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ABSTRACT

Silent magnetic resonance imaging (mri) is a technology that allows for mri scans to

be conducted with less acoustic noise than traditional mri technologies. This technology

is important for a few reasons: First, the loud noises generated by traditional mri machines

can be uncomfortable for some patients, particularly those with anxiety disorders, demen-

tia, or sensory sensitivities. Second, silent mri can be useful in auditory and speaking

studies. Third, the noise generated by traditional mri machines can interfere with speech

communication, making it difficult for healthcare providers to communicate with patients

during the scan.

Model-based image reconstruction (mbir) is a technique in mri that uses mathematical

models and mri physics to suppress image noise, reduce acquisition time, and improve

image quality, especially in dynamic and quantitative mri. In this study, we first combined

the silent mri and mbir and developed reconstruction method for both static and dynamic

mri to reduce image noise and artifacts, improve image quality and resolution, and boost

functional/quantitative analysis. Secondly, we optimized sampling trajectory to improve

the k-space coverage and reduce image artifacts in the reconstruction. Lastly, we proposed

methods of designing shaped rf pulse, and developed variable flip angle schemes to create

more uniform longitudinal magnitization.

Through model-based image reconstruction, we found that signal modeling using two-

system matrices resulted in reduced signal artifact from overlapping echoes and improved

SNR of close to 1.4 relative to reconstruction with a single systemmatrix. The development

of joint reconstruction methods, which estimate multiple echoes simultaneously, played a

crucial role in improving the temporal signal-to-noise ratio and reducing noise artifacts.

The k-space trajectory optimization can improve image quality and reduce undersampling

artifact by sampling more efficiently. Additionally, the optimization of RF pulse designs

facilitated better magnetization and more uniform signal excitation across the imaging

volume, maximizing total magnetization and achieving more uniform excitation profiles.

These findings suggest that by carefully designing reconstruction algorithms, sampling

patterns, and excitation modules, the image quality of silent mri can be improved for

broader use in both research and clinical settings.
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CHAPTER 1

Introduction

Magnetic resonance imaging (mri) has become the primary tool for noninvasive imag-

ing of human brain activity. Nevertheless, the loud acoustic noise produced during mri

procedures remains a significant issue. For instance, this noise can lead to discomfort

and anxiety in patients [1], particularly affecting vulnerable groups such as children and

patients with dementia. Additionally, acoustic noise serves as an extraneous sensory stim-

ulus [2, 3, 4], which can alter the blood-oxygen level dependent (bold) response based on

its loudness [5] and duration [6]. There are multiple ways [7] in which acoustic noise can

interfere with functional mri (fmri) tasks and degrade the quality of measured signals.

First, noise from the scanner activates the auditory pathway (including the auditory cor-

tex), thereby reducing sensitivity to experimental stimuli [8]. Second, stimuli may require

additional cognitive processes [9] (such as verbal working memory or performance mon-

itoring). Lastly, scanner noise can cause participant discomfort and increase attentional

demands, even in non-auditory tasks.

Various sources contribute to acoustic noise, including gradient coils, radio-frequency

(rf) components, cryogenic pumps, and air circulating systems. However, the primary

source of acoustic noise is the Lorentz forces resulting from rapidly changing currents in

the magnetic field gradient coils, which are essential for spatial localization [10]. Reduc-

ing the acoustic noise level can be achieved through hardware modifications like gradient

designs and shielding [11], implementing quiet scanning modes provided by vendors [12],

and developing specific pulse sequence designs. Some mri vendors offer a suite of “silent”

mri pulse sequences. These methods aim to minimize acoustic noise in structural imag-

ing, either by slowing down gradient changes—reducing noise at the expense of acquisi-

tion time, or by employing special pulse sequences designed to be quieter (e.g., RUFIS[13],

zTE[14], PETRA[15]).

The looping star pulse sequence [16] is among the silent mri methods utilized for quan-

titative susceptibility mapping (qsm), T2* weighted imaging, and fmri [17]. This sequence
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employs multiple rf pulses and slowly varying gradients, substantially reducing acous-

tic noise compared to the standard echo planar imaging (EPI) method. This characteristic

makes it ideal for scenarios requiring low acoustic noise, such as pediatric mri [18] and au-

ditory functional mri tasks [19]. The looping star technique is a true 3D acquisition with

frequent sampling at low k-space frequencies, enabling rapid sampling of physiological

noise and quick head motion estimation. Additionally, it may be resistant to intra-object

motion due to the central k-space oversampling. However, the use of multiple rf pulses

with slowly varying gradients complicates k-space trajectories, making the reconstruction

process more challenging. The most significant artifact issue is the overlapping-echo ef-

fect, that occurs when signals from multiple excitation pulses are present simultaneously

while traversing k-space locations.

Several methods have been proposed to mitigate overlapping echo artifacts. The first

method [16] assumes that the echo-out and echo-in signals dominate the acquired sig-

nal at the beginning and end of the sampling period, thereby separating the overlapping

echoes at the cost of lower snr and spatial resolution. The second method, rf-phase

cycling, involves an additional scan with a π rf phase change, separating overlapping

echoes by performing a linear combination of signals from both scans. This method can

increase snr by

√
2 but at the expense of doubled scan time. The third method, coherence-

resolved looping-star [20], uses half as many rf pulses with increased time intervals to

separate the echoes. This approach can be considered a standard windowing method [17]

but starts with fewer spokes and a higher resolution input. This method requires longer

scan times for structural MRI and has worse temporal resolution in fMRI tasks when

matching the overall undersampling factor. None of the existing methods can separate

overlapping echoes without compromising scan time, spatial resolution, or snr.

In this work, we aim to enhance the looping-star method by addressing the critical

need for improved spatial and temporal resolution, signal-to-noise ratio, and robustness

to physiological noise and other image artifacts through innovative image acquisition and

reconstruction techniques. For example, a model-based reconstruction approach [21] can

theoretically resolve overlapping echoes and maintain resolution without increasing scan

time. Optimizing k-space trajectories can significantly improve sampling efficiency and

reduce image artifacts. Spatial-temporal reconstruction using UNFOLD and locally low-

rank techniques can produce steady time courses, improved activation maps, and gains in

temporal snr in fMRI.

Model-based image reconstruction (mbir) encompasses a family of non-linear recon-

structionmethods that have proven to be flexible for various inverse problems and capable

of producing high-quality estimates. It employs mathematical models to suppress image
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noise, reduce acquisition time, and enhance image quality, particularly in dynamic and

quantitative mri. The significance of mbir in mri lies in its capacity to overcome some

limitations of traditional mri techniques. One primary advantage of mbir is its ability

to reduce undersampling artifacts and improve image quality. By utilizing mathematical

models to fill in missing data and reduce image noise, mbir results in higher resolution,

more efficient sampling, and superior image quality. This capability is particularly benefi-

cial for 3D silent MRI pulse sequences due to their low snr and high acceleration factors.

Additionally, mbir can enhance dynamic and quantitative mri by better separating sig-

nals from the background image and yielding improved results.

The organization of this thesis proposal is as follows. Ch. 2 provides background. Ch. 3

describes our recent publication [22] that introduces the model-based method to address

the overlapping echoes problems and improve the image quality and resolutions in loop-

ing star mri. Ch. 4 describes a spatial-temporal reconstruction method that combines

mbir, unfold, and llr to improve the spatial and temporal resolution. Ch. 5 describes a

parameterization for looping-star gradient waveforms and a learning-based approach to

optimize the gradient and k-space trajectories. Ch. 6 describes a few works in progress:

joint reconstruction of the fid and gre signals for better quantitative map estimation and

optimization of the rf excitation for silent zte mri Ch. 7 describes the potential future

directions.
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CHAPTER 2

Background

This thesis focuses on designing novel silent pulse sequences, developing model-based

reconstruction methods for dynamic mri and quantitative analysis, and optimizing sam-

pling trajectories and flip angles to resolve potential overlapped echoes, improve image

quality, and reduce image artifact. in mri. This chapter reviews the origin of acoustic

noise, the mathematics of inverse problems, and the generic framework for addressing

the artifacts. We present mri in sufficient detail for this work where inverse problems

arise. Having presented concrete inverse problems, we describe the overlapping echoes

problem, and its solution which we will use in several chapters.

2.1 Image Reconstruction

2.1.1 Inverse Problems

In signal processing and imaging, it is common to collect samples of a signal of interest

indirectly, bymeasuring some function of the signal. For example, in imaging, themeasure-

ments may be obtained by subsampling the original signal, or by measuring a projection

or transform of the signal. In the linear case, we can describe how the measurements y

are obtained from the true signal xtrue using the linear measurement model:

y = Axtrue + ϵ, (2.1)

whereA represents the linear measurement operator or matrix that maps the true signal

to the measured signal, and ϵ is an additive noise term, often modeled as additive complex

white Gaussian noise in mri.

The measurement operator A can be thought of as a mapping from the space of pos-

sible signals to the space of possible measurements. However, because the measurements
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are generally obtained through a process that removes information from the original sig-

nal (such as through blurring or undersampling), the measurement operator is typically

a wide matrix, meaning that there are more unknowns than measurements in the signal.

In such cases, estimating the true signal xtrue from the measurements y and the mea-

surement operatorA is an underdetermined inverse problem, as there are many possible

signals x that could give rise to the same measurements y. Various paradigms have been

developed to tackle this problem, including classical linear or filtering-basedmethods such

as filtered back projection for CT or Wiener filtering for deconvolution problems. While

these methods are fast and efficient, their results are often of insufficient quality for prac-

tical use.

mbir is a family of reconstruction methods that has shown to be both flexible to a

variety of inverse problems and able to produce high-quality estimates. MBIR typically

involves solving an optimization problem that incorporates a prior model of the true sig-

nal, which may be learned from data or specified based on prior knowledge about the

signal. Various algorithms, such as iterative methods or convex optimization techniques,

can then be used to find the optimal solution to the optimization problem.

In this work, MBIR is the main framework used for image reconstruction, as it has

shown to be a powerful and versatile approach for solving underdetermined inverse prob-

lems in imaging.

2.1.2 Model-Based Image Reconstruction

mbir has its foundations in Bayesian MAP (Maximum A Posteriori) estimation. MAP esti-

mation aims to maximize the probability of our estimate given our measurements, which

is represented by the posterior distribution p(x|y). This posterior distribution, derived
from Bayes’ theorem, combines prior knowledge about the signal and the likelihood of

observing the measured data given that signal. Bayes’ Rule is used to rewrite the poste-

rior as shown in Equation (2.2).

p(x|y) = p(y|x) p(x)
p(y)

. (2.2)

To maximize the left-hand side, we can equivalently maximize the right-hand side. When

maximizing with respect to x, we can drop p(y) as it serves as a constant scaling factor.

Applying − log(·) to write the problem as

x̂ = argmin
x

− log(p(y|x))− log(p(x)) . (2.3)
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yields the MAP estimation problem, as expressed in Equation (2.3).

In the context ofMAP estimation, the first term is often called the negative log-likelihood,

which encodes the measurement dependence of our estimate. For instance, in the case

of additive white Gaussian noise (awgn) and the measurement model (2.1), the negative

log-likelihood is proportional to ∥Ax− y∥22. The second term, known as the negative log-

prior or simply the prior, encodes our preconceived assumptions about which signals x

are more probable, irrespective of measurements. Therefore, MAP provides a modular esti-

mation framework that models both measurement dependence and signal characteristics.

However, it is challenging to encode common signal characteristics as a prior probability

distribution.

mbir departs from the probabilistic interpretation of Equation (2.3). To distinguish it

from MAP interpretation, the first term is referred to as the data-fidelity term instead of

the negative log-likelihood, while the second term is called regularization instead of a prior.
However, it is worth noting that these MAP terms are still used informally in the context

of mbir, despite the lack of statistical interpretability of many regularization functions.

Therefore, in mbir, a common estimation problem for Equation (2.1) can be formulated

as minimizing the sum of the data-fidelity term and a regularization term. The regulariza-

tion term penalizes deviation from our signal model, while the hyperparameter controls

the trade-off between data-fit and regularization. However, developing effective signal

and image models along with corresponding regularization functions can be challenging.

The ideal image model should be broad enough to describe all plausible true images while

being discriminating enough to reject noise and artifacts. Thus, developing an effective

regularization function is a central goal in the context of mbir.

2.2 Magnetic Resonance Imaging

In mri, a strongmainmagnetic field is applied to align themagnetic moments of hydrogen

atoms in the body. rf pulses are then applied to perturb these aligned moments, causing

them to precess. When the rf pulse is turned off, the precessing moments emit a signal,

which is detected by a coil surrounding the body. This signal is used to reconstruct an

image of the body’s internal structure.

Multi-coil imaging in mri refers to the use of multiple coils to detect the emitted sig-

nal. Each coil has a different spatial sensitivity map and detects a somewhat different

signal, which can be combined to obtain a higher quality image. In mri, measurements

are collected sequentially in k-space, the spatial Fourier space of the true image. When
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k-space is fully sampled, the image can be reconstructed using an inverse dft. However,

to accelerate scan times, k-space is often undersampled.

Undersampling k-space can result in spatial aliasing artifacts in the reconstructed im-

age. To overcome this, various methods have been developed, including compressed sens-

ing, parallel imaging, and partial Fourier techniques. These methods exploit the fact that

the information content of the signal is not evenly distributed in k-space, allowing for

faster acquisition times while still producing high-quality images.

In summary, while a full exposition of the physics of mri is not necessary for the

purposes of this work, an understanding of multi-coil imaging and the challenges of un-

dersampling k-space is important for obtaining high-quality images in a timely manner.

2.2.1 MRI physics and signal model

The system model A = UF in the context of MRI represents the process of acquiring

image data by performing Fourier measurements and then subsampling the Fourier coef-

ficients. The undersampling operator U reduces the number of Fourier coefficients that

are acquired, resulting in a lower-dimensional measurement vector. This undersampling

is often used in MRI to reduce acquisition time and improve patient comfort.

2.2.2 Acoustic Noise in MRI

There are multiple sources of acoustic noise during an MRI scan. The primary source

of acoustic noise in mri machines is the rapid switching of magnetic gradients. MRI ma-

chines use powerfulmagnets andmagnetic gradients to create images of the body’s tissues.

The gradients are necessary to create detailed images, but they produce rapid changes in

the magnetic field, resulting in a loud knocking or thumping noise. The acoustic noise

produced by MRI machines can range from 80 to 130 decibels, which can be uncomfort-

able or even painful for patients. In addition to the gradients, other components of the

MRI machine can also contribute to the overall acoustic noise level. For example, cooling

systems used to keep the MRI machine cool can also generate a constant whirring and

thumping noise.

2.3 Silent Zero Echo-Time MRI

In mri, echo time refers to the time interval between the application of the rf excitation

pulse and the peak of the signal or echo detected by the receiver coil. Zero Echo Time

(zte) mri is a technique that allows for imaging of tissues that are not easily visualized
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using traditional MRI techniques. The technique uses rf excitation to create images with

very short echo times, which is important for imaging tissues that have very short T2

relaxation times, such as bone or lung tissue.

This section provides an overview of the mechanics of the zte pulse sequence in mri,

focusing on the rf excitation and k-space encoding processes. Additionally, it highlights

common image artifacts associated with zte imaging and describes the acoustic noise

behavior of this technique.

2.3.1 RF Excitation in the Presence of Gradient

As illustrated in Figure 2.1 [23], zte imaging involves rf excitation in the presence of the

readout gradients, which presents two unique challenges. Firstly, while the requirement

for the rf pulse to encompass the full receive imaging bandwidth is common across many

imaging sequences, in zte imaging it is particularly critical. This ensures uniform exci-

tation regardless of the readout direction [24], meaning the rf pulse must cover a broad

range of frequencies to uniformly excite all regions of interest, which can be especially

challenging in zte due to its continuous readout nature. Secondly, the finite time it takes

to switch from rf transmit to receive mode, known as the dead-time gap, leads to missed

samples at the beginning of the readout [25]. This gap can cause artifacts such as banding

or blurring in the final image due to the loss of initial data points, which are crucial for ac-

curate image reconstruction. The dead-time gap can beminimized by using fast-switching

rf coils and optimized pulse sequences, but some degree of dead-time gap is still present

in most zte imaging protocols. These challenges underscore the importance of carefully

optimizing zte imaging parameters to achieve high-quality images withminimal artifacts.

To address the technical challenges in ZTE imaging, it is essential to develop novel silent

MRI pulse sequences and improving image quality and reconstruction methods, which

are core focuses of my research.

2.3.2 Silent 2D and 3D k-space sampling

Sampling the free induction decay (fid) signal, which is the observable signal decay emit-

ted by excited hydrogen nuclei returning to their equilibrium state, in the presence of

a constant readout gradient naturally leads to a 3D centre-out radial k-space sampling

scheme (illustrated in Fig. 2.1B). To achieve full spherical k-space coverage, the readout di-

rection is updated in between excitations. For a cubic imagematrix size ofN×N×N , each

spoke contains N sampling points. The number of (two-sided) spokes required to fulfil the
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fig 2.1 – (A) The simplified zte pulse sequence diagram with two spokes is shown above.

The rf excitation and the gradient waveform are plotted on one axis. A magnified view

of the rf excitation part of the spoke is also shown, indicating the dead-time gap after rf

excitation. (B) The 3D view of spoke distribution in k-space is shown below. The endpoints

of each spoke are connected by a blue line. (Taken from [23])

Nyquist criterion (2N) at a maximum k-space radius is determined by the surface area of

the k-space sphere, which is proportional to (N/2)2. For equidistant radial sampling, the

density decreases inversely proportional to the squared radius. However, accelerating a

3D radial acquisition through angular undersampling, i.e., reducing the number of spokes,

would reduce the SNR and produce undersampling artefacts manifesting as streaking.

The non-selective excitation in zte can excite spins outside the FOV, which includes

plastic materials such as the rf coil and patient table. To avoid aliasing of such signals,

radial oversampling is used to push the aliasing-sphere outside the imaging FOV. Radial

oversampling, resulting in a larger encoded FOV, is also essential for algebraic reconstruc-

tion of the dead-time gap, as it ensures that the object has finite support in image space.

The zte pulse sequence is designed to be silent, and this is achieved by two essen-

tial features: (1) constant gradient FID readout and (2) minimal updates of the readout

direction in between repetitions. However, this does not mean that all zte acquisitions

are necessarily silent, but rather that a zte pulse sequence can operate within these con-

straints. For instance, the zte BLAST sequence is not silent due to large gradient steps

between readouts. On the other hand, the small change in gradient direction between

spokes in RUFIS enables silent acquisition. To achieve complete 3D k-space coverage, the

end points of the spokes can be arranged in a spiral pattern, as shown in Figure 2.1B.
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The acoustic sound pressure and frequency spectrum produced by a zte sequence

depend on scan parameters such as the readout bandwidth, TR, and number of spokes in

the trajectory, since these parameters affect the absolute gradient amplitude, the duration

of each spoke, and the gradient transitions between spokes. With commonly used scan

parameters for zte, the acoustic noise typically stays within 5 dB of ambient noise levels

[23].

2.3.3 Image Artifacts

zte imaging has several advantages, in addition to being a silent acquisition. The low

gradient switching rate in zte reduces eddy currents, and with a TE = 0 for fid, there is

no time for phase accumulation before the readout, resulting in reduced flow and motion

artifacts. However, zte is still susceptible to phase accumulation during the readout due

to off-resonance effects such as main magnetic field inhomogeneity, tissue susceptibility,

and fat-water chemical shift. Chemical shift off-resonance effects can be addressed by

using a pixel bandwidth larger than the fat-water chemical shift and using k-space based

in-phase and out-of-phase zte image decomposition or fat saturation pulses.

A unique feature of zte imaging is the dead-time gap, resulting in a spherical region

in the center of k-space without acquired valid samples. For conventional gridding re-

construction methods, this gap leads to a slowly varying background signal, rolling off

towards the edges of the image, which is most apparent in areas with image intensity

close to zero, such as the lateral ventricles, sinuses, and background.

Radial k-space sampling in zte is less sensitive to motion during data acquisition due

to the repeated sampling and averaging of the k-space center. As a result, motion artefacts

appear as localized blurring and streaking instead of coherent ghosting across the imaging

field of view as seen in Cartesian acquisitions.

2.3.4 Typical Pulse Sequences

The previous section provided an overview of the basic zte pulse sequence and its native

contrast behaviour. The low flip angle rf excitation and effective TE = 0 of zte result

in minimal contamination from T2* relaxation, susceptibility artefacts, diffusion, and flow

effects, leading to native PD and T1-weighted spoiled gradient recalled echo contrast. How-

ever, to make zte suitable for clinical applications, additional contrasts beyond PD and

T1 are required. This subsection summarizes modifications to the zte pulse sequence that

enable encoding of additional contrasts through magnetization preparation and gradient

echo refocusing.
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Magnetization prepared FLASH, as originally described by [26], provides a powerful

method to extend the contrast range of SPGR-type sequences beyond native PD and T1

weighting. To achieve this, the acquisition is divided into segments, with each segment

beginning with a magnetization preparation (MP) module that modifies the longitudinal

magnetization to contain a desired contrast weighting, such as T1, T2, MT, or diffusion.

This MP is followed by a certain number of low-FA, short-TR SPGR acquisitions. MP-zte

offers additional advantages, such as being silent, having TE = 0, and fast scanning with

a short TR where most of the time is used for image encoding.

The Looping Star pulse sequence is a gradient echo imaging technique that uses quiet

gradient refocusing to produce multiple echoes with T2* contrast. The technique involves

a series of FID signals that are generated and gradient refocused in a looping, time mul-

tiplexed manner, allowing the acquisition of multiple echoes within a single TR period.

This technique is particularly useful for imaging tissues with short T2* values, such as

cortical bone or myelin.

In contrast, the zte-BURST technique is a multi-echo zte sequence that uses a series

of non-linear magnetic field gradients to refocus the FID signals and generate multiple

echoes with T2* contrast. Unlike the Looping Star sequence, zte-BURST is associated

with higher acoustic noise due to the use of bipolar gradients for signal refocusing. Despite

this drawback, zte-BURST has been shown to be effective for imaging tissues with short

T2* values and for generating multiple echoes with different T2* contrasts.
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CHAPTER 3

Model-based Image Reconstruction for

Looping-star MRI

The aim of this study was to develop a reconstruction method that more fully models

the signals and reconstructs gradient echo (gre) images without sacrificing the signal to

noise ratio and spatial resolution. By modeling the trajectories for every spoke and simpli-

fying the scenario to only echo-in and echo-out mixture, the approach explicitly models

the overlapping echoes. After building the overlapping echoes into two systemmatrix, we

use the conjugate gradient algorithm (CG-SENSE) with the non-uniform FFT (NUFFT) to

optimize the image reconstruction cost function. The proposedmethod is demonstrated in

phantoms and in-vivo volunteer experiments for 3D, high resolution T2*-weighted imag-

ing and functional MRI tasks. The high resolution protocol exhibits improved spatial res-

olution and reduced signal loss as a result of less intra-voxel dephasing. The fMRI task

shows that the proposed model-based method produced images with reduced artifacts

and blurring as well as more stable and prominent time courses. The proposed model-

based reconstruction results shows improved spatial resolution and reduced artifacts. The

fMRI task shows improved time series and activation map due to the reduced overlapping

echoes and under-sampling artifacts.

3.1 Introduction

Functional magnetic resonance imaging (fMRI) has evolved into the dominant tool for

noninvasive imaging of human brain activity. However, the loud acoustic noise in MRI

still remains a problem. For example, acoustic noise can cause discomfort and anxiety in

patients [1], especially for certain groups of individuals like children or patients with de-

mentia. Furthermore, acoustic noise is an additional confounding sensory stimulus [2, 3,

This chapter based on [22, 27], the author’s publication in MRM and ISMRM.
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4], and can impact the blood-oxygen level dependent (BOLD) response as a function of

both its loudness [5] and duration [6]. There are several ways [7] that acoustic noise can

impact fMRI tasks and degrade measured task signals. First, acoustic noise from the scan-

ner stimulates the auditory pathway (including the auditory cortex), reducing sensitivity

to experimental stimuli [8]. Second, successfully processing degraded stimuli may require

additional executive processes [9] (such as verbal working memory or performance mon-

itoring). Finally, scanner noise may cause participant discomfort and increase attentional

demands, even for non-auditory tasks.

Although there are many sources of acoustic noise such as gradient coils, RF pulses,

cryogenic pumps, and air circulating systems, the main acoustic noise comes from Lorentz

forces caused by rapidly changing currents in the magnetic field gradient coils used pri-

marily for spatial localization [10]. Acoustic noise levels can be reduced by hardware mod-

ifications, such as gradient designs and shielding [11], quiet scanning mode provided by

the vendors [12], and pulse sequence design [14].

Looping-star [16] is a silent MRI pulse sequence that has been used for quantitative

susceptibility mapping (QSM), T2*-weighted imaging and fMRI [17]. It uses multiple RF

pulses and slowly varying gradients so the acoustic noise is greatly reduced compared to

the standard EPI method. This property makes it well suited for cases where low acoustic

noise is required, such as pediatric MRI [18] and auditory fMRI tasks [19]. On the other

hand, using multiple RF pulses with repeating slowly varying gradients can complicate

k-space trajectories and make the reconstruction problem harder. The problem that leads

to the most artifact is called the overlapping-echo effect, caused by signals from multiple

excitation pulses being simultaneously present while looping through k-space locations.

Multiple methods have been proposed to reduce the overlapping echo artifacts. The

first method [16] assumes that the echo-out and echo-in signal dominates the acquired

signal at the beginning and the end of the sampling period, thus separating the over-

lapping echoes at the cost of lower snr and spatial resolution. The second method, RF-

phase cycling, requires an additional scan with π RF phase change and then separates the

overlapping echoes by doing a linear combination of signals from these two scans. This

method can increase the snr by a

√
2 at the cost of doubled scan time. The third method

[20], coherence-resolved looping-star, uses half as many RF pulses with increased time

intervals to separate the echoes. It can be viewed as the same as the standard windowing

method, but starting with fewer spokes and a higher resolution input. This method has

half as many spokes as the original looping star, so it needs a longer scan time for struc-

tural MRI and has worse temporal resolution in fMRI tasks when matching the overall

undersampling factor. None of the previous methods can separate the overlapping echoes
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without sacrificing scan time, spatial resolution, or snr. In this paper, we propose a model-

based reconstruction approach [21] that can theoretically resolve the overlapping echoes

and maintain the resolution without increasing the scan time, building on our preliminary

work in [27]. Along with the model-based reconstruction method, we used 3D golden-

angle-based k-space trajectories [28, 29] for more uniform k-space coverage and reduced

under-sampling artifacts.

There are a few reasons to expect that model-based reconstruction can perform bet-

ter in looping-star MRI. First, the model-based reconstruction method uses more high-

frequency data that is filtered out in the gridding reconstruction. Therefore, the image

spatial resolution is improved, which can reduce signal loss in T2*-weighted imaging. Sec-

ondly, by modeling both echo-in and echo-out signals, the overlapping echoes are mostly

resolved, whereas the gridding method neglects either the echo-in or echo-out signal.

Thirdly, model-based reconstruction naturally uses the sensitivity maps for SENSE par-

allel imaging reconstruction [30], reducing undersampling artifacts. Lastly, applying an

appropriate regularizer can reduce image noise and improve image quality.

3.2 Methods

3.2.1 Looping-star physical parameters

The looping-star sequence was developed to acquire T ∗
2 -weighted gradient-echo imaging

data while maintaining its quiet performance. We used TOPPE [31] to separately generate

excitation and acquisition modules and then combined those modules to form the pulse

sequence. Our implementation can be easily extended to other variants of looping star by

editing or adding modules. Figure 3.1 illustrates the pulse sequence diagram for looping-

star fMRI and the corresponding k-space trajectory. During the first half of the sequence,

the radial spokes are excited using a burst of short hard RF pulses [32] with a slowly

changing gradient to control the direction of the trajectory. During this part, one can

acquire a free-induction-decay (FID) image at TE≈ 0, though we did not use the FID data

for the current work. The second half of the sequence applies the same gradient again but

without RF pulses to create the gradient echo (GRE) signal used to produce a gradient echo

image at TE = 27.67 msec, which is expected to give sufficient functional BOLD contrast

at 3T. Each RF subpulse produces a low-frequency line thorough the center of k-space;

the collection encodes a disk in 3D k-space, and this gradient encoding can be repeated

additional times for multiple GRE echoes. We generate the full 3D trajectory by rotating

the 2D k-space trajectories.
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3.2.2 Acquisition Method

We designed several protocols for different needs including a hi-res protocol for structural

imaging, and mid-res and low-res protocols for fMRI studies.

For structural imaging, we use 12 RF pulseswith 2.24ms readout per RF pulse to achieve

about 1.25 mm isotropic resolution, which we call the high-resolution protocol. Two GRE

echoes are collected to acquire images with TE = 27.67ms and TE = 54.55ms. For multi-

ple GRE echoes, we define a separate forward model for each echo and reconstruct each

echo independently. For fMRI studies, we designed two protocols with different spatial

and temporal resolution. We found that an odd number of RF pulses produced more uni-

form 2D k-space coverage in the highly undersampled fMRI cases, so we used 23 RF pulses

with 1.12ms readout per RF pulse in mid-res protocol to achieve 3mm isotropic spatial res-

olution and 3.6s temporal resolution, and 31 RF pulses with 0.84ms readout per RF pulse

for low resolution protocol to achieve 3.75mm isotropic spatial resolution and 1.8s tempo-

ral resolution. The RF pulse interval and gradient waveforms were adjusted such that the

echo time is approximately 27.67ms for both protocols. To produce an excitation profile

that is as uniform as possible, we used a series of very short 12µs RF pulses with near

maximum magnitude in the excitation module with a flip angle of 3
◦
.

For all protocols, we first designed a 2D sinusoidal gradient with acquisition dwell time

of 4µs, a maximum gradient amplitude of 5 mT/m and maximum slew rate of 1 mT/m/ms

in terms of the root sum of square of x and y axes. Then in 3D, to achieve more uniform k-

space spokes, we adopted the 3D golden-angle based rotation [33] by generating a series of

azimuth and polar angles with small increment. The 2D k-space trajectories were rotated

along x axis by the azimuth angle and along the z axis by polar angle. We used 4800 3D

rotations in hi-res protocol, 64 and 32 3D rotations for each time frame in mid-res and low-

res fMRI protocols respectively. The structural and fMRI protocols are tested in phantom

and in-vivo studies.

Because TOPPE currently requires the gradient of eachmodule to start and end at zero,

we used ramp-up and ramp-down gradients before and after the excitation and acquisition

module to accommodate this constraint. Themax slew rate of the ramp up and ramp down

gradient was set to 5 mT/m/ms.

Sensitivity maps were estimated from a 2 minute 3D GRE pulse sequence with 3mm

isotropic spatial resolution.
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fig 3.1 – (a) A pulse sequence for a 2D plane of the 3D acquisition with one excitation/FID

module and one GRE/data acquisition module (ramp-up and ramp-down gradient are re-

quired by TOPPE), the max slew rate for all modules (including ramps) is 5 mT/m/ms;

(b) Illustration of overlapping echoes in GREmodule: the echo-out signal from purple RF

pulse overlaps the echo-in signal from orange RF pulse in time; (c) 2D GRE k-space trajec-

tory: an odd number of spokes generates more evenly distributed spokes; (d) 3D k-space

trajectory using 3D generalized golden-angle.

3.2.3 Signal models in looping-star

In model-based reconstruction [21], we approximate the object magnetization f(r⃗) using

a finite series expansion as follows

f(r⃗) =
N−1∑
n=0

fn b(r⃗ − r⃗n), (3.1)

where b(·) denotes the object basis function, typically a voxel indicator function, r⃗n de-

notes the center of nth translated basis function, and N is the number of parameters

(voxels).

In looping-star fMRI, assuming we have Nrf RF pulses in one cycle of FID and follow-

ing GRE, there will be up to Nrf k-space trajectories, each corresponding to a previously

applied RF pulse. Therefore, the GRE signal sampled at any time t is a superposition of

Nrf k-space samples located on corresponding trajectories.
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The corresponding signal equation for the ith spoke (i = 1, . . . , Nrf ) and jth receiver

coil (j = 1, . . . , J ) is given by [21]

sij(t) =

∫
cj(r⃗)f(r⃗)

(
Nrf∑
l=1

e
−z(r⃗)(t+(i−l)∆t) e−ı2πk⃗l(t+(i−l)∆t)·r⃗

)
dr⃗, (3.2)

where a continuous time index t is the time for the ith spoke starting from the end of

the ith RF pulse, cj(r⃗) is the sensitivity map of jth receiver coil, f(r⃗) is the unknown

continuous complex transverse magnetization, z(r⃗) ≜ 1/T ∗
2 (r⃗) + ı∆ω0(r⃗) is the “rate

map", ∆t is the time interval between adjacent RF pulses, (i − l)∆t is the time between

the ith and lth RF pulse, and k⃗l(t) is the k-space trajectory for the lth RF pulse at time t.

Each l represents a RF pulse that contributes to the signal. When l = i, the corre-

sponding k-space trajectory k⃗i(t) moves from the center k-space to outer k-space, which

is called echo-out trajectory, and when l = i + 1, the corresponding k-space trajectory

k⃗i+1(t − ∆t) moves from the outer k-space to center k-space, which is called echo-in

trajectory.

After space discretization [34] using (3.1), we approximate (3.2) by

sij(t) =

Nrf∑
l=1

B(k⃗l(t+ (i− l)∆t))

N−1∑
n=0

cj(r⃗n)f(r⃗n) e
−z(r⃗n)(t+(i−l)∆t) e−ı2πk⃗l(t+(i−l)∆t)·r⃗n ,

(3.3)

where B(k⃗(·)) denotes the spectrum of the object basis function b(·).
We express the noisy measured signals for ith spoke and jth coil in matrix-vector form

as follows

sij =

(
Nrf∑
l=1

Ail

)
Cjf + ϵij ∈ CM , (3.4)

where f = (f1, . . . , fN) is the vector of parameters (voxel values) we hope to estimate

from the measurement s, Cj ∈ CN×N
is the diagonal sensitivity map matrix, and each

element of the matrix Ail ∈ CM×N
is given by

ailmn =B(k⃗l(tm + (i− l)∆t))

e
−z(r⃗n)(tm+(i−l)∆t) e−ı2πk⃗l(tm+(i−l)∆t)·r⃗n

, (3.5)

where i is the spoke index, j is the coil index, l is the RF pulse index,m is the index for a

discrete time point in k-space, and n is the index for discrete image grid.
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fig 3.2 – Overlapping echo artifact from the conventional gridding methods. As the k-

space cut-off increases, the overlapping echo artifact can significantly degrade the image

quality.

Stacking up all J measurement vectors and sensitivity map matrices from all coils and

defining the system matrix for the ith echo to be Ai =
∑Nrf

l=1 Ail ∈ CM×N
yields the

linear model

si = (IJ ⊗Ai)Cf + ϵi, (3.6)

whereM is the number of samples per spoke,C = [C1; . . . ;CJ ] ∈ C(JN)×N
, IJ is a J×J

identity matrix, and ⊗ denotes the Kronecker product.

To perfectly model all the spokes, the optimal signal model would take all those k-

space locations into account. However, modeling all the spokes would require approxi-

mately 512 cubic spatial resolution and in practice is computationally infeasible, especially

in fMRI scans with many time frames. Our implementation simplifies the signal model to

include only signals from echo-in spokes and echo-out spokes. Specifically, we simplify

(3.6) to

si = (IJ ⊗ Ãi)Cf + ϵi, (3.7)

where we use the two-term approximation Ãi =
∑

l∈{i,i+1}Ail. Here l = i + 1 corre-

sponds to the echo-in spoke and l = i corresponds to the echo-out spoke.

Two special cases are the first and last spokes, where an FID overlaps with a first

gradient echo or an recalled gradient echo overlaps with a later gradient recalled echo,

which are problematic due to the unknown T ∗
2 map and disparate signal strengths. These

cases are eliminated from the system model by setting i = 1, ..., Nrf − 1.
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3.2.4 Model-based reconstruction

With above discrete system matrix, we use the conjugate gradient method to optimize the

following cost function

f̂ = argmin
f

∥s−ACf∥22 + βR(f), (3.8)

where s = [s1; . . . ; sNrf
] is the vertically stacked signal,A = [(I ⊗ Ã1); . . . ; (I ⊗ ÃNrf

)]

is the stacked system matrix, and R(f) = ∥Df∥22 is a 3D roughness regularizer using

quadratic 1st-order finite differences with 26 neighbors. We use CG-SENSE [30] with 30

iterations to optimize (3.8).

3.2.5 k-space filtering and object basis spectrum

For gridding reconstruction of all protocols, a hard cut-offwas used to truncate the k-space

data with a k-space window at 50% (unless specified otherwise) to reduce the overlapping

echo artifact [17].

For model-based reconstruction, instead of filtering out the mixed signals, we model

the echo-in and echo-out mixture using an object basis function whose spectrum B(k)

is Fermi shaped with a cutoff frequency around 90%. We use this 90% cutoff frequency

because the magnitude of low-frequency components near the k-space origin is much

larger than the magnitude of the high-frequency components; therefore when these two

signals are superimposed, it is very difficult to recover the high-frequency components

accurately. Section S.1 of the supplement gives details about choosing the object basis

function.

3.2.6 Implementation and reproducible research

The reconstruction code is available at https://github.com/haoweix/MBLS, ensuring

the reproducibility of the computational aspects of our research. For pulse programming,

we used TOPPE [31] to implement the looping-star pulse sequence on a GE UHP 3.0T

scanner with a NovaMedical 32-channel Rx head coil. For model-based reconstruction, we

used the Matlab toolbox MIRT [35] to build the NUFFT-based system matrix and optimize

the cost function.

We compared the proposed model-based reconstruction using echo-in and echo-out

system matrices (MB-2 in figures below) to a simpler model-based reconstruction method

that used a single echo-out system matrix, A1 (MB-1 in figures below) and a gridding
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method that used a density compensation function and a gridding over-sampling factor

of 2. Then we applied sensitivity map based complex coil combination to construct the

final images. We tested the structural MRI protocol on 3 subjects and variants of the fMRI

protocol on 4 subjects. Subjects gave informed consent under IRB approval from the Uni-

versity of Michigan.

3.3 Results

We demonstrated proposed model-based reconstruction approach on phantom and in-

vivo scans.

3.3.1 Acoustic noise level

We measured the acoustic noise by placing a phone (iPhone SE) in the scan room and

using a phone app (NIOSH Sound Level Meter Version 1.2.6) to record 30s of the noise,

then computing the sound level. Without playing any pulse sequence, the ambient noise

levels were 59.3 dB LAeq and 83.0 dB LCpeak. LAeq is the average sound level over the

recorded period, representing the continuous equivalent noise level, while LCpeak is the

highest noise level recorded during that period. The multi-band EPI, a typical fMRI pulse

sequence, produced noise levels of 97.4 dB LAeq and 105.6 dB LCpeak. In contrast, the

looping-star sequence had noise levels of 60.7 dB LAeq and 84.7 dB LCpeak. The acoustic

noise of the looping-star sequence is, on average, approximately 1.4 dB higher than the

ambient noise but reduces the noise by 36.7 dB compared to the commonly used multi-

band EPI sequence.

3.3.2 Overlapping echo artifacts demonstration

Figure 3.2 illustrates the resultant effect for overlap of the echo-in and echo-out spokes

in the gridding reconstruction. For k-space filter with a threshold of 0.5, there is little

artifact, but resolution is lowered by roughly a factor or two in all three directions. For

higher cutoffs, there is a tradeoff between spatial resolution and artifact resulting from

misassigned spatial frequency components.
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fig 3.3 – Hi-resolution looping-star reconstruction in phantom study. (a) standard T ∗
2 -

weighted GRE (scan time: 21 min); (b) Gridding reconstruction with density compensation

function; (c) MB-1 without overlapping echo modeling; (d) MB-2 with overlapping echo

modeling. For (b) (c) (d), all use the same k-space data with scan time of about 7 minutes.

(d) shows similar spatial resolution (slightly reduced due to voxel indicator function and

spherical acquisition pattern) to the standard GRE , and improved image quality compared

to (b) and (c) in terms of sharper edges (red zoom-in box) and recovered signal loss (green

zoom-in box).

3.3.3 Phantom experiments

Figure 3.3 shows the reconstruction for structured phantom using a hi-resolution looping-

star protocol. We compare the results of standard gradient echo acquisition with stan-

dard FFT reconstruction to looping-star reconstruction using gridding, model-based re-

construction without modeling overlapping signal (MB-1), and model-based method with

overlapping signal modeling (MB-2). MB-2 significantly improved the spatial resolution

by modeling the high-frequency components in sampled signals compared to the grid-

ding method. Signal loss near the phantom-air edges is also recovered due to the spatial

resolution improvement.

3.3.4 In-vivo experiments

The proposed method reduced the overlapping echo artifacts and improved the spatial-

temporal resolution in both structural and functional MRI, compared to the conventional

gridding method.

3.3.4.1 Structural MRI

Figure 3.4 shows the reconstruction for a human brain scan in a representative subject

using the high-resolution protocol (1.25mm isotropic). The structural MRI results using
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fig 3.4 – Hi-resolution looping star reconstruction for a representative subject. MB-2

provided improved spatial resolution and recovered signal loss, particularly in the inferior

slices for echo 2, compared to gridding reconstruction.

hi-res protocol for the other 2 subjects are shown in figure S1 to further support the in-

creased spatial resolution compared to the gridding method. For the gridding method,

overlapping echo artifact was reduced by truncating the k-space, which also reduced the

spatial resolution. The proposed MB-2 shows increased spatial resolution, reduced over-

lapping echo artifacts as well as improved image quality, compared to the griddingmethod.

Besides the sharper images, the signal loss around frontal sinuses and ear canals is recov-

ered due to the smaller voxel size. Due to almost halved spatial resolution, the gridding

method has a 4X lower (better) undersampling rate than the MB-2 method. MB-2 method

has higher undersampling rate and thus potentially more affected by the undersampling

artifact even with Model-based reconstruction method. The reconstructions from other 2

subjects in Figure S1 support that MB-2 improves the spatial resolution by almost a factor

of 2 and the circular ringing artifacts in the top right slices of subject 1 might have come

from motion or other factors.

3.3.4.2 Functional MRI

We demonstrated application of the proposed methods to fMRI by doing finger-tapping

and visual fMRI tasks. In the fMRI study, healthy participants watched a flashing checker-

board for multiple cycles (20s on and 20s off), and were required to tap their fingers

while the checkerboard was on. Figure 3.5 shows the activation map and time course for

the finger-tapping test in a typical subject. The proposed MB-2 reconstruction method

showed higher correlation and less noise on the activation map as compared to gridding

method. Its time course also better matches the task reference and is less noisy.
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fig 3.5 – fMRI task result. First row: time course from the voxel with the highest correla-

tion coefficient. With the improved spatial resolution, time course in MB-2 shows larger

signal change due to the reduced partial volume effect. Second row: sagittal activation

map for visual tasks (two consecutive slices). Although the undersampling artifact (20x

undersampled) dominates the artifacts here, MB-2 reconstruction still shows slightly im-

proved spatial resolution. With gridding method, activation map is smoothed and poten-

tially showing false positives. Third row: Axial activation map for finger-tapping tasks

(two consecutive slices).
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3.4 Discussion

Compared to the standard GRE method, the biggest disadvantage of looping-star is the

low snr that limits its spatial and temporal resolution. By exploiting the high-frequency

k-space information, the proposed method can resolve the overlapping echoes and use

about twice as many signal samples for reconstruction, which also improves the snr by a

factor of nearly

√
2. However, since the high-frequency signal values are mixed with the

low-frequency signals, which have a much larger magnitude, it is difficult to accurately

estimate the highest-frequency components. To overcome this problem, we used a object

basis spectrum based on a Fermi function that effectively leads to a slight truncation of

the high-frequency components (≈90%) at the end of the echo-in and echo-out spokes

acquisition. This approach reduced the image distortion coming from the mis-estimation

of the highest-frequency signals.

One other reconstruction method RF-cycling[16] leads to reduced temporal resolution.

Another approach is coherence-resolved looping-star [20], which removes most of the

overlapping echo artifacts by pushing further in k-space before the next RF pulse is applied.

This by done by increasing the gradient strength for a fixed number of RF pulses, thus

increasing acquisition bandwidth, resulting in reduced snr. Alternatively, the coherence-

resolved approach can be implemented by reducing the number of RF pulses, which can

maintain the snr, but increases undersampling artifact by reducing the number of spokes.

In all of these approaches [20, 17], there is a loss of image quality, snr or temporal reso-

lution.

For the excitation process, considering the typical T1 value of the gray matter and 23

RF pulse of 3 degree flip angle and using small tip angle approximation, the Mz of the

last RF pulse was about 3.2% decreased compared to the first RF pulse for gray matter.

Therefore, we neglected the impact of the Mz decrease in our signal model. RF-induced

echo splitting and resulting higher-order echoes (spin-echoes, stimulated echoes, etc) are

neglected, again, because of the low FAs [16]. In addition, the higher-order echoes are also

not re-phased in the gradient-echo module due to the continuously changing gradient

fields.

We used 3D golden-angle based sampling trajectories to achieve more uniformly dis-

tributed spokes. The performance of randomly rotated spokes highly depends on the ran-

dom seed, so the image quality in each frame of fMRI studies would differ significantly

if different sampling patterns for each frame were used. Accordingly, we repeated the a

single 3D pattern for all fMRI temporal frames.
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One potential issue with the proposed approach is whether poor conditioning could

lead to noise amplification in the reconstruction. The standard deviation maps in Figure

S2 show that the model using echo-in and echo-out system matrices have nearly identical

reconstruction noise relative to the model using echo-in system matrix only.

The actual spatial resolution in reconstructed images is related to the regularization

parameters when using roughness and many other regularizers. Therefore, regularization

parameters need to be chosen carefully here as one of the main goals for using model-

based reconstruction is to improve spatial resolution. Section S.2 and Figure S3 of the

supplementary material give details about choosing regularization parameters and quan-

tifying the spatial resolution.

The traditional griddingmethod either suffers from low-spatial resolution and reduced

signal change due to partial volume effects by truncating toomuch (truncation to 0.5kmax),

or suffers from overlapping echo artifacts and more noise by truncating too little. The pro-

posed MB-2 method resolves the overlapping echoes and showed improved spatial resolu-

tion (about 1.8x expected relative to the lower resolution gridding), larger signal change,

and better activation compared to previous methods. The longer effective readouts for

MB-2 can improve the snr by a factor of

√
1.8, thus leading to a net snr reduction of

√
1.8

1.83

compared to the gridding method, where the 1.83 comes from the reduced 3D voxel size.

Still, the fmri results did not appear to be limited by thermal noise. Quantifying spatial

resolution and snr will be part of our future work.

There are several other directions for improving image quality and snr in future work.

These include shaped RF pulses to reduced hard pulse shading across the field of view

and variable flip angles schemes to maximize signal strength and uniformity. We will also

consider approaches to optimize the sampling pattern using learning-based method to

further reduce image artifacts and increase image qualities [36]. For multi-echo looping-

star, learning-based networks can provide fast and accurate quantitative T ∗
2 mapping [37].

Wewill also further explore the possibility of using spatial-temporal reconstructionmodel

in looping-star [38].

3.5 Conclusion

We proposed a novel model-based reconstruction method to resolve the overlapping echo

challenge in looping-star pulse sequences.We also used a 3D golden-angle based sampling

pattern andmid-resolution fMRI protocol to further improve the image quality in the fMRI

studies. By exploiting the high-frequency k-space information, the proposed approach
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was able to recover high-resolution images and reduce the artifacts compared to previous

methods, while preserving the temporal resolution in fMRI.

3.6 Supplementary material

3.6.1 Object basis function

The Fermi filters must be applied to each sub-system matrix individually before matrix

combination because the echo-in and echo-out signals need to be filtered in ‘opposite’

directions. One cannot apply two different filters directly to the data.

The exact shape of the spectrum of object basis function B(k) depends on the pulse

sequence parameters, such as the spatial resolution and number of spokes. Empirically,

we chose a 90% cutoff frequency to reduce the mixture of center k-space signals and high-

frequency signals coming from the echo-in and echo-out spokes respectively. We then

chose the transition band to reduce the ringing artifact that would be caused by a hard

cutoff.

3.6.2 Spatial resolution

The actual spatial resolution in reconstructed images is related to the regularization pa-

rameters when using roughness and many other regularizers. Therefore, regularization

parameters need to be chosen carefully here as one of the main goals for using model-

based reconstruction is to improve spatial resolution.

Here we empirically chose the regularization factors such that undersampling artifact

can be mitigated while preserving most of the spatial resolution. We report the full width

at half maximum (FWHM) values and corresponding regularization factors here to help

understand the relationship between spatial resolution and regularization factors. Fig. 3.8

shows the FWHM of the point spread function (PSF) over iterations and the reconstructed

images at 30 and 100 iterations. The FWHM of MB-2 method is about 2.5 pixels at 50

iteration and the FWHM of gridding method is about 3.6 pixels.
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fig 3.6 – Hi-resolution looping star reconstruction for two additional subjects. The pro-

posed MB-2 approach provided improved spatial resolution and recovered signal loss in

multiple areas compared to gridding reconstruction.
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fig 3.7 – Reconstruction and variancemaps. (a) shows the hi-resolution reconstruction for

references. (b) and (c) are the standard deviation maps using echo-out system matrix only

and both echo-in and echo-out systemmatrices respectively. (d) and (e) are corresponding

histogram of these 4 slices. We generated standard deviation maps, estimated from 20

realizations of additive complex white Gaussian noise to the measured signal in the fMRI

protocol. The model using echo-in and echo-out system matrices have nearly identical

reconstruction noise relative to the model using echo-in system matrix only, indicating

that using echo-in and echo-out system matrices does not worsen the conditioning or the

noise amplification for the regularization parameters used in this work.
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(a) FWHM of PSF over iterations

(b) MB-2 reconstruction at different iterations
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(c) PSF comparison between gridding and MB-2

fig 3.8 – FWHM of PSF over iterations and MB-2 reconstruction at different iteration. (a)

shows the FWHM of PSF over CG-iterations. The FWHM of PSF is computed by recon-

structing the k-space data of a Kronecker impulse function. The PSF gradually converged

after 50 iterations. (b) shows the MB-2 reconstructions of the same subject at iteration

30 and 100 with zero initialization. Though the PSF still decreases after 30 iterations, the

change in the reconstructed images is non-visible, so for most of the results shown in the

paper, we stopped at 30 iteration to save compute time. The FWHM of PSF using gridding

method is measured to be 3.59 pixels for comparison. (c) compares the PSF from the cen-

ter slice of the subject. The curve shows the radial FWHM of all direction and the overall

FWHM is the averaged value.
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CHAPTER 4

Spatial-temporal Reconstruction for

Looping-star MRI using UNFOLD and LLR

4.1 Introduction

Functional magnetic resonance imaging (fmri) has become the leading method for nonin-

vasive imaging of human brain activity. However, the issue of loud acoustic noise in MRI

persists. This noise can cause discomfort and anxiety in patients [1], especially in vulnera-

ble populations such as children or those with dementia. Additionally, acoustic noise acts

as an extraneous sensory stimulus [2, 3, 4], potentially affecting the blood-oxygen level

dependent (bold) response depending on its loudness [5] and duration [6]. There are sev-

eral mechanisms [7] through which acoustic noise can impact fMRI tasks and degrade

the quality of measured signals. Firstly, scanner noise stimulates the auditory pathway,

including the auditory cortex, reducing sensitivity to experimental stimuli [8]. Secondly,

processing degraded stimuli may require additional cognitive processes [9], such as verbal

working memory or performance monitoring. Lastly, scanner noise can cause participant

discomfort and increase attentional demands, even during non-auditory tasks.

Acoustic noise in MRI arises frommultiple sources, including gradient coils, RF pulses,

cryogenic pumps, and air circulating systems. The primary source of this noise is the

Lorentz forces generated by rapidly changing currents in the magnetic field gradient coils

used for spatial localization [10]. Acoustic noise levels can be mitigated through hardware

modifications, such as optimized gradient designs and shielding [11], the implementation

of quiet scanning modes provided by vendors [12], and the development of specific pulse

sequence designs [14].

Looping-star pulse sequence [16] is a silent MRI method used for quantitative suscepti-

bility mapping (QSM), T2*-weighted imaging, and fMRI [17]. It employsmultiple RF pulses

This chapter extends the author’s published work at ismrm 2023 [38].

31



and slowly varying gradients, significantly reducing acoustic noise compared to the stan-

dard EPI method. This characteristic makes it ideal for situations where low acoustic noise

is essential, such as pediatric MRI [18] and auditory fMRI tasks [19]. However, using multi-

ple RF pulses with repeating slowly varying gradients can complicate k-space trajectories

and make the reconstruction process more challenging. The most significant artifact issue,

known as the overlapping-echo effect, is caused by signals frommultiple excitation pulses

being present simultaneously while traversing k-space locations.

Compressed sensing (cs) is a powerful technique used in MRI to increase imaging

speed and efficiency and overcome some of the major limitations in terms of spatial and

temporal resolution, volumetric coverage, and sensitivity to motion. This technique takes

advantage of the fact that medical images are naturally compressible in some appropriate

basis, such as wavelets, finite differences, or learned dictionaries.

mri data are acquired in the spatial frequency domain (k-space) rather than in the

image domain, which facilitates the generation of incoherent aliasing artifacts via ran-

dom undersampling of Cartesian k-space or the use of non Cartesian k-space trajectories.

Image reconstruction is performed by enforcing sparsity in the solution, subject to data

consistency constraints. cs can be combined with parallel imaging to further increase

imaging speed by exploiting joint sparsity in the multi-coil image ensemble.

Dynamic mri is particularly well suited for the application of cs due to extensive

spatial-temporal correlations that result in sparser representations thanwould be obtained

by exploiting spatial correlations alone. The successful application of cs requires image

sparsity and incoherence between the acquisition space and representation space.

Spatial-temporal reconstruction is a technique used in dynamic mri to enhance the

quality and resolution of images. Instead of reconstructing each time frame independently,

it involves using advanced algorithms to combine data sampled over time to jointly create

a series of high-quality images.

The idea behind spatial-temporal reconstruction is that by sharing data over time, it

is possible to fill in missing k-space information and overcome limitations in resolution

and signal-to-noise ratio that may occur in individual time frame. This is particularly

important in dynamic mri, where image quality can be affected by factors such as under-

sampling artifact, patient motion, magnetic field inhomogeneities, and other artifacts.

Spatial-temporal reconstruction algorithms use a variety of techniques to combine

data over time. These can include low rankmodels, sparsity in image or other domain, and

wavelet analysis. By using these techniques, spatial-temporal reconstruction can yield a

series of high-quality images that represent a more accurate representation of the underly-

ing dynamic process. Using spatial-temporal reconstruction algorithms also can improve
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the trade-off between spatial resolution and temporal resolution that is present in all dy-

namic MRI scans.

Previous spatial-temporal reconstruction approaches for fmri have utilized models

such as low-rank [39] and low-rank plus sparse [40]. These models impose low-rankness

and/or sparsity on matrices of the vectorized space dimension and time. The Locally Low-

Rank (llr) model offers an advantage in preserving local structures within the image. It

operates under the assumption that small patches or blocks of the space-time image series

are low-rank, which facilitates the capture of local features and details. Conversely, the

Global Low-Rank (GLR) model applies a low-rank constraint to the entire image, which

can lead to over-smoothing of local structures.

Furthermore, the LLR model provides greater flexibility in data modeling. It can be

integratedwith other constraints or regularization terms, such as sparsity and smoothness,

to more effectively capture the underlying characteristics of the MRI data. In our findings,

the locally low-rankmodel is particularly well-suited for fMRI protocols using the looping-

star technique.

4.2 Methods

4.2.1 Looping-star physical parameters

The looping-star sequence was developed to capture T ∗
2 -weighted gradient-echo imaging

data while maintaining a quiet performance profile. We utilized TOPPE [31] to individu-

ally generate excitation and acquisition modules, that were then combined to form the

complete pulse sequence. Our implementation is flexible and can be extended to other

looping-star variants by modifying or adding modules. Figure 3.1 depicts the pulse se-

quence diagram for looping-star fMRI and its corresponding k-space trajectory.

In the first half of the sequence, radial spokes are excited using a burst of short hard RF

pulses [32], with a slowly changing gradient to steer the trajectory direction. During this

phase, a free-induction-decay (FID) image can be acquired at TE≈ 0, although we did not

utilize the FID data for the work presented in this chapter. The second half of the sequence

re-applies the same gradient without RF pulses to generate the gradient echo (GRE) signal,

producing a gradient echo image at TE = 27.67 msec, which is sufficient for functional

BOLD contrast at 3T. Each RF subpulse encodes a low-frequency line through the center of

k-space, collectively encoding a disk in 3D k-space. This gradient encoding can be repeated

multiple times for additional GRE echoes. The full 3D trajectory is generated by rotating

the 2D k-space trajectories.
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4.2.2 Acquisition Method

For fMRI studies, we designed two protocols with different spatial and temporal resolution.

We found that an odd number of RF pulses produced more uniform 2D k-space coverage

in the highly undersampled fMRI cases, so we used 23 RF pulses with 1.12ms readout per

RF pulse in mid-res protocol to achieve 3mm isotropic spatial resolution and 3.6s temporal

resolution, and 31 RF pulses with 0.84ms readout per RF pulse for low resolution protocol

to achieve 3.75mm isotropic spatial resolution and 1.8s temporal resolution. The RF pulse

interval and gradient waveforms were adjusted such that the echo time is approximately

27.67ms for both protocols. To produce an excitation profile that is as uniform as possi-

ble, we used a series of very short 12µs RF pulses with near maximum magnitude in the

excitation module with a flip angle of 3
◦
.

For all protocols, we first designed a 2D sinusoidal gradient with acquisition dwell time

of 4µs, a maximum gradient amplitude of 5 mT/m and maximum slew rate of 1 mT/m/ms

in terms of the root sum of square of x and y axes. Then in 3D, to achieve more uniform k-

space spokes, we adopted the 3D golden-angle based rotation [33] by generating a series of

azimuth and polar angles with small increment. The 2D k-space trajectories were rotated

along x axis by the azimuth angle and along the z axis by polar angle. We used 4800 3D

rotations in hi-res protocol, 64 and 32 3D rotations for each time frame in mid-res and low-

res fMRI protocols respectively. The structural and fMRI protocols are tested in phantom

and in-vivo studies.

Because TOPPE v4 requires the gradient of each module to start and end at zero, we

used ramp-up and ramp-down gradients before and after the excitation and acquisition

module to accommodate this constraint. Themax slew rate of the ramp up and ramp down

gradient was set to 5 mT/m/ms.

Sensitivity maps were estimated from a 2 minute 3D GRE pulse sequence with Carte-

sian spin-wrap sampling with 3mm isotropic spatial resolution.

To test the performance of the proposed methods in the presence of different tem-

poral coherence, we designed several temporal sampling patterns to evaluate how the

undersampling effect might affect the reconstruction and temporal activities.

4.2.3 Model based reconstruction in looping-star

To effectively resolve the overlapping-echo artifacts, we used the model-based reconstruc-

tion for looping-star [27]. With the signal model and system matrix derived in [22], we
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use the conjugate gradient method to optimize the following cost function

X̂ = argmin
X

1

2
∥A(X)− y∥22 + βR(X), (4.1)

where X ∈ CNs×Nt
is space-time image series to be reconstructed, A is the forward op-

erator that maps the space-time image series to the vectorized k-space time series, and

R(X) = ∥TX∥22 is a 3D roughness regularizer using quadratic 1st-order finite differences

with 26 neighbors. To get a reconstruction estimation X̂, one may use iterative reconstruc-

tion algorithms.

4.2.4 Spatial-Temporal reconstruction using UNFOLD in

looping-star

“Unaliasing by Fourier-encoding the overlaps in the temporal dimension” (UNFOLD) [41]

is a temporal strategy that involves changing the k-space sampling pattern from frame to

frame, and applying temporal filters.

In this work, we combined two methods to reduce the undersampling artifact and

improve the temporal resolution. First, we applied our previously described model-based

reconstruction for overlapping echoes, which has less undersampling than the coherence

resolved method [20]. Second, we used UNFOLD [41] to improve the temporal resolution

by a factor of 2 and to reduce the undersampling artifact due to the alternating sampling

patterns.

For the spatial-temporal reconstruction, we first split every frame into two sub-frames

with equal duration and then separately reconstructed each sub-frame. Finally we applied

UNFOLD along the temporal dimension to remove the undersampling artifact from the

alternating sampling pattern. The UNFOLD filter can be chosen carefully to filter only

a narrow frequency band (as shown in Fig. 4.2(a)) related to the undersampling pattern,

while preserving the remainder of the temporal resolution.

4.2.4.1 Problem formulation

In looping-star MRI, gradient echoes are overlapped in the time domain due to multiple

RF pulses. Therefore, we use the signal model (3.7) to account for multiple echoes. This

signal model fully models both echo-in and echo-out spokes and resolves the overlapping

echo problems.
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4.2.4.2 Reconstruction

We used CG-SENSE with a spatial 3D quadratic roughness regularizer for reconstruction.

Each frame from the scan is reconstructed independently using (3.8) as a reference. For

the spatial-temporal reconstruction, we first split every frame into two sub-frames with

equal duration and separately reconstructed each sub-frame. Then we used UNFOLD to

remove the undersampling artifact from the alternating sampling pattern.

4.2.5 Spatial-Temporal reconstruction using LLR in looping star

4.2.5.1 Global low-rank reconstruction

InMRI reconstruction, maintaining the integrity of the reconstructed imagewhile promot-

ing certain desirable properties, such as low-rank, is crucial. The global low-rank (GLR)

model addresses this by introducing a regularization term that enforces a low-rank struc-

ture across the entire image matrix. The following cost function exemplifies the GLR ap-

proach:

f(X) =
1

2
∥A(X)− y∥22 + λ∥X∥∗, (4.2)

where X ∈ CNs×Nt
is space-time image series to be reconstructed, ∥ · ∥∗ represents the

nuclear norm. This norm serves as a convex surrogate for the rank ofX, promoting a spec-

trum where few singular values are significant, thereby encouraging a low-rank structure

of the entire image, λ is a regularization parameter that balances the trade-off between

data fidelity and the low-rank enforcement.

4.2.5.2 Traditional locally low-rank reconstruction

The locally low-rank (LLR) model enhances MRI reconstruction by imposing a low-rank

constraint on localized regions of the image, allowing for better preservation of local struc-

tures while reducing noise and artifacts. This model is particularly effective in capturing

fine details and variations that might be lost under global regularization approaches. The

LLR cost function is formulated as follows:

f(X) =
1

2
∥A(X)− y∥22 + λ

∑
p∈patches

∥Pp(X)∥∗, (4.3)

where Pp is an operator that extract patches from the 4D data to cover different local

regions.
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By applying the low-rank constraint locally, the LLR model adapts to the unique fea-

tures of each region, thereby preserving details and structures that are vital for accurate

temporal analysis. This technique is advantageous in dynamic and functional MRI, where

it is crucial to maintain the integrity of temporal and functional variations.

4.2.5.3 Proposed differentiable locally low-rank reconstruction

If the patches are non-overlapping, then the regularizer is “prox friendly” and we can ap-

ply proximal gradient methods like proximal optimized gradient method (POGM) [42, 43].

However, non-overlapping patches lead to block boundary artifacts. Using overlapping

patches avoids those artifacts, but then the regularizer is not “prox friendly” and POGM

is not applicable. There is an alternative regularizer that replaces the nuclear norm with

the sum of a hyperbola function ψ(·) of the singular values. This function closely ap-

proximates the nuclear norm, but is differentiable, enabling gradient-based methods and

providing the convergence guarantees. Inspired in part by the work [44], we investigated

the following cost function for the spatial-temporal reconstruction

f(X) =
1

2
∥A(X)− y∥22

+ λ
∑

s∈shifts

∑
p∈patches

∑
k≥1

ψ(σk(Pp(Ps(DHX))))

+ λ
∑

s∈shifts

∑
p∈patches

∑
k≥1

ψ(σk(Pp(Ps(DVX)))) (4.4)

where ψ is a convex function applied to the singular values of the matrix patches. σk de-

notes the kth singular values derived from the singular value decomposition (SVD) of the

localized image patches. Ps is the patch shifting operators. DH and DV are horizontal

and vertical spatial finite differences operators, respectively, enhancing spatial smooth-

ness and continuity across the image.

We use the conjugate gradient method to rapidly minimize this differentiable LLR

(DLLR) cost function with overlapping patches. Our approach utilizes shifts and patches

to apply the regularization locally but comprehensively across the image.

4.2.6 Experiments

For the spatial-temporal reconstruction, we compared our proposedmethodswith 1) lower

temporal resolution, 2) higher temporal resolution before UNFOLD filtering, and 3) higher

temporal resolution after UNFOLD filtering, 4) higher temporal resolution using DLLR re-

construction and UNFOLD filtering. In the fMRI study, participants watched a flashing
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fig 4.1 – fMRI time course from visual stimulus. Left to right: reconstruction with 3.6 sec

temporal resolution; reconstruction with 1.8 sec temporal resolution without UNFOLD;

reconstruction with 1.8sec temporal resolution with UNFOLD. Due to the high under-

sampling rate, the middle figure shows significant signal oscillation from the different

sampling trajectories when we reduce the time for each frame. After removing the under-

sampling artifact in the k-t domain using UNFOLD, the oscillations are mostly removed

and temporal resolution is also improved.

checkerboard for multiple cycles (20s on and 20s off), and were required to tap their fin-

gers while the checkerboard was on. The pulse sequences were programmed via TOPPE

[7]and implemented on a GE UHP 3.0T scanner with a Nova 32RX head coil. Subjects gave

informed consent under IRB approval. For looping star protocols used in both unfold and

llr, we set the volume TR to be 3.6s, number of sampled points per spoke to be 292, num-

ber of spoke per 2D plane to be 23, number of planes per volume to be 32, and the echo

time to be 30.7msec.

4.3 Results

4.3.1 Looping-star reconstruction with UNFOLD

Figure 4.1 shows the time series of a looping-star fMRI task. It can be seen that the un-

dersampling artifact in (b) due to the repeating sampling pattern is significantly reduced

after applying UNFOLD (c), leading to increased temporal resolution and reduced under-

sampling artifact.

Figure 4.2: (a) shows the FFT of the time course of a typical activated voxel. There

is a significant high-frequency component because the undersampling artifact oscillates

between adjacent frames. Before UNFOLD, the raw activation map (b) does not reflect the
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fig 4.2 – shows the FFT of a time course of a typical activated voxel. Before UNFOLD,

the raw activation map does not reflect the true brain activity because the undersampling

artifacts oscillate between adjacent frames. After UNFOLD, even only removing a single

frequency component, the undersampling artifact is reduced such that the new activation

map shows higher correlation coefficient and recovered activities.

fig 4.3 – fMRI time course from visual stimulus. Left to right: reconstruction with 3.6 sec

temporal resolution; reconstruction with 1.8 sec temporal resolution without UNFOLD;

reconstruction with 1.8sec temporal resolution with UNFOLD. Due to the high under-

sampling rate, the middle figure shows significant signal oscillation from the different

sampling trajectories when we reduce the time for each frame. After removing the under-

sampling artifact in the k-t domain using UNFOLD, the oscillations are mostly removed

and temporal resolution is also improved.

true brain activity due to the undersampling artifacts. After UNFOLD, even by only remov-

ing a single frequency component, the new activation map (c) shows higher correlation

coefficients and recovered activities.

Figure 4.3: Sagittal activation map for the visual stimulus. Improving the temporal

resolution by a factor of 2 (from (a) to (b)) initially greatly reduces activation,due to the

increased noise from the undersampling artifacts. However, after removing the under-

sampling artifact using UNFOLD, the activation map is improved back to the level of the

original reconstruction, but with doubled temporal resolution.
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fig 4.4 – shows the FFT of a time course of a typical activated voxel. Before UNFOLD,

the raw activation map does not reflect the true brain activitybecause the undersampling

artifacts oscillate between adjacent frames. After UNFOLD, even only removing a single

frequency component, theundersampling artifact is reduced such that the new activation

map shows higher correlation coefficient and recovered activities.

Figure 4.4 shows the activation map for the finger-tapping tasks. Similar to the visual

task, using UNFOLD recovers brain activities by reducing the undersampling artifact.

4.3.2 Looping-star reconstruction using LLR

For a non-repeating pattern, we reconstruct a 20s golden-angle based sampling pattern

with 2s temporal resolution, and compared the frame-wise reconstruction versus theDLLR

reconstruction. the LLR method improved the image qualities and reduced the under-

sampling artifacts by utilizing the k-space information from different sampling pattern

as shown in Figure 4.5.

For repeating sampling pattern, we first explored the possibility of just using UNFOLD

approach, for which an alternating sampling pattern leads to an alternating undersam-

pling artifact, which can be filtered out with negligible impact on the temporal resolution

as shown in Figure 4.6. While the sampling pattern lacks the temporal incoherence we

would consider optimal for LLR methods, we have applied a differentiable LLR recon-

struction to UNFOLD data using 5 × 5 × 3 × 10 (x y z t) patches, leading to a 3.5 dB

improvement in temporal SNR (tSNR), which measures the ratio of the mean signal to the

standard deviation of the noise over time (see Figure 4.6).

4.4 Conclusion

This work has two purposes: 1) reducing spatial undersampling artifacts while maintain-

ing the desired higher temporal resolution and 2) improving the tSNR by removing noise

and artifact components. Our results demonstrated that a simple UNFOLD processing
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fig 4.5 – Frame-wise and DLLR reconstruction. The DLLR significantly improved the

image qualities and reduce the undersampling artifacts as compared to the frame-wise

reconstruction.

approach can reduce undersampling artifacts and improve temporal resolution as demon-

strated on both visual andmotor tasks, but is best suited to dynamic k-space sampling that

alternates between just two patterns. Later we investigated and compared a sophisticated

4D (3D space + time) image reconstruction methods DLLR for more general dynamic k-

space sampling patterns. The basic idea is to exploit the the redundancy of stationary/low-

rank components of the signal model. The DLLR reconstruction showed significantly im-

proved image qualities and reduced undersampling artifacts when using non-repeating

patterns, and improved activation map and tSNR compared to only UNFOLD methods

when using sub-optimal repeating sampling patterns.

4.5 Future work

We hope to demonstrate functional analysis of the DLLR method with a suitable non-

repearting sampling pattern. Also, the LLR and DLLR methods capture important low-

rank properties in a manner that is data-driven for each individual subject, but do not

capture potential dimensionality reduction opportunities that could be provided by spar-

sifying transforms that are refined in a data-driven way using data from multiple subjects.

Recent work (for 2D static imaging) has demonstrated that sparsity-based reconstruction

methods with as few as about 100 learnable parameters can perform nearly as well as deep

networks when trained properly [45]. A future direction is to extend the DLLR approach
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fig 4.6 – Frame-wise, UNFOLD, and LLR-UNFOLD reconstruction (L to R). 1st row: activa-

tion maps in visual cortex, 2nd row: temporal SNR maps, 3rd row: activation time course.

Use of the LLR reconstruction improved average tSNR by 3.5dB. The LLR recon did not

improve the underlying image due to a sub-optimal sampling pattern.

42



to a DLLR + sparse (DLLR+S) regularizer using combinations of wavelet transforms (in

time and space) and temporal Fourier transforms.
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CHAPTER 5

Learning-based k-space Trajectory

Optimization for Silent Looping-star

Magnetic Resonance Imaging (MRI) systems predominantly acquire data in the frequency

domain (k-space) following specific sampling trajectories. Efficient sampling strategies are

crucial for accelerating acquisition and enhancing image quality. This study concentrates

on optimizing 3D non-Cartesian trajectories for looping star patterns utilizing a gener-

alized gradient-based optimization approach for automatic trajectory design and tailor-

ing. Traditionally, the design of sampling patterns in MRI considers properties of k-space

signals, with variable density (VD) trajectories being a common choice for 2D sampling.

However, designing 3D sampling patterns poses additional challenges due to increased pa-

rameter complexity, the necessity to account for advanced reconstruction methods, and

the potential for peripheral nerve stimulation (PNS) effects. To address these challenges,

we propose a learning-based method to jointly optimize reconstruction and sampling pat-

terns. Our approach involves two parameterizations: (1) using fixed 2D trajectories and

optimizing their scaling factor and rotation angles, and (2) employing a novel param-

eterization to directly design the 3D gradient waveforms through the superposition of

sinusoidal harmonics to meet re-focusing gradient requirements. We evaluated the opti-

mized trajectories on a physical phantom and in-vivo fMRI data, observing improved point

spread function (PSF) characteristics, reduced noise, and diminished undersampling arti-

facts compared to traditional trajectories using random or golden-angle-based rotations.

5.1 Introduction

Most mri systems sample data in the frequency domain (k-space) following prescribed

sampling trajectories. Efficient sampling strategies can accelerate acquisition and improve

This chapter is recent work in collaboration with Dr. Guanhua Wang, to be submitted for publication..
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image quality. Many well-designed sampling strategies and their variants, such as spiral,

radial, CAIPIRINHA, and PROPELLER [46, 47, 48, 49] have enabled mri’s application to

many areas. Sampling patterns in k-space either are located on the Cartesian raster or

arbitrary locations (non-Cartesian sampling). This work focuses on optimizing 3D non-

Cartesian trajectories for looping star using a generalized gradient-based optimization

method for automatic trajectory design/tailoring.

The design of sampling patterns usually considers certain properties of k-space sig-

nals. For instance, the variable density (VD) spiral trajectory samples more densely in the

central k-space where more energy is located. For higher spatial frequency regions, the

VD spiral trajectory uses larger gradient strengths and slew rates to cover as much of k-

space as quickly as possible. Compared to 2D sampling, designing 3D sampling by hand

is more challenging for several reasons. The number of parameters increases in 3D, and

thus the parameter selection is more difficult due to the larger search space. Additionally,

analytical designs usually are based on the Shannon-Nyquist relationship that might not

fully consider properties of sensitivity maps and advanced reconstruction methods. For

3D sampling pattern with a high undersampling (acceleration) ratio, there are limited an-

alytical tools for designing sampling patterns having anisotropic FOV and resolution. For

these reasons, it is important to automate the design of 3D sampling trajectories.

A learning-based method was proposed to jointly optimize the reconstruction and

sampling pattern [36]. In that work, k-space sampling trajectories can be parameterized

by some differentiable basis functions and then be optimized through the gradient-based

method. To apply this sampling optimization in looping star, we proposed to 1) use fixed

2D trajectories and then optimize the 3D rotation angles; 2) optimize the magnitude and

phase of the sinusoidal gradient; 3) employ a novel parameterization to directly design

the 3D gradient waveforms using the superposition of sinusoidal harmonics to meet re-

focusing gradient requirements.

We optimized the trajectories using the parameterizationsmentioned above and tested

them on a physical phantom. The point spread function (PSF) of the optimized trajectories

exhibited more centered energy around the k-space origin, and fewer streaking artifacts

were observed. The reconstructed images showed reduced noise and undersampling arti-

facts compared to previous trajectories.

We tested the optimized trajectories on in-vivo fMRI data and compared them to pre-

vious classic trajectories that used random or golden-angle based rotations. The recon-

structed images showed improved spatial resolution and reduced noises due to the more

uniform distributed sampling patterns.
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5.2 Methods

5.2.1 Trajectories initialization

We used both random rotations and golden angle based rotations to initialize the trajecto-

ries and then optimize the gradients and trajectories over either initialization.

Random rotations was used in the looping-star low spatial resolution protocol for the

fMRI tasks. Here we use 31 RF pulses with 0.84ms readout per RF pulse to achieve about 3

mm isotropic resolution and 1.86s temporal resolution, which we call the low-resolution

protocol. Only one GRE echo is collected to acquire images with TE = 27.67ms.

For fMRI studies, we designed two protocols with different spatial and temporal res-

olution. We found that an odd number of RF pulses produced more uniform 2D k-space

coverage in the highly undersampled fMRI cases, The RF pulse interval and gradient wave-

forms were adjusted such that the echo time is approximately 27.67ms for both protocols.

To produce an excitation profile that is as uniform as possible, we used a series of very

short 12µs RF pulses with near maximum magnitude in the excitation module with a flip

angle of 3
◦
.

The generalized golden-angle based rotations improves the uniformity in terms of the

k-space samples, leading to reduced undersampling artifacts and improved image qualities.

So we used 23 RF pulses with 1.12ms readout per RF pulse in mid-res protocol to achieve

3mm isotropic spatial resolution and 3.6s temporal resolution.

5.2.2 Gradient parameterization

Instead of designing 2D gradient waveform and then applying rotations, we directly op-

timized the 3D gradient waveforms. The gradient waveforms using sinusoidal harmonics

can be expressed as

gx(t) =
N∑
i=1

cx,i sin

(
2πt · i
TE

+ θx,i

)
(5.1)

gy(t) =
N∑
i=1

cy,i sin

(
2πt · i
TE

+ θy,i

)
(5.2)

gz(t) =
N∑
i=1

cz,i sin

(
2πt · i
TE

+ θz,i

)
, (5.3)
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where gx(t), gy(t), gz(t) are the 3D gradient waveforms, cx,i and θx,i are the coefficients

that control the magnitude and phase of the ith order harmonic respectively, andN is the

number determining the highest order of the harmonics. By using this parameterization,

previously hand-crafted sinusoidal gradient waveforms naturally fall within the span of

our parameterization. To approximate piecewise linear gradient waveforms, one can solve

a least squares problem to find the best approximation using our parameterization.

5.2.3 Reconstruction

With the system matrix derived in [22], we use the conjugate gradient method for frame

by frame image reconstruction by optimizing the following cost function

x̂ = argmin
x

∥s−A(ω)Cx∥22 + βR(x), (5.4)

whereA is the system matrix accounting for the overlapping echoes with given trajecto-

ries ω and R(x) = ∥Tx∥22 is a 3D roughness regularizer using quadratic 1st-order finite

differences with 26 neighbors.

To get a reconstruction estimation x̂, one may use iterative reconstruction algorithms.

Specifically, the algorithm should be step-wise differentiable (or sub-differentiable) to en-

able differentiable programming. The back propagation uses the chain rule to traverse

every step of the iterative algorithm to calculate gradients with respect to variables such

as ω.

5.3 Jacobian Expressions

This section used the key Jacobian expressions and their efficient approximations based

on NUFFT operations derive in [50]. These approximations enable the applications that

follow.

5.3.1 Lemmas

Wedenotematrices, vectors and scalars byA,a and a, respectively.A′
,AT

andA∗
denote

the Hermitian transpose, the transpose and the complex conjugate ofA, respectively.

Consider a scalar function f(z), z = x+yı ∈ C, x, y ∈ R. Following the conventions
in Wirtinger calculus [51, p. 67], the differential operators are defined as

∂

∂z
=

1

2

∂

∂x
− ı

2

∂

∂y
,
∂

∂z∗
=

1

2

∂

∂x
+
ı

2

∂

∂y
.
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A function f is complex differentiable or holomorphic iff ∂f
∂z∗

= 0 (Cauchy–Riemann equa-

tion) [51, p. 66]. In the context of optimization, a cost function L (usually a real scalar) is

not holomorphic w.r.t. complex variables. A common approach (as adopted by PyTorch

and TensorFlow) regards the real and imaginary components of a complex variable as two

real-valued variables, and updates them separately, similar to the real-valued calculus [52].

For example, the nth gradient descent step uses the update

zn+1 = zn − α

(
∂L

∂x
+ ı

∂L

∂y

)
= zn − 2α

∂L

∂z∗ ,

where α ∈ R+
denotes the step size. The chain rule still applies to calculating

∂L
∂z∗ [53] [51,

p. 68]; for s = f(z):
∂L

∂z∗ =

(
∂L

∂s∗

)∗
∂s

∂z∗ +
∂L

∂s∗

(
∂s

∂z

)∗

. (5.5)

For Jacobian matrices, we follow the “numerator-layout” notation [54]. For example,

the derivative of anm-element column vector y w.r.t. an n-element vector x is anm× n

matrix:

∂y

∂x
≜


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

.

.

.

.

.

.

.
.
.

.

.

.

∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn

 . (5.6)

However, this convention does not handle scenarios such as the derivatives of the ele-

ments of one matrix w.r.t. the elements of another matrix. Thus, we adopt a natural exten-

sion by using the vec (vectorization) operation. Specifically, for aM × N matrix A that

is a function of a P × Q matrix B, we write the derivative as a MN × PQ matrix by

applying (5.6) to the vec of each matrix:

DB A = DB A(B) ≜
∂ vec(A)

∂ vec(B)
. (5.7)

The following equalities are useful in our derivations. (Equalities involving products

all assume the sizes are compatible.) ForA ∈ CK×L, B ∈ CL×M , C ∈ CM×N
:

vec(ABC) = (IN ⊗AB) vec(C)

= (CTBT ⊗ IK) vec(A). (P1)
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In general:

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (P2)

For A ∈ CK×L, B ∈ CM×N
:

A⊗B = (IK ⊗B)(A⊗ IN) = (A⊗ IM)(IL ⊗B). (P3)

For A ∈ CM×N , x ∈ CN
:

DA (Ax) = xT ⊗ IM , DA∗ (Ax) = 0. (P4)

For an invertible matrixA:

A ∈ CN×N =⇒ DA A−1 = −(AT )−1 ⊗A−1,

DA∗ A−1 = 0. (P5)

The chain rule still holds for the extended Jacobian formulation. Suppose F : CK×L →
CM×N

and G : CM×N → CP×Q
are both holomorphic. For X ∈ CK×L

, the Jacobian of

the composite function is:

DX G(F (X))︸ ︷︷ ︸
PQ×KL

= DY G(Y )|Y =F (X)︸ ︷︷ ︸
PQ×MN

DX F (X)︸ ︷︷ ︸
MN×KL

,

DX∗ G(F (X)) = 0. (P6)

Equalities (P1)-(P3) are common matrix vectorization properties. See [55, Ch. 9] for (P4),

[53] for (P5) and (P6).

5.3.2 System Model

Consider the (single-coil, initially) MRI measurement model for non-Cartesian sampling

based on the NUDFT [56]:

y = Ax+ ε,

where y ∈ CM
denotes the measured k-space data, x ∈ CN

denotes the unknown image

to be reconstructed, andA ∈ CM×N
denotes the systemmatrix or encodingmatrix, where

A = A(ω) has elements

aij = e−ıω⃗i·r⃗j , i = 1, . . . ,M, j = 1, . . . , N (5.8)
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for ω⃗i ∈ RD
and r⃗j ∈ RD

where D ∈ {1, 2, 3 . . .} denotes the image dimension, and

where

ω = [ω[1] ω[2] . . . ω[D]]

is the M × d matrix consisting of all the k-space sampling locations and ω[d] ∈ RM

denotes its dth column. (For simplicity here, we ignore other physical effects like field

inhomogeneity and relaxation that are sometimes included in the forward model in MRI

[56].) The center locations of voxels {r⃗j} usually lie on a Cartesian grid, but the k-space

sample locations ω in principle can be arbitrary subject to the Nyquist constraint.

Specifically, for looping star, two echos are recorded simultaneously, with correspond-

ing trajectories denoted by ω1 and ω2. The system matrix isA = A(ω1)+A(ω2). Denote

A1 = A(ω1) andA2 = A(ω2).

5.3.3 Forward Operator

We first focus on the forward operation. Following [50, (5)] the partial derivatives of Ax

w.r.t. ω
[d]
1 (anM ×M Jacobian matrix) is:

∂Ax

∂ω
[d]
1

=
∂A1x+ ∂A2x

∂ω
[d]
1

=
∂A1x

∂ω
[d]
1

= −ıDiag
{
A1(x⊙ r[d])

}
. (5.9)

Similarly,

∂Ax

∂ω
[d]
2

= −ıDiag
{
A2(x⊙ r[d])

}
. (5.10)

Consequently, the Jacobian calculation should applyA to vectorx⊙r[d]
once. In the above

derivation, A is a NUDFT operator. In the practical implementation, we use a NUFFT to

approximateA, both for the forward model and for the Jacobian calculation.

5.3.4 Adjoint Operator

The Jacobian matrix for adjoint-vector product is (following [50, (6)])

∂A′y

∂ω
[d]
1

= ıDiag
{
r[d]
}
A′

1Diag{y} . (5.11)

∂A′y

∂ω
[d]
2

= ıDiag
{
r[d]
}
A′

2Diag{y} . (5.12)

50



5.3.5 Gram Matrix

Here we derived the gram matrix for the looping-star sequence with two system matrices.

Following [50, (10, 11)],

D
ω
[d]
1
A′Ax

= D
ω
[d]
1
(A1 +A2)

′(A1 +A2)x

= D
ω
[d]
1
A′

1A1x+D
ω
[d]
1
A′

1A2x+D
ω
[d]
1
A′

2A1x

= −ıA′
1Diag

{
A1(x⊙ r[d])

}
+ ıDiag

{
r[d]
}
A′

1Diag{A1x}

+ ıDiag
{
r[d]
}
A′

1Diag{A2x}

+A′
2(−ıDiag

{
A1(x⊙ r[d])

}
) (5.13)

= −ıA′
Diag

{
A1(x⊙ r[d])

}
(5.14)

+ ıDiag
{
r[d]
}
A′

1Diag{Ax}

Similarly,

D
ω
[d]
2
A′Ax

= −ıA′
Diag

{
A2(x⊙ r[d])

}
(5.15)

+ ıDiag
{
r[d]
}
A′

2Diag{Ax}

5.3.6 Inverse of Positive Semidefinite (PSD) Matrix

Image reconstruction methods based on algorithms like the augmented Lagrangian ap-

proach [57] use “data consistency” steps [58, 59, 60] that often involve least-squares prob-

lems with solutions in the following form:

(A′A+ λI)−1x,

for some vector x ∈ CN
, or

(A′A+ λT ′T )−1x, (5.16)

where T denotes a linear regularization operator that is independent of ω. In both cases,

λ > 0 and the null spaces ofT andA are disjoint, so theHessianmatrix is invertible. A few

iterations of a CG method usually suffices to efficiently compute the approximate product

of such a matrix inverse with a vector. The direct inverse is impractical for large-scale
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problems like MRI. Following [58], we treat CG as solving the above equations accurately,

so that we can derive efficient approximations as follows. Otherwise, attempting to auto-

differentiate through a finite number of CG iterations would require large amounts of

memory. Here we derive the corresponding Jacobian matrices for the exact inverse to

(5.16) and then apply fast approximations. For x, the N ×N Jacobian is

∂(A′A+ λT ′T )−1x

∂x
= (A′A+ λT ′T )−1,

∂(A′A+ λT ′T )−1x

∂x∗ = 0.

We can still use CG (with NUFFT) to efficiently multiply this Jacobian by a vector,

albeit approximately.

To consider the Jacobianw.r.t. the sampling patternω[d]
, define z = (A′A+λT ′T )−1x

and F = A′A + λT ′T . Note that A now has two components from echo-in and echo-

out spokes respectively. We assume that A and T have disjoint null spaces, so that F

is positive definite and hence invertible. Applying equalities derived above leads to the

following expression for theM ×N Jacobian by using [50, (13)] and (5.13):

D
ω
[d]
1
F−1x

= −F−1
(
D

ω
[d]
1
Fz
)

= −(A′A+ λT ′T )−1
(
− ıA′

1Diag
{
A1(z ⊙ r[d])

}
+ ıDiag

{
r[d]
}
A′

1Diag{A1z}

+ ıDiag
{
r[d]
}
A′

1Diag{A2z}

+A′
2(−ıDiag

{
A1(z ⊙ r[d])

}
)
)

(5.17)
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D
ω
[d]
2
F−1x

= −F−1
(
D

ω
[d]
2
Fz
)

= −(A′A+ λT ′T )−1
(
− ıA′

2Diag
{
A2(z ⊙ r[d])

}
+ ıDiag

{
r[d]
}
A′

2Diag{A2z}

+ ıDiag
{
r[d]
}
A′

2Diag{A1z}

+A′
1(−ıDiag

{
A2(z ⊙ r[d])

}
)
)

(5.18)

We apply this Jacobian to a vector by using four NUFFT operations followed by run-

ning CG to approximate the product of F−1
times a vector.

5.4 Experiments

The proposed method reduced the undersampling artifacts in both low-resolution and

mid-resolution over either random or golden angle based rotations.

5.4.1 Optimized trajectories

To balance the trade off between the computational cost and number of parameters to

optimize, we tried different number of N and empirically found N = 5 in (5.3) could

introduce enough higher-order harmonics and bend the k-space trajectories to the k-space

corners. The magnitude of higher-order harmonics is small and the acoustic noise level

using the optimized trajectories remains similar to previous looping-star pulse sequences.

Figure 5.1 shows the trajectories using random rotations, generalized golden-angle ro-

tations, trajectory from optimized magnitude and phase, and trajectory from optimized

parameterized gradients. It can be observed that the optimized trajectories reach out fur-

ther to the k-space corner, therefore potentially improving the spatial resolution.

5.4.2 Point Spread Function

We compared the Point Spread Function (PSF) of the trajectories before and after the

optimization. The trajectory is initialized with random rotation, leading to non-uniform

PSF and streaking artifacts as shown in figure 5.2. Figure 5.2 also shows that the optimized
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fig 5.1 – Trajectories using random rotations, generalized golden-angle rotations, trajec-

tory from optimized magnitude and phase, and trajectory from optimized parameterized

gradients. It can be observed that the Optimized trajectories reach out further to the k-

space corner, therefore capable of improving the spatial resolution.
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fig 5.2 – PSF of trajectories with random rotation and optimized sinusoidal coefficients.

The optimized trajectory has reduced streaking artifacts and also more centered energy,

which implies potential improved resolution and sharpness.

trajectory has reduced streaking artifacts and also more centered energy, which implies

potential improved resolution and sharpness.

5.4.3 Phantom Study

Figure 5.3 shows the reconstructions of a structured phantom using the low-resolution

protocol (3.75mm isotropic) with random rotations and optimized trajectory (20X under-

sampled). We used a 20X undersampling factor due to the memory limitations on gradient

waveforms present in the GE scanner during our sequence implementation. It can be ob-

served that the reconstruction of optimized trajectory led to higher spatial resolution and

less image noise as compared to the reconstruction of random rotations. Note that the

phantom is out-of-distribution, as the trajectory was trained on the T1-weighted Calgary

dataset.

5.4.4 In-vivo study

Figure 5.4 shows the reconstructions of a human brain using the low-resolution protocol

(3.75mm isotropic) with random rotations and optimized trajectory. It can be seen that the

optimized trajectories lead to more recovered structure.
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fig 5.3 – Reconstructions of a structured phantom using the low-resolution protocol (3.75

mm isotropic) with random rotations and optimized trajectory (2 consecutive slices). The

reference image was acquired from a GRE separate scan with approximately zero echo

time. Although it is not perfectly registered to the looping-star image, it is displayed

to illustrate the phantom’s structure. The reconstruction using the optimized trajectory

demonstrated better spatial resolution and reduced image noise compared to the recon-

struction using random rotations.

fig 5.4 – Reconstructions for a human brain using the low-resolution protocol (3.75mm

isotropic) with random rotations and optimized trajectory. The reconstruction of opti-

mized trajectory lead to better spatial resolution and less image noise as compared to the

reconstruction of random rotations.
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5.5 Discussions

5.5.1 Modeling imperfections

In the optimization framework, all of the spokes are modeled and used to optimize the

coefficients of the gradient waveforms and trajectories. However, during the actual recon-

struction, the last spoke of FID and the first spoke of GRE have different echo time and

are overlapped, thus were not used in the reconstruction. This could be considered when

optimizing the coefficients to match the actual reconstruction more closely.

Another imperfection is that we used the two main spokes, i.e., echo-in and echo-out

spokes, to approximate the acquired signals and construct the systemmatrices. This works

because the center-frequency signal has much larger magnitude than the signals around

the edge of the k-space. However, other spokes could be considered at a much higher

computational cost.

5.5.2 Computational cost

The efficient computation of Jacobian was developed in [50]. In this paper, we aimed to

develop an efficient computation for the looping-star Jacobian with two system matrices.

Evenwith the efficient approximation, it still takesweeks to optimize the coefficients using

NVIDIA A40 GPU. Further steps, such as more efficient representation of the gradient

waveforms, using better initialization, could potentially reduce the computational cost.

5.6 Future work

We demonstrated application of the proposed methods to static phantom and in-vivo data.

We will test the proposed methods in fMRI by doing finger-tapping and visual fMRI tasks.
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CHAPTER 6

Preliminary Explorations

In addition to the works discussed in previous chapters, we investigated other reconstruc-

tion methods and RF design to further improve the image qualities of the looping-star

sequences. Specifically, we explored joint reconstruction approach that simultaneously

estimate multiple echoes and relaxation rates to improve the tSNR and reduce noise arti-

facts. Additionally, we delved into the optimization of RF pulse designs to achieve better

magnetization and more uniform signal excitation across the imaging volume. By optimiz-

ing the RF pulse flip angle and shape in the looping-star sequence, we aimed to maximize

the total magnetization and produce more uniform excitation profiles. Through these in-

vestigations, we hope to establish a more robust framework for looping-star MRI that

enhances the image qualities and SNR.

6.1 Joint reconstruction of T2*-weighted images and

quantitative relaxation maps

6.1.1 Introduction

Functional magnetic resonance imaging (fMRI) is crucial for the noninvasive imaging of

human brain activity, yet the intrusive acoustic noise of MRI poses challenges. This noise

can induce discomfort andanxiety, especially in children or dementia patients, and can

also confound sensory stimuli, affecting the BOLD response based on its loudness and

duration. Looping-Star, a silent MRI pulse sequence, is beneficial for pediatric MRI and

auditory fMRI tasks but is hampered by sparse radial sampling and low SNR, restricting

its spatial and temporal resolution. We introduce a multi-echo signal collection method in

the fMRI protocol to enhance sampling efficiency and SNR. We present a novel joint opti-

mization approach for multi-echo image reconstruction and quantitative map estimation,

The work in this chapter is based on author’s work [61] and other unpublished preliminary results.
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fig 6.1 – (a) A pulse sequence for a 2D plane of the 3D acquisition with one excitation/FID

module and two GRE/data acquisition module (ramp-up & down gradient is required by

TOPPE), the max slew rate for all modules (including ramps) is 5 mT/m/ms; (b) Illustra-

tion of overlapping echoes in GRE module: the echo-out signal from purple RF pulse over-

laps the echo-in signal from orange RF pulse in time; (c) 2D GRE k-space trajectory: odd

number of spokes are used to generate more evenly distributed spokes; (d) 3D k-space

trajectory using 3D generalized golden-angle.

subsequently divided into two sub-problems, that are solved by alternating minimization.

After all frames are reconstructed, we use UNFOLD to double the temporal resolution and

reduce undersampling artifacts.

6.1.2 Methods

6.1.2.1 Pulse sequence

We optimized some parameters to improve the robustness and performance of the pulse

sequence. We used a 3D generalized golden-angle-based rotation [28], reduced the num-

ber of RF pulses to 23 with increased sampling time, and increased the volume TR to 3.2

sec to reduce the undersampling artifact. Lastly, we collect 2 GRE echoes (as shown in

Fig. 6.1)with TE = 30 and 56.9 msec respectively to improve the SNR. The sampling pat-

tern alternates every volume TR to enable UNFOLD [41] filtering after reconstruction.

59



6.1.2.2 Problem formulation

In Looping-Star MRI, gradient echoes are overlapped in the time domain due to multiple

RF pulses. Previous looping-star methods for fMRI typically reconstruct T2*-weighted

images from a single set of GRE echoes. In contrast, in this work we use two sets of GRE

echoes and then jointly reconstruct the first echo image and the exponential rate map

from the k-space data using the following optimization formulation:

(ρ̂, ẑ) = argmin
ρ,z∈CN

∥∥∥∥∥∥
sf

sg

−

Af 0

0 Ag

 ρ

ρ · z

∥∥∥∥∥∥
2

2

+ β1R1(ρ) + β2R2(z), (6.1)

where sf and sg are signals from FID and GRE respectively, Af and Ag are systems

matrix for FID and GRE that can be computed by (3.5), ρ is the density map, z(r⃗) =

e
−TE∗( 1

T∗
2 (r⃗)

+ω(r⃗))
is the complex decay term due to T ∗

2 and field inhomogeneity, R1(·) is
regularizer for proton density map, usually a quadratic function in practice, and R2(·) is
regularizer for the rate map.

This optimization problem (6.1) is biconvex and can be solved by alternatively updating

ρ and z by fixing one of them and solving the corresponding convex optimization problem

[62]. We formulate the sub-problems as follows:

ρ̂ = argmin
ρ

∥∥∥∥∥∥
sf

sg

−

Af 0

0 Ag

I

Z

ρ

∥∥∥∥∥∥
2

2

+ β1R1(ρ), (6.2)

and

ẑ = argmin
z

∥sg −AgPz∥22 + β2R2(z), (6.3)

where Z = Diag{z} and P = Diag{ρ}.

6.1.2.3 Reconstruction

We used CG-SENSE and spatial 3D quadratic roughness regularizers for both ρ and z

update. We used 20 outer iterations to alternate between updates and in each of these iter-

ations, we applied 30 CG iterations for the respective updates. The regularization param-

eters were tuned separately to balance the artifact and effective spatial resolution. Then

we used UNFOLD to remove the undersampling artifact from the alternating sampling

pattern.
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6.1.2.4 Experiments

We compared our proposed joint reconstructionwith separate reconstruction of each echo.

The pulse sequences were programmed via TOPPE and implemented on a GE UHP 3.0T

scanner with a Nova 32RX head coil.

6.1.3 Results

Figure 6.2 presents the reconstructed echo images from both separate and joint recon-

structions. Echo 1 images resulting from joint reconstruction appear smoother and exhibit

fewer streaking artifacts than those from separate reconstruction, likely due to using dou-

bled data during the process. Echo 2 images from 2 methods both suffer from undersam-

pling artifacts and also signal loss. Figure 6.6 displays the tSNR maps derived from the

first echo images. Prior to the application of UNFOLD, these maps remain noisy, due to

the alternating sampling pattern. As such, the merits of joint reconstruction are not im-

mediately apparent. However, after UNFOLD, tSNR from the joint reconstruction clearly

surpasses that of separate reconstruction, particularly near the brain’s periphery. By us-

ing joint reconstruction, the mean tSNR of a centered elliptical ROI increased from 12.7

to 13.9 before UNFOLD, and 18.0 to 18.5 after UNFOLD. Figure 6.4 illustrates the T2* map

estimation and its corresponding tSNR after UNFOLD. The joint estimation approach de-

livers a superior T∗
2 tSNR within the brain relative to separate reconstruction. The mean

tSNR of a centered elliptical ROI increased from 16.1 to 18.4.

6.1.4 Conclusion

The proposed approach demonstrates enhancements in the reconstructed echo images

and the estimated T2* maps, evident both before and after applying UNFOLD. Future

research may benefit from investigating additional regularization techniques to address

the sub-problems more effectively. These could include edge-preserving regularizers and

distinct regularizers for the real and imaginary components of the z map.

6.2 Optimization of RF excitation for Silent ZTE MRI

The original looping-star used a constant flip angle scheme below the Ernst angle, i.e., 1◦,

to avoid transient T1 effect and keep the length of RF pulse short [16]. However, the flip
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fig 6.2 – The reconstructed echo images from both separate and joint reconstructions. Be-

fore UNFOLD, echo 1 images resulting from joint reconstruction appear smoother and ex-

hibit fewer streaking artifacts (red arrow) than those from separate reconstruction, likely

due to the utilization of double the data during the process. Echo 2 images from 2methods

both suffer from undersampling artifact and also signal loss. After UNFOLD, the joint re-

construction shows reduced image noise and artifact relative to separate reconstruction.
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fig 6.3 – The tSNR maps derived from the first echo images. Prior to the application of

UNFOLD, these maps remain noisy, attributable to undersampling artifacts from the alter-

nating sampling pattern. As such, the merits of joint reconstruction are not immediately

apparent. However, after UNFOLD, tSNR from the joint reconstruction clearly surpasses

that of separate reconstruction, particularly near the brain’s periphery. By using joint re-

construction, themean tSNR of an centered elliptical ROI increased from 12.7 to 13.9 before

UNFOLD, and 18.0 to 18.5 after UNFOLD.

fig 6.4 – The T2* map estimation after UNFOLD and its corresponding tSNR. (a): The T2*

map from joint reconstruction shows slightly more smooth T2* estimation. (b) The joint

estimation approach delivers a superior T2* tSNR within the brain relative to separate

reconstruction. The mean tSNR of a centered elliptical ROI increased from 16.1 to 18.4.
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angle can be increased to maximize SNR if the dynamic equilibrium of the longitudinal

magnetization could be modeled to create a uniform transverse magnetization. We adapt

the Ernst angle derivation to looping-star sequence and compute an optimal constant flip

angle. Furthermore, we propose a variable flip angle scheme that further improved the

signal amplitude and uniformity over time.

Assume the longitudinal magnetization is in steady-state between blocks, and the flip

angle of the ith RF pulse is αi, then according to the T1 decay

M i+1
z =M0(1− E1) + E1 cos(αi)M

i
z, (6.4)

and

M1
z =M0(1− E2) + E2 cos(αn)M

n
z , (6.5)

where E1 = e−
tspk
T1 is the T1 decay between the RF pulses, and E2 = e−

TR−(n−1)tspk
T1 is the

T1 decay effect between the end of the last RF pulse of current segment and the first RF

pulse from next segment.

Combining (6.4) and (6.5) yields

M1
z =M0

(1− E2) + E2(1− E1)
∑n−1

k=1

∏k−1
j=0 E1 cos(αn−j)

1− ETR

∏n
k=1 cos(αk)

, (6.6)

where ETR
= e−

TR
T1 is the T1 decay between segments.

The corresponding transverse plane can be computed by small-tip-angle approxima-

tion then.

6.2.1 Constant flip angles

In the simplest case that the flip angle is constant over spokes, flip angle can be optimized

by maximizing transverse plane signal

α̂ = argmaxαM1
z sin(α) = argmax

α
M0

(1− E2) + E2(1− E1)
1−(E1 cos(α))n−1

1−E cos(α)

1− ETR
(cos(α))n

sin(α) .

(6.7)

This optimization problem can be solved by setting the gradient of (6.7) to zero. It is

equivalent to find zeros of a polynomial of order n, which can be easily solved by comput-

ers.
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6.2.1.1 Variable flip angles

When the flip angles are allowed to be varying from spoke to spoke, a series of flip an-

gles α = {α1, . . . , αn} can be optimized by maximizing either the sum or the minimal

transverse plane signals

α̂ = argmax
α

n∑
k=1

Mk
z sin(αk) = argmax

α
M0

n∑
k=1

fk(M1
z ) sin(αk), (6.8)

where f(x) =M0(1− E) + E cos(αi) ·x is a linear operator from (6.4).

It is hard to explicitly express the gradient of the cost function. This is a differentiable

function of the flip angles so it can be optimized numerically using gradient-based algo-

rithms.

6.2.1.2 Linear flip angles

The optimized flip angle by solving (6.8) numerically appears to be nearly linearly increas-

ing, which motivates the following simplified linear version. Assume the cosine values of

the flip angles are linearly increasing

cos(αi+1) = γ cos(αi), (6.9)

where γ is the parameter controlling the linearity of the flip angles.

Substituting (6.9) into (6.6) gives

M1
z =

(1− E2) +
E2

E1
(1− E1)

∑n−1
k=1(E1 cos(α1))

kγkn−k(k+1)/2

1− ETR
(cos(α1))nγn(n−1)/2

. (6.10)

The corresponding optimization problem in terms of flip angle and linear coefficient γ is

(α̂1, γ̂) = argmax
α1,γ

n∑
k=1

Mk
z sin(αk) = argmax

α1,γ
M0

n∑
k=1

fk(M1
z ) sin(αk) . (6.11)

Solving this problem is much easier since it does not involve repeated multiplication

and it generates an excitation profile similar to the previous VFA scheme and maintains

good signal amplitude and uniformity.

The current constant flip angle series shows an acceptable longitudinal magnitude and

have a decent reconstruction, and the preliminary result using sophisticated design of the

flip angle doesn’t show great improvement over the constant flip angles in our current
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fig 6.5 – The resulting flip angles and corresponding magnetizations. VFA and LFA (over-

lapped) shows more uniform transverse magnetization than the LFA strategy.

implementation. Therefore, there might not be enough motivation of further developing

this flip angles.

6.2.2 Shaped RF pulse

Usually many rectangular RF pulses are used to excite the whole field of view (FOV). For

low flip angle used in by Dionisio [17], RF pulses is very short and thus the bandwidth is

high, so the sinc-shaped shading in spatial domain might not be obvious.

To improve the signal amplitude and uniformity, we use a optimized variable flip angle

scheme that is possibly 3 times longer than the original RF pulses. It is then necessary to

consider the excitation profile .

The sinc-shaped excitation profile along the readout direction is [24]:

P (r⃗) = α sinc(γ τ G⃗ · r⃗), (6.12)

where α = γB1τ is the nominal flip angle, B1 is the RF excitation amplitude, G⃗ is the

spoke gradient vector, and r⃗ is the position vector.

A shaped RF pulse can be designed to increase the uniformity of the excitation profile

while minimizing increases in pulse duration. A shaped RF pulse b can be given by solving

the following magnitude least square (MLS) problem

b̂ = argmin
b∈B

f(b), f(b) ≜
1

2
∥|Ab| − d∥2W , (6.13)
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fig 6.6 – The 12µs hard RF pulse and optimized shaped RF pulse (main difference indicated

by arrows). (a) RF amplitude; (b) RF phase; (c) resulted excitation profile. Using shaped RF

pulse significantly flattened the excitation profile, and maximum absolute flip angle error

is reduced from 0.48◦ to 0.03◦

where B is set of RF pulses that satisfy the peak amplitude constraint, A is the system

matrix from small tip angle approximation, and d is the desired excitation profile, usually

a flat line.

We solve this MLS problem by alternatively updating RF pulse b and a new intro-

duced variable θ. For the RF pulse update, we use the proximal optimized gradient method

(POGM) [42] to optimize the constrained least square problem.

As the current looping-star protocol has a decent uniform excitation profile due to

the very short excitation, we plan to investigate further in some applications that have a

non-uniform excitation profile. In such cases, shaped rf pulses can be used to improve

the reconstruction and analysis.
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

This thesis has presented a comprehensive exploration of advanced image reconstruction

techniques, sampling pattern optimization, and RF pulse optimization in the context of

silent MRI, particularly focusing on the looping-star sequences. In chapter 3, we found

that signal modeling using two-system matrices resulted in reduced signal artifact from

overlapping echoes and improved SNR of close to 1.4 relative to reconstruction with a sin-

gle system matrix. Chapter 4 explores spatial-temporal reconstruction using unfold and

llr models, which leverage temporal data from other frames to reduce the undersampling

artifact and improve tSNR. In chapter 5, we optimized the k-space trajectories in looping-

star using a learning-based method, leading to improved sampling efficiency and reduced

undersampling artifact. In chapter 6, we developed joint reconstruction methods, which

estimate multiple echoes simultaneously, played a crucial role in improving the temporal

signal-to-noise ratio (tSNR) and reducing noise artifacts. Additionally, the optimization

of RF pulse designs facilitated better magnetization and more uniform signal excitation

across the imaging volume, maximizing total magnetization and achieving more uniform

excitation profiles. Collectively, these innovations in model-based image reconstruction,

RF pulse design, and k-space trajectory optimization have led to substantial improvements

in image quality.

7.2 Future Work

7.2.1 Acoustic noise level

We roughly measured the acoustic noise level by placing a phone in the scan room and

using a phone app to record the noise, then computing the sound level. For more accurate
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measurements, we would use an MRI-compatible device to measure the sound level in the

scanner bore. For the optimized trajectories in Chapter 5, adding higher-order harmonics

would increase the slew rate of the gradient waveforms, thereby raising the acoustic noise

level. Although we constrain the slew rate and peak gradient amplitude in the cost func-

tion, we will investigate further the relationship between higher-order harmonics and

the acoustic noise level, including characterizing the gradient to acoustic noise system

frequency response function.

7.2.2 Model-based reconstruction

For the model-based reconstruction work in Chapter 3, we introduced a voxel indicator

function in the reconstruction process. Initially, we implemented this function using the

Michigan Image Reconstruction Toolbox (MIRT) in MATLAB [35]. However, as we sought

to improve computational efficiency, especially for large dynamic MRI data, we transi-

tioned to using MIRTorch [63]. MIRTorch leverages GPU acceleration, significantly re-

ducing computation times and enabling the handling of more complex spatial-temporal

reconstructions. One challenge we encountered during this transition was that the voxel

indicator function was not natively available in MIRTorch. To address this, we approxi-

mated the voxel indicator function using a weighted least squares problem, which pro-

vided a feasible interim solution (as shown in Fig. 7.1). Future work should focus on imple-

menting the voxel indicator function directly in MIRTorch to exactly match the methods

used in our original implementation.

In our in-vivo experiment, we did not collect fully sampled data using a standard Carte-

sian GRE sequence as a reference due to the prohibitively long scan time of 25 minutes.

To address this limitation, various undersampling schemes could be employed to acquire

a suitable reference dataset more efficiently. One potential approach is to fully sample the

center of k-space, which contains the most critical low-frequency information, while un-

dersampling the edges of k-space, which primarily contain high-frequency information.

This hybrid sampling method can reduce scan time while still providing a comprehensive

reference dataset for comparison and validation purposes.

7.2.3 Spatial-temporal reconstruction using DLLR

Wewill demonstrate functional analysis of theDLLRmethodwith a suitable non-repearting

sampling pattern. Also, the LLR and DLLR methods capture important low-rank proper-

ties in amanner that is data-driven for each individual subject, but do not capture potential
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fig 7.1 – Left: 1D voxel indicator function in MIRT. The Fermi filters were applied to

each sub-system matrix individually before matrix combination. We chose a 90% cutoff

frequency to reduce the mixture of center k-space signals and high-frequency signals com-

ing from the echo-in and echo-out spokes, respectively. Right: 1D weighting function used

in MIRTorch. Since a cutoff cannot be applied to the combined system matrix, a Gaussian-

shaped weighting is used to suppress the mixture of DC value and high-frequency com-

ponents.

dimensionality reduction opportunities that could be provided by sparsifying transforms

that are refined in a data-driven way using data from multiple subjects. Recent work (for

2D static imaging) has demonstrated that sparsity-based reconstruction methods with as

few as about 100 learnable parameters can perform nearly as well as deep networks when

trained properly [45]. A future direction is to extend the DLLR approach to a DLLR +

sparse (DLLR+S) regularizer using combinations of wavelet transforms (in time and space)

and temporal Fourier transforms.

7.2.4 Joint reconstruction of multi-echo images

In the joint reconstruction work (Chapter 6), z represents the complex rate map within

a unit circle in the complex plane. This constraint can be added to the cost function to

ensure that the T2* value remains positive. Another direction is to use different regular-

ization techniques for the field map and the decay map, given their distinct properties. For

example, it is commonly assumed that the field map is smooth, allowing the application

of quadratic finite difference regularization to it.
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7.2.5 Trajectories optimization

In optimizing the k-space trajectories (Chapter 5), we focus on optimizing both the ampli-

tude and phase of the proposed parameterization. Alternatively, we could optimize only

the amplitude while adding cosine waveforms. These twomethods are equivalent in terms

of parameterization; however, the derivative of the latter approach is easier to compute,

potentially accelerating the optimization process.

7.2.6 Deep learning related methods

Recently, deep learning has beenwidely apply in the field of mri reconstruction, achieving

better results as compared to the tradition model-based methods. ResoNet [64] was pro-

posed to use the noise-trained physics-informed networks to correct the off-resonace in

mri. The data consistency term is included in the network training process to provide the

physic information such as k-space trajectories, field map and sensitivity maps. Design-

ing virtual training data for the looping star k-space trajectories using similar approach

might be beneficial to train a neural network for the reconstruction. The complex looping

trajectories make the signal model complicated and thus accounting all trajectories when

solving the inverse problems is not feasible. By using a deep learning based methods, we

might be able to leverage the previous data to correct the overlapping echoes without

modeling all the RF pulses. Deep learning based reconstruction approach could be one of

the potential future directions to further remove overlapping echoes and reduce image

noise and artifact.
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