 (xk(zn) | + X5Si X | (6.5)
where
Xy = [Xk (an,k)/7 sy Xk(zne,k)/]/7
. A . R . N
Voo = Yn—sXi(zn),.. ., X—1(20), Xj41(2n), - o, XK (20)), (6.6)
and
s; (x) 2 s(X1(2n), - s Xj—1(2n), X, Xj41(2n), - - -, XK (2n))
- S(ﬁl(zn)w-wij—l(zn)) )A(j-‘rl(zn))'-':f(K(Zn))' (67)

v is the difference between the measurements and the projections of the fixed objects. By our restriction to
bifurcations, the:*® ellipse on slicen is either isolated, or it intersects one other ellipse, with indgxsay.
Thus,

s(x), x}, isolated

si(x) = ) (6.8)

s(x,Xg, ) —s(xk, ), Xk and xy, intersect

wheres(x, xi, ) is defined by (6.3). Formulas fef;,(x) are given in Section 3.5. Note that if the objects
were disjoint thers? (x) ands(x) would be equivalent.

We have finally reduced the original optimization problem (6.4) down to the form (6.5), which is pre-
cisely the problem addressed by the algorithm of Chapters 8 and 9. That algorithm uses the nonlinear
pseudo-measurement functisfi(x) and its derivatives. The computational efficiency of our nonparamet-
ric smoothing algorithm, combined with arterial sparseness, results in an efficient object estimation method.

The cross-validation method described in Chapter 9 could be used to select the smoothing patameter
automatically in several different ways for this problem. A computationally efficient alternative to cross-
validating the entire object-set is the following approach. First, estimate the objects using an educated guess
for the smoothing parameter. Then, subtract the projections of all of the objects except one (e.g. the longest)
from the measurements, leaving (approximately) only the selected object’s contribution. Next, apply the
cross-validation method of [129] to chooaseautomatically for that single-object data set. Finally, estimate
the entire object-set using the smoothing factor chosen by cross-validation. The examples of Chapter 7, were
based on this approach. Unfortunately, the cross-validation score may have local minima, and a descent from
the initial @« may not yield the truly optimak. A global search forx on a patient-by-patient basis would be
too time consuming; a more practical approach would be to search globally for the bast training set of
images, and then to apply that valuecofo subsequent patient studies.

The object reconstruction algorithm is summarized in Table 6.1. The result of this estimation algorithm
is a set of parametrically described SGC objects that are converted to GC parameters using Section 3.6. One
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Obtain initial estimated’ andOy, ..., Ok.
repeat {
for k=1,....K
for n= N ks - -3 Ne,k
Yo =Y¥n— S()Acl (ZT(L)7 ( . 7)§)(k—1(zn)7 )A(k-ﬁ-l(zn)) ( : 7))A(K(Zn))
. s(xx(zn)), Xk (2, ) isolated
S (% (2n)) = { s(xxk(zn), Xk, ) — (%, ), Xk(2n) intersects xi,
Compute Jacobians ef (x) atxy (2, ).
end
Apply algorithm of Chapter 9 tdy }
to obtain new estimates fat (2n, . ), - - - > Xk (2n. ;. )-
end
}until  ®(¥) decreases insignificantly.

Table 6.1: Iterative object estimation algorithm.

can use these parameters in several ways:

e generate 3-D shaded surface displays directly,
e generate synthetic projections at any angle,
e plot cross-sections, and

e graph parameters (especially radius) versus arterial axis to examine percent stenosis.

Each of these uses is demonstrated in Chapter 7. A bonus for this parametric method is that shaded surface
displays are particularly easy to generate since the estimated ellipses are essentially surface descriptions.
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6.4 Cone-Beam Reconstruction Algorithm

The algorithm described in the previous two sections is an exact method for computing the optimal arterial
tree with respect to criterion (6.1) for parallel or cylindrical projections. In Section 2.3 we presented an
approximation that allows us to apply the above algorithm to cone-beam projections of objects close to the
axis of rotation. In this section, we generalize the reconstruction algorithm to cone-beam projections.

The exactness of the parallel algorithm is due to the fact that the Euler equations for (6.1) specify that
the optimal solution is a set of cubic splines. Thus, the problem of representing a continuous artery by a
finite number of ellipses is determined automatically by the mathematics. In fact, the locations of the knots
(the ellipse samples) are determined by the measurement resolution, with one ellipse per image row. In the
cone-beam case, any object that is away from the axis of rotation will project onto different numbers of rows
of pixels in different views due to the position-dependent magnification (fewer pixels in those views to which
it is closer). Therefore, there is no mathematically determined discretization. This is a common problem in
many engineering optimization applications. The obvious solution is simply to impose a discretization using
common sense. Since an object that lies on the axis of rotation would project onto the same rows in each
view, we propose using one ellipse per image row to discretize the object. If the vertical resolulipn is
and the on-axis magnification /& (0), then we represent objects by a discrete number of ellipses separated
by the distanceé\, /M (0). We denote the sample points by where

(zvfm))

We have now made the problem tractable by discretizing it, but the parallel algorithm is still inapplicable

(1>

Zi

since off-axis objects will project onto different numbers of rows. Fortunately, for typical cone-beam geome-
tries, the numbers of rows differ by only a small number. For example, Tables 6.2 and 6.3 list the starting
and ending rows of the objects in the X-ray phantom discussed in Chapter 7. In addition to the row indices at
four different projection angles, these tables show the row index that results from using a fixed magnification
M (0) as discussed in Section 2.3. This is the ‘ideal’ row index that would result from an on-axis object.
Many of the objects end on the rotation axis (see Figure 7.20), so their endingnow}X_, are identical.
However, even the starting rows for these objects (that begin up to 5cm off axis) agree to within a few pixels.
Thus, simple interpolation should be effective, as we describe below.

Consider the reconstruction algorithm of Table 6.1. This algorithm has two key steps: 1) subtract the
contributions of all objects but one from the projection measurements (6.6), and 2) estimate the parameters
of the remaining object (6.5) (6.7). These two steps must both be modified for cone-beam projections since
there is not a one-to-one relationship between object samples and measurement samples.
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M©O) |18°  72° 108° 138°
6.2 |62 —62 —62 —62
—6.2 |-76 —6.7 -58 —52
~10.5| 8.0 —86 —10.0 —11.4
~10.5 | 125 —9.9 -85 —T7.9
—6.2 |-7.0 —87 -87 -79
6.2 | —6.7 —4.7 —4.0 —4.1
6.2 | -84 -84 -73 —6.1
—6.2 |-53 —59 —65 —6.9

N O TR W~ O

Table 6.2: Starting rowss, ;;) of objects in CGR phantom (see Figure 7.20).

M(©) [ 18° 72° 108° 138°
220.7 | 220.7 220.7 220.7 220.7
90.9 [90.9 90.9 90.9 90.9
108.7 | 108.7 108.7 108.7 108.7
41.0 |41.0 41.0 41.0 41.0
146.7 | 146.7 146.7 146.7 146.7
80.5 [80.1 80.1 80.3 80.6
52.6 |52.8 529 529 52.8
385 [38.6 386 385 384

N O TR W Ol

Table 6.3: Ending rowsn(. i) of objects in CGR phantom (see Figure 7.20).

6.4.1 Cone-Beam Projections of a SGC

We first consider the problem of subtracting the contributions of an object from the measurements. By
“contribution” we mean the object’s projections, which for a cone-beam geometry were given in Section 2.3

by:

R u? + v?
lg(u,vsp) =4/ 1+ 7
U . . U v
/u (scos@—l—msme,ssmﬁ— mcos@,m> ds, (6.9)
where
d d 1

M(s)

Td—dot+s d—do 1+ 7%

The density for a SGC object is given by:

pu(z,y, 2) = p(2) Loy (2, y),

wherex(z) = [cx(2) ¢y(2) r(2) A(2) ¢(2) p'(2)]. The coordinates of the medial axis of the object are
given by(c,(2), ¢y (2), z). Consider a particular projection andlethen for a giverz, let (u,, v,) denote the
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coordinates of the projection of the medial axis. Then it is easy to see from (6.9) that andv, are given
by the solutions to the following system of equations:

u
= 0+ ———sinf
¢z (2) s, cosf + M) sin 0,
u
= inf — —>— cosf
cy(2) s, sin M(s)) cos 0,
z = Yz
M(sz)
The solution to the system is:
Sz = cz(2)cosb+ cy(z)siné,
u, = My (cz(2)sind — cy(z)cosb)
Vy = ZMO,Z;

where
M- 2 M(co(2)cosf + cy(2)sinb).

These formulae are for computing the projection of the medial axis; the key step for computing the
projection of the object is recognizing that the position-dependent magnification changes insignificantly over
an elliptical cross-section. Therefore, fors u,:

l;(“ﬂ Vz;3 /’L) ~

u? + v2 u U v,
1+ Z/u(scos@—l— sinf, ssinf — cos@,—) ds,
d? Mé),z Me,z MO,z

so that:
log(My u, Mg ,v.; 1) =~ /u(scos@—l—usin@,ssin@—ucos@,vz) ds,
= lo(u,vs; ).

Therefore, to compute the cone-beam projection of an ellgsg at angle?, we must compute the position-
dependent magnification factd{ ., and then apply a scaled version of the formulad§6, v; x(z;)) that
we derived in Chapter 3.

There is one tricky matter here though. We have decided above to disgrdtjza set of equally spaced
ellipses at sample poin{s; }. The projections of the ellipses will lie on image rows that will be unequally
spaced in general. Since we want to subtract the object’s projections from the equally spaced measurement
samples, we must generate equally spaced samples of its projections. To do this, we once again exploit the
arterial smoothness. Given equally spaced image row coordifiatég’_;, we can find the corresponding
points along the medial axis by finding thén)'s that satisfyz(n) My .(») = v,. The set{z(n)}_; will
be unequally spaced for objects that are away from the rotation axiés Jflies between ellipse samples at
z; andz; 11, then simple interpolation of(z;) andx(z;+1) will produce an ellipse parameter vector that we
can then project onto row,. Note that the mapping from, to z(n) depends on the projection angle
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6.4.2 Parameter Estimate Updates

The second step of the algorithm that must be modified for cone-beam projections is the parameter estimation.
Given measurementg, ,, and a previous estimate(z;, , ), - - .,%(z;, )], compute new estimates. The
complicating factor is that we hav@. , — iy + 1) Sets of ellipse parameters to estimate, but a slightly
different number of measurements ,, in each view. For this step, since thégse parameters are the most
important, it is more convenient to interpolate the measurements from their original equally-spaced samples
to (unequally spaced) samples centered at the points wherbipisegprojectq.,). This is in contrast to the
discussion in the previous section, where we interpolated the parameters, since the projections needed to be
equally spaced.

The image rows were sampled originally at valegs wherev,, = nA,. By resampling each column
of the images at sample poir{tezi}ﬁg’;byk, we will create a new set of measurements with the same number
of samples at each projection angle. The estimation algorithm of Chapter 9 can then be applied to these re-
sampled measurements. A potential problem with this approach is that the interpolation used to resample the
measurements will introduce some measurement correlation. Fortunately, as Tables 6.2 and 6.3 demonstrate,

very little interpolation is needed, so the induced correlation should be small.
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6.5 Summary

We have described a nonparametric optimality criterion for reconstructing an arterial tree from a few pro-
jections. We presented an iterative algorithm for optimizing the criterion given an initial estimate that is
currently obtained by manual entry. We proposed a generalization of the algorithm for reconstructing from
cone-beam projections, based on resampling of the measurements. It is worth emphasizing that this resam-
pling is object dependent, and is made possible by the fact that we estimate one object at a time iteratively.
This type of resampling would be inapplicable to voxel-based cone-beam reconstruction methods, since the
different voxels would have conflicting resampling requirements. This is another example of the flexibility

of object-based reconstruction.



Chapter 7

Experimental Results

I n this chapter, we report the results of applying the algorithm of Chapter 6 to four data sets: simulated

projection images, MR projections of a branching flow phantom, MR angiograms of a healthy volunteer’s

carotid arteries, and X-ray projections of an aluminum phantom. The SNR per view, defied by /o,

and the important imaging parameters for these case studies are summarized in Table 7.1.

7.1 Simulation

Figure 7.1 shows four noisy projection images of a simulated arterial tree. These images were generated

using the projection model of Chapter 2. Table 7.2 displays the convergence of the algorithm for the smooth-

ing parameter chosen by cross-validating the longest object. Each iteration through all five objects required

about 35 seconds on a SUN Sparcserver. As expected, the first few iterations improve the estimates consid-

erably, with little further improvement after the fourth iteration. The RMS errors for ellipse orientation

m

Simulation MR phantom MR carotid X-ray phanto
K 5 2 4 7
%% 256 160 128 256
N 256 128 160 145
Ap [mm] 1 0.478 0.7 0.83
A, [mm] 1 0.478 0.35 0.83
P 4 4 4 4
o? 3 0.0025 0.015 5.7
SNR 2.8-6.7 6.3-40.6 2.8-20.2 11.2-179.7
61,...,0p || 0,45,90,135 22,67,112,157 0,45,108,143 0,45,90,13

Table 7.1: Imaging parameters for the data sets used to evaluate the reconstruction method.

67
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RMS error

Iteration || ¢, Cy r A 10} 0

1.188 0.9704 1.528 0.06325 23.05 0.2044
0.2884 0.2345 0.1943 0.1352 38.25 0.03376
0.1859 0.1568 0.136 0.07881 34.66 0.01879
0.1783 0.1386 0.1133 0.06639 34.95 0.0145
0.1606 0.1174 0.1048 0.07071 34.94 0.01396
0.1573 0.1312 0.104 0.06435 34.61 0.01451
0.1456 0.1365 0.1081 0.06774 35.2 0.0138
0.1556 0.1363 0.1055 0.067 35.05 0.01354
0.1507 0.1376 0.1031 0.06741 36.76 0.01365

)

0T W

Table 7.2: RMS parameter estimation errors for eight iterations.

Figure 7.1: Simulated angiogrants:= 0°, 45°, 90°, 135°.

are misleadingly large; many of the cross-sections are very close to circular, in which case the orientation is
irrelevant.

A more meaningful evaluation of the shape estimates can be made from Figure 7.2, Figures 7.3 and 7.4.
(The estimates are taken from the fourth iteration hereafter.) Figure 7.2 compares the true and the estimated
cross-sections of the main branch over the stenotic portion. The reconstruction has estimated this eccentric
stenosis accurately. Similarly, Figures 7.3 and 7.4 compare the true and the estimated cross-sections of two
bifurcations. The overlapping ellipses with very different shapes are estimetedately.

For a more quantitative comparison, Figure 7.5 compares the true and the estimated radii (both in SGC
parameters) for this example, and shows the presence of a stenosis quite clearly. These parameters are trans-
lated into GC parameters using the formulae of Section 3.6. Figure 7.6 displays the resulting radius estimation
errors for the five objects. The larger radius “errors” at the endpoints of some of the objects are artifacts that
are explained by object-set ambiguity discussed in Section 3.2: when one ellipse is almost completely inside
another ellipse, it contributes very little to the cross-section. Figures 7.3 and 7.4 show that the cross-sections
were in fact estimated accurately.

Graphs such as Figure 7.5 are useful for computing percent stenosis, but morphology is best viewed
through an interactive 3-D display with cut-planes. Figures 7.7 and 7.8 show two shaded surface displays of
the reconstruction, generated using the simplest aspects of the shading method presented in [130].

The results from this data set demonstrate the potential performance of object-based reconstruction, and
highlight an important advantage of the parametric approach: despite the low SNR, the estimates are of
sub-pixel accuracy. Discrete voxel representationg,06n the other hand, are typically limited by the

measurement resolution.
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Figure 7.2: True (above) versus estimated (below) stenosis cross-seationgjo, . . .

Figure 7.3: True (above) versus estimated (below) bifurcation cross-seatiens3o0, . . .

Figure 7.4: True (above) versus estimated (below) bifurcation cross-seatiensy, . . .

Figure 7.5: True (solid) versus estimated (dashed) object radii.

Figure 7.6: Radius estimation errors for the simulated objects.

Figure 7.7: 3-D surface display of reconstructed simulated artéries)°.

Figure 7.8: 3-D surface display of reconstructed simulated artéries{5°.
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Figure 7.9: Simulated angiograms measuremehts0°, 45°, 90°, 135°.
Figure 7.10: True cross-sections (top) versus one-ellipse estimates (bottom).

7.2 Crescent Cross-Section Simulation

One of the most common criticisms of an approach based on a elliptical model is that “these parametric
approaches usually suffer from a high sensitivity to the exactness of the assumptions used for modelling.
This can be redhibitorysic] when actual objects, such as physiological ones, offer a geometry too complex
and variable to be easily modelled with few parameters” [71]. In this section, we show a simple example
of the versatility of the elliptical model that suggests the parametric approach is less sensitive than might be
imagined.

Consider Figure 7.9, these simulated projections are identical to those of Figure 7.1, except that a crescent-
shaped stenosis has been added to one of the branches. Obviously, a crescent shape is a severe violation of
the elliptical assumption. How “sensitive” are the estimates to this crescent shape? Figure 7.10 displays a
comparison between the actual crescent-shaped cross-sections and the estimated elliptical cross-sections. The
area of the best-fit ellipses shows remarkable agreement to the area of the crescent lumens. The estimated
ellipse shape also seems reasonably robust, considering the non-ellipticity of a crescent.

If a physician wished to test whether a particular arterial segment was crescent shaped, then we can
augment the ellipse model by using two ellipses, one for the normal lumen and one for the plaque, and
then repeat the estimation. Just as the projection of two overlapping ellipses was computed by considering
the set union, here we consider the set difference of the two ellifeSumen) ) € (Xplaque)- A simple
algorithm for estimating the parameters of the two sets of ellipses is as follows. 1) Identify (by hand) the
artery containing a potentially crescent-shaped stenosis, and indicate the extent of the stenosis. 2) Estimate
the remainder of the arterial tree using the algorithm of Chapter 6 and interpolate the normal section of the
identified artery. 3) Subtract the projections of the estimated arterial tree from the measurements, leaving
(the negative of) the projection of the plaque ellipses. 4) Estimate the plaque ellipses from the residual
measurements using the algorithm of Chapter 4.

This method was applied to the images in Figure 7.9, and the resulting ellipse estimates are displayed in
Figure 7.11. The crescent shape is clearly displayed by the estimates. Note that we have not enforced the
constraint that the plaque ellipse should touch the lumen ellipse. Enforcing this constraint would significantly
improve the accuracy since the number of degrees of freedom would be reduced.

Figure 7.11: True cross-sections (top) versus two-ellipse estimates (bottom).
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Figure 7.12: MR tube-phantom projectiofis= 22°, 67°, 112°, 157°.

Figure 7.13: Histogram of radius estimation error.

7.3 MR Phantom Data

The images in Figure 7.12 are MR projections of a MnCl solution flowing through a plastic Y-shaped
connector attached to Tygon tubing. We used the projection-reconstruction selective inversion-recovery
(PRSIR) [95, 96] method to collect the data. The inner diameter of the Y connector was 3.75mm. Fig-
ure 7.13 displays a histogram of the radius estimation error over the Y section. The RMS error in radius was
only 0.04 mm. As a verification of the geometric consistency of the estimates, Figure 7.14 displays the outline
of the projection of the estimates superimposed on another view that was also acquired, but was not used for
the reconstruction. The overall correspondence is quite good, though the sharp transitions between the small
branch and the larger tubes would be better modeled by a GC than a SGC, since some of the image rows
intersect both the small tube and a corner of the larger tube. The shaded-surface displays of the estimated
objects shown in Figures 7.15 and 7.16 are remarkably similar to the physical phantom.

Figure 7.14: Reprojection of estimates (solid line) on an unused view(°.
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Figure 7.15: 3-D surface display of reconstructed tube phardom5°.

Figure 7.16: 3-D surface display of reconstructed tube phartem:45°.
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7.4 MR Carotid Arteries

Figure 7.17 shows four MRSIR projections of a slab containing a healthy volunteer’s right carotid artery.

A surface coil was placed on the right side of the subject’s neck, to maximize SNR. We have no means of
making a quantitative evaluation of the results, but Figures 7.18 and 7.19 show 3-D displays of the estimated
arteries. This example clearly motivates extending this work beyond single-valued objects, since this facial

artery is clearly a multi-valued function of

Figure 7.17: MRin vivo carotid angiogramg, = 0°, 45°, 108°, 143°.
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Figure 7.18: 3-D surface display of reconstructed carotid arteties]43°.

Figure 7.19: 3-D surface display of reconstructed carotid arteties:—50°.
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Figure 7.20: GE-CGR X-ray phantom projectiofis: 18°, 72°, 108°, 138°.

721 Rag?igggﬂ_rgation errors for the GE-CGR X-ray phantom. 75
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7.5 X-ray Phantom Data

Figure 7.20 shows four X-ray projections of an aluminum phantom built by GE-CGR, acquired on a dig-
ital fluoroscopic system. Rouget al. have demonstrated their ART-based reconstruction method on this
phantom [71]. These projections have been corrected for the image intensifier's pincushion distortion. The
phantom was placed on a rotating turnable for the adipns, so the axis of rotation is parallel to the image
columns, as we assume.

This data set consists of cone-beam projections, but the objects were close enough to the axis of rotation
that we felt it would be worth attempting to use the parallel reconstruction algorithm. As mentioned in
Chapter 2, we first applied a local estimation algorithm similar to that of [12] to estimate the PSF on a few
of the overlap-free objects, assuming a Gaussian PSF. The estim&tedhe Gaussian PSF was near 0.5
consistently, which corresponds to the following impulse respdiisgs 0.7 0.15]. This PSF was held fixed
for the 3-D reconstruction.

One of the objects in this phantom is completely horizontal. Since our method does not accommodate
multi-valued objects, the image rows containing the horizontal portion were ignored. Figure 7.21 displays a
histogram of the radius estimation error. Although most of the errors are below a pixel, there are a few sig-
nificant errors. These should be corrected by applying the cone-beam reconstruction algorithm. Figures 7.22
and 7.23 show the outline of the reprojections of the estimates superimposed on views that were not used for
the estimation.

Figures 7.24 and 7.25 display 3-D shaded displays of the reconstructed objects.

Figure 7.22: Reprojection of estimates (solid line) on an unused view(°.
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Figure 7.23: Reprojection of estimates (solid line) on an unused View:18°.

Figure 7.24: Shaded surface of estimate; 72°.

Figure 7.25: Shaded surface of estimate: 238°.
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Chapter 8

Linear Nonparametric Smoothing

This chapter presents a novel nonparametric algorithm for smoothing linear vector-valued meastirements
This algorithm is the core of the nonlinear smoothing algorithm presented in the next chapter, which in
turn is the basis of the object-based reconstruction approach described in the previous chapters. However,
the development of this algorithm is independent of the preceding chapters, and the algorithm itself is of
independent interest, as it provides a nonparametric alternative to the classical Kalman filter.

Spline smoothing has become a popular method for nonparametric exploration and estimation of scalar-
valued functions, but its generalizations to vector-valued functions have been underutilized. This chapter
presents a computationally efficient algorithm for nonparametric smoothing of vector signals with general
measurement covariances. This new algorithm provides an alternative to the prevalent “optimal” smooth-
ing algorithms that hinge on (possibly inaccurate) parametric state-space models. We develop and compare
automatic procedures that use the measurements to determine how much to smooth; this adaptation allows
the data to “speak for itself” without imposing a Gauss-Markov model structure. We present a nonparamet-
ric approach to covariance estimation for the case of i.i.d. measurement errors. Monte Carlo simulations

demonstrate the performance of the algorithm.

8.1 Linear Smoothing

The goal of fixed-interval smoothing is to estimate a smooth function from a finite number of noisy measure-

ments. We consider here the linear measurement model:

yn=Hux,+€&,, n=1,...,N, (8.1)

1This chapter is derived largely from [131].
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where
€n,yn € R, x, € RM | and H,, € RE*M,

We assume that the additive measurement esrois normally distributed with mean zero and (positive
definite) covariance matri¥,,, and that the errors are independent between samples. The{staleare
(possibly unequally spaced) samples of a proggss):

VAN
Xn = [g1(tn)s - s g (t)]) = 8(tn), tn < tnt1 Vn,

where “” denotes matrix transposition. The goal of smoothing is to estigdend/or its derivatives) from
the measurementsy,, }V_;.

One justifies smoothing bg priori knowledge that the component functionggt) vary slowly in some
sense. The smoothnessgis frequently quantified by assuming that the stgtes} adhere to a parametric
Gauss-Markov discrete-time state-space model:

Xnt1 = ApX, + Bruy, u, ~ N(0,Q,), X0 ~ N(Hm Iy). (8.2)

Using such models, one can derive optimal smoothing algorithms [132] that provide minimum mean-square
error estimates of the states. However, in many applications the parameters (state evolution matrices and co-
variances) of the state evolution model (8.2) are unknown, and they must be estimated from the measurements
or from a training set [133]. This estimation may result in an inaccurate parametric model.

Rather than impose a possibly inaccurate parametric model, we would sometimes prefer to “let the
data speak for itself,” particularly for off-line data exploration. This motivates honparametric approaches
to smoothing [127].

Nonparametric spline smoothing has proven to keeassful at estimating scalar-valued functions from
noisy data. Therefore, it is not surprising that the nonparametric approach has also been applied in some sit-
uations similar to the vector measurement model (8.1). In this chapter, we derive a computationally efficient
algorithm for nonparametric smoothing of vector measurements, allowing for general measurement covari-
ancesy,,. This has also been considered by Miller and Wegman [134], but their algorithm requires that the
covariance matrices be simultaneously diagonalizable. For independent, identically distributed (i.i.d.) mea-
surement errors, we recommend the transformation approach of [134], as it requires fewer computations than
the algorithm presented below. Wegman [135], Woltring [136, 137], and Sidhu and Weinert [138] all discuss
approaches that assume effectively that the covariance matrices are diagonal. Note that the approach of Sidhu
and Weinert [138] does allow for a more general measurement model than (8.1). In the special case of diago-
nal covariance matrices, the vector-spline smoothing algorithm reduces to repeated applications of the scalar
algorithm. However, one can take advantage of any known similarity between the component functions when
choosing the smoothing parameters [136, 137], Non-diagonal, non-i.i.d. measurement covariances arise in
several problems, including in the nonlinear smoothing algorithm of the next chapter.
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Although, as observed by Silverman [108], “non-parametric regression is not as widely known or adopted
as perhaps it should be,” spline smoothing concepts have previously had several other generalizations that we
list for didactic reasons: estimating a function’s derivatives [108, 139], estimating branching curves [140],
smoothing multivariate functions (scalar valued functions of several variables) [141, 127], and estimating
curves with discontinuities [142]. Source code for spline smoothing is availédoie thegcy andtoms
directories ohetlib  [143].

This chapter is organized as follows. In Section 8.2, we review the derivation of the cubic-spline based
algorithm for smoothing scalar measurements, following the approach and notation of Reinsch [126, 144].
In Section 8.3, we present the new algorithm for smoothing vector measurements. In Section 8.4, we con-
sider methods that use the measurements to choose automatically the parameters that control the degree of
smoothing. In Section 8.5, we describe a nonparametric method for measurement error covariance estima-
tion. In Section 8.6, we outline the algorithm implementation and discuss computational requirements. In
Section 8.7, we compare these methods using simulated measurements.

8.2 Spline Smoothing of Scalar Measurements

The Problem
Assume that the scalar measuremenptsatisfy the model

yn:g(tn)+wn5n, nzl,...,N,

en ~ N(0,0%), E{epem} =0if n #m,

wheret; < ... < ty. The weightsav,, are assumed known, but the variae@emay be unknown. Estimation

of g by smoothing the,,’s always involves a tradeoff between fit to the data and smoothness of the estimated
functiong. For normally distributed measurement errors, the natural measure of fit to the data is the weighted
residual sum of squares,

RSS(g) £ EN: <%_Ti(tn)>z

n=1

Spline smoothing is based on the following nonparametric measure of the roughness (lack of smoothness) of
g
N k 2
Rio) 2 [ (M)
t1

General differential operators have also been considered, e.g. [138, 134]. For simplicity, we consider here
only the casek = 2, though the algorithm derived below is fully generalizabRs(g) is related to the

2An e-mail message toetlib@research.att.com containing the requessénd index 'or‘send index from gcv
will generate a reply containing instructions.
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curvature ofy, so it weights functions that are very wiggly more heavily. This measure also has the desirable
property thaR2(g) = 0 if and only if g is linear.

We would like to minimizeRSS(g) andRz(g) simultaneously, but these are conflicting goals in geferal
The standard nonparametric solution is to use the curve that minimizes a weighted combination of the two:

bo 2 arg min [f: (“‘Ti(t”)ym/(g(t))? dt] . (8.3)

n=1
The smoothing parameter controls the tradeoff between fit to the data and smoothnessy As 0, g,
approaches the cubic-spline interpolant of the measurements, and-asoco, g, approaches the linear
regression of the measurements. Automatic selectianwill be discussed in Section 8.R,(g) acts as a
“roughness penalty” [108] that prevents excessive local variation in the gur¥ais idea is related to the
regularization methods of computer vision [109].

The Solution
As a consequence of the Euler equation corresponding to the variational problem (8.3), the minimizing
functiong,, is a cubic spline [126]. A functiop is a cubic spline with knot$t,,}V_, if and only if there

exist coefficientd a,,, by, cn, dn }_, such that:
n dn
9(t) = ap + bu(t —tn) + %(t —ta)? + Tt = t0), € [tns tural, (8.4)

and
g(t), g(t), g(t) are all continuous (8.5)

(to is any number less than, andt 1 is any number greater thag.)
The continuity conditions (8.5) impose a system of equations on the polynomial coefficients that are knot
dependent. These equations are [126]:

1
bn = _Ehn(cn+1 + 2¢y) +h;1(an+l —an),n=0,...,N—1,

.
3
I

hit(cns1 —cn)y, n=0,...,N—1,
by = %hN—lcN—l + (any —an—1)/hn-1,
hetan = (hy' + b iy)ans + by iiange =
%hncn + %(hn + hpt1)ent1 + %hnﬂcn“, n=20,...,N—2, (8.6)
whereh,, = t,, — t,—1. There are a total of(N + 1) unknowns, so by adding 4 boundary conditions to

the above3 N equations, we can express all of the coefficients in termgof .., ax). Table 8.1 presents
two possible boundary conditions. We restrict our attention here to natural cubic-splines by imposing the

3The solution to the problem of minimizinB2(g) subject tog(t») = y»¥n is cubic-spline interpolation. Interpolation is useful
only if the measurements are noiseless [126].
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Left Boundary | Right Boundary
Natural Splines
co=0 cy =0
do=0 dy =0

Not-a-Knot Splines
ap = a1 +bihi + a1hf + §dihi || anv = an—1 +by_1hy—1 + 5c1hi_; + gdn_1h%_4
do = dy dy =dn_1

Table 8.1: Boundary conditions for spline smoothing.

boundary condition thaj, (¢) is linear fort > t5 andt < ¢;. Other boundary conditions, e.g. periodic and
complete splines, are possible, which may be important if derivativesod to be estimated [139, 145].

For natural cubic-splines, the most important constraints are summarized by the following matrix relation:
Q'a = Tc, (8.7)

wherea = (ay,...,ay)’,andc = (ca,...,cn—1)". QandT areN x (N —2) and(N — 2) x (N — 2) band
matrices respectively:

hit, j=i hs, j=i-1
Qi 2 —(h7 +h), j=i+l T 2 s(hi+hiy1), j=i

hi, j=i+2 thiyi, j=i+1

0, otherwise 0, otherwise

(The B-spline version 0 andT is known to result in a numerical algorithm that is more stable [145]; we
present this version for simplicity.)

Lety = (y1,...,yn) andW = diag(wy, ..., wy). If g is a natural cubic-spline with expansion (8.4),
then it was shown in [146] that

Ra(g) = / (§(1)2dt = ¢'Te = 2QT~'Q'a, (8.8)

and
RSS(9) = (y —a) W *(y — a).

Therefore the coefficients of the smoothing spljpeminimize the quadratic:
a=argmin|[(y —a)W ?(y —a) + «a' QT 'Q'a] .
One can find the solution to this minimization by solving the following system of equatioAsafudée [126]:

Qy = (T/a+QW?Q)(ca)

a y — W2Q(¢a). (8.9)
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SinceT andQ are band matrices, we can solve (8.9) ilNQ(operations [147]. These band matrices will
also be important to the efficiency of the algorithm for smoothing vector measurements. Having cofnputed
andé, we can comput® andd from (8.6), thereby obtaining the piecewise-cubic expansiaf,ofn many
cases, only is needed Sincé, (t,) = a,.

8.3 Spline Smoothing of Vector Measurements

The Problem
We now generalize the results of the previous section by consideringthermeasurement model

yn=8(tn) +&n, n=1,...,N, (8.10)

g(tn), €n,yn €RY, €, ~N(0,%,), E{eqel,} =0, n#m.

Although we assume the error covarian®gs are known for the derivation below, they can be estimated
(Section 8.5) if the errors are identically distributed. The goal is to estigm&tem the measurementsy,, }.

Again we must compromise between fit to the data and smoothness of the estimated functions. Assuming
the errors are normally distributed, the natural measure of fit to the data is

N
RSS(g) Z(yn - g(tn))/Egl(yn — g(tn))-
n=1
Although we assume that the component functigpé) of g(¢) are smooth, they may have different degrees
of smoothness, different scales, and different marginal measurement-error variances. Memsepthing
parametersee = (o, . . ., apr), are required to formulate the problem. However, if a group of the component
functions are known to have similar properties, then we equate the corresponding smoothing parameters. The
multidimensional generalization of (8.3) is then

N

M
8a = arg mgn Z(Yn —g(tn)) =5 (yn — () + Z Qm /(gm(t))2 dt] . (8.11)

n=1
Before presenting the solution to this general minimization problem, we note two special cases. If the
covariances,, are diagonal, then (8.11) separates ihfandependent terms of the form (8.3), §a can
be computed by evaluations of (8.9). Similarly, if the covariances are simultaneously diagonalizable, then
a transformation of (8.11) yields a separable expression [134].

4The objection could be raised that model (8.10) is not as general as model (8.1), which contains the aHbjtienal. However,
if the measurement matric$,, are all of rankM, then multiplying both sides of (8.1) b/, =, ' H,,)~1H/, =, * transforms (8.1)
into (8.10). In general, the measurement matrices may not all be of¥anK they are not, then even optimal Kalman filters, derived
from the state-space model (8.2), will be effective only if the pélis,, A,,) satisfy the technical condition stochastic observabil-
ity [148]. This condition is usually satisfie@bause of the presence of delay or difference terms,inAny such (application dependent)
a priori information should be incorporated into the nonparametric paradigm presented here.
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The Solution

Again, by the Euler equations for (8.11), the solutig® is a vector spline with component functions
{Gm.a}}_, that are each natural cubic-splines. Their piecewisgmqhial expansions (8.4) have coeffi-
cients denoted b, b &¢(™) | andd (™, where

atm = @a{™,...,a{"y,
e = (@™, ), E = =0,

and the coefficientb("™ andd (™ satisfy (8.6).
As shown in Appendix Aa andé are computed i@ (M3 N) operations by solving the following banded
equations (cf. (8.9)):

(Q' ®In)y (TeD(@) ™)+ (Q ®@In)2(Q ®1y))ea,
a = y—-3(Qoely)ta, (8.12)

where® denotes matrix tensor produéty is anM x M identity matrix,

a = (a(ll),...,a(lM),...,ag\}),...,a%w))/, (8.13)
c = (0(21),...,c(QM),...,cg\})_l,...,cg\%)l)/,
ca = (Iuw-2)®@D(a))c,
D(a) = diag(a,...,anm),
y = - yn)

and
¥ = diag(Z1, ..., ZN).

The matrixX¥ is the N M x N M block diagonal covariance gf.
The minimization (8.11) has resulted in a linear relationship; A(a)y, between the measurements
and the estimates, where from (8.12),

Ala) =Iyy —2(QaIy)(T®D(a) ™)+ (Q @Iy)Z(Q®1y)) (Q & Iu). (8.14)

In statistics,A(«) is called thehat or influencematrix and will be used in the next section for automatic
selection ofa.

8.4 Choosing the Smoothing Parameters

If the smoothing parametet is too large or too small, then the measurements will be over-smoothed or under-
smoothed, respectively. In the scalar case, Reinsch [126] suggested cheasintgatRSS(j,) ~ No2.
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However, Craven and Wahba [149] showed that this led to consistent over-smoothing. Ideally, we would like

to choose the smoothing parameters to minimize the mean square error:

N
A 1 .
MSE(a) = N Z ga(tn) —&(tn)l%,
n=1
Q\ISE = arg Ir(l)ién MSE(OL) (815)

In practice, this minimization is impossible singés unknown. For the scalar measurement problem, several
methods have been suggested for estimatigge from the data [127], including two due to Akaike [150].
We present below three of these methaesch generalized to apply to our vector measurement problem.
They are compared empirically in Section 8.7. Note that for small samples one may prefer to use robust
variants of these estimators [150].

The estimators discussed below all depend on the central bands of the influencenfatriutchinson
and de Hoog [151, 152] presented algorithms for computing these bandshri &) operations. Their
algorithm is directly applicable to the vector measurement problem, so we do not present it here.

8.4.1 Unbiased Risk

In the scalar case with known error standard deviation, Craven and Wahba [149] have suggested using the
value of the smoothing parameter that minimizes an unbiased estimator of the expected mean square error
(risk). This idea can be extended directly to the vector measurement case. One can easily show that

2

UR(a) %H(I N %trace(E(I ~ A(Q)) + —trace(S)

N

is an unbiased estimator &{MSE(«)}. The unbiased risk estimate ofsg is thus
AN .
QuRr = arg II&HUR(O().

The estimatorexcy andagcey discussed below have been more popular ttygg in the scalar case,
perhaps because the latter depends on the (oftenown) error variance?. For the vector measurement
problem, all three estimates depend on the covariance mafeh.

8.4.2 Cross Validation

Wahba and Wold [110, 153] have suggested using the smoothing parameter that minimizes the cross-validation
(CV) score:

(1>

(¥n = 8ot —n () S5 (Y0 — Ba—n(tn)), (8.16)

M=

1
n=1

acy 2 arg Ir(l)ién CV(a).
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ga,—n is the solution to the smoothing problem (8.11) with N-1 data points, posed without the data pair

(tn,¥n), i.€.

A N M
Sa,—i = arg Ingin Z (Yn — g(tn))/zgl()% —g(tn)) + Z Am /(gm(t))2 dt] .
n=1,n#1 m=1

Each data pair is dropped in turn, the smoothed c8eve ,, is estimated, and the predicted vagi®, _, (t.,)
is compared with the unused measurement. If the CV score is small, then we have chosen the smoothing
parameter that makes the estimated curve a good self predictor.

Although equation (8.16) illustrates the idea behind cross-validation, itis computationally inefficient. We
show in Appendix B that (8.16) can be rewritten

N
V(@) = 1 D 15 (s — Ay (@)™ (v — Ea(ta) I, (8.17)
n=1

whereA .,y () is then'™ M x M block diagonal submatrix of the influence matrix (8.14). By using the
Hutchinson and de Hoog algorithm [151], (8.17) is computed in onR/OK) operations.

8.4.3 Generalized Cross-Validation

Craven and Wahba [149] have also suggested using the smoothing parameter that minimizes the generalized
cross-validation (GCV) score, whose vector spline generalization is:

N ~RSS(ga) 7y —8a)E 'y —8a)

GCV(a) (Ltrace(I — A(a)))? - (&trace(I— A(a)))? ’

aGev é arg Ir(l)ién GCV(a).

In the scalar case, the GCV score is a weighted version of the CV score that is invariant to rotations of the
data when periodic end conditions are imposed [150]. See [127] for a discussion of the asymptotic properties
of GCV. Again, [151] is used to evalua@CV(«) in O(M3N) operations.

8.5 Error Covariance Estimation

For the scalar measurement case with unknown error variance, Wahba [154] (see also discussion in [155])

proposed the following estimator:
o _ [T—Aa))yl|?
_ 1
? trace(I — A(a))’ (8.18)

where the denominator is the natural extension of “degrees of freedom” to nonparametric regression. For
the vector measurement case with unknown error covariance, if the measurement errors are identically dis-
tributed, that i, = X Vn, then we can generalize this idea to estinitby the following algorithm:
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Figure 8.1: True curves (-) and noisy measurement3. (
Figure 8.2: Comparison dfISE, UR, CV, andGCV for scalar measurements.

1. For eachm = 1,..., M, smooth then'" measurement componef,, ., }2_; to computeg,,.a,,.
using the scalar algorithm of Section 8.2, and using, for example, the CV score to ehpose

2. Estimate the elements Bf using the standard correlation estimate:

$ _ ot Wni = Gion(tn)WUng — Gy, (tn))
=7 Vtrace(I — A(ay)) y/trace(I — A(a;))

)

(which simplifies to (8.18) for the diagonal elements3f. For the non-i.i.d. case, Silverman’s iterative
reweighting approach may be useful [108].

8.6 Algorithm

Table 8.2 outlines the organization of the algorithm’s implementation (C source code is availatpéraes

from netlib  [143]). The first set of computations are independentxof The second set computes the
smoothed estimategs and the third set evaluates the cross-validation score. The computational requirements
for this algorithm are of the same order as those for Kalman filter smoothers [156],cwlssknown. The

second and third set are typically repeated for several valued@find the minimum CV score. This search

is the computational penalty for our uncertainty about the smoothness of the functions we are estimating. The
computational requirements are based on the operation counts given in Table 8.3, most of which follow from
the algorithms given in [147]. For the i.i.d. case, the transformation method of Miller and Wegman [134] is
preferable as it requires ondy(M2N) computations for the transformations, ad(i\/ N') computations for
smoothing.

8.7 Simulation Results

To demonstrate the new smoothing algorithm and to compare the three methods of choosing the smoothing
parameterx automatically, we applied the methods to simulated data. Figure 8.1 is a plot of two fungtions,

a decaying sinusoid, ang, a hyperbolic tangent, and one realization of their noisy sampled measurements.
We generated the measurements by adding pseudo-random Gaussian noise vectors with covariance matrix

2.25 24
24 4

Z:
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Computation Flops
. Initialization
QT N(T) -7
(Q ®@In)y N(5M) —5M
By = (Q @ Iy)E(Q®Iy) N(9M? +6) — 23M? — 16
Subtotal:N (9M? + 5M + 13) — 23M? — 5M — 23
II. Regression
(T@D(a) ) N(2M) - 5M
B=(T®D(a)™!)+Byg N(2M?) — 4M?
[L, D] = Cholesky(B) N(zM3—:2M? - M)
—54M3 + 12072 +2M
Solve (LDL)éq = (Q' @ L)y | N(12M? — 3M) — 42M? + 12M
(Q @ Li)éa N(6M) —12M
Q' ®Iy)ea N(2M? — M)
a=y-3Q ®Iy)ca N(M)
Subtotal:N (22 M3 + 22 M? + 4M) — 54M3 — 34M? — 3M
[ll. Compute CV Score
B! = Invert(LDL’) [15]] N(8M?3 — 6M?) —2M (3M — 1)(12M — 1)
=(QaIy)B1(Q &Iy) N(ZM(M+1)) — 2M(M +1)
e, =Yn — 8altn) N (M)
Solve (F(nn))fn =3, en N(3M?3 + :M? — M)
CV()_Nann n £, N(2M2+M_1)
Subtotal: N (32 M3 + 11M? + 2M — 1) — 72M3 + 2. M? — 22 M

Table 8.2: Computational requirements of linear smoothing algorithm.

Computation Flops
Kron (J, n) with diag(M) | n(M(J + 1)) — 2J(J +1)
Kron (J,n)with M x M | n(M?J + 1M (M — 1)) — tM?(J? + J)
Chol(J,n) n(zJ?+3J) - J(J+1)2
Solve(J, n) n(l+4J)—2J2—-J
Invert (.J, n) n(2J(J +1)) — 2J(J + 1)(2J + 1)

Table 8.3: Computational requirements for band matrix operations.
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Figure 8.3: True curves (solid) and estimated curves (dashed) using CV score.

to NV = 100 samples of the function drawn uniformly ¢ 1].

First we applied the scalar smoothing algorithm to the noisy samplgsstfown in Figure 8.1. Figure 8.2
showsUR(«), CV (), GCV(a), andMSE(«) over a range of the smoothing parameter. The minima of the
UR, CV, and GCV scores (denoted by the small circles) occur very close to the minimum of the MSE; thus,
at least for this scalar example, each of the threehous would select a good smoothing parameter. It is
interesting that the UR, CV, and GCV scores are all flatter than the MSExnga.

To evaluate the three scores in the vector measurement case, we did a Monte Carlo simulation with 400
runs, each with a different measurement noise realization. For each run we compigiedyr, acv, and
agcy using Powell’'s method for nonlinear minimization as given in [106, p. 315]. Our intent was to compare
the estimators’ best possible performances, so we initialized the minimization procedure at a vathatof
resulted in low MSE for a few initial runs. To compare the estimators, we use their relative efficiencies,

defined by:
& MSE(awmsk,:)

ni(e) = W,
wherei indicates the'® run. By definition (8.15)y; € [0, 1].

Table 8.4 shows summary statistics of the computed relative efficiencies for the 400 runs. Three other
cases are included for comparison; “None”. no smoothiidgag(X)”: smoothing with just the diagonal
components of the covariances (with minimum CV score), 2 S$moothing with the estimated covariance
procedure described in Section 8.5 (also with minimum CV score).

From the summary statistics for this example, we conclude that the CV and GCV scores perform equally
well, and both slightly outperform the UR score. Those three were significantly more efficient than smoothing
the components individually, which was expected since the measurement correlation was 0.8. All smoothing
approaches decreased the MSE by a factor of approximately 10. It was a pleasant surprise that the perfor-
mance using the estimated covariance matrix was about as good as the performance using the true covariance.
This suggests that the approach described in this chapter may be preferable to smoothing the components in-
dividually, even when the error covariance is unknown. The off-diagonal elements of the covariance matrices
clearly play an important role, even when estimated.

There is still no consensus on the relative theoretical merits of the UR, CV, and GCV scores, even in the
scalar case. We have derived and presented the vector generalizations of all three since their performances
may be application dependent.

As arepresentative example, Figure 8.3 shows the smoothed estimates (dashed) superimposed on the true
curves (solid) for the data shown in Figure 8.1, usiiigy. The estimated functions agree well with the true
functions, and the overall smoothness is qualitatively similar as well.
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Summary statistig Smoothing approach

of {n;}199 None | UR CcVv GCV | diag(®) X
meany 0.076| 0.812 0.841 0.846 0.754 0.839
5t %-ile 0.034| 0.532 0.578 0.603 0.463 0.555
25" %-ile 0.054| 0.731 0.762 0.767 0.664 0.757
50t" %-ile 0.071| 0.836 0.877 0.877 0.777 0.883
75" %-ile 0.092| 0.924 0.947 0.945 0.868 0.946
95t" %-ile 0.130| 0.991 0.992 0.99Q 0.945 0.993
o7 = 0,,//400 0.002| 0.007 0.007 0.006 0.007 0.007

Table 8.4: Relative efficiencies of the different smoothing approaches.

8.8 Summary

We have presented a computationally efficient algorithm for nonparametric fixed-interval smoothing of noisy
measurements with arbitrary measurement covariances. The effectiveness of the approach was demonstrated
on a numerical example. The approach promises to be an attractive alternative to parametric Kalman smooth-
ing for off-line applications.

Possible extensions of this work would include developing a more robust approach to covariance esti-
mation, and applying Silverman’s iterative reweighting approach [108] for non-i.i.d. covariance estimation.
The relationship of nonparametric estimation to state-space methods could also be explored more completely,
which could result in a recursive formulation of the solution.

8.9 Appendix A: Spline Smoothing Derivation

In this appendix, we derive the solution (8.12) to the minimization problem (8.11):

M
ga = argmin RSS(g) + Z amR(gm)-
& m=1
By (8.13),
RSS(g) = (y —a)="'(y - a),
and by (8.8),
M
Y amR(gm) = (™) Tec™ = /(T ® D(a))e.
m=1
Since the minimizing component functions aach natural cubic-splines, they must each satisfy the

constraintQ’a(™ = Tc(™ of (8.7). These constraints can be aggregated to form the cons{€in
In)a = (T ® Ipr)c. The optimal coefficients thus minimize

(y —a)E !}y —a)+c(TeD(a)c (8.19)
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subject to

Since(T ®1,,) is symmetric and invertible; = (T ®1,) " (Q’ ® I5r)a, which, substituted into (8.19)
yields

y-a)Sy—a)+(Tely) (Q ®Iya)(T®D(@)(T®ly) (Q ®Ik)a

=y'S7ly - 22’87y +a' (87 + (Q@D(a))(T © In) 1 (Q @ Inr))a.

Minimizing overa by setting the partial derivative with respectd@qual to zero yields

Ty = (T +(QeD(a))(TeIy) (Q ©Iy)a. (8.21)
Solving fora:
a= (T +Sq) 2 ly, (8.22)
where
Sa £ (Q@Ly)(T®D(a) ) H(Q ®1y) = (QT Q") ® D(a). (8.23)

We could computé directly from equation (8.22), but a few manipulations [126] yield a banded form that is
easier to evaluate. Multiplying both sides of (8.21)¥yand using (8.20), we get

y=a+3(Q&Iy)Iun-—2 @D(a))e.
Multiplying both sides by(Q’ ® I,,)X and using (8.20) yields:
Q' @In)y = (T®1Iy)+ (Q ®@In)B(Q @ Ins) (Tnr(n-2) ® D(e)))e. (8.24)

Symmetric band matrices are the easiest to use, so define- (In;(n_2) ® D(a))c. Combining this
definition with (8.24) yields:

(Q®@In)y = (TeD(@) ™) +(Q @ Iu)2(Q® Iu))ta-
Thus the minimizing coefficient® and¢ are the solutions to the following system of equations:
(T®D(@)™)+(Q @In)2(Q®1Iu))ta = (Q' @ In)y,

¢ = (In(n-2) ®D(a) ")ea,

a=y-3(Qoely)ta-
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8.10 Appendix B: CV Score Derivation

In this appendix, we show that equation (8.16) is equivalent to equation (8.17). Again we \s¢a) to
denote thext" M x M central diagonal submatrix @ (). The same arguments used in the proof of Lemma
3.1 by Craven and Wahba [149] imply that for alandi

N
ga, n(t)= D Aun(@yi+ An)(@)ga, n(tn)-
k=1, ksn

By the definition ofA («),

N
Yn — ga(tn) = Yn— Z A(ni)(a)Y'L’
=1
N
=¥Yn — Z A(m’)(a)yi - A(nn)(a)ga,—n(tn) - A(nn)(a)(yn - ga,—n(tn))
i=1, i#n

= Yn— ga,—n(tn) - A(nn)(a)(yn - ga,—n(tn))
(I - A(nn)(a))()’n - ga,—n(tn))-

Therefore

Yn — ga,—n(tn) =(I- A(nn)(a))_l(yn — 8a(tn)),

which can be substituted into (8.16) to yield (8.17).



Chapter 9

Nonlinear Nonparametric Smoothing

This chapter generalizes the linear smoothing algorithm of Chapter 8 to the problem of estimating a smooth
vector-valued function given noisy nonlinear vector-valued measurements of that fdndtienpresent a
nonparametric optimality criterion for this estimation problem, and develop a computationally efficient itera-

tive algorithm for its solution. The new algorithm provides an alternative to the extended Kalman filter, as it
does not require a parametric state-space model. We also present an automatic procedure that uses the mea-
surements to determine how much to smooth. The preceding chapters have demonstrated the performance
of this algorithm on the object-estimation problem; here, the algorithm demonstrates subpixel estimation
accuracy on a problem from picture processing: estimation of a curved edge in a noisy image.

9.1 Introduction

This chapter considers the problem of estimating a smooth vector-valued function from noisy measurements
observed through a nonlinear mapping. We assume the following nonlinear measurement model:

yn=h,(x,)+€n, n=1,...,N, (9.2)

where
€, ¥n € R, %, € RM, and h,, : RM — REn,

We assume the additive measurement errors are independent between samples and are normally distributed
with mean zero. Without loss of generality, we assume the covariance matrixi®t21, whereo? may be

1This chapter is derived largely from [129].
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unknowrf. The stategx,} are (possibly unequally spaced) samples of a smooth vector-valued fugction

Xn = [g1(tn), s gr ()] 2 &(tn), tn < g Y, 9.2)

where “” denotes matrix transposition. The goal is to estimafeom the measuremen{y,, } V_,.

The prevalent approach to this estimation problem is the extended Kalman filter (EKF) [132]. The EKF
hinges on an assumption that the states adhere to a parametric Gauss-Markov state-space model. However, in
applications such as the edge-estimation example given in Section 9.6, the parameters required by the EKF
formulation (state evolution matrices and covariances) are unknown and are difficult to determine. Further-
more, the state-space formulae imply ghgriori variance of the function varies with Although it is natural
for tracking applications, where one is given a starting state that evolves with increasing uncertainty over
time, this variation is counter-intuitive for off-line applications such as image processing, iwiea rep-
resentspacerather thartime For example, when detecting and estimating an edge in an imagge ptii
variance of the position of the edge (the uncertainty before actually seeing the image) is the same through-
out the image. Despite these objections to parametric methods, we must wserart knowledge of the
smoothness of the underlying functions if we are to obéaicurate estimates. This necessity has motivated
nonparametric approaches to smoothing [108, 127], and is the basis for the new algorithm presented in this
chapter.

In Chapter 8, we presented a computationally efficient algorithm for nonparametric smoothing for the
special case whdn,, is linear, and we presented the rationale behind “penalized likelihood” estimation. Here,
just as in the linear case, we must compromise between the agreement with the data and the smoothness of
the estimated functions. Thus we propose the following optimality criterion:

;2

g = argmin®,(g),
g

JAY Al 2 J (k) (41\2
u(2) 23 Iyn — hulgE)E+ S am / (9 (8))? dt. 9.3)

This criterion is the natural generalization of (8.11). O'Sullivan [157] considered this criterion for the case
of scalar measurements. For simplicity, we asséme 2. The parametetx = (o, . .., ays) controls the
influence of the penalty term, and in Section 9.4 we describe how to estanétmn the measurements
automatically. Until then, we assunaeis known.

By the “minimal property of splines” proven in Theorem 2 of [125], any funcigothat achieves the
minimum of &, is a vector spline with component functions that are cubic splines:(fer2). (We restrict
our attention here to natural cubic-splines by imposing the end conditiong,tk@tis linear fort < ¢; and
t > tx.) However, unlike in the linear case, in general there may be multiple miniRtaysical constraints

2|f the measurement error has the (positive definite) covariance metx,, then we can premultiply,, andh,, by 2;1/2.

Singular covariances may be the result of linearly dependent measurements, indicating that other constraints should be incorporated.
3Consideh, (z) = z2, then®, (g(t)) = ®+(—g(t)).
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will usually rule out the irrelevant solutions. The EKF suffers the same ambiguity, a fact usually ignored
since the filter update equations are initialized at some (presumably meaningful) starting state. The iterative
algorithms we present below also require an initial estimate.

Since the component functions gfare natural cubic-splines, we need only estimate the coefficients of
their piecewise-polynomial expansions (or, for better numerical stability, their B-spline expansion [145]). In
fact, if we computeg(¢) atty, . .., ty, then we can compute all the coefficients from (8.6). From (9.2), this
is equivalent to estimating the statgs, }2_;. From Section 8.9,

M
S am / (2 (1) dt = X'Sax,
m=1

whereS is defined by (8.23), and

(1>

x [x],. ., xN]

Therefore, the variational problem (9.3) is equivalent to the following penalized nonlinear least-squares prob-

lem:
Xa = argmin®Pq(x),
Pa(x) = [ly—h®)|*+x'Sax,
where
A 'V h JAN h / h "
y = [y ynl, h(x) = [hi(xa)'s... ha(xn)]"

S, Which also depends dnin general, is the spline penalty matrix that prohibits excessive local variation
ing.

In Sections 9.2 and 9.3, we develop an iterative method for comp#tingThis method is summarized
as a computationally efficient algorithm in Section 9.5, after we discuss select®riroSection 9.4. We
demonstrate the algorithm on a curved-edge estimation problem in Section 9.6, and conclude with open
problems in Section 9.7.
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9.2 Linearization Approach

We first consider estimating by a linearization method similar to the EKF approach. Assumne 2
(X615 - -+ X0 " is @n initial estimatéof x. By the first-order Taylor’s expansion bf, aboutx,

h,(x,) = hy,(X0.,) + Hy (%, — X0 ), (9.4)
whereH,, is theL,, x M Jacobian oh,, evaluated ak, ,,. Substituting (9.4) into (9.1), we get
Yn = hyp(Xon) + Hy(Xn — Xon) + €n-
Multiplying both sides by(H/,H,,)~*H/, and rearranging yields
Zp R Xp + Vi, (9.5)
where

A _
Z, = Xon+ (H,H,) 1H%(yn —h,(%X0,n))-

The transformed measurement emvgris normally distributed with mean zero and covariance mdikjx=
(H/,H,,)~*. This procedure requireshat(H/, H,,) be invertible, or equivalently that the Jacobians all have
rank M. A necessary condition is therefore tligt > M Vn. (One special case is worth noting: if the initial
estimate is the (unpenalized) maximum-likelihood estimate sg,, = arg miny, ||y, — hy,(x,)|?, then
z, = X, n, and each covariance matdix, is a corresponding Fisher information matrix.)

We have transformed the nonlinear measurements (9.1) into a set of linearized measurements (9.5) that are
now in a form suitable for the linear vector-spline smoothing algorithm of Chapter 8. The resulting estimate,

denoted byky,, satisfies

XpLin = argmin®,(x),
xX

O,(x) = (z—x)II"(z—x)+x'Sax,

where

1>

zZ [z}, ...,2zy]", II = diag(IL,).

d, is a quadratic form, and its minimizer (cf. (8.22)) is:
)A(Lin = (H_l + Sa)_lﬂ_lz. (96)

In the implementation of this algorithm, we comptite,, with the O(M?3N) algorithm of Chapter 8, rather
than by direct evaluation of (9.6).

4Obtaining an initial estimate is clearly application dependent. The transform approach of Bresler [158] is well suitedifiear-
ities that separate into “shift” and “shape” parameters.

5|t is not strictly necessary that all the Jacobians exist or have rank M. Spline smoothing can be applied to non-uniformly spaced
measurements, so one could simply discard any measurements violating the existence or rank conditions.
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A significant difference between this nonparametric approach and the EKF approach is the timing of the
linearization. Here, we first independently linearize all the measurements, and then smooth. For the EKF,
the measurements are linearized about the mexsint estimate from the recursiupdate formulae [132].
Though our approach therefore requires more effort “up front” in obtaining initial estimates, it does avoid
some of the potential problems of EKF mistracking [78, 158].

Since the accuracy &fr;, depends on the accuracy of (9.4), we would usually iterate by gsingas a
new “initial” estimate and repeating the above procedure. Unfortunately, there is no guarantee such iterations
will accomplish our original goal of minimizin@,. or will even converge. The most we can claim is that
the optimal estimat&q, is a fixed-point of the iterations, i.e., ¥, = X thenxr;,, = Xq. The standard
solution to this dilemma is to introduce a relaxation parameter. It is not clear how to do this from the above
derivation, despite its intuitive appeal. With an eye towards applying the Levenberg-Marquardt relaxation
method [159], in the next section we derive the Hessian estimate of

9.3 Hessian Approach

The Hessian approach [106] for nonlinear least-squares problems is to approximate the fudetitotlly
by a quadratic:
Do (x) ~ Py (%) — 2d'(x — %0) + (X — %X0)'D(x — Xo).

The estimate is then given as

XHess = Xo + 67

where$ is the solution to
Dé =d. (9.7)

Neglecting second derivatives [106], one can easily comiatedD:

d= 19l gy hx)) - Sax.,
2 0x [y,
and
1 [0%a 0%a ) _ o
D= 2{ ox; 0%, }_(H +Sa),
where

H £ diag(H,).

Therefore, the Hessian estimate is:

Kifess = Xo + (TI71 + Sa)_l[H/(y —h(x,)) — Saxs]. (9.8)
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The Levenberg-Marquardt (LM) approach [159] to relaxation of the Hessian nonlinear least-squares
method is equally applicable to our penalized nonlinear least-squares problem, since the penalty is a quadratic.
Instead of (9.7), the LM approach (see discussion in [$08,4]) is to compute the update as follows:

(D+AA)dy =d,

yielding the estimate
XHess, A = Xo + 0.
The matrixA is diagonal, and its elements are a measure of scale; weAtakebe the diagonal elements
of II-1. The LM algorithm provides a procedure for choosing the relaxation paratheteensure that the
new estimate is better than the previous estimate,®&(Xess, ) < Pa(xo). This procedure guarantees
convergence to a local minimum when one iterates the Hessian method.
By applying (9.5), (9.6), and (9.8):

Xpim = (I 4+8Sq) ‘I 'z
= (' +Sq) I IH(y — h(xo)) + X
= (II"'+Sa) 'H'(y — h(x,)) + I "%, + Saxo — Saxo)
= X+ (II7" +Sa) 7' [H'(y — h(x0)) — Sax]
= XHess,
we see that the Hessian approach and the linearization approach of Section 9.2 are equivalant, e.,

XHess- Using this equivalence, we can translate the relaxation parameter idea back into the spline-smoothing
formulation. By the same arguments as above, if we define

. yN— e
XLiny = (I} + Sa) ' 'z,

where
Z) 2 IT,H (y — h(x,)) + %o,

and

' 2 T+ A,
thenXrin,n = Xmess,x. IN wWords, rather than smoothing the pseudo-measuremgnfwith covariances
ITL,), we smoothe, » (with covariancedl, ). This estimation procedure is translated into an algorithm in

Section 9.5.
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9.4 Choosing the Smoothing Parameters

As in the linear case, we want to choose the smoothing parametemprovide good estimates gf One
method with intuitive appeal and high (statistical) efficiency (as shown in Chapter 8) in the linear case is to
choose the smoothing parameter that minimizes the cross-validation (CV) score, defined by

é Z HYn - ga —nlt n))H2> (9.9)

where

A
ga-i = argmin Z [yn = (g(ta)I* + Z"‘m/ (Gm (¢

n=1,n#1

ga,—: is the solution to the smoothing problem posed without data pgintExact evaluation of (9.9) is
impractical since it would requird’ iterative smoothing problems for each valuecaf Motivated by the
corresponding formula for the linear case (8.17), we propose the following approach: for a given value of
a, computex, and usex, to compute the linearized measurementhe Jacobia, and the covariance

IT = (H'H)~ . Then an approximation fatV(«) is

A ~
CVo(e) = ZHH (Tt = Ay (@)™ (20 — Zaun) |2, (9.10)

where (cf. (9.6))
Ale) £ (I +Sq) "',

and A ,,,)(ax) is then'™ M x M block diagonal submatrix oA (). This approximation is based on the
expectation thakq will be close enough tg that the Taylor expansion (9.4) will be accurate. Ofieg

is computed, (9.10) is evaluated W M?3N) operations as discussed in Chapter 8. The accuracy of the
approximation used in derivingV is less important than whether or not the minimunm3f, occurs at a
value ofa for which xq is a good estimate. In Section 9.6 we show an empirical result that indicates the
utility of CVy.

9.5 Algorithm

The algorithm depicted in Table 9.1 computgs iteratively for a particular value ak. The computational
complexity is onlyO(M3N). We have borrowed ideas from [10§14.4], substituting in our optimality
criteria. All operations containing terms with the subscripire repeated for = 1,..., N. Source code

for this algorithm is available agspline  fromnetlib  [143]. The dominant computational requirements

are the vector-spline smoothing and the computatio@6f. Since these computations are required even

in the linear measurement case, the principle “penalty” incurred when considering nonlinear problems is the
necessity of iteration.
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The algorithm of Table 9.1 is implemented as a procedure that refiWgéa). This procedure is typi-
cally called with several different values afto minimize CV,(«). We used the subroutine given in [106]
for Powell's method for this minimization. We can make considerable computational savings by using the
smoothed estimates for one valueooés the initial state when smoothing for a nearby valua.of/sing this
procedure, we have found empirically that although the smoothing algorithm may require six to ten iterations
for the first value ofx, on subsequent calls the smoothing procedure typically converges to within 0.1% of
miny P (x) in just one or two steps.

In the examples of Section 9.6, the “else” section of this procedure rarely executed, hence the iterations

converged nearly quadratically to the estimagg.
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Computation Flops
Obtain initial estimatex, ?
X 1= X,
A:=0.001
H,, := Jacobian oh,, atx,, ?
€n '=Y¥Yn — yn N(L)
w, = H/ e, N(2ML)
;' .= (H, H,) N(2M2L)
foest 1= P (X) N(14M)
A,, := diagonal elements dif,,*
repeat{
H;}A =TI + AA, N(2M)
InvertII, N(M?)
Zp ) =Xy + H;l)\wn N(2M?)
XLin,\ := Vector-spline smootfiz,, ,}, covarianceqII,, \} | N(ZM?)
Y n = hn(XLin2) ?
€n=Yn—Yn N(L)
fnew = ‘I’a ()A(Lin,)\) N(7M)
if (fnew < fbest)
X 1= XLin,\
Soest 5:A frew
Yni=Y,
H,, := Jacobian oh,, atx,, ?
w,=H, &, N(2ML)
;! := (H,H,) N(2M2L)
A, := diagonal elements dff,; !
A= 0.1\ 1
else
A= 10X 1
} until @, (x) decreases insignificantly.
computeCV, score forkq N(zzM?3)

Table 9.1: Iterative nonlinear estimation algorithm and computational requirements.
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Figure 9.1: Noisy image data for curved edge estimation example.

Figure 9.2: Noisy image data for straight edge estimation example.
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9.6 Edge Estimation Application

One simple application of the nonlinear smoothing algorithm described above is to the problem of estimating
the position of edges in digital images. Consider Figures 9.1 ance@icy of the N = 64) rows of these
images contain§L = 64) samples of a step function of unknown si{iff = 1). If the edge is known to be
straight, then high accuracy techniques exist for estimating the edge [160]. However, if the edge is smoothly
varying curve, the nonlinear estimation approach of this chapter is applicable.

An approximate model for the measurement function for this problem is:

hi(r) 2 / 1iacry ds, (9.11)
1—1
where
1, s<r1
1{39} = J
0, s>71
with corresponding Jacobian:

o = 1{|i—7—1/2|§1/2}'

We generated the data displayed in Figures 9.1 and 9.2 by using (9.11) and adding Gaussian noise with
variances? = 0.25. The resulting SNR= 1/0) is 2.

Assuming that the underlying edge is smoothly varying (which Figures 9.1 and 9.2 do seem to suggest),
the only remaining requirement for the nonlinear smoothing algorithm is to provide an initial estimate. We
used the following simple heuristic: a temporary copy of each row of the image was convolved with an
approximate matched filter kern@l 1,1,1,1,1,0,—-1,—1,—1, -1, -1, —1], and the index of the pixel with
maximum value was stored. This set®f= 64 numbers was then median filtered, and the result was the
initial estimate of the edge position.

We do not have any reason to stipulate a particular smoothing parameter, so we use cross-validation. To
verify the CV, approximation, we show in Figure 9.3 a plot of the mean-squared error aiththscore as
a function ofa for the data set shown in Figure 9.1, where

2

1 N
MSE(a) = = [ga(ts) — ()]

The minimum of theCV, curve is very close to the minimum of the MSE curve, thus our approximation for
the CV score is useful for achieving accurate estimates.uflderlying curve in Figure 9.2 is truly a straight
line. Hence, as shown in Figure 9.4, the MSE is monotonically decreasing with increaddegause of the
low signal to noise ratio, th€V, score decreases to a certain point and then increases again. Nevertheless,
the minimum ofCV, does occur where the MSE is reasonably small.

Figures 9.5 and 9.6 show a comparison of the true and the estimated position functions for the optimal
a’s. The algorithm adapted itself to both the curved edge and the straight edge—choosing a much larger value
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Figure 9.3: Comparison dflSE andCV, for curved edge example.

for the smoothing parameter in the latter case. This example highlights the versatility of this nonparametric
paradigm. Figure 9.7 shows plots of the estimation errors for the above examples. The subpixel errors

demonstrate the estimation accuracy of this approach.

Figure 9.4: Comparison &fISE andCV|, for straight edge example.
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Figure 9.5: True (solid) and estimated (dashed) edge position from Figure 9.1.

Figure 9.6: True (solid) and estimated (dashed) edge position from Figure 9.2.

Figure 9.7: Estimation errors for edge estimation examples.
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9.7 Summary

We have presented an iterative algorithm for nonlinear estimation of a smooth vector-valued function, based
on a nonparametric optimality criterion. This algorithm provides an alternative to the EKF that is useful
for off-line processing. We have suggested one approximate method for choosing the smoothing parameter
automatically. There are a plethora of methods in use for the linear case, including robust choices [150]; a
detailed comparison of these methods in the nonlinear case is an open problem.

That our algorithm requires an initial estimate for every state is a mixed blessing. Recursive formulae
have also been developed for linear spline smoothing [161, 138]. Perhaps an extension of this work would
yield a recursive nonlinear smoother that would only require a single initial state.

In this chapter, we have demonstrated the potential of this algorithm on a simple edge-estimation problem.
In addition to the 3-D reconstruction problem of this thesis, other potential applications include biomechan-
ics [139] (tracking the movement of limbs from photographic images), and geophysics [162] (estimating

continental plate motion from surface measurements).



Chapter 10

Discussion

10.1 Summary of Contributions

This thesis has described a new object-based method for reconstructing 3-D descriptions of arterial trees
from a few projections. The method captures apriori knowledge of the structure of arterial trees in a para-
metric object model, and quantifies arterial smoothness using new nonparametric smoothing algorithms. By
incorporating this priori knowledge into an optimality criterion, we have translated the reconstruction prob-
lem into a parameter estimation problem. We developed and implemented an estimation algorithm tailored
to this problem, and demonstrated subpixeturacy reconstructions from as few as four noisy projection
images.

We have generalized the measurement model to account for the time-variations of contrast density; an
essential extension for MR angiography. We have generalized the object model to accommodate branching
arteries. These generalizations allowed us to break through the ‘simulated data’ barrier, and we demonstrated
the firstin vivo reconstructions of an arterial tree with an object-based method. We have also demonstrated
the robustness and versatility of the elliptical model by applying it to simulated projections of crescent-shaped
cross-sections.

Essential to these low-SNR reconstructions was our use of the smoothness properties of arteries. We gen-
eralized the linear, scalar spline smoothing technique to nonlinear, vector measurements. We also generalized
the method of cross-validation to these cases. The nonparametric smoothing algorithms are very practical for
natural scenes such as angiograms, since the difficult task of deciding how much to smooth is addressed
automatically.

The promise of this method is perhaps best demonstrated by Figures 7.3 and 7.4, which show that accurate
reconstruction of bifurcations is achievable with parametric models. Note that an attempt to reconstruct
intersecting ellipses on a local, slice-by-slice basis would be too sensitive to noise; it is the pawerful
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priori knowledge of smoothness that makes our global approach effective. Figures 4.7 and 4.8 are also
very encouraging results; they show that accurate estimation of the arterial radius is achievablereugn wit
assuming that the radius function is smooth, provided that the position and density functions are smooth.

As noted by Rosst al. [3]: “Some digital techniques are in use in clinical practice, but application of
these promising approaches is not yet widespread.” The author hopes that by having addressed some of the
limitations of the previous methods, this dissertation will be a step towards a clinically useful method. Unfor-
tunately, a possible disadvantage of this approach is its complexity; our implementation consists of over ten
thousand lines of C programs. However, computer capabilities have risen while the prices have dropped, and
our reconstruction times are reasonable (a few minutes) on an affordable workstation. The emphasis on reduc-
ing computations that pervaded earlier work in quantitative angiography is unjustifiable now, and researchers
will be able to address the remaining challenges by considering increasingly sophisticated models.

10.2 Open Problems

The theory we present has the potential of providing a fully automatic reconstruction algorithm. However, like
many methods, the current implementation of our algorithm requires some manual initialization. Automating
this will be a necessary step towards making the algorithm useful clinically. Once possible approach would
use a detection algorithm based on the outer two minimizations of (6.4). Brute force minimization of (6.4)
would be impractical computationally; one will need to exploit the structure of arterial trees as done in
Chapter 6. Automating the procedure should be relatively easier in the high-SNR case, as with intra-arterial
contrast studies [58].

The most important areas for future work are implementing and demonstrating the cone-beam reconstruc-
tion algorithm for X-ray angiography, and extending the models to accommodatevalued generalized
cylinders. A more extensive analysis of the constraints under which the approximations used to develop
the cone-beam algorithm is also needed. When addressing the multi-valued problem it should be useful to
consider the paradigm that has led to the single-valued object reconstruction algorithm: first consider a sin-
gle object in a single view, then a single object in multiple views, and perhaps apply the AM iterations to
accommodate nitiple branching objects. The author suspects it will be more fruitful to first consider the
multi-valued problem in a more general projection geometry than the cylindrical one considered here. For
example, since three ideal projections are sufficient for reconstructing an ellipse, it should be possible to
reconstruct a multi-valued object from projections in six directions: the three coordinate axes and the three
bisectors of pairs of those axes.

In addition, there remain a wealth of unanswered questions pertaining to 3-D reconstruction. How should
one best choose the smoothing faatofor arterial trees? Shoulad be the same for every object, or should
« scale with object size since smaller arteries tend to be more tortuous? In MR, increasing the resolution by
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decreasing the field-of-view (FOV) causes a decrease in signal energy. What is the optimal FOV for a given
anatomical region? How large a rotation andlg) (s required for a dual bi-plane projection geometry for a
given desired accuracy?

We have demonstrated single-object reconstruction with a smooth background from a simulated projec-
tion. The accuracy of such an approach needs to be examined more carefully on real X-ray angiograms. In
intra-arterial angiography, the typical signal-to-noise ratio is quite high, but the signal-to-background ratio
may be poor. The regular characteristics of arterial projections suggest that morphological filters should be
useful for reducing background interference.

Although we have designed a method thatounts for statistical measurement noise, there is another
source of error that needs further attention. Most X-ray systems are not positionable precisely, so the 3-D
coordinate system for each projection must be calibrated indirectly, typically from projections of a phantom.
What is the sensitivity of a parametric reconstruction algorithm to errors in this calibration? The author
suspects that the multiple-view methods that use the fewest views are the most vulnerable to such errors,
since small errors might tend to ‘average out’ when dozens of views are used. However, calibration errors are
similar in character to the errors introduced by the parallel approximation to a cone-beam geometry, so in light
of the results of Section 7.5, perhaps the sensitivity is reasonable. For reconstruction from MR angiograms,
the consequences of vessels of different phase being superimposed in a projection needs further examination.
This may be challenging to study since plastic phantoms induce susceptibility artifacts into MR images.

In our object-based approach, the ellipse area is not a parameter, but it can be computed dire¢tly (by
once the radius is estimated. For arterial segments with overlap-free projections, one could also compute the
density-weighted area. Deviations from the elliptical model could then be tested by applying a generalized
likelihood-ratio test that compares the densitometric area witt?. The p-value of the deviations could
be reported graphicalhto indicate potential non-elliptical lesions to the physician. It would also be useful
to report confidence intervals for the parameter estimates to the physician. Unfortunately, the theory of
confidence intervals for nonparametric smoothing is not developed firmly. One could certainly report the
Cramer-Rao lower bound, but we frequentlgegd thabound by exploiting smoothness. One approach may
be to ‘simulate the posterior’ by generating synthetic projections of the estimated arterial tree with comparable
SNR, re-estimating the arterial tree from the synthetic projections, and then looking at the variations over
several noise realizations. This may be less time-consuming than one might expect, since one could use the
originally estimated arterial tree to initialize the iterative algorithm at a point reasonably close to the optimal
estimate.

Our approach has been to avoid enforcing plausible constraints such as equality of the density of overlap-
ping ellipses. Though such constraints could reduce the degrees of freedom and thereby decrease the estimate
variance, they could also increase potential modeling error. Nevertheless, if the SNR is very low, it may be

1At the risk of being ridiculed, one might suggest using color for this purpose.
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necessary to use even maeriori knowledge. The branching-spline method of Silverman [140], applied
to agricultural data originally, may be a one useful approach to enforcing tighter constraints between objects
that branch.

As mentioned in Chapters 8 and 9, several research opportunities also remain in nonparametric smoothing.
In particular, the cross-validation score for nonlinear measurements is an approximation that needs to be
evaluated more carefully. We have based our smoothness penalties on a squared second-derivative criterion.
This is certainly appropriate for the position parameters, but for the other parameters a squared first-derivative
may be more appropriate. This is true especially for the ellipse orientation parameter. A careful examination
of Figure 7.24 reveals a ‘spiral’ character to some of the smaller objects. This is due to a linear orientation
function that is completely unpenalized by the second-derivative, even though intuition tells us that such an
object is less likely than a non-spiral object. The nonparametric smoothing algorithm and software could be
easily generalized to accommodate different penalty functions for the different parameters.

As the above theoretical issues are resolved, increasing attention should be paid to improving the user-
interface software, if the method has hopes of being used clinically. Fortunately, the arterial tree descriptions
in an object-based approach are very amenable to user interaction. Shaded-surface displays can be gener-
ated very rapidly at any projection angle, particular segments of the tree can be identified easily for closer
examination, and hemodynamic factors can be computed directly from the parametric description.

One of the most compelling motivations for using as few projections as possible is the practical difficulty
in acquiring more than a few ‘simultaneous’ projections. However, perhaps simultaneous projections are
unnecessary for arterial reconstruction, since arterial tree motion is constrained. Wu [63] made effective use
of multiple cine-projections for simple position and area estimates; it would be interesting to incorporate that
approach into the global estimation framework of this thesis to utilize the 4-D information available from

cine-projections more completely.
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