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ABSTRACT

Myelin content plays a vital role in healthy functioning of the brain. Myelin water

imaging (MWI) is a quantitative MRI technique that aims to image the myelin content

in the brain. Characterizing and quantifying the exchange dynamics in myelin (between

myelin water and non-myelin water) could lead to better understanding of the role of

myelin loss in several neurological disorders. This dissertation introduces a method to

estimate myelin water exchange in white matter, using MRI experiment design. We

optimized the acquisition parameters of a set of phase-cycled bSSFP acquisitions using a

cost function based on the Cramér-Rao bound, and obtained low coefficients of variation

for estimating myelin water exchange in white matter (∼ 13.5%).

Validating the obtained myelin water exchange maps in vivo is a challenging problem.

This dissertation also explores the design and use of an aqueous urea system to validate

our proposed bSSFP acquisitions for estimating exchange. To potentially translate our

proposed acquisitions to clinically feasible settings, undersampling is an important consid-

eration to bring down acquisition time. This dissertation studies an undersampling scheme

based on stack-of-spirals MRI. We demonstrate that the 3D NUFFT-based forward model

for stack-of-spirals MRI can be simplified and sped up by exploiting the Cartesian struc-

ture in the through-plane direction, even in the presence of off-resonance effects. We show

that our recommended efficient implementation is at least ∼ 22% faster than other existing

3D NUFFT-based implementations of the stack-of-spirals forward model, when run on a

20-core Intel® Xeon® processor.

xii



CHAPTER 1

Introduction

Magnetic Resonance Imaging (MRI) provides a non-invasive way to study soft-tissue con-
trast in the body. Conventional MR images are generally qualitative in nature; various
contrast-weighted images can be obtained by adjusting MR imaging acquisition param-
eters (e.g., T1-weighted and T2-weighted images). In contrast, quantitative MR imaging
focuses on obtaining accurate quantitative maps of tissue parameters, such as T1, T2, and
proton density, that potentially reflect the changes at the cellular level better.

Many classical quantitative approaches are based on the premise that the MR signal
from a voxel arises from a single type of tissue. However, this assumption may not be
appropriate when modeling the complex spin-dynamics of microstructural components in
living tissues. A more suitable model would be a multi-compartment relaxation model,
where the MR signal is assumed to originate from different tissue compartments. Quanti-
fying the exchange dynamics between these various compartments has been suggested as a
potential biomarker for several clinical applications [76, 21, 188, 4].

An example of a multi-compartment tissue model can be seen in myelin water imaging,
where myelin content is studied in brain tissue [78]. E.g., for the two-compartment tissue
model of myelin used in this work, the MR signal is assumed to arise from two water pools:
a fast-relaxing tissue component corresponding to water trapped between myelin bilayers
(called myelin water), and a slow-relaxing component consisting of intra and extra cellular
water (called non-myelin water). The fraction of signal arising from the myelin water is
defined as the myelin water fraction (MWF) and is taken to be a proxy for the myelin
content in a voxel of brain tissue [2, 164]. Chapter 2 provides further background on the
two pool exchanging model that we consider in this work, and how the Bloch-McConnell
equations are used to model the evolution of spins in such an exchanging system [98].

The relationship between MWF and myelin content has been thought to depend on
not just the relative water proton densities of the two compartments, but also the water
exchange dynamics between them [187]. It has been thought that the presence of inter-
compartmental water exchange could lead to conventional MWF methods underestimating
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the true myelin content in the tissue [34, 51]. The ability to quantify aspects of the inter-
compartmental exchange dynamics, including exchange rates and relative fractions, may
provide researchers with a tool to study various disease processes that depend on water
transport between compartments. For example, variations in water exchange may be asso-
ciated with brain edema and demyelination processes [84].

Characterizing these tissue compartments and their interactions in vivo has been a long-
standing research problem [60, 157]. However, this is a challenging problem since there
are few baseline methods that can quantitatively estimate these water exchange dynamics
in vivo. Another major issue is the lack of reproducibility of mean residence times (i.e., the
inverse of the exchange rates); some studies have observed residence times of 160-310 ms
ex vivo in myelin [145, 11], while other studies have measured values of 280-780 ms in vivo

[70]. Chapter 3 focuses on obtaining precise estimates of myelin water exchange in white
matter by optimizing the acquisition parameters of a set of MR sequences. In particular, we
optimize the flip angles and RF phase cycling factors of a set of balanced Steady-State Free
Precession (bSSFP) acquisitions, to minimize the variance of unbiased exchange estimates.
This work was published as a conference abstract [110].

Validating the exchange maps in vivo obtained in Chapter 3 is challenging, since there
is no established method to obtain ground truth exchange maps in vivo (cf. inversion re-
covery methods for T1 estimation, multi-echo spin echo acquisitions for estimating myelin
water fraction). Chapter 4 explores the design and use of an aqueous urea system to val-
idate our proposed acquisitions for estimating exchange. We obtain ground truth values
for urea water exchange using inversion recovery based NMR (IR-NMR) spectroscopic ex-
periments [168]. We perform imaging experiments using phase-cycled bSSFP acquisitions
and demonstrate their feasibility for estimating urea water exchange, by validating them
against the ground truth exchange values.

The Cramér-Rao bound analysis in Chapter 3 assumes the acquisition of fully sampled
data for each of the optimized bSSFP acquisitions. However, to make the acquisitions
feasible for clinical settings, we require faster scan times, and undersampling is a popular
approach to accelerate MRI scans. Chapter 5 studies an undersampling scheme based on
stack-of-spirals MRI, which is a popular non-Cartesian trajectory for 3D imaging. We
demonstrate that the forward model for stack-of-spirals MRI (based on the 3D non-uniform
FFT (NUFFT)) can be efficiently implemented by exploiting the Cartesian structure in the
through-plane direction, even in the presence of off-resonance effects.

There is a concerted push to increase harmonization and reproducibility of MRI studies
across different experimental settings [105]. This is especially important for quantitative
MRI, where researchers would like to study the variability of parameter estimates across
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a range of experimental conditions. A critical requirement for harmonization is the devel-
opment of open-source software and toolboxes that facilitate widespread adoption of MRI
protocols. Chapter 6 introduces an open-source toolbox (called SOSP3d) for acquiring and
reconstructing stack-of-spirals MRI data. We demonstrate the feasibility of this toolbox for
a few preliminary studies, e.g., for structural MRI scans.

The rest of this thesis (including our contributions in Chapters 3-6) is organized as
follows:

• Chapter 2 contains relevant background information.

• Chapter 3 introduces a novel method for designing a set of bSSFP acquisitions to
estimate myelin water exchange in white matter. In particular, optimizing the phase
cycling factors of a set of bSSFP acquisitions using the Cramér-Rao bound (during
scan design) is a novel contribution of this chapter.

• Chapter 4 introduces an aqueous urea system designed to validate our proposed tech-
niques for estimating exchange.

• Chapter 5 develops an efficient implementation for the NUFFT based forward model
for stack-of-spirals MRI, in the presence of off-resonance effects.

• (Preliminary work) Chapter 6 introduces an open-source toolbox for acquisition and
reconstruction methods for stack-of-spirals MRI.

• Chapter 7 contains possible ideas for future work.
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CHAPTER 2

Background

This chapter provides background information that is relevant to upcoming chapters. Sub-
sequent chapters provide additional topic-specific background content. Section 2.1 pro-
vides a brief introduction to MRI principles that are pertinent to this thesis. Section 2.2
gives a brief description of non-Cartesian trajectories used in MRI. Section 2.3 introduces
a two pool exchanging model for myelinated tissue, and describes the model parameters in
detail. This thesis uses a parameter estimation approach called PERK (Parameter Estima-
tion via Regression with Kernels), and Section 2.4 provides a brief description of PERK.

2.1 MR Physics

This section gives a very brief background about some fundamentals of MR physics that
are relevant to this work. We refer readers to the following resources for more detailed
descriptions and explanations of MR imaging [118, 85].

Magnetic Resonance Imaging (MRI) is an imaging modality based on the magnetiza-
tion properties of hydrogen protons (1H) in the body. Other nuclei satisfy the magnetic
resonance properties required for MRI, but the hydrogen proton is the most abundant in the
human body and is most convenient to image. Each hydrogen proton possesses a magnetic
property called nuclear spin, which causes it to behave like a tiny rotating magnet. These
spins1 are typically oriented randomly in all directions. Hence, the vector sum of all these
spins is zero; in other words, the net magnetization is zero in the absence of an external
magnetic field.

In MRI, a static magnetic field, called the main magnetic field B0, is externally applied,
causing the spins to align themselves either parallel to or anti-parallel to B0. Roughly half
the spins can be found in the parallel state and half are in the anti-parallel state. To be more
precise, under typical conditions, there is a tiny excess of protons that lie in the parallel

1Throughout this work, we refer to protons or nuclei or nuclear spins or spins interchangeably.
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state versus the anti-parallel state (roughly 7 spins out of 106 [118]). This tiny excess of
protons results in a net magnetization vector M = [Mx,My,Mz]

T ∈ R3 that is aligned
parallel to B0, and this magnetization M is at the heart of MR imaging.

Conventionally, the main field B0 is assumed to be applied along the z-direction (re-
ferred to as the longitudinal direction), and the plane perpendicular to it (x-y plane) is
referred to as the transverse plane. While only B0 is applied, the net magnetization vector
M = [0, 0,M0]

T is aligned with the z-direction, where M0 is the equilibrium magneti-
zation due to the B0 field. If the spins are not in equilibrium (i.e., when they are excited),
the nuclear spins display a phenomenon called resonance, whereby they precess at a well-
defined frequency around the B0 field. The concept of precession is similar to a spinning
top in a gravitational field, where the top is said to precess about the direction of the gravi-
tational field.

The frequency of precession of the nuclear spins is governed by one of the most influ-
ential equations in MRI, the Larmor equation, given by

ω0 = γB0, (2.1)

where ω0 is the precessional frequency of a spin system experiencing an external static field
B0. This is also referred to as the resonant frequency or Larmor frequency of the spin. γ is
a known constant called the gyromagnetic ratio that is specific to each nuclear species. For
instance, the gyromagnetic ratio for 1H protons [118] is γ/2π = 42.575 MHz/T.

Under the externally applied main field B0, the net magnetization is aligned with B0. If
we momentarily excite or perturb the magnetization at its resonant frequency, the net mag-
netization M is disturbed from its equilibrium state and tries to return to equilibrium along
B0. In MR imaging, we use an RF pulse (oscillating at the resonant frequency) in the trans-
verse plane to create a rotating magnetic field B1. The B1 field is turned on for a very short
period of time (on the order of a few µs or ms) and this excites some of the nuclear spins
away from equilibrium. The net magnetization M eventually returns to its equilibrium
state along z (assuming B0 is along z), and this is accompanied by three processes: free
precession, longitudinal relaxation, and transverse relaxation. The longitudinal and trans-
verse relaxations are governed by time constants T1 and T2 respectively that determine how
long the magnetization M takes to return to its equilibrium.

The signal of interest in MR imaging is the net magnetization in the transverse plane,
i.e., Mxy = Mx + iMy, where M = [Mx,My,Mz]

T ∈ R3 and i =
√
−1 is the

imaginary unit of complex numbers. We typically excite the spins using the B1 field, and
while the net magnetization is returning to equilibrium, we acquire the MR signal using RF
receive coils. Depending on how long we wait after excitation (roughly referred to as the
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echo time), we obtain signals that highlight different aspects/contrasts of the sample being
imaged. Different biological tissues such as fat, muscle, water etc. have different T1 and
T2 characteristics, and by manipulating the sequence timing parameters such as echo time

(TE) and repetition time (TR), we can highlight the contrast between specific tissues.
The RF receive coils acquire the MR signal over the entire imaging volume, and it is

impossible to distinguish signals from different spatial locations (post excitation), without
the use of additional magnetic fields. In MR imaging, spatial localization is achieved by
using linearly varying magnetic fields called gradient fields (G) in addition to the B0 field
[118]. The gradient fields cause variations in the effective magnetic fields seen by different
spins, and this leads to a variation in their precessional frequencies (Larmor frequencies),
thereby helping localize the signal spatially. We do not cover spatial localization in detail
here; interested readers are referred to other resources for more details [85, 118].

A typical MR pulse sequence consists of a sequence of RF excitations2, with periods of
free precession and relaxation in between successive RF pulses. The MR signal is acquired
during the periods of free precession and relaxation. The time period between successive
RF pulses is called the repetition time (TR). The time between each RF pulse and when
the signal is acquired is roughly referred to as the echo time (TE). We repeat the process of
excitation and data acquisition until we have sufficient data to reconstruct the MR image.

2.1.1 Bloch equation

The time evolution of the net magnetization M due to various processes such as excita-
tion, free precession and relaxation, is an important part of MRI. The Bloch equation is a
phenomenological equation that describes the evolution of M in the sample being imaged.

Free precession

The precession of magnetization M = [Mx, My, Mz]
T ∈ R3 around a magnetic field

B = [Bx, By, Bz]
T ∈ R3 is described by the following differential equation [13]:

dM

dt
= M × γB, (2.2)

where × denotes the cross-product of two vectors. After expanding out the cross product,
this can be written in matrix form as

2We refer to RF excitation and B1 field interchangeably throughout this work.
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dM

dt
=

 0 γBz −γBy

−γBz 0 γBx

γBy −γBx 0

M . (2.3)

The differential equation in (2.3) can be solved under different conditions, to describe var-
ious MR processes. For instance, under the influence of only the main magnetic field B0,
i.e., B = [0, 0, B0]

T ∈ R3, the solution is given by [118]

M (t) = Rz(ω0t)M (0), Rz(ω0t) =

 cosω0t sinω0t 0

− sinω0t cosω0t 0

0 0 1

 , (2.4)

which describes the precession of M around the z-axis. ω0 = γB0 is the Larmor frequency,
while M(0) represents the initial conditions for M . Rz is the rotation matrix around the
z-axis.

Longitudinal relaxation

As described before, when we excite the spins with an RF excitation pulse, they eventually
return to equilibrium along the main magnetic field B0. One of the processes that accom-
panies the return to equilibrium is longitudinal relaxation. The longitudinal component Mz

recovers to equilibrium in the following way [118]:

dMz

dt
= − Mz −M0

T1

, (2.5)

where M0 is the equilibrium magnetization due to the B0 field. Longitudinal relaxation is
also called spin-lattice relaxation, since there is transfer of energy between nuclei and the
surrounding lattice. T1 is called the spin-lattice time constant, and characterizes the recov-
ery of the longitudinal component of the net magnetization to equilibrium. The solution of
the differential equation in (2.5) is

Mz(t) = Mz(0) e
−t/T1 + M0 (1− e−t/T1), (2.6)

where Mz(0) is the initial condition at time t = 0.
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Transverse relaxation

Transverse relaxation describes the decay of the transverse components of M , i.e., Mx and
My, after excitation. This is described by [118]

dMxy

dt
= − Mxy

T2

, (2.7)

where Mxy = Mx + iMy is the transverse component. T2 is the time constant that charac-
terizes the decay of the transverse magnetization after excitation. The solution of the above
equation is

Mxy(t) = Mxy(0) e
−t/T2 , (2.8)

where Mxy(0) represents the initial conditions at time t = 0.
The Bloch equation [13, 118] combines the above equations into a single set of equa-

tions that describes the evolution of the net magnetization:

dM

dt
= M × γB − Mxi+Myj

T2

− (Mz −M0)k

T1

, (2.9)

where i, j,k are the unit vectors along x, y, z directions respectively. In matrix form, this
can be written as

dM

dt
=


− 1

T2

γBz −γBy

−γBz − 1

T2

γBx

γBy −γBx − 1

T1

M +


0

0
M0

T1

 . (2.10)

The solutions of the Bloch equation under various conditions provide closed-form ex-
pressions for the magnetization under typical MR processes such as excitation, free pre-
cession and relaxation. Though we have assumed a perfectly uniform B0 field throughout
the imaging volume so far, in reality, there are variations in the resonant frequency due
to factors such as main field inhomogeneities, chemical shift and susceptibility variations.
These variations are called off-resonance and are modeled within the Bz term in (2.10).

Excitation

Using the Bloch equation, we have described the evolution of net magnetization M during
free precession and relaxation, assuming that the spins were already perturbed or excited

in some way. Here, we dive deeper into how M behaves during excitation. Modern MR
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imaging systems typically generate a circularly polarized B1 field3, that takes the following
form [85]:

B1(t) = Be
1(t) [cos(ωrft+ θ)i− sin(ωrft+ θ)j] , (2.11)

where Be
1(t) is the envelope of the RF pulse, ωrf is the RF carrier frequency and θ is the ini-

tial phase of the pulse. In other words, the B1 field has an x-component of Be
1(t) cos(ωrft+

θ) and a y-component of −Be
1(t) sin(ωrft + θ) in the transverse plane. To excite a spin

with Larmor frequency ω0, we typically set ωrf to ω0 (resonance condition). Be
1(t) plays an

important role in determining how much the magnetization M is tipped away from the B0

field due to excitation. If the RF pulse is on for a duration τ , and if no gradients are played
out during RF transmission, then the tip-down or flip angle is defined as

α = γ

∫ τ

0

Be
1(t)dt, (2.12)

where γ is the gyromagnetic ratio of the nuclear spin. A longer RF pulse duration or higher
amplitude of the B1 envelope function leads to a higher flip angle and typically results in
the net magnetization being tipped away (excited) from equilibrium to a larger extent.

In the conventional coordinate system (called the laboratory frame), it is cumbersome
to mathematically describe the evolution of M during excitation. Hence, we use a trans-
formed coordinate system, called the rotating frame, where the transverse plane is rotating
at a chosen angular frequency. By choosing the Larmor frequency ω0 for rotation, we
demodulate the free precession due to the B0 field, and this simplifies the solution for ex-
citation. Solving the Bloch equation for the rotating frame (similar to (2.9)) for excitation
results in [85]

M+
rot = Rz′(θ)Rx′(α)Rz′(−θ)M−

rot, (2.13)

where M−
rot and M+

rot refer to the net magnetization pre and post excitation respectively
(in the rotating frame). Since the RF pulse is assumed to be of a very short duration (i.e.,
≪ T2), we ignore the relaxation terms in the Bloch equation here. x′, y′, z′ are the coordi-
nates in the rotating frame4. Rz′(θ) and Rx′(α) are rotation matrices around the z′ and x′

axes respectively, defined as

3The same analysis holds for a linearly polarized B1 field, which can be shown to decompose into two
circularly polarized fields [118].

4The longitudinal components are the same in both the laboratory and rotating frames, i.e., z′ = z.
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Rz′(θ) ≜

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , Rx′(α) ≜

1 0 0

0 cosα sinα

0 − sinα cosα

 . (2.14)

2.1.2 Bloch-McConnell equation

So far, we have assumed that the sample being imaged is homogeneous within each voxel
and a single-compartment tissue model is sufficient to model the MR signal (using the
Bloch equation). However, in practice, it is more realistic to model the net magnetization in
each voxel as arising from a multi-compartment tissue model, where the net magnetization
in the voxel depends on the net magnetization of the individual tissue compartments. The
spins in a specific compartment have their own properties (T1, T2 etc.) depending on their
chemical environments. Also, we need to account for exchange of magnetization between
compartments (due to transfer of water for instance) in our analysis. The Bloch-McConnell
equation provides a way to describe the evolution of magnetization in a multi-pool5 model
with exchange [98].

Consider a two compartment tissue model with compartments denoted by a and b.
In other words, the net magnetization in each voxel arises from spins in either compart-
ment a or b. Let T1a, T2a, T1b and T2b be the relaxation time constants for compart-
ments a and b respectively. Let fa and fb = (1 − fa) represent the fraction of spins
in each voxel that correspond to compartments a and b respectively. The off-resonance
experienced by nuclei in compartments a and b are denoted by ∆ωa and ∆ωb respec-
tively. The exchange from compartment a to b is characterized by the mean residence
time τa→b (inverse of the exchange rate), and τb→a denotes the exchange in the oppo-
site direction from b to a. The Bloch-McConnell equation for the net magnetization
M = [Ma,x, Ma,y, Ma,z, Mb,x, Mb,y, Mb,z]

T ∈ R6 takes the form (in the rotating frame)
[98, 179]:

dM

dt
=

[
La −Ka Kb

Ka Lb −Kb

]
M + c, (2.15)

where

c =

[
0, 0,

faM0

T1a

, 0, 0,
fbM0

T1b

]T
, (2.16)

5We use the terms tissue compartments and pools interchangeably.
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and M0 is the equilibrium magnetization. La captures the compartment-specific charac-
teristics of a, while Ka characterizes the exchange process from a to b. These are defined
as:

La ≜


− 1

T2a

∆ωa −γBy

−∆ωa − 1

T2a

γBx

γBy −γBx − 1

T1a

 , Ka ≜


1

τa→b

0 0

0
1

τa→b

0

0 0
1

τa→b

 ,

where Bx and By are the x and y components of the magnetic field in the transverse plane.
Lb and Kb are defined in a similar manner as La and Ka. In the absence of any exchange,
Ka and Kb contain all zeros (i.e., mean residence times are infinite), and (2.15) reduces to
a set of decoupled differential Bloch equations specific to each compartment. The magne-
tization in each compartment can then be separately analyzed using the Bloch equation as
described before.

Excitation

Assuming that the RF excitation pulse is of very short duration, we neglect the effects of
free precession, relaxation and exchange during excitation. Consider a circularly polarized
B1 field with components B1,x and B1,y along the x and y directions respectively. Let α
be the flip angle and θ be the initial phase of the RF pulse. Then, the Bloch-McConnell
equation (Eq. (2.15)) reduces to

dM

dt
=



0 0 −γB1,y 0 0 0

0 0 γB1,x 0 0 0

γB1,y −γB1,x 0 0 0 0

0 0 0 0 0 −γB1,y

0 0 0 0 0 γB1,x

0 0 0 γB1,y −γB1,x 0


M . (2.17)

These decoupled differential equations can be solved separately for each compartment,
and results in a solution that is similar to the Bloch equation solution in (2.13):

M+ =

[
Rz′(θ)Rx′(α)Rz′(−θ) 03×3

03×3 Rz′(θ)Rx′(α)Rz′(−θ)

]
M−, (2.18)
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where M− ∈ R6 and M+ ∈ R6 represent the net magnetization pre and post excitation re-
spectively. Rx′ and Rz′ are rotation matrices around the x′ and z′ directions in the rotating
frame.

Free precession and Relaxation

After excitation, in the absence of the B1 field, the Bloch-McConnell equation becomes

dM

dt
= AM + c, (2.19)

where

A ≜

[
L̃a −Ka Kb

Ka L̃b −Kb

]
, L̃a ≜


− 1

T2a

∆ωa 0

−∆ωa − 1

T2a

0

0 0 − 1

T1a

 . (2.20)

L̃b is defined similarly to L̃a, while Ka,Kb and c are as defined before. The solution to
this set of differential equations involves a matrix exponential, and is given by (assuming
A is invertible)

M (t) = etAM(0) +
(
etA − I6

)
A−1c, (2.21)

where M (0) is the initial condition for the net magnetization and I6 is the 6 × 6 identity
matrix. eX =

∑∞
k=0

1
k!
Xk is the matrix exponential function. Let us define the compart-

mental equilibrium magnetization as m0 = [0, 0, faM0, 0, 0, fbM0]
T ∈ R6. Expanding

A (using (2.20)), we obtain

Am0 =



0

0(
− 1

T1a

− 1

τa→b

)
faM0 +

(
1

τb→a

)
fbM0

0

0(
1

τa→b

)
faM0 +

(
− 1

T1b

− 1

τb→a

)
fbM0


. (2.22)
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Under the condition of chemical equilibrium6, which is assumed throughout this work,
(2.22) further simplifies to Am0 = −c (from (2.16)) [112]. Then, (2.21) simplifies as

M(t) = etAM(0) +
(
I6 − etA

)
m0. (2.23)

2.1.3 Steady-state MR signal

The Bloch equation in (2.9) and Bloch-McConnell equation in (2.15) provide ways to study
the evolution of the net magnetization vector under various conditions. An MRI scan typi-
cally consists of applying different magnetic fields (B0, B1 and gradient fields) and acquir-
ing the MR signal at specific time points. Since the acquired MR signal is the net magne-
tization vector (in the transverse plane), the solutions to the Bloch and Bloch-McConnell
equations (under various conditions such as free precession, relaxation, excitation etc.) play
an important role in determining the acquired signal in MRI.

As described earlier, typical MRI acquisitions consist of a sequence of RF excitation
pulses (separated by repetition time TR), with periods of free precession and relaxation
in between the RF pulses. If we set TR sufficiently large (say TR ≫ T1), then there is
enough time between RF excitations for the transverse magnetization to decay to zero and
for the longitudinal magnetization to completely recover to the equilibrium magnetization
M0. However, if we use a rapid train of RF pulses, i.e., TR is sufficiently small, then
the net magnetization does not have enough time to fully recover and eventually reaches a
steady-state that differs from M0. Such MRI sequences with rapidly applied RF excitations
(typically with TR ≪ T2) are called steady-state sequences [103]. In steady-state, the
evolution of the net magnetization vector is identical in each TR. We can compute the
acquired MR signal in steady-state by modeling the magnetization in successive TR periods
as an affine system of equations, and then solving for the steady-state magnetization.

For instance, consider the balanced steady-state free precession (bSSFP) sequence that
is a common steady-state sequence used in MRI. The bSSFP sequence consists of a rapid
train of RF excitation pulses, with balanced gradient fields applied during each TR. The
term balanced refers to the fact that the net area of the applied gradients is designed to be
zero in each TR. Chapter 3 provides a more detailed look at the bSSFP signal model. If the
phase of the RF pulses alternates between π and −π (between successive excitations), the
magnitude of the steady-state MR signal immediately after excitation, for an on-resonance
spin, is given by [139]

6Two pools in chemical equilibrium satisfy the relation
fa
fb

=
τa→b

τb→a
.
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sbSSFP = M0
(1− E1) sinα

1− (E1 − E2) cosα− E1E2

, (2.24)

where E1 = e−TR/T1 , E2 = e−TR/T2 , α is the flip angle of the RF excitation pulses and M0

is the equilibrium magnetization. (2.24) assumes a single compartment tissue model. If we
consider a two pool model with exchange, then the bSSFP steady-state signal does not have
a simple analytical expression and has to be determined using the Bloch-McConnell equa-
tion. For a two pool model without exchange, each tissue compartment can be analyzed
separately and the total steady-state signal in each voxel is a weighted sum of the signals
from each compartment.

2.2 Non-Cartesian MRI

The simplest form of MR imaging typically acquires data in a Cartesian or a recti-linear
trajectory. Fig. 2.1 (left) shows an example of a Cartesian sampling trajectory, where data
is acquired line-by-line, and can be reconstructed in a straightforward manner using the fast
Fourier transform (FFT). However, a recti-linear Cartesian acquisition is not the only pos-
sible sampling trajectory in MRI; we can acquire k-space data in a non-Cartesian manner
as well. There are a lot of non-Cartesian trajectories that have been explored in MRI [171],
e.g., radial [79, 43, 38], spiral [1, 100], rosette [121], PROPELLER [126], and stochas-
tic trajectories [138]. Each of these non-Cartesian trajectories has its own unique set of
benefits/properties, and are used in a wide range of applications in MRI. Fig. 2.1 shows
examples of two non-Cartesian sampling trajectories: radial and spiral trajectories.

Figure 2.1: Cartesian and non-Cartesian sampling trajectories in MRI: Cartesian (left),
radial (middle), and spiral (right). (Figure adapted from [171].)
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Faster acquisition times are generally required for translating MR sequences to clinical
applications, and non-Cartesian trajectories provide a way to reduce scan time through un-
dersampled acquisitions. One of the most important benefits of non-Cartesian sampling is
the potential for efficient coverage of k-space. Compared to Cartesian acquisitions, non-
Cartesian trajectories typically make efficient use of the gradient hardware, and therefore
lead to more rapid k-space coverage. Non-Cartesian trajectories are also potentially as-
sociated with other benefits such as fewer coherent undersampling artifacts [124], more
robustness to motion [43, 87], potential to be used for self-navigation [89], etc. Ref. [171]
provides an excellent review of non-Cartesian imaging, and is a good starting point for
understanding more about the nuances of non-Cartesian MRI.

While non-Cartesian acquisitions have many benefits, it is also more complex to re-
construct non-Cartesian k-space data. Since the k-space data does not lie on a uniform
Cartesian grid, we typically use reconstruction methods based on the non-uniform fast
Fourier transform (NUFFT) [40, 176]. Also, since the acquisition k-space is sampled non-
uniformly in non-Cartesian MRI, it is necessary to account for the non-uniform sampling
density using a process called density compensation [127].

2.3 Two pool exchanging model for myelinated tissue

As described before, in MR imaging, the MR signal typically arises from hydrogen pro-
tons in the body and their interactions with various magnetic fields (a static main magnetic

Figure 2.2: Structure of myelinated tissue (Figure taken from [128]).
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field B0, a radiofrequency field B1 and gradient fields G) [118]. However, individual wa-
ter molecules can experience very different microscopic environments depending on their
physical location, and this forms the basis of myelin water imaging [78]. Fig. 2.2 illustrates
the myelination around axonal fibers. The water molecules trapped within this myelin
sheath (called myelin water) experience a much different microscopic environment than
other water molecules (denoted as non-myelin water or intra/extracellular water). There
are also exchange dynamics at play here, with exchange of water molecules between these
two environments, and our model must account for this process.

For the rest of this work, we model the myelinated tissue as a two pool exchanging
model, as shown in Fig. 2.3. In other words, we assume that the MR signal in each voxel
arises from two different compartments: a myelin water compartment representing the wa-
ter trapped in the myelin bilayers, and a non-myelin water compartment that captures all
other water, i.e., intra and extra-axonal water. The myelin water compartment has relax-
ation time constants denoted by T1f and T2f ; the letter ‘f’ signifies that the myelin water
compartment is a fast-relaxing compartment. Similarly, the non-myelin water pool has re-
laxation time constants of T1s and T2s; the ‘s’ signifies that the non-myelin water pool is
a slow-relaxing compartment. In other words, the water molecules trapped in the myelin
sheath undergo faster relaxation (i.e., have shorter time constants) than the non-myelin
water.

The myelin water fraction is denoted by ff ; this represents the fraction of the MR signal
in a voxel that arises from protons in the myelin water pool. fs represents the fraction of
signal from the non-myelin water pool. Our model assumes that ff + fs = 1, so we have
just a single fraction value to estimate (ff).

Figure 2.3: Two pool exchanging pool for myelinated tissue.
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Studies have shown that myelin water experiences an additional frequency shift that is
dependent on the orientation of myelinated axons wrt the main magnetic field B0 [165, 36].
This is denoted by ∆ωf in our model. In other words, if ∆ω is the bulk off-resonance, then
the myelin water pool experiences a total off-resonance of ∆ω+∆ωf , while the non-myelin
water experiences an off-resonance of just ∆ω.

We model the exchange dynamics between the two pools in the form of mean residence
times (which are the inverse of exchange rates). τf→s represents the mean residence time
of myelin water; a low value of τf→s implies a high exchange rate of water molecules
from the myelin water pool to the non-myelin water pool and vice versa. Similarly, τs→f

denotes the mean residence time of non-myelin water, and this represents the exchange
process in the opposite direction, i.e., from the non-myelin water pool to the myelin water
pool. Additionally, this two pool exchanging model assumes the two compartments to
be in chemical equilibrium, meaning ffτs→f = fsτf→s. In other words, τf→s is the only
exchange parameter to be estimated; once we obtain τf→s, the other exchange parameter
τs→f is determined using the aforementioned equation.

Parameters of the two pool model:

• Equilibrium magnetization M0

• Myelin water fraction ff

• Compartment-specific relaxation time constants T1f , T2f , T1s, T2s

• Mean residence time of myelin τf→s

• Frequency shift specific to myelin water ∆ωf

• Bulk off-resonance ∆ω

• B1+ scaling factor κ

2.4 Parameter Estimation via Regression with Kernels
(PERK)

In quantitative MRI, parameter estimation is the process of obtaining parameter maps from
the reconstructed images. Statistical approaches to parameter estimation include maxi-
mum likelihood (ML) [46] or maximum a posteriori (MAP) based estimation [183, 181].
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These methods typically involve highly non-convex cost functions that are challenging to
optimize. Another group of methods involve dictionary matching, where a dictionary is
created consisting of several candidate signal vectors, and the acquired data is compared
with the dictionary to obtain the estimate of the unknown parameters. This approach is
quite commonly seen in fingerprinting-based approaches [91, 65]. This approach works
well for smaller problems, but might not scale well with increase in the number of latent
parameters to be estimated (as is the case with multi-compartment tissue models), since the
size of the dictionary grows exponentially with increase in latent parameters. There has
also been a lot of work exploring deep learning-based approaches for parameter estimation
[177, 22, 58, 37, 158].

Parameter Estimation via Regression with Kernels (PERK) is a fast, dictionary-free ap-
proach for parameter estimation [114], based on kernel ridge regression. Standard linear
regression techniques are simple and scalable, but are not suitable for many practical es-
timation problems which are non-linear, e.g., non-linear MR signal models in quantitative
MRI. Kernel ridge regression gives us a way to perform non-linear regression in the input
space, by first transforming or lifting the measurements into a higher-dimensional space
and then performing linear regression in that lifted space. This transforms non-linear re-
gression in the input space into linear regression in a feature space [148], defined by the
use of an appropriate kernel function (e.g., Gaussian kernel).

Performing linear regression in such a high-dimensional feature space can be very com-
putationally demanding due to the potentially large number of features. Fortunately, due
to a popular trick called the kernel trick, kernel functions help us perform regression in
the higher-dimensional space without explicitly computing the coordinates in the high-
dimensional space, which reduces the computational burden of these techniques. Kernel
methods have been quite popular in machine learning, e.g., classification [25] as well as re-
gression [136]. Note that this machine learning form of kernel regression is fairly different
from the form used in [151] for image processing.

PERK for Quantitative MRI:

In PERK, we first simulate many input-output measurement pairs based on prior dis-
tributions and a non-linear MR signal model. These are lifted to a higher-dimensional
(possibly infinite) space using an appropriate kernel function, and then an affine regression
function is learnt using the simulated training datapoints. To illustrate how PERK works,
let us consider a typical non-linear MR signal model:

y = s(x,ν;P ) + ϵ, (2.25)
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where s(x,ν;P ) is the output of the MR signal model, x ∈ RL is the set of L latent
parameters to be estimated, ν ∈ RK is the set of K known parameters, P is the collection
of acquisition parameters for the sequence, and y ∈ CD is the set of D measurements. For
instance, x could contain tissue properties such as proton density and T2, while ν could
include B0 and B1+ information that are assumed to be known to us (e.g., acquired with
separate pre-scans). ϵ ∼ CN (0D,Σ) is zero-mean complex Gaussian noise with known
covariance Σ ∈ RD×D.

To generate a total of N input-output training pairs, we sample the space
of RL × RK × CD to generate N different realizations of the input parameters
and noise {(x1,ν1, ϵ1), (x2,ν2, ϵ2), . . . (xN ,νN , ϵN)} and the corresponding measure-
ment vectors {y1,y2, . . .yN} [112]. These N training datapoints are collected as
{(q1,x1), (q2,x2), . . . (qN ,xN)}, where qn := [|yn|T, νT

n ]
T ∈ RQ and Q := D + K.

PERK seeks to learn a non-linear regression function (using an appropriate kernel func-
tion), that predicts the estimate xn based on the regressor qn for all training points
n = 1, 2, . . . N .

Let q ∈ RQ be the acquired test data. Then, the PERK estimator for the L latent
parameters is given by [114]

x̂(q) = X

(
1

N
1N + M(MKM + ρNIN)

−1k(q)

)
, (2.26)

where X = [x1 x2 . . . xN ] ∈ RL×N contains the training estimates, 1N is a vector

of N ones, IN is the N × N identity matrix, M := IN − 1

N
1N1

T
N is a de-meaning

operator and ρ is a regularization parameter. K ∈ RN×N is the Gram matrix whose entries
correspond to the pairwise kernel evaluations of all training data, i.e., Kij = k(qi, qj),
where k(·, ·) is the chosen kernel function. The term k(q) in (2.26) is defined as k(q) :=
[k(q, q1), k(q, q2), . . . , k(q, qN)]

T ∈ RN .
For this work, we use a Gaussian kernel function defined as

k(qi, qj) = exp

(
−1

2
∥qi − qj∥2Λ−2

)
, (2.27)

where Λ ∈ RQ×Q is a diagonal matrix that controls the length scales of each latent param-
eter over which the estimator x̂(·) smooths and ∥z∥W = ∥W 1/2z∥2 is a weighted l2-norm
with weights W [112]. This can be interpreted as lifting the input data into an infinite
dimensional space using a non-linear Gaussian kernel, before learning a linear regression
function in that lifted space to predict the unknown latent parameters. The diagonal matrix
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Λ represents the bandwidth matrix of the Gaussian kernel, and is chosen as [114]

Λ ≜ λ diag
([

mT
y , m

T
ν

]T)
, (2.28)

where my ∈ RD contains the sample means of all D measurements across voxels of
magnitude test data and mν ∈ RK contains sample means of the known parameter values.
The scalar parameter λ > 0 provides an additional tuning knob to make PERK invariant
to the scale of the test data; this is selected using holdout as described in [114]. diag(·)
constructs a diagonal matrix using its entries.

PERK provides a scalable approach to multi-parametric estimation problems, and
seems to be suited to our two-pool exchanging model, since we have many parameters
to jointly estimate. Chapter 3 introduces methods to estimate myelin water exchange in
white matter, and uses PERK as the estimator of choice.
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CHAPTER 3

Quantifying Myelin Water Exchange using
Optimized bSSFP Sequences

3.1 Introduction

In quantitative MRI, many classical approaches assume that the MR signal from a voxel
arises from a single type of tissue. However, this assumption may not be appropriate when
modeling the complex spin-dynamics of microstructural components in living tissues. A
more suitable model would be a multi-compartment relaxation model, where the MR signal
is assumed to originate from different tissue compartments. Quantifying the exchange
dynamics between these various compartments has been suggested as a potential biomarker
for several clinical applications [76, 21, 188, 4]. This work appeared as an abstract in
ISMRM 2022 [110].

An example of a multi-compartment tissue model can be seen in myelin water imaging,
where myelin content is studied in brain tissue [78, 2, 94, 81]. In myelin water imaging,
the MR signal is typically assumed to arise from two water pools: myelin water and non-
myelin water. A typical parameter of interest in myelin water imaging is the myelin water
fraction (MWF) which is the fraction of MR signal that arises from myelin water [2, 164].
Myelin water fraction is thought to be useful for tracking demyelination [164], which is a
hallmark of various neurological disorders, e.g., multiple sclerosis [93].

Previous work has shown that MWF is a proxy for myelin content1 in tissue [147,
77]. However, some studies found variations in MWF between different rat spinal cord
tracts, even when the underlying myelin content was similar [34, 51]. They suggested
that the variations in MWF could be explained by variations in inter-compartmental water
exchange, brought about by differences in axon diameter and myelin thickness. Hence,
myelin water exchange potentially plays an important role in myelin water imaging, and in

1In this work, we distinguish myelin water fraction (MWF) from myelin volume fraction (MVF) [164],
which represents the myelin content in the voxel (by volume).
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this work, we focus on quantifying the inter-compartmental exchange dynamics between
myelin water and non-myelin water. Though there has been a lot of work focusing on
the feasibility of myelin water fraction as a parameter of interest and a clinical biomarker
[2, 94, 81, 166], this work specifically focuses on myelin water exchange, since we think
that the exchange information could potentially be a useful biomarker in itself.

The question of how many tissue compartments to use for modeling a multi-
compartment MR tissue model is context-dependent. For instance, in magnetization trans-
fer (MT) experiments that study interactions between protons in free water and protons
bound to macromolecules, a two pool model consisting of two exchanging compartments
(one aqueous and one non-aqueous) is commonly used [143]. Manning et al., argue that,
to get a complete picture of longitudinal relaxation in white matter, a two pool model is
not sufficient [97]. They propose a four pool model considering T1 relaxation in the myelin
water, intra/extra cellular water and their associated non-aqueous pools [145]. Another ex-
ample of a two pool model is one with two aqueous exchanging pools, corresponding to
myelin water and non-myelin water. Chapter 2 reviewed the parameters of such a model
for myelinated tissue. This model has been previously used for estimating myelin water
fraction in the brain [166].

This chapter develops methods to quantify myelin water exchange between myelin wa-
ter and non-myelin water. We use a similar two pool exchanging model as in [166], i.e.,
two aqueous pools corresponding to myelin water and non-myelin water respectively, and
we perform MRI experiment design to help estimate myelin water exchange in white mat-
ter. We optimize the acquisition parameters (flip angles and phase cycling factors) of a set
of balanced steady-state free precession (bSSFP) scans to estimate myelin water exchange
with high precision. By optimizing a cost function based on the Cramér-Rao bound, we
aim to design a set of bSSFP acquisitions that minimize the variance in the exchange esti-
mates (for any unbiased estimator). A novel contribution of this work is to optimize a set of
RF phase cycling factors of bSSFP acquisitions for quantitative MRI, using a Cramér-Rao
bound-based cost function.

The rest of the chapter is organized as follows: Section 3.2 describes some related
work for estimating inter-compartmental exchange. Section 3.3 describes the methods used
for our work, including details of the bSSFP signal model, the Cramér-Rao bound based
scan design, as well as how we estimate myelin water exchange using the PERK estimator
(parameter estimation via regression with kernels) [114]. Section 3.4 provides details of
our experimental setup and results, while Section 3.5 discusses our findings, along with a
few ideas for future work. Section 3.6 talks about our conclusions.
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3.2 Related work

Previous approaches have tried to characterize exchange dynamics from a few different di-
rections. One approach is to use magnetization transfer and T2 measurements in myelinated
tissue, and fit the resulting data to a four pool model (myelin and non-myelin water, along
with their associated macromolecular pools) [145, 11, 70]. These studies can be challeng-
ing due to the large number of free parameters to be jointly estimated. Another approach to
studying inter-compartmental water exchange is through relaxation exchange spectroscopy
(REXSY) [33, 32]. In REXSY, the presence of exchange during a mixing period is directly
observed as off-diagonal components in a 2D T2 − T2 relaxation spectrum. REXSY could
potentially be used as a baseline technique for estimating exchange, but it has prohibitively
long scan times, which makes it infeasible for in vivo experiments.

Deoni et al. proposed a technique called mcDESPOT (multi-component driven equi-
librium single pulse observation of T1/T2) for quantifying multi-component relaxation in
the brain [29]. mcDESPOT uses a set of steady-state acquisitions (combination of SPGR
and bSSFP acquisitions with varying flip angles) to encode multi-compartment T1 and T2

information. Though mcDESPOT primarily focuses on T1 and T2 estimation, the multi-
parametric estimation approach in mcDESPOT also yields estimates of exchange rates in
myelin water. Fig. 3.1 shows a sample map of mean residence time of myelin, obtained
using mcDESPOT, taken from [29].

Typically, in quantitative imaging, separate acquisitions were previously used to esti-
mate parameters of interest such as T1, T2, proton density, etc., leading to very long acqui-
sition times. A relatively recent approach called MR Fingerprinting (MRF) proposed the
use of a single acquisition scheme that simultaneously encodes information about multiple

Figure 3.1: Exchange maps obtained using mcDESPOT [29] and MRF-X [48].
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quantitative parameters [91]. Fingerprinting has been widely used for T1 and T2 quantifi-
cation in the brain, and has demonstrated fast acquisition times along with good image res-
olution [5, 92]. Extending the original fingerprinting approach, Hamilton et al. proposed a
technique called MRF-X (MR Fingerprinting with Chemical Exchange) to quantify the ex-
change dynamics in a multi-compartment model of exchanging pools [48]. Fig. 3.1 shows
an exchange map derived using MRF-X, taken from [48].

One of the bottlenecks for exchange mapping in vivo is the lack of an established base-
line method that could be used to generate ground truth (cf. inversion recovery approaches
for T1 mapping, multi-echo spin-echo methods for T2 and MWF estimation etc.). This
makes it hard to validate exchange maps obtained using a new approach. Existing ap-
proaches (such as mcDESPOT and MRF-X) produce exchange maps, but they were not
validated against ground truth maps. This chapter focuses on developing methods for de-
signing MRI acquisitions and estimating myelin water exchange, also without extensively
validating the proposed techniques. Chapter 4 tackles the question of how to validate this
proposed technique for estimating exchange; we do so by developing an aqueous urea sys-
tem that can be used for obtaining ground truth exchange values using other established
methods such as inversion recovery based NMR (IR-NMR) [168] spectroscopy experi-
ments.

Another contribution of this work is to optimize the acquisition parameters of a set
of bSSFP acquisitions with a focus on obtaining more precise exchange estimates. Both
mcDESPOT and MRF-X use hand-crafted sequences where the acquisition parameters
were not optimized for exchange estimation. Optimizing the acquisition parameters (es-
pecially flip angles and phase cycling factors) could potentially lead to sequences that are
more sensitive to exchange, and hence result in better exchange estimates. In particular, op-
timizing a set of RF phase cycling factors of bSSFP acquisitions, for parameter estimation
in quantitative MRI, is a novel contribution of this work.

3.3 Methods

3.3.1 bSSFP signal model

The bSSFP (balanced steady-state free precession) sequence consists of a rapid train of RF
excitation pulses in the presence of balanced gradients, i.e., gradients whose net area is
zero across a repetition period (TR). Fig. 3.2 (a) shows a schematic of a bSSFP sequence2.
The RF excitation pulse is parametrized by flip angle (FA) α and RF phase cycling factor

2Schematic taken from YouTube lectures by Dr. Daniel Ennis and Dr. Brian Hargreaves.
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Figure 3.2: (a) bSSFP pulse sequence. (b) Effect of varying RF phase cycling factors (ϕ)
on simulated bSSFP off-resonance profiles. (Note: α = flip angle, TR = repetition time, TE

= echo time)

ϕ. The ϕ factor represents the phase increment between successive RF pulses; e.g., ϕ = 0

corresponds to an RF pulse train where all pulses have the same phase, while ϕ = π

corresponds to an alternating phase RF pulse train.
Since the gradients are balanced in a bSSFP sequence, the only source of phase accrual

in every TR is due to off-resonance precession, and not due to gradient dephasing. A
consequence of this is that the bSSFP signal is quite sensitive to off-resonance, as illustrated
in Fig. 3.2 (b). The orange line in the plot corresponds to the off-resonance profile (signal
magnitude vs. phase accrued) when ϕ = 0. The acquisition parameters were chosen to
be T1 = 20TR, T2 = 15TR, α = 70◦, to match the single pool MR system used in [139].
We can observe regions of high signal (referred to as the pass band), and regions with
signal nulls (referred to as stop/transition band). MR spins that have a resonance frequency
corresponding to these signal nulls have very low signal, and this results in dark banding
artefacts in the image ([104] shows examples of these dark bands in the brain).

Fig. 3.2 (b) also shows the effect of varying the RF phase cycling factor ϕ. By using
alternating phase RF pulses (ϕ = π), the pass bands and transition bands shift by π, as
shown using the blue line. For ϕ = 0, on-resonance spins would fall into a signal null,
while they lie within the pass band for an alternating RF pulse train (ϕ = π), and hence
result in much higher signal. Typical bSSFP acquisitions use RF pulses with alternating
phase since it results in higher SNR for nearly on-resonance spins [56]. The location of the
signal null manifests as a dark banding artefact in bSSFP images. In this work, we optimize
a set of ϕ factors to better estimate exchange, and this shifts the dark bands accordingly
(since ϕ determines the location of the signal null).

For a homogeneous sample with a single set of tissue properties, we obtain a symmetric
bSSFP signal profile as shown in Fig. 3.2 (b), where the profiles are symmetric about

25



Figure 3.3: Simulated bSSFP off-resonance profiles for different values of the myelin-
specific frequency shift ∆ωf , as a function of phase accrued during one TR.

the center frequency. However, bSSFP profiles measured in vivo have been shown to be
asymmetric in nature [102]. This is thought to be due to the presence of tissue components
with an asymmetric frequency distribution [101]. In our two-pool exchanging model, we
model an additional frequency shift that is specific to myelin water (∆ωf) and is thought to
arise from susceptibility effects due to the orientation of the fibers in white matter [36, 165].
Fig. 3.3 illustrates the asymmetries of bSSFP signal profiles when applied to a two pool
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Figure 3.4: Simulated bSSFP off-resonance profiles for various flip angles α (top row) and
for different RF phase cycling factors ϕ (bottom row), as a function of phase accrued during
one TR. (Note: ϕ = π for the top row, and α = 30◦ for the bottom row.)
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exchanging model. For these simulations, we considered a two pool exchanging model
for a white matter voxel with the following tissue parameters: ff = 0.15, T1f = 400ms,
T1s = 1000ms, T2f = 20ms, T2s = 80ms, τf→s = 100ms. The acquisition parameters were
chosen as α = 30◦, ϕ = π, and TR/TE = 20ms/0ms. The off-resonance profiles show
increasing asymmetry as the myelin-specific frequency shift ∆ωf increases.

Fig. 3.4 shows the effects of varying the flip angles α (top row) and RF phase cycling
factors ϕ (bottom row) on the bSSFP off-resonance profiles. We used the same tissue
parameters as in Fig. 3.3, and fixed ∆ωf to 5Hz. Variations in flip angles modulate the
shape of the off-resonance profiles, while varying the RF phase cycling factors shifts the
off-resonance profiles [56, 189].

3.3.2 CRB-based scan design

This subsection describes our methods used for scan design. Our objective is to design
a set of MR acquisitions to help us estimate myelin water exchange in white matter. We
aim to do this by optimizing the acquisition parameters of a set of phase-cycled bSSFP
acquisitions, using a cost function based on the Cramér-Rao bound. We provide more
details about how we use the Cramér-Rao bound, and how it helps us encode information
about myelin water exchange in our scan design.

The Cramér-Rao bound (CRB) provides a lower bound on the covariance of unbiased
estimators [74]. It provides a way of evaluating how well the measurements can encode
information about the parameters of interest. The CRB is typically applicable only for
unbiased estimators. Most estimators used in common practice are biased, since regularized
approaches generally result in biased estimates. However, minimizing the CRB can still
be a useful tool for experiment design, since the CRB is estimator-agnostic (for unbiased
estimators) and this design approach can ensure that the data acquisition process is sensitive
to the parameter of interest [47, 182].

We assume the acquisition of fully sampled k-space data in this chapter. This simplifies
analysis since there are no aliasing artefacts, and parameter estimation can be done sepa-
rately on a voxel-by-voxel basis. Under these conditions, the MR image data for a single
voxel, for a single scan, is modeled as

y = s(x,ν,p) + ϵ, (3.1)

where s(x,ν,p) ∈ C is the output of the MR signal model, x is the vector of unknown pa-
rameters to be estimated, ν is the vector of known parameters, p is the vector of acquisition
parameters for a single scan and ϵ ∼ CN (0, σ2

ϵ ) is complex-valued Gaussian noise. E.g.,
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for our work with estimating myelin water exchange, s represents the bSSFP signal model,
x = [M0, ff , T1f , T1s, T2f , T2s, τf→s, ∆ωf ] ∈ R8 collects the unknown tissue parameters
to be estimated, ν = [∆ω, κ] ∈ R2 contains B0 and B1+ parameters that are estimated
through separate acquisitions, and p contains the flip angle and RF phase cycling factor for
a single bSSFP acquisition (to be optimized). The outputs of D scans are modeled together
as

y = s(x,ν,P ) + ϵ, (3.2)

where y ∈ CD and s(x,ν,P ) = [s(x,ν,p1), s(x,ν,p2), . . . , s(x,ν,pD)]
T ∈ CD.

P = [p1, p2, . . . ,pD] is the set of acquisition parameters for all D scans. E.g., for our
work, P collects the flip angles and RF phase cycling factors for all D bSSFP acquisitions.
ϵ ∼ CN (0,Σ) represents the noise vector. We assume that the noise in each acquisition is
identical to, and independent of the other acquisitions; hence, Σ = σ2

ϵID, where σ2
ϵ is the

noise variance of each acquisition, and ID is the D ×D identity matrix.
For all our scan designs, we take the magnitude of the signal model. The noise in mag-

nitude images in MR imaging is typically Rician distributed, but it has been shown that
this can be approximated with Gaussian noise under fairly high SNR [45]. Following pre-
vious work, we model the noise in the magnitude images as Gaussian noise with variance
σ2 [166]; this variance is signal-dependent but we ignore that dependence for this work.
Under these assumptions, the Fisher information matrix I for the magnitude of the signal
model in (3.2) is computed as [113]

I(x,ν,P ) =
1

σ2
[∇x |s(x,ν,P )| ] [∇x |s(x,ν,P )| ]T , (3.3)

where ∇x is the column gradient of the MR signal model output, with respect to the un-
known parameters x. The size of the Fisher information matrix is L×L where L is the num-
ber of unknown parameters in x. The inverse Fisher matrix I−1(x,ν,P ) gives the CRB,
which is a theoretical lower bound for the covariance of unbiased estimators of x [74]. In
other words, if x̂(y) is any unbiased estimator of x, i.e., E[x̂(y)] = x where E[·] denotes
expectation, then the covariance matrix is bounded by cov(x̂(y)) ⪰ I−1(x,ν,P ).

In particular, the variance of any unbiased estimator of the ith unknown parameter
(x̂i(y)) cannot be lower than the CRB of the ith parameter, i.e.,

var(x̂i(y)) ≥ CRBi = [I−1(x,ν,P )](i,i), (3.4)

where the CRB of the ith parameter is given by the ith diagonal element of the inverse
Fisher matrix. The relation in (3.4) gives us a way to improve the precision in the estimates
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of our desired parameter, by designing MR acquisitions that minimize the CRB of that
parameter. The CRB has been previously used for MRI experiment design [47, 182, 113].
This chapter aims to design a set of phase-cycled bSSFP acquisitions for estimating myelin
water exchange in white matter. We do this by minimizing the expectation of the weighted
CRB over a search space of acquisition parameters P [166]:

P̂ = argmin
P∈P

E
x,ν

[
trace(W (I−1(x,ν,P )))

]
, (3.5)

where W is a diagonal weighting matrix that is chosen to reflect our parameters of inter-
est, Ex,ν is an expectation w.r.t x and ν over a distribution of tissue types (such as white
matter) and trace(·) represents the trace operator of a matrix. For our work with estimating
myelin water exchange, we have a single 1 along the diagonal of W corresponding to the
unknown parameter τf→s and zeros corresponding to the other unknown parameters. We
optimized (3.5) using a gradient-based method in the NLopt3 package, implemented using
the programming language Julia4.

The Cramér-Rao bound (CRB) gives us a sense of the variance in the parameter esti-
mates (for unbiased estimators), but the CRB directly does not tell us much about how well
the MR acquisitions encode information about our parameter of interest, since it does not
account for the mean values of the parameters. Instead, we use a measure called coefficient
of variation, which is the ratio of the standard deviation to the mean of the parameter. This
is a dimensionless quantity, which measures the variability in parameter estimates relative
to the mean value of the parameter. We use the coefficient of variation to examine how
well a set of acquisitions encodes information about our desired parameter, and to evaluate
different scan designs. The coefficient of variation is defined as:

Coefficient of variation =

√
Cramér-Rao bound

mean value of parameter
. (3.6)

(3.6) can be evaluated for any of the unknown parameters, and the coefficient of vari-
ation gives a sense of how well the optimized scan design encodes information about that
parameter of interest. A lower value for the coefficient of variation is better, since it is
related directly to the variance of unbiased parameter estimates.
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3.3.3 Estimation of myelin water exchange

To optimize the acquisition parameters of our bSSFP sequences for better exchange esti-
mation, we need to specify a set of tissue distributions over which to take the expectation
(see (3.5)). Table 3.1 shows the distributions that we use for scan design. For most exper-
iments in this work, we assume B0 and B1+ information to be known, i.e., ∆ω and κ are
known parameters in ν, i.e., they are estimated using separate acquisitions. The other eight
parameters M0, ff , T1f , T1s, T2f , T2s, τf→s,∆ωf are unknown latent parameters (grouped in
x), and are jointly estimated.

We specifically focus on white matter (WM) since grey matter (GM) has very low
myelin content and exchange estimates may be unreliable in GM. For scan design, we
chose narrow distributions for many of the parameters, centered around reasonable values
for white matter [166]. We chose broader ranges for mean residence time τf→s and myelin-
specific frequency shift ∆ωf since we want to optimize the bSSFP scans for a range of
exchange rates and different orientations of the axonal fibers.

Once we have our optimized set of phase-cycled bSSFP acquisitions, we need to use
a suitable estimator to estimate myelin water exchange. For our work, we use a fast
dictionary-free method called Parameter Estimation via Regression with Kernels (PERK)
[112, 114]. The PERK estimator first lifts the measurement data to a higher-dimensional
(possibly infinite) space using a non-linear kernel, and then learns an affine regression func-
tion (in that lifted space) to predict the unknown tissue parameters. The PERK estimator

Parameter Distributions for scan design PERK training ranges
M0 Unif(0.769, 0.771) Unif(0.75, 1.0)
ff Unif(0.149, 0.151) Unif(0.03, 0.31)

T1f (in ms) Unif(399, 401) Unif(300, 500)
T1s (in ms) Unif(831, 833) Unif(800, 1350)
T2f (in ms) Unif(19.9, 20.1) Unif(16, 24)
T2s (in ms) Unif(79.9, 80.1) Unif(64, 96)
τf→s (in ms) Unif(50, 250) Unif(50, 250)
∆ωf (in Hz) Unif(0, 10) Unif(0, 10)
∆ω (in Hz) Unif(−25, 25) Unif(−25, 25)

κ Unif(0.8, 1.2) Unif(0.8, 1.2)

Table 3.1: Distributions of tissue parameters used for optimizing the bSSFP acquisition
parameters, as well as the tissue distributions used to train the PERK estimator. (Note:
bSSFP signal profiles are periodic with a period of 1/TR, and hence, we select the off-
resonance distribution ∆ω to span 50Hz, corresponding to a TR of 20ms.)

3https://github.com/JuliaOpt/NLopt.jl
4https://julialang.org/
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Figure 3.5: Comparison of bSSFP signal magnitudes for alternating (ϕ = π) and non-
alternating (ϕ = 0) RF pulses. A typical WM voxel is simulated here, with a mean resi-
dence lifetime (τf→s) of 250ms and a myelin-specific frequency shift (∆ωf) of 7.5Hz.

needs to be trained using prior distributions of the tissue parameters, and this can then be
used to make predictions from acquired data. Chapter 2 contains more details about the
inner workings of PERK.

Though the bSSFP sequences are specifically optimized for white matter tissue charac-
teristics (column 2 of Table 3.1), we train PERK over a wider range of tissue parameters
since we want our estimator to be generalizable. Table 3.1 shows the tissue distributions
used to train PERK (see column 3). We apply the trained PERK estimator to test data (sim-
ulated data or data acquired in vivo) to jointly estimate the exchange parameter τf→s and
the other unknown parameters.

3.4 Experiments

3.4.1 RF phase cycling factors (ϕ) in bSSFP sequences

In a typical bSSFP sequence, when all RF pulses are all at the same phase, signal nulls
are obtained for on-resonance spins (see Fig. 3.5 for the case of constant phase RF pulses
applied to a typical WM voxel). Alternating the phase of successive RF pulses shifts the
passband by π so that we get higher signal for on-resonance spins [56, 189] (see the profile
for alternating RF pulses in Fig. 3.5). The location of the signal nulls leads to the commonly
seen banding artifacts in bSSFP images, since spins that are precessing at the stopband
frequencies tend to have very low signal. By changing the RF phase increments between
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successive pulses (referred to as RF phase cycling factors ϕ), the passband can be shifted
to cover different regions of the spectrum.

A naive implementation of the bSSFP signal model for arbitrary ϕ would be tricky, since
each successive RF excitation leads to a different linear system of matrices and it is hard to
solve such a complex system of equations. It has been previously shown that, an alternating
RF pulse train (i.e., ϕ = π) can be treated exactly like a constant-phase RF pulse train
(ϕ = 0) but with resonance frequencies being offset by an amount corresponding to phase
π [56]. We empirically extended this approach to an arbitrary ϕ which makes it much easier
to solve for the steady-state magnetization for arbitrary RF phase cycling factors. In other
words, we model an RF pulse train with arbitrary phase cycling factor ϕ, as a constant-phase
RF pulse train but with the resonance frequencies being offset by ϕ/(2πTR) [56]. This
results in a simpler system of matrix equations describing the evolution of magnetization,
and the steady-state bSSFP signal can be derived for any arbitrary phase cycling factor
ϕ [50].

3.4.2 Importance of optimizing RF phase cycling factors ϕ

In this work, we optimize the acquisition parameters of a set of 40 bSSFP sequences to min-
imize the variance of unbiased exchange estimates in white matter. For phase-cycled bSSFP
acquisitions, we could potentially optimize: flip angles (α), RF phase cycling factors (ϕ),
repetition times (TR) and echo times (TE). The search space for acquisition parameters can
be quite extensive and hence, in this set of experiments, we perform an ablation study to
determine which acquisition parameters are most important in reducing the coefficient of
variation for exchange. Our initial experiments suggested that ϕ factors play an important
role in estimating myelin water exchange; varying the ϕ factors across the 40 bSSFP ac-
quisitions seemed to result in lower coefficients of variation, i.e., more precise exchange
estimates.

Table 3.2 contains the results of the ablation study. We compared four scan designs (TE

values were fixed at 4ms):

(i) TR, α and ϕ values were all optimized for 40 bSSFP acquisitions.

(ii) Only α and ϕ values were optimized; TR values were fixed to 20ms.

(iii) Only TR and α values were optimized; ϕ factors were fixed to 0◦ for half the scans,
and 180◦ for the other half.

(iv) Only α values were optimized; TR values and ϕ factors were kept fixed as before.
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Experiment Coeff. of variation
optimizing {TRi}, {αi} and {ϕi} 0.13

optimizing {αi} and {ϕi} 0.13
optimizing {TRi} and {αi} 0.58

optimizing only {αi} 561.8

Table 3.2: Ablation study showing the importance of optimizing RF phase cycling factors
{ϕi} for exchange estimation. Note: {TRi} denotes repetition times and {αi} denotes flip
angles of the 40 bSSFP acquisitions.

Table 3.2 shows that designs (iii) and (iv), which do not optimize ϕ factors, result
in higher coefficients of variation. In fact, for the last design, which optimizes only the
flip angles α, the optimization failed due to extremely high Cramér-Rao bounds. On the
other hand, the first two designs (where ϕ factors are optimized) resulted in much lower
coefficients of variation. This suggests that variations in ϕ factors could be quite important
for encoding information about exchange. Moreover, optimizing TR values (along with α

and ϕ values) did not reduce the coefficient of variation noticeably; both designs (i) and
(ii) yielded very similar coefficients of variation. Hence, for the rest of this work, we focus
on optimizing only the flip angles (α) and RF phase cycling factors (ϕ) for the 40 different
bSSFP acquisitions, and keep the echo times and repetition times fixed.

3.4.3 Optimized scan design

For scan design, we focused on estimating exchange in white matter, because grey mat-
ter has very low myelin content. We optimized the flip angles (α) and RF phase cycling
factors (ϕ) for 40 different bSSFP acquisitions, with a fixed TR/TE = 20ms/4ms (chosen
based on running Cramér-Rao bound experiments). During optimization, the flip angles
were allowed to vary between 10◦ and 40◦, while the phase cycling factors were optimized
between −π and +π. Fig. 3.6 shows the numerically optimized bSSFP scan design for esti-
mating myelin water exchange in white matter. This scan design has a predicted coefficient
of variation of 13.5% for estimating exchange, at an average image SNR of 50dB.

It is interesting that, in the optimized scan design, roughly half of all scans have a flip
angle of 10◦ while the other half has a flip angle of 40◦. Starting from a randomly initialized
scan design, it is also intriguing that the optimized set of 40 acquisitions has a very regular
sweep of phase cycling factors ϕ at both the low and high flip angles. In fact, the numeri-
cally optimized set of bSSFP acquisitions in Fig. 3.6 could be mistaken for a handcrafted
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Figure 3.6: Numerically optimized bSSFP scan design for estimating myelin water ex-
change, consisting of 40 bSSFP scans with flip angles (α) and RF phase cycling factors (ϕ)
as shown. (Note: y-axes are in degrees. TR/TE = 20ms/4ms.)

design, instead of one optimized using a cost function. This suggests that this regular vari-
ation in ϕ could potentially be important for exchange estimation, and we investigated the
importance of optimizing ϕ in an earlier set of experiments (Section 3.4.2 contains an ab-
lation study to examine the importance of optimizing ϕ factors). In Fig. 3.6, we reordered

the 40 bSSFP acquisitions for visualization purposes; the optimization framework does not
result in such an ordered set of α and ϕ values.

To study how sensitive the optimized scan design is to exchange, we performed sim-
ulations for a typical voxel in white matter using this optimized scan design, under three
different exchange regimes (mean residence times of τf→s = 50ms, 150ms and 250ms).
Fig. 3.7 shows the resulting bSSFP signal magnitudes for all 40 acquisitions. It might seem
hard to distinguish between exchange regimes with every bSSFP acquisition; however, the
low predicted coefficient of variation (∼ 13.5%) suggests that, between them, the 40 scans
potentially contain enough diversity and information to estimate exchange with good preci-
sion for the two-pool model considered here. Additionally, it is important to note that this is
a joint parameter estimation problem, and some of the 40 acquisitions might potentially be
helpful in estimating parameters other than exchange. Also, Fig. 3.7 shows the magnitudes
for a single type of voxel; the plots could possibly look different if we consider voxels with
different tissue parameters, i.e., a different subset of the 40 acquisitions might be sensitive
to exchange.
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Figure 3.7: Simulated bSSFP signal magnitudes obtained using the optimized scan design
for a typical WM voxel (on resonance, and 5Hz additional frequency offset for myelin
water), under three different exchange regimes.

3.4.4 Numerical simulations

Directly evaluating the proposed approach on real data is hard, since there are no well-
defined gold-standard methods for estimating myelin water exchange. Before acquiring
data in vivo, a first step is to test the optimized scan design using numerical simulations.
Using digital phantoms, the proposed approach can be validated under a wide range of

Figure 3.8: Estimated white matter (WM) exchange maps from simulated test data based
on a modified Brainweb phantom [23]. (Note: Scatter plot shows exchange estimates of a
randomly selected subset of WM voxels.)
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conditions (different noise levels, off-resonance conditions, presence/absence of myelin-
specific frequency shift, different tissue types etc.). For our experiments, we used a struc-
turally realistic digital brain phantom (BrainWeb) [23], and modified it to reflect different
experimental conditions such as varying off-resonance and mean residence time of myelin.

Fig. 3.8 shows the ground truth and estimated exchange maps using the proposed ap-
proach (i.e., optimized bSSFP scan design along with PERK estimation). To create ground
truth maps of all tissue parameters, we assigned typical values from literature for white
matter (WM) voxels [166]. The simulated bulk off-resonance varies linearly from left to
right, while the mean residence time of myelin (i.e., inverse of exchange rate) varies along
the anterior-posterior direction. Grey matter (GM) regions are masked out since they have
low myelin content and exchange estimates in GM are potentially unreliable. The esti-
mated myelin water exchange map for WM is quite close to the ground truth (RMSE of
around 13.6%), and Fig. 3.8 illustrates this property using a scatter plot of exchange values
in randomly selected WM voxels.

Optimized scan design vs. random baselines

How does our optimized scan design (in Section 3.4.3) compare against a baseline con-
sisting of randomly chosen bSSFP acquisition parameters? Table 3.3 and Fig. 3.9 show the
results of comparing the optimized scan design with three different random sets of bSSFP
acquisitions. Each of the three random sets contain 40 different bSSFP scans, and the ac-
quisition parameters were chosen as follows: TR/TE were chosen to be the same as the op-
timized scan design, while the flip angles were randomly chosen in the range [10◦, 40◦] and
the RF phase cycling factors were chosen randomly in the range [−180◦, 180◦]. Table 3.3
compares the predicted coefficients of variation (obtained using Cramér-Rao bound analy-
sis), and the empirical RMSE values in white matter (obtained using BrainWeb simulations)
for the optimized scan design vs. the three random sets of bSSFP scans. The optimized
scan design (described in Section 3.4.3) has the best predicted coefficient of variation, as
well as the lowest empirical RMSE in white matter (using BrainWeb simulations). These

Optimized design Random set 1 Random set 2 Random set 3
Predicted coefficient

of variation 0.136 0.260 0.279 0.282

Empirical RMSE
(in BrainWeb) 0.135 0.184 0.206 0.182

Table 3.3: Comparison of predicted coefficients of variation and empirical RMSE values
in white matter (using BrainWeb simulations), for the optimized scan design and for three
different random sets of bSSFP scans.
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Figure 3.9: Comparison of scatter plots (using BrainWeb simulations) for the optimized
scan design and for three different random sets of acquisition parameters for phase-cycled
bSSFP scans, using PERK estimation. (Note: The scatter plots correspond to a different
random subset of voxels than shown in Fig. 3.8.)

results illustrate the efficacy of our proposed scan design approach for estimating myelin
water exchange, compared to random sets of scans (as baselines).

Fig. 3.9 shows the scatter plots of a randomly selected subset of voxels in white matter
(from BrainWeb simulations) for all four sets of acquisitions. The true exchange values
of mean residence time of myelin (τf→s) are plotted on the x-axis, while the estimated
exchange values are plotted on the y-axis. We used PERK as the estimator for the results
in both Table 3.3 and Fig. 3.9. From a visual inspection, the three random sets of bSSFP
scans seem to have a wider spread in the estimated exchange values than the optimized
scan design.

PERK vs. NLLS

This set of experiments compares the exchange estimates obtained using two estimation
methods: PERK (Parameter Estimation via Regression with Kernels) and NLLS (Nonlinear
Least Squares). We ran numerical simulations using a modified BrainWeb phantom, and
estimated exchange values using both PERK and NLLS. Fig. 3.10 shows the estimated
exchange values vs. ground truth, for a randomly selected subset of voxels in white matter
(for both PERK and NLLS). Note that the PERK scatter plots in Figs. 3.8, 3.9 and 3.10
correspond to different random subsets of white matter voxels being plotted, as well as
different random seeds used for training PERK.

In white matter, we obtained RMSE values of 13.5% with PERK estimation and 13.2%
with NLLS estimation. The left plot in Fig. 3.10 shows the bias in PERK exchange esti-
mates (since PERK is a Bayesian estimator); however, the speed of the PERK estimator
(compared to the NLLS approach) makes it an attractive method for estimating exchange
in this chapter. Running PERK estimation for the white matter voxels in a 2D slice of the
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Figure 3.10: Comparison of exchange estimates obtained using PERK (left) and NLLS
(right) estimation methods, for white matter (using BrainWeb simulations), vs. ground
truth exchange values. The solid blue line indicates the linear least-squares fit, while the
dashed black line is the identity line.

BrainWeb phantom of size 181 × 217 took around a minute. The NLLS estimation for
the same slice had a compute time of around 8 hours. For the NLLS estimation, we ran
5 trials for each voxel and picked the trial with the lowest cost function for the exchange
estimates. We parallelized the NLLS estimation across voxels using the multi-threading
features of the Julia [9] programming language (with 25 threads). All experiments were
performed on an Intel® Xeon® E5-2698 v4 processor (2.2GHz), using Julia (version 1.6.5).
We use PERK estimation for our in vivo results in Section 3.4.5, since we typically have
larger matrix sizes associated with in vivo data, and performing NLLS voxel-wise could be
prohibitively slow.

3.4.5 In vivo results

We acquired in vivo data using the optimized set of phase-cycled bSSFP acquisitions on
a GE 3T scanner. We used 3D acquisitions to avoid slice profile effects, and analyzed the
central slice of the acquired data. The scan time for all 40 bSSFP acquisitions was 6 minutes
and 40 seconds. We separately estimated B1+ maps using Bloch-Siegert (BS) acquisitions
[134]; the BS scans took 2 minutes and 23 seconds to acquire. Additionally, we acquired
two Spoiled Gradient-Recalled Echo (SPGR) scans to estimate B0 maps, which had a scan
time of around 20 seconds. The two SPGR scans were acquired at echo times of 4 ms and
6.3 ms. The total scan time of our proposed protocol (implemented in TOPPE [116]) was
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Figure 3.11: bSSFP images from the optimized scan design. (Note: Every other acquisition
is shown out of 40 acquisitions.)

9 minutes and 23 seconds. All scans were acquired with a field-of-view (FOV) of 240 ×
200 × 24 mm3 and a matrix size of 192 × 168 × 8.

To obtain the magnitude images required for exchange estimation, we took the inverse
FFT of the fully sampled k-space data, followed by a square-root of sum-of-squares coil
combination. Fig. 3.11 shows the images for every other bSSFP acquisition (out of 40
acquisitions), with the flip angles printed at the top-left of each image. The images are
ordered in ascending order of RF phase cycling factors ϕ (as in Fig. 3.6). We observe that
the locations of the dark bands (which are characteristic to bSSFP acquisitions) are shifted
depending on the variations in ϕ.

Figure 3.12: Estimated exchange map τf→s without (left) and with (right) CSF masking.
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Figure 3.13: Parameter maps obtained using the optimized scan design, followed by PERK
based estimation. (Note: The scan design was optimized specifically for estimating ex-
change, and not the other parameters of the two pool model.)

Fig. 3.12 shows the estimated map of the mean residence time of myelin water (τf→s),
with and without masking of the CSF (cerebrospinal fluid) region. We can observe faint
traces of the banding artefacts in the estimated exchange map, which suggests that the
exchange map still contains some off-resonance effects. The values of the mean residence
times seem to lie within reasonable estimates of exchange obtained in previous studies
[3, 48]. However, as noted before, it is hard to interpret these exchange maps without
validating the proposed approach through other methods (e.g., in vitro experiments using
an aqueous urea system as described in Chapter 4).

Fig. 3.13 illustrates a few of the other estimated parameter maps. We did not mask the
CSF region for these parameter maps; additionally, we set the colorbars to correspond to
reasonable ranges for each parameter. Though the 40 bSSFP scans were optimized specif-
ically for estimating exchange, it might still be informative to study the other parameter
maps. We note that the precision in each map would potentially be better if we optimized
the bSSFP acquisitions for that specific quantitative parameter.

3.4.6 Effect of off-resonance on exchange estimation

An important factor affecting the estimation of myelin water exchange could be off-
resonance. Fig. 3.14(a) shows how exchange estimation is affected by bulk off-resonance.
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Figure 3.14: Effect of (a) bulk off-resonance and (b) myelin-specific frequency shift on
predicted coefficient of variation for estimating myelin water exchange. (Note: We study a
typical white matter voxel here.)

The predicted coefficient of variation (from the CRB) for estimating exchange remains rel-
atively uniform with off-resonance. This result suggests that the proposed approach could
potentially be robust to off-resonance and it would be interesting to explore this further.
Since we use a fixed TR of ∼20ms, there is an inherent periodicity of ∼50Hz in the bSSFP
off-resonance profiles, and it would be interesting to see if we can exploit this fact when
setting the training distributions for PERK.

Fig. 3.14(b) shows how myelin water exchange estimation is affected by the myelin-
specific frequency shift ∆ωf . It has been shown that the orientation of nerve fibers in WM
introduces susceptibility-related effects in myelin [165, 36]. This property is modeled as
an additional frequency shift (∆ωf) that is specific to myelin water. The predicted coeffi-
cient of variation for exchange estimation worsens as the frequency shift goes to 0Hz. The
orientation of WM fibers is out of our control when setting up experiments, so it is critical
to design our acquisition parameters for a wide enough range of frequency shifts; we cur-
rently optimize the bSSFP scan design for a range of frequency shifts from 0 to 10Hz. A
higher value of the myelin-specific shift seems to help in estimating exchange with higher
precision.

3.4.7 Joint estimation of B0 and B1+ maps

For all scan designs and experiments above, we assumed B0 and B1+ information to be
known parameters. In other words, we estimated B0 and B1+ maps using separate Spoiled
Gradient-Recalled Echo (SPGR) and Bloch-Siegert (BS) acquisitions, respectively. In this
subsection, we assume that B0 and B1+ maps are not known to us, and investigate whether
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Figure 3.15: Coefficients of variation for scan designs optimized for jointly estimating B0

and B1+ information along with exchange.

they can be jointly estimated along with exchange. If we obtain an optimized scan design
with a low coefficient of variation, then we could potentially reduce acquisition time since
we would not need to acquire SPGR and/or BS data separately.

Fig. 3.15 illustrates the coefficients of variation for scan designs that were optimized
under three different conditions: (i) joint estimation of both B0 and B1+ along with ex-
change, (ii) joint estimation of only B0 along with exchange (assuming B1+ is known) and
(iii) estimation of exchange assuming B0 and B1+ are separately known. We ran three
trials for each experimental condition and chose the scan design that yielded the lowest co-
efficient of variation among the three trials (to plot). We repeated the experiments, varying
the number of bSSFP acquisitions (20, 40 and 60). We observe that the coefficient of varia-
tion for exchange is lowest when B0 and B1+ maps are known, and this worsens when we
move on to jointly estimating B0 and B1+ along with exchange. It would be worth explor-
ing further, using numerical simulations, how well these optimized scan designs are able to
jointly estimate B0 and B1+ maps for a modified BrainWeb phantom [23]. Fig. 3.15 also
shows that, as expected, the coefficients of variation generally trend lower as we increase
the number of bSSFP acquisitions. For a more apples-to-apples comparison, it could be
worth repeating these experiments with more acquisitions for the case where we jointly es-
timate B0 and B1+ (e.g., 22 acquisitions instead of 20), since we no longer need to acquire
two spoiled gradient echo (SPGR) scans to estimate B0.
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3.5 Discussion

This chapter focuses on estimating myelin water exchange in white matter in the brain. The
proposed approach can be divided into two parts: (i) scan design, where we optimize the
acquisition parameters of a set of MR acquisitions to help estimate myelin water exchange,
and (ii) parameter estimation, where we use the PERK estimator to estimate myelin water
exchange using our optimized scan design. For scan design, we optimize the flip angles
and phase cycling factors of 40 different bSSFP acquisitions by minimizing a cost function
based on the Cramér-Rao bound. From Fig. 3.15, the choice of 40 acquisitions seems to
be a reasonable choice since we obtain a very low coefficient of variation for estimating
myelin water exchange (∼ 13%), along with a reasonable acquisition time (compared to
higher number of acquisitions such as 60).

Starting from a randomly initialized scan design, it is intriguing that the optimized set
of bSSFP acquisitions has a very regular sweep of RF phase cycling factors ϕ at both the
low and high flip angles (see Fig. 3.6). This variation in ϕ appears to be quite important
for exchange estimation; the predicted coefficient of variation was worse when ϕ was not
varied as much. It could be interesting to explore whether optimizing the phase cycling
factors might prove helpful in other quantitative MRI techniques that use bSSFP acqui-
sitions. E.g., the mcDESPOT approach to multi-parametric estimation also uses a set of
bSSFP scans with a fixed set of ϕ factors (along with SPGR scans) [29, 28]; a future di-
rection could be to optimize this set of ϕ values to minimize the variance of the desired
parameter(s) of interest (e.g., myelin water fraction).

In our experiments, we demonstrate the potential effectiveness of the optimized bSSFP
scan design using numerical simulations (Section 3.4.4) and in vivo data (Section 3.4.5).
However, validating the proposed approach in vivo is quite tricky since there is no estab-
lished baseline method for in vivo exchange mapping (cf. inversion recovery acquisitions
for T1 estimation or multi-echo spin echo acquisitions for myelin water fraction). One
possibility is to compare the exchange maps obtained using our optimized scan designs,
with previous methods such as mcDESPOT [29] or MRF-X [48]. However, both those
studies looked at exchange maps without necessarily validating against other established
baselines/methods. These methods might be useful for comparison but would not help
systematically validate our proposed approach for estimating exchange.

A future direction would be to design a phantom/system to validate our proposed tech-
niques, by obtaining ground truth exchange estimates using other established methods.
Spectroscopy-based methods provide a way of obtaining ground-truth values for exchange
rates [97, 33, 32, 6, 168]. Relaxation exchange spectroscopy (REXSY) has been previously
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used to characterize exchange in aqueous urea systems [33] as well as excised rat and frog
samples [32]. Inversion recovery based NMR (IR-NMR) spectroscopy is another method
that could be used to obtain ground truth exchange rates in small samples [168]. Chapter 4
designs an aqueous urea system to analyze exchange, and obtain ground truth exchange val-
ues using IR-NMR spectroscopy. We then use the ground truth exchange values to validate
our proposed acquisition scheme using phase-cycled bSSFP protocols.

For our uncertainty analysis using the Cramér-Rao bound, we assume the acquisition of
fully sampled data for every bSSFP scan. This assumption simplifies the process of param-
eter estimation since we can perform parameter fitting voxel-by-voxel separately. However,
many MR sequences of interest in quantitative MRI lie in the highly under-sampled regime
to accelerate data acquisition. This complicates uncertainty analysis since systematic errors
(due to aliasing artefacts) tend to dominate over random errors in the highly undersampled
regime [68]. A future direction would be to model these undersampling artefacts [71, 68]
(instead of just bundling all sources of error into random Gaussian noise). For instance, in
[71], aliasing artefacts are modeled through an additional Gaussian noise term, whose mag-
nitude is signal-dependent. In [68], undersampling artefacts are modeled directly from first
principles using computer simulations, and incorporated into a cost function for sequence
design in magnetic resonance fingerprinting.

For translation to clinical applications, the long scan times of the fully sampled acquisi-
tions discussed in this chapter could be a potential roadblock. A common approach to bring
down the acquisition time is through the use of undersampling. Non-Cartesian acquisition
schemes such as spiral trajectories are quite popular in undersampled acquisitions due to
their efficient k-space coverage and robustness to motion. A future direction could be to
explore undersampled spiral acquisitions to estimate myelin water exchange using phase-
cycled bSSFP. For the repetition times discussed in this chapter (TR = 20ms), we would
potentially need to use spiral shots with longer readouts and this increases sensitivity to
off-resonance effects, along with the need for more computationally intensive reconstruc-
tion approaches. Chapter 5 analyzes the off-resonance effects for spiral trajectories, and
derives fast implementations of the NUFFT-based forward model for stack-of-spirals MRI.
This would potentially be useful for estimating myelin water exchange in a 3D volume
using undersampled bSSFP acquisitions with our numerically optimized scan design.

For all our analysis and experiments, we acquire only steady-state data during our
bSSFP acquisitions. It seems intuitive that, to better estimate exchange values, we might
need data in the transient regime. One option to sample the transient regime might be
to collect data while we wait for the bSSFP acquisitions to reach steady-state [137, 170].

44



Another option could be to use fingerprinting-like sequences (instead of steady-state se-
quences) to drive the system into a persistent transient state [65, 48] and potentially encode
more information about exchange. A future direction could be to perform a Cramér-Rao
bound analysis assuming the acquisition of both transient and steady-state data.

3.6 Conclusion

This chapter optimized the acquisition parameters (flip angles and RF phase cycling fac-
tors) of a set of bSSFP acquisitions, to help estimate myelin water exchange in white matter
(WM). We showed, using numerical simulations, that the optimized scan design resulted
in WM exchange maps with low RMSE. Through additional experiments, we showed that
optimizing a set of RF phase cycling factors ϕ led to improved exchange estimates; it
would be interesting to investigate whether this would be beneficial for estimating other
quantitative parameters such as myelin water fraction. We also obtained exchange maps in

vivo but it is hard to interpret and validate them. The next step would be to validate the
proposed approach using ground truth exchange values obtained using other established
methods; Chapter 4 attempts to validate exchange maps in an aqueous urea system using
phase-cycled bSSFP acquisitions (through in vitro experiments).
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CHAPTER 4

Validating Exchange Maps in a Urea Water
System using Phase-Cycled bSSFP

4.1 Introduction

Chapter 3 optimized bSSFP acquisitions for estimating myelin water exchange in white
matter and demonstrated low coefficients of variation for estimating exchange rates using a
modified BrainWeb [23] digital phantom. However, it is much harder to show the effective-
ness of the proposed bSSFP acquisitions for estimating exchange in vivo, since it is difficult
to obtain ground truth exchange maps in vivo. In this chapter, the objective is to design a
two-compartment physical phantom with exchange, which could be used to validate the
optimized bSSFP acquisitions. We aim to obtain ground truth exchange values using other
established techniques and use this ground truth to validate the exchange maps obtained
using our proposed acquisitions.

It is challenging to design a phantom that exactly mimics the exchange dynamics oc-
curring in the myelin sheath in our brain, but we set out to design something that can act
as a reasonable proxy. One of our collaborators, Dr. Scott Swanson, designed an aqueous
urea system for us to use for validating our proposed methods for estimating exchange. We
provide more details of the urea water phantom in Section 4.3.1. Such an aqueous urea sys-
tem has been previously used to study chemical exchange [83, 159, 41, 33, 144]. Aqueous
urea contains two compartments/pools (water protons and urea protons) that are chemically
shifted by about 1.0 ppm (around 298Hz at 7T). This is not identical to the myelin system
in our brain, since the myelin water pool possesses a much smaller frequency shift than
the 1.0 ppm shift present in the aqueous urea system [165, 36]. Additionally, the source of
the frequency shift in myelin water is thought to be the orientation of the nerve fibers in
white matter [165], instead of a chemical shift as seen in the urea phantom. Despite these
differences, the urea water phantom is a reasonable model for studying methods for quanti-
fying exchange, and is a good first step to eventually demonstrating the effectiveness of our
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proposed approach in vivo. Aqueous urea has previously been found to be a good system
to study exchange, and Section 4.3.1 provides more details for why it is a good candidate
to analyze exchange dynamics.

This chapter can be divided into two parts: the first part describes how we obtained
ground truth values for exchange rates using inversion recovery based NMR (IR-NMR)
[168] spectroscopy experiments, and the second part explains how we performed imaging
experiments using our phase-cycled bSSFP acquisitions and validated the exchange maps
against the IR-NMR ground truth data. For obtaining ground truth exchange values using
IR-NMR, we selectively invert one of the two pools (urea protons or water protons), and
sample the recovery of the longitudinal magnetization at different time points using NMR
measurements, i.e., non-imaging MR measurements. In this selectively inverted urea water
system, T1 recovery is influenced by the exchange dynamics between the urea and water
proton pools. Through parameter fitting of the NMR measurements, we obtain ground
truth values for the mean residence time of the urea protons (i.e., the inverse of the ex-
change rate of protons going from urea to water). We compare these ground truth exchange
values against the parameter estimates obtained using our phase-cycled bSSFP acquisi-
tions (through imaging experiments), and demonstrate the effectiveness of our proposed
approach for estimating exchange rates in an aqueous urea system.

The rest of the chapter is organized as follows: Section 4.2 contains relevant back-
ground for the rest of this chapter, while Section 4.3 describes the methods used for es-
timating exchange in our aqueous urea system. We provide details of our experiments in
Section 4.4, while Sections 4.5 and 4.6 contain some discussions and conclusions of this
chapter, along with several ideas for future work.

4.2 Background

This section provides relevant background information for the methods used in this chap-
ter. Section 4.2.1 provides detailed background about the inversion recovery based NMR
(IR-NMR) method for estimating exchange. We use this technique to obtain ground truth
values for urea water exchange rates in this work. Section 4.2.2 gives a brief description
of related work for estimating inter-compartmental exchange, such as relaxation exchange
spectroscopy (REXSY) and chemical exchange saturation transfer (CEST). Our proposed
technique for estimating exchange involves phase-cycled bSSFP acquisitions, and Sec-
tion 4.2.3 provides some background as well as some prior work with using phase-cycled
bSSFP for quantitative MRI.
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Figure 4.1: Inversion Recovery-based pulse sequence used for obtaining ground truth ex-
change values in the aqueous urea phantom. Note: TS = time for selective inversion, TM =
mixing time, TE = echo time.

4.2.1 Exchange estimation using inversion recovery based NMR (IR-
NMR) spectroscopy

To obtain ground truth values for exchange rates in the urea water phantom, we use an
inversion recovery based NMR (IR-NMR) spectroscopy experiment [168]. Fig. 4.1 shows
the pulse sequence used for our IR experiments. This is not an imaging experiment, so we
do not use imaging gradients and hence, NMR data is acquired from the whole sample.
The first two 90◦ pulses are used to selectively invert one of the two pools (urea or water
proton pools). The third 90◦ pulse is applied after a mixing time TM (allowing the two
pools to mix/interact) and the free induction decay (FID) signal is read out. We repeat the
experiment for different values of TM, thereby sampling the longitudinal magnetization re-
covery curve at different time points. The T1 recovery of this selectively inverted system is
influenced by the exchange dynamics between the urea protons and water protons resulting
in a bi-exponential behavior; this forms the principle on which this exchange estimation
method is based. We apply parameter fitting techniques to this bi-exponential curve and
extract ground truth values for the exchange rates in the aqueous urea system.

To estimate exchange values, we could selectively invert either urea or water protons;
without loss of generality, let us assume that the urea proton pool is selectively inverted.
In our acquisition module, we choose our central frequency so that the urea protons are on
resonance. The time for selective inversion TS is chosen so that the protons in the water
pool (which are off-resonance) precess through a phase of π between the two 90◦ pulses,
i.e., they are out-of-phase with the urea protons. For our aqueous urea system, we set

TS =

(
1

2

)(
1

∆fs

)
, (4.1)

where ∆fs is the chemical shift in the urea water system (∼ 298Hz at 7T). The water
protons (which are off-resonance) complete one cycle of precession during a period of
1/∆fs, and come back in phase with the urea protons (which are on-resonance). We set
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TS to half this period, since we want the water protons to be out-of-phase with the urea
protons, i.e., TS is set to ∼ 1.68ms for our experiments.

When we set TS to the value given in (4.1), the water protons are 180◦ out-of-phase
with the urea protons. Then, the second 90◦ pulse selectively inverts the urea protons (i.e.,
urea magnetization lies along the negative z-axis), while the water protons are tipped back
along the positive z-axis. Magnetization is now stored along the longitudinal axis (z-axis)
and does not undergo T2 decay (assuming ideal 90◦ RF pulses, exact values of TS, and an
infinitely narrow frequency distribution). T1 recovery takes place during the period between
the second and third 90◦ pulses, termed as mixing time (TM). Initially, the evolution of
longitudinal magnetization is influenced by the exchange dynamics between the urea and
water protons (assuming that exchange occurs at faster timescales than simple T1 recovery),
before reaching an equilibrium corresponding to the T1 recovery of both pools.

To model the evolution of longitudinal magnetization after applying the pulse sequence
in Fig. 4.1, we use a two pool exchanging model. The longitudinal relaxation rates for the
two pools are denoted by Rw and Ru (subscripts w and u denote the water protons and urea
protons respectively). The exchange rate of magnetization out of the water pool is denoted
by kw, while the rate of exchange out of the urea pool is denoted by ku. The mean residence
times, denoted by τw and τu, are defined as the average time spent by a spin in the water
and urea proton pools respectively; these are given by the inverse of the exchange rates.

The longitudinal magnetization dynamics in a two pool exchanging model are charac-
terized by the Bloch-McConnell equation [98] as

dMw(t)

dt
= (M0,w −Mw(t))Rw − kwMw(t) + kuMu(t)

dMu(t)

dt
= (M0,u −Mu(t))Ru − kuMu(t) + kwMw(t), (4.2)

where Mw(t) and Mu(t) represent the longitudinal magnetization (at time t) in the water
and urea proton pools respectively, while M0,w and M0,u represent the longitudinal magne-
tization in the two pools at thermal equilibrium. The longitudinal magnetization can also
be written in the form of a fractional saturation level as

Sw(t) = 1− Mw(t)

M0,w

, (4.3)

where Sw(t) represents the fractional saturation level of the longitudinal magnetization of
water protons. This takes a value of 2 for perfect inversion (i.e., Mw(t) = −M0,w), 1 for full
saturation (i.e., Mw(t) = 0) and 0 for full longitudinal recovery (i.e., Mw(t) = M0,w) [162].
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Similarly, Su(t) = 1−Mu(t)

M0,u

represents the fractional saturation level of urea protons. It is

important to perform the IR-NMR experiment for a long enough mixing time (TM) so that
we get a good estimate of the equilibrium magnetization values M0,w and M0,u.

The longitudinal dynamics in (4.2) can be equivalently written in terms of Sw(t) as

dSw(t)

dt
=

(
−1

M0,w

)
dMw(t)

dt

=
−1

M0,w

{
(M0,w −Mw(t))Rw − kwMw(t) + kuMu(t)

}
= −RwSw(t) + kw

Mw(t)

M0,w

− ku
Mu(t)

M0,w

= −RwSw(t) + kw
Mw(t)

M0,w

− kw
Mu(t)

M0,u

= −RwSw(t)− kwSw(t) + kwSu(t), (4.4)

where we have related the exchange rates between the water and urea pools as

ku
kw

=
M0,w

M0,u

=
1− fu
fu

. (4.5)

Here, fu is the urea pool fraction while 1− fu is the water pool fraction.
A similar analysis of longitudinal magnetization in urea protons results in

dSu(t)

dt
= −RuSu(t)− kuSu(t) + kuSw(t). (4.6)

(4.4) and (4.6) can be combined and written in the form of a matrix ordinary differential
equation (ODE) system as

ds(t)

dt
= A s(t), (4.7)

where

A =

[
−Rw − kw kw

ku −Ru − ku

]
and s(t) =

[
Sw(t)

Su(t)

]
. (4.8)

The matrix ODE system in (4.7) has an analytical solution given by1

s(t) = etA s(0), (4.9)

1https://en.wikipedia.org/wiki/Matrix_differential_equation
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where eX =
∑∞

k=0 X
k/k! is called the matrix exponential of X . Computing the matrix ex-

ponential of A is easier when A possesses certain properties. E.g., if A is diagonalizable2,
then the matrix exponential in (4.9) can be computed in an efficient manner, by using the
property that the matrix exponential of a diagonal matrix is the same as the element-wise
exponentiation of its diagonal elements. More generally, the matrix exponential of a matrix
can be also be computed using the Jordan canonical form3 of the matrix.

If we are able to diagonalize A (given in (4.8)), i.e., if we compute the eigenvectors and
eigenvalues of A, then we can plug that into (4.9) and obtain a parametric representation
describing the longitudinal magnetization recovery in our aqueous urea system. We derive
the eigenvalues and eigenvectors of A in the next section (Section 4.2.1.1), and demonstrate
that the longitudinal magnetization recovery in the IR-NMR method can be described using
bi-exponential curves.

4.2.1.1 Eigen analysis

Eigenvalues:
The eigenvalues of A in (4.7) are computed as

∣∣∣∣∣
[
−Rw − kw − λ kw

ku −Ru − ku − λ

]∣∣∣∣∣ = 0

(−Rw − kw − λ)(−Ru − ku − λ)− kwku = 0

λ2 + λ(Rw +Ru + kw + ku) + (RwRu +Rukw +Rwku) = 0

λ =
−(Rw +Ru + kw + ku)±

√
(Rw +Ru + kw + ku)2 − 4(RwRu +Rukw +Rwku)

2

λ =
−(Rw +Ru + kw + ku)±

√
(Rw −Ru + kw − ku)2 + 4kwku
2

, (4.10)

where |X| denotes the determinant of X . To demonstrate that A is diagonalizable, it is
sufficient to show that the eigenvalues of A are distinct. If both exchange rates kw and
ku are positive, then the term under the square root in (4.10) is positive, and hence, the
eigenvalues are distinct. Otherwise, if the exchange rates kw and ku are both 0, then the

2The matrix X is diagonalizable if X can be written as X = V ΛV −1, where Λ is a diagonal matrix
containing the eigenvalues of X and V contains the linearly independent eigenvectors of X .

3https://en.wikipedia.org/wiki/Matrix_exponential#Using_the_Jordan_
canonical_form
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eigenvalues are distinct as long as Rw ̸= Ru. Under these conditions, the eigenvalues are
distinct, and hence, A is indeed diagonalizable.

We define the fast (λf) and slow (λs) relaxation rates for this longitudinal magnetization
system as4

λf,s =
(Rw +Ru + kw + ku)±

√
(Rw −Ru + kw − ku)2 + 4kwku
2

. (4.11)

Eigenvectors:
Let vf = [vf,w vf,u]

T ∈ R2 and vs = [vs,w vs,u]
T ∈ R2 be the eigenvectors correspond-

ing to the fast and slow relaxation rates respectively. The eigenvector corresponding to the
eigenvalue −λf can be determined using Avf = (−λf)vf , i.e.,[

−Rw − kw + λf kw

ku −Ru − ku + λf

][
vf,w

vf,u

]
= 0.

Solving for vf and performing a similar analysis for vs, the eigenvectors can be written
as (up to a scale factor)

vf =

[
vf,w

vf,u

]
=

[
kw

Rw + kw − λf

]
, vs =

[
vs,w

vs,u

]
=

[
kw

Rw + kw − λs

]
. (4.12)

The eigenvalues in (4.11) and eigenvectors in (4.12) can be written in matrix form as

Λ =

[
−λf 0

0 −λs

]
, V =

[
vf,w vs,w

vf,u vs,u

]
. (4.13)

Now that we have the eigenvalues and eigenvectors of A in (4.13), we can substitute
A = V ΛV −1 in (4.9) to obtain

s(t) = etV ΛV −1

s(0)

= V etΛV −1 s(0)

=

[
vf,w vs,w

vf,u vs,u

][
e−λf t 0

0 e−λst

](
1

|V |

)[
vs,u −vs,w

−vf,u vf,w

][
Sw(0)

Su(0)

]

4λf and λs are defined by taking the negative of the eigenvalues given in (4.10).
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=

(
1

|V |

)vf,w vs,w

vf,u vs,u

 (vs,uSw(0)− vs,wSu(0)) e−λf t

(−vf,uSw(0) + vf,wSu(0)) e−λst



=

(
1

|V |

)


{vf,wvs,uSw(0)− vf,wvs,wSu(0)} e−λf t +

{−vs,wvf,uSw(0) + vs,wvf,wSu(0)} e−λst

{vf,uvs,uSw(0)− vf,uvs,wSu(0)} e−λf t +

{−vs,uvf,uSw(0) + vs,uvf,wSu(0)} e−λst


Sw(t)

Su(t)

 =

cf,we−λf t + cs,we
−λst

cf,ue
−λf t + cs,ue

−λst

 . (4.14)

From (4.14), the longitudinal magnetization recovery is characterized by bi-exponential
behavior in the IR-NMR experiments. The coefficients for the bi-exponential fit for the
water pool and urea pool are given by (see Appendix in Section 4.7 for more details)

cf,w =
(Rw + kw − λs)Sw(0) − kwSu(0)

λf − λs

cs,w =
−(Rw + kw − λf)Sw(0) + kwSu(0)

λf − λs

cf,u =
(Rw + kw − λf) {(Rw + kw − λs)Sw(0) − kwSu(0)}

kw(λf − λs)

cs,u =
−(Rw + kw − λs) {(Rw + kw − λf)Sw(0) − kwSu(0)}

kw(λf − λs)
.

(4.15)

4.2.2 Estimating inter-compartmental exchange: Related work

4.2.2.1 Relaxation exchange spectroscopy (REXSY)

Another technique to measure inter-compartmental exchange is relaxation exchange
spectroscopy (REXSY) [82, 163]. REXSY consists of two Carr-Purcell-Meiboom-Gill
(CPMG)5 sequences separated by a mixing period where the magnetization is stored along
the longitudinal axis. By arraying the number of refocusing pulses in both CPMG pulse
trains, and analyzing the resulting T2−T2 decay data, we obtain a T2−T2 spectrum. Spins

5CPMG is a spin-echo technique where the refocusing 180◦ pulses are applied along appropriately chosen
axes so as to reduce the dephasing due to off-resonance inhomogeneities (i.e., B0 effects) as well as imperfect
180◦ pulses (i.e., B1+ effects). In CPMG sequences, we typically apply a 90◦ pulse along +x-direction,
followed by 180◦ pulses along +y-direction.
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that reside in the same pool during both CPMG trains show up as peaks along the diago-
nal of the T2 − T2 spectrum, while spins that undergo exchange during the mixing period
appear as off-diagonal peaks.

At a given mixing time, the T2−T2 spectrum helps us obtain a snapshot of the exchange
dynamics in the system. This experiment needs to be repeated for various mixing times to
estimate the inter-compartmental exchange rates, which makes it a very long experiment
for estimating exchange. To speed up the acquisition, Dortch et al. proposed an inversion
recovery (IR) magnetization preparation which reduces it to a shorter experiment [33], but
still too long for in vivo whole-brain imaging.

REXSY-based methods have previously been used to study exchange in various sys-
tems. They have been used to study exchange dynamics in porous media [163, 99] and
hydrated elastin [149]. They have also been used to analyze exchange dynamics in aque-
ous urea systems [33] (similar to the one used in this chapter). Additionally, REXSY-based
methods have been applied to intact specimens as well, specifically in the study of inter-
compartmental water exchange in freshly excised rat optic nerves and frog sciatic nerves
[32].

4.2.2.2 Chemical exchange saturation transfer (CEST)

Chemical exchange saturation transfer (CEST) is a relatively recent MR technique that
enables imaging certain compounds at concentrations that are too low to impact the contrast
of standard MR imaging [173]. CEST relies on selective saturation of the chemical species
of interest, and the indirect observation of this saturation effect on water protons. For this
to be possible, the target compund must resonate at a different frequency than bulk water
(termed as chemical shift), and must be capable of exchanging protons with the surrounding
water protons (referred to as chemical exchange). In CEST, we selectively saturate the
chemical species of interest using RF irradiation [186]. Due to continuous exchange of
excited protons from the target compound with non-excited water protons via chemical
exchange, the saturation of the target chemical species is transferred to water over time,
which can be conveniently detected using standard MR imaging sequences [173].

CEST MRI is typically associated with long acquisition times, and this is one of the
factors that potentially makes it harder for widespread use clinically. However, the long
acquisition times are not problematic when it comes to in vitro experiments. CEST imaging
has previously been used to study chemical exchange in systems such as aqueous urea
solutions [144] as well as choline, glucose and glycogen solutions [180]. This potentially
makes CEST MRI a good choice to analyze our designed urea water phantoms, and to
obtain ground truth estimates of exchange rates. Though REXSY and CEST are potentially

54



useful baseline techniques to obtain ground truth exchange values, we chose to use the
inversion recovery NMR (IR-NMR) method in this work, since it is easier to design a pulse
sequence for (i.e., it is already a standard sequence on the scanner and requires minimal
work setting it up), and is a good starting point for analyzing exchange.

4.2.3 Parameter estimation using phase-cycled bSSFP MRI

Balanced steady state free precession (bSSFP) is a popular pulse sequence due to its rapid
acquisition time as well as high signal-to-noise ratio, along with its T2/T1 contrast [10].
However, it is highly susceptible to off-resonance effects which manifest themselves as
dark banding artifacts in the images. One approach to reduce these banding artefacts is to
reduce the TR of the sequence, which decreases the phase accrual in each voxel and hence
minimizes the banding artifacts. However, a shorter TR potentially leads to lower maximum
spatial resolution and might not be desirable in all cases. An alternate approach is to use RF
phase cycling, where the phase of the excitation RF pulses is linearly incremented along the
pulse train. By acquiring multiple images with different RF phase increments (called RF

phase cycling factors), it has been shown that the resulting bSSFP images can be combined
to minimize the off-resonance artifacts [7].

Along with off-resonance correction, phase-cycled bSSFP acquisitions have also been
used for parameter estimation in quantitative MRI. DESPOT2 is one such technique that
was initially introduced for T2 estimation using multiple bSSFP acquisitions [30], and was
later improved to account for off-resonance effects using phase-cycling [27]. In another
work [12], the authors used phase-cycled bSSFP acquisitions to estimate the unknown off-
resonance by linearizing the nonlinear bSSFP signal model, and studied the feasibility of
jointly estimating T1 and T2 from phase-cycled bSSFP images. Another group of methods
uses elliptical models for the complex-valued phase-cycled bSSFP signal [174, 57], and
employs parameter fitting techniques for multi-parameter estimation (T1, T2, off-resonance
etc.) [140, 141, 75]. E.g., PLANET is a method that first fits an ellipse to the acquired
set of phase-cycled bSSFP images, and then estimates parameters such as T1 and T2 voxel-
by-voxel, using the geometric properties of an ellipse [140]. There are also purely data-
driven approaches for multi-parameter estimation using phase-cycled bSSFP; in [54], the
authors use artificial neural networks to estimate T1 and T2 maps. There has also been work
exploring the benefits of varying RF phase in MR fingerprinting using bSSFP acquisitions
[160].

The previous paragraph described some methods that use phase-cycled bSSFP acqui-
sitions for parameter estimation assuming a single pool/compartment of MR spins within
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each voxel. There has also been relevant work developing similar methods for estimating
parameters assuming the presence of multiple tissue components in each voxel. One group
of methods analyzes asymmetries observed in the bSSFP frequency profiles (in brain tis-
sue, muscle etc.) [101, 102] to estimate parameters in a multi-compartment setting. E.g.,
SPARCQ is a novel approach to quantify fat fraction in tissue, using multiple bSSFP ac-
quisitions [133]. SPARCQ uses phase cycling to obtain bSSFP frequency profiles, and uses
multi-compartment dictionary matching to generate quantitative maps of water and fat frac-
tions. Similar methods have also been explored to analyze chemical exchange processes in
a multi-compartment setting (e.g., using in vitro experiments in CEST imaging [180, 55]).

4.3 Materials and Methods

4.3.1 Urea phantom studies

Aqueous urea has been used as a system to study chemical exchange before [83, 159, 41,
33]. It contains two proton pools (urea and water) that are chemically shifted by around
1.0 ppm (∼ 298 Hz at 7T). Aqueous urea has a few properties that make it useful to an-
alyze exchange [33]: (i) it is biexponential in nature (urea protons have a shorter T2 than
water), (ii) urea has a high solubility in water (thus, we can create samples where 30% or
more of the signal comes from urea protons), (iii) both urea and water relaxation rates can
individually be manipulated using contrast reagents [59], (iv) exchange rates can be ad-
justed by changing temperature and pH [159], and (v) urea fraction can be known from the
stoichiometry of the solution. All of these factors have contributed to the use of aqueous
urea as a potential gold standard for evaluating methods to estimate exchange. This influ-
enced our decision to design a urea water phantom for validating our exchange estimation
techniques based on phase-cycled bSSFP.

4.3.1.1 Phantom preparation

We prepared the aqueous urea solution to contain a ratio of 10% / 90% for urea/water
protons. The relaxation rates of urea and water proton were adjusted by adding 200 µM
Gd-DTPA (Magnvist®; Berlex, Inc.) and 85 µM MnCl2 as reagents. Fig. 4.2 shows the
aqueous urea phantom used for our experiments.
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Figure 4.2: Phantom containing urea water solution.

4.3.1.2 Scanner

For all our experiments in this chapter, we acquired data at bore temperature (∼20 ◦C),
using an Agilent 7/310 (7.0T, 310mm bore) (Walnut Creek, CA) NMR/MRI scanner. This
system is actively shielded, cryo-cooled and offers a 4-channel, phased array for reception
and an additional modular transmitter channel for up to four transmit channels. Three
gradient inserts with inner diameters 115 mm, 205 mm, and 305 mm, and strengths 60
mT/m, 120 mT/m, and 210 mT/m are available.

4.3.2 Ground truth using IR-NMR spectroscopy

Section 4.2.1 provides background information for the inversion recovery NMR (IR-NMR)
experiment that we use to obtain ground truth exchange estimates. This section summa-
rizes the main equations governing longitudinal magnetization recovery, and describes how
we use them to obtain ground truth exchange estimates. The inversion recovery experi-
ment gives us longitudinal magnetization data for both water and urea proton pools. From
Section 4.2.1, we can model the longitudinal magnetization recovery using bi-exponential
curves as

Sw(t) = cf,we
−λf t + cs,we

−λst

Su(t) = cf,ue
−λf t + cs,ue

−λst, (4.16)

where

Sw(t) = 1− Mw(t)

M0,w
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Figure 4.3: NMR spectrum with urea and water peaks for a particular mixing time TM.
Area under the peaks yields the signal values for urea and water proton pools at TM.

Su(t) = 1− Mu(t)

M0,u

(4.17)

are the fractional saturation levels of water and urea proton pools respectively. The
fast/slow relaxation rates and coefficients are given in (4.11) and (4.15) respectively; Sec-
tion 4.2.1 provides more details on how they are computed.

For our experiments to estimate the ground truth, we use an inversion recovery NMR
(IR-NMR) experiment. As described earlier in Section 4.2, this consists of three 90◦ pulses,
and the pulse sequence is shown in Fig. 4.1. The first two 90◦ pulses are timed appropriately
to selectively invert one of the two pools (urea or water pools), while the third 90◦ pulse is
applied after a mixing time TM, allowing the two pools to exchange. In our experiments, we
collected IR-NMR data at 21 TM values, exponentially arrayed between 10ms and 10s. For
each mixing time, we acquired FID (free induction decay) data consisting of 10,000 time
points. We then took a 1-dimensional FFT of this to obtain a spectrum, and computed the
areas under the urea and water peaks. This gives us the acquired longitudinal magnetization
for each of the two pools (urea and water) as a function of mixing time. Fig. 4.3 shows an
example NMR spectrum with urea and water peaks, at a given mixing time TM.

We included a mixing time of 10s at the end to ensure full longitudinal recovery and
to make sure that we have good estimates of the equilibrium magnetization values in urea
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and water, i.e., M0,w and M0,u. These values are used to convert the acquired longitudinal
magnetization signal into fractional saturation levels, also called reduced magnetization (in
a similar manner to (4.17)).

We denote the acquired IR-NMR data (after expressing it as a fractional saturation level)
as y ∈ R2N , where N = 21 is the number of mixing times. We have 2N measurements,
since this is an NMR experiment, and we have N measurements each, for the urea and
water proton pools. We use nonlinear least squares (NLLS) fitting to fit the acquired data
using bi-exponential curves as

x̂ = argmin
x≽0

∥y − f(x)∥2, (4.18)

where x̂ = [Rw, Ru, kw, ku] collects the unknown parameters to be estimated, and f(x) ∈
R2N captures the bi-exponential signal model corresponding to x (see (4.16)), evaluated at
the desired mixing times. We performed a Cramer-Rao Bound (CRB) analysis and found
that we obtained lower bounds when we assume the longitudinal relaxation rates of both
pools to be the same. Hence, for the fitting of our NMR experiments in (4.18), we assume
Rw = Ru, which reduces the number of unknowns to 3, i.e., Rw, kw and ku. For optimizing
the NLLS cost function in (4.18), we use a box-constrained version of the BFGS method
using the Optim.jl package in Julia [106]. The BFGS (Broydon-Fletcher-Goldfarb-Shanno)
method is a very popular quasi-Newton algorithm used in numerical optimization [120].

The value of ku provides the ground truth estimate of the exchange rate from the urea
pool to the water pool, and this is used for validation of our proposed bSSFP acquisitions
for estimating exchange. Additionally, we compute the urea pool fraction fu from these
estimated exchange rates as follows [162]:

fu =
kw

kw + ku
. (4.19)

4.3.3 Estimating exchange: phase-cycled bSSFP imaging

Section 4.3.2 described how we compute ground truth estimates of exchange parameters
using inversion recovery NMR experiments. This section contains details of our imaging
experiments using phase-cycled bSSFP acquisitions, and describes how we validate the
obtained exchange estimates against the ground truth values.
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4.3.3.1 Hand-crafted phase-cycled bSSFP acquisitions

Chapter 3 studied the problem of estimating myelin water exchange in the brain, and opti-
mized scan designs to help estimate exchange in white matter. Since our objective in this
dissertation is to eventually estimate myelin water exchange in vivo, where scan time is
an important consideration, we optimized our scans to help encode information about ex-
change in as few acquisitions as possible. This chapter studies exchange in an aqueous urea
system using a urea water phantom, where the requirements for scan time are not as strin-
gent as in vivo scans. Thus, we did not explore optimized scan designs for estimating urea
water exchange, and instead, investigated the use of handcrafted acquisitions, with (poten-
tially) sufficient diversity in flip angles and RF phase cycling factors. We aim to study how
well these handcrafted sets of bSSFP acquisitions encode information about exchange in
our simple urea water phantom, and help us estimate urea water exchange.

For our handcrafted bSSFP acquisitions in this chapter, we consider two sets of acqui-
sitions (S1) and (S2) described below:

• (S1) - Set of 91 bSSFP acquisitions, each with a fixed flip angle of 30◦. The phase
cycling factors are linearly spaced between −180◦ and 180◦ with 4◦ increments, re-
sulting in 91 different acquisitions.

• (S2) - Set of 69 bSSFP acquisitions. We have 3 different phase cycling factors (0◦,
50◦ and 180◦), and for every phase factor, we have 23 different flip angles from 1◦ to
80◦ (see Fig. 4.4 for more details about how the flip angles are spaced). To account for
SAR limitations at higher flip angles, we finely sampled flip angles at lower angles
(up to 40◦) and coarsely sampled the higher range between 40◦ and 80◦.

Figure 4.4: Handcrafted set of bSSFP acquisitions (S2), showing flip angles and phase
cycling factors of 69 different acquisitions.
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Both (S1) and (S2) were handcrafted with different intentions in mind. Set (S1) has
a fixed flip angle and linearly incremented phase cycling factors. Such a linearly spaced
phase-cycled bSSFP scheme samples the bSSFP frequency profiles of our aqueous urea
system, and can be very helpful in visualizing the asymmetries in both magnitude and
complex-valued data of our phase-cycled bSSFP acquisitions [55, 133].

Fig. 4.5 shows the results of simulating the set of bSSFP acquisitions in (S1) for a
single voxel in our aqueous urea system, both in the magnitude as well as complex do-
mains. To study how sensitive the bSSFP signal model is to the exchange dynamics in the
aqueous urea system, we vary the urea fraction fu as [0, 0.1, 0.25, 0.5], and the mean
residence time of urea τu as [10, 150, Inf] ms. This corresponds to urea exchange rates
of [100, 6.67, 0] s−1, representing three exchange regimes: fast, slow and zero exchange.
For these simulations, we set the T1 and T2 values to be [T1u, T1w] = [700, 800] ms, and
[T2u, T2w] = [10, 200] ms, where the subscripts u and w represent the urea and water
pools respectively. We set the equilibrium magnetization to be M0 = 1.0, where M0 is
related to the equilibrium magnetization of the urea and water pools as M0,u = fuM0 and
M0,w = (1 − fu)M0. We model a chemical shift of 298 Hz between the urea and water
proton pools (∼ 1.0 ppm at 7T), and a bulk off-resonance of 15 Hz. We did not model any
B1+ inhomogeneities for these simulations, i.e., κ = 1. We set TR/TE = 6.6ms / 3.3ms for
the simulations in Fig. 4.5. Also, we extended the phase cycling factors in (S1) from -360◦

to 360◦ for this set of simulations, so that we could study two periods of the bSSFP signal
profiles.

To actually encode information about the exchange processes in the aqueous urea sys-
tem, we potentially need more variations in our acquisition parameters than (S1) provides.
To account for this, we handcrafted the acquisitions in set (S2) to have variability in both
flip angles and phase cycling factors. Fig. 4.4 shows the flip angles and phase cycling
factors used in (S2).

4.3.3.2 MR acquisition details

For our bSSFP imaging experiments, we acquired data on the same 7T Agilent (Varian)
scanner used for our NMR experiments. We collected fully sampled Cartesian data for
our handcrafted set of bSSFP acquisitions in (S2) (see Fig. 4.4 for more details of the
acquisition parameters). We performed 2D slice-selective acquisitions for all 69 scans in
(S2), with a matrix size of 64 × 64, and set TR/TE = 8ms / 4 ms.

We modified the bSSFP sequence on the Varian scanner to be able to manipulate the
RF phase cycling factors, and passed in our flip angles and phase cycling factors in (S2) as
parameter arrays. To ensure that steady-state is reached, we ran a total of 375 dummy TRs
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(a)

(b)

Figure 4.5: bSSFP off-resonance profiles simulated (using (S1)) for a single voxel in aque-
ous urea, showing (a) magnitude and (b) complex signal behavior for a range of values for
urea fraction fu and mean residence time of urea τu. (Note: τu = 1/ku)

at the beginning (corresponding to a time of 3s). At present, we run dummy acquisitions
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only at the beginning of the parameter array corresponding to (S2), i.e., only before the first
bSSFP acquisition. To potentially ensure that steady-state is reached for every acquisition,
we would need to further modify the sequence so that the dummy acquisitions are run
before every acquisition in (S2).

4.3.3.3 Nonlinear least squares (NLLS) data fitting

Chapter 3 compared the performance of two estimators: PERK (Parameter Estimation via
Regression with Kernels) and NLLS, in the context of estimating myelin water exchange.
Through numerical simulations, we found that NLLS produced less biased exchange esti-
mates than PERK (see Fig. 3.10), albeit with a higher computational burden. For a phantom
study such as the one investigated in this chapter, compute time is potentially not a major
factor, and thus, we focused on NLLS-based estimation (due to its lower bias), in spite of
its higher compute time. The rest of this section describes our NLLS fitting approach for
our imaging experiments using phase-cycled bSSFP acquisitions.

We used a conventional inverse FFT reconstruction for our fully sampled Cartesian
bSSFP acquisitions. Additionally, since we obtain fully sampled data, we do not need to
model any undersampling artefacts, and we can perform parameter estimation indepen-

dently for each voxel. For each voxel, we represent the complex-valued reconstructed data
as y ∈ CN , where N = 69 for the set of bSSFP acquisitions in (S2). We use nonlinear
least squares (NLLS) fitting to estimate the unknown parameters as

x̂ = argmin
x∈X

∥y − s(x;P )∥2, (4.20)

where x̂ = [M0, Mϕ, fu, T1u, T1w, T2u, T2w, τu, ∆fcs, ∆f, κ] represents the unknown
parameters to be estimated for the given voxel. T1u, T1w, T2u and T2w represent the T1 and
T2 values for the urea and water pools (subscripts u and w respectively). Similar to our
NMR experiments, we assume that the T1 values of both the urea and water pools are the
same (denoted by T1), and that reduces the number of estimated parameters by one. The
urea fraction and mean residence time of urea are given by fu and τu respectively. ∆fcs

stands for the chemical shift between the two pools, while ∆f stands for bulk off-resonance
(B0 inhomogeneities). The equilibrium magnetization is given by a real-valued scalar M0,
while Mϕ models an additional phase term since we are dealing with complex-valued data.
B1+ effects are modeled with the scaling factor κ. s(x;P ) ∈ CN represents the bSSFP
signal model that takes the parameters in x as input, and outputs bSSFP signal values
corresponding to the set of acquisitions in (S2). P collects the acquisition parameters of
all scans in (S2).
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Parameter Lower constraint Upper constraint
M0 0.1 10
Mϕ −π π
fu 0.04 0.40

T1 (in ms) 500 1000
T2u (in ms) 5 30
T2w (in ms) 100 400
τu (in ms) 30 150

∆fcs (in Hz) 250 350
∆f (in Hz) -25 15

κ 0.9 1.1

Table 4.1: Lower and upper box constraints for parameters to be estimated in the aqueous
urea system (to optimize the nonlinear least squares cost function in (4.20)). (Note: We
assume that the T1 values of both the urea and water pools are the same, and denote it by
the parameter T1.)

To optimize the NLLS cost function in (4.20), we use a box-constrained version of the
BFGS method [120] using the Optim.jl package in Julia [106]. Table 4.1 gives the lower
and upper ends of the box constraints for all parameters. For each voxel, we optimize the
cost function in (4.20) using 5 different initializations (randomly initialized within the box
constraints in Table 4.1), and pick the minimizer that results in the lowest cost function. We
combine the results from every voxel in the region of interest (ROI) and obtain parameter
maps.

4.4 Results

4.4.1 Ground truth using spectroscopic data

To obtain ground truth estimates of exchange rates, we performed inversion recovery NMR
(IR-NMR) experiments as described in Section 4.3.2. The central frequency is chosen so
that the urea protons are on resonance; hence, the urea proton pool is selectively inverted
in our NMR experiments. For each mixing time, we acquired FID (free induction decay)
data consisting of 10,000 time points. We then performed a 1-dimensional FFT to obtain
a spectrum, and computed the areas under the water and urea peaks, resulting in signal
magnitudes for water and urea pools at that particular mixing time. Repeating this for
every mixing time provided us with two curves for the acquired data: one corresponding to
the urea signal vs. mixing time, and the other corresponding to the water signal vs. mixing
time.
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Figure 4.6: Nonlinear least squares fit to inversion recovery NMR (IR-NMR) data, using a
bi-exponential model. (Urea protons are selectively inverted here.)

The acquired data is normalized using the equilibrium magnetization values, resulting
in reduced magnetization data as described in Section 4.3.2. Fig. 4.6 shows the reduced
magnetization signal values for both the urea and water pools, as a function of mixing
time. The initial reduced magnetization data would be 2 for perfect inversion, 1 for full
saturation and approach 0 for recovery to equilibrium.

As we see from the acquired data in Fig. 4.6, the urea pool is selectively inverted;
hence, the urea signal starts from a value closer to 2. The water protons are tipped back
along the positive z-axis by the third 90◦ pulse in our IR-NMR pulse sequence (see 4.1 for
more details), and the water signal starts close to 0 in Fig. 4.6. As both pools recover to
equilibrium, the exchange dynamics between the two pools results in the bi-exponential
behavior that we see in the acquired data.

To obtain ground truth values for exchange, we performed nonlinear least squares
(NLLS) fitting (with bi-exponential curves) as described in Section 4.3.2, for the cost
function shown in (4.18). Fig. 4.6 shows the resulting NLLS fit; we obtained a
very good fit with the acquired data. The final values for the optimization variables
were: [Rw, Ru, kw, ku] = [1.31s−1, 1.31s−1, 1.93s−1, 17.9s−1]. Taking the
inverse, we obtain the T1 values and the mean residence times of the two pools as
[T1w, T1u, τw, τu] = [764ms, 764ms, 517ms, 55.9ms]. The urea fraction is com-
puted as fu = kw/(kw + ku) = 0.097, which is close to the fraction (0.10) expected from
the stoichiometry of the aqueous urea solution. Hence, the ground truth values for the urea
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Figure 4.7: Magnitude images for all 69 bSSFP acquisitions in set (S2).

fraction and mean residence time of urea are 0.097 and 55.9 ms respectively. We will use
these ground truth values to validate the proposed approach based on phase-cycled bSSFP
acquisitions in the next set of imaging experiments.

4.4.2 Parameter estimation using phase-cycled bSSFP acquisitions

This section describes our imaging experiments to estimate urea water exchange, us-
ing phase-cycled bSSFP acquisitions. Before performing our imaging experiments, we
shimmed the magnetic field in our urea phantom, since it is desirable to obtain as uniform
a magnetic field as possible. For our imaging experiments, we acquired 2D slice-selective
fully sampled data for all 69 bSSFP acquisitions in set (S2) (see Fig. 4.4 for more details of
the flip angles and phase cycling factors in (S2)). Fig. 4.7 shows the magnitude images for
all acquisitions. We do not notice any significant dark bands that are typically associated
with bSSFP images, suggesting that the B0 field is well-shimmed.

For each voxel, we perform nonlinear least squares (NLLS) fitting on the complex-
valued data and obtain estimates for the urea fraction fu and mean residence time of urea
τu, along with other parameters (see Section 4.3.3.3 for more details of the parameter fitting
approach). Fig. 4.8 shows the estimated parameter maps of fraction fu and mean residence
time τu (in ms). We thresholded the M0 parameter map to obtain a mask corresponding
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M0 fu T1 T2u T2w τu ∆fcs ∆f κ

bSSFP 4.9 ± 0.2 0.115 ± 0.01 500 ± 0 7.5 ± 0.6 398.2 ± 9.7 50.0 ± 5.2 288.3 ± 3.3 -13.8 ± 1.1 0.9 ± 0

Reference - 0.097 - - - 55.9 - - -

Table 4.2: Parameter estimates for the urea water phantom, using complex-valued bSSFP
data. (Note: Means and standard deviations were computed for the ROI corresponding to
the entire cross-section of the urea water phantom.)

to our ROI. We use this mask to compute our ROI statistics and to display the estimated
parameter maps. Fig. 4.9 shows a few of the other estimated parameter maps: equilibrium
magnetization M0, phase Mϕ, chemical shift ∆fcs and bulk off-resonance ∆f .

Table 4.2 shows the mean and standard deviations for all parameters in our ROI. We
also show the reference values for the urea fraction fu and mean residence time τu obtained

Figure 4.8: Estimated parameter maps of urea fraction fu and mean residence time of urea
τu.

Figure 4.9: Estimated parameter maps of equilibrium magnetization M0, phase Mϕ, chem-
ical shift ∆fcs and bulk off-resonance ∆f .
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using our inversion recovery based NMR (IR-NMR) experiments (see Section 4.4.1 for
more details about how we compute these reference values). The estimated urea fraction
and mean residence times were in reasonable agreement with the reference values (within
19% and 11% respectively).

4.5 Discussion

In Chapter 3, we designed MRI experiments (using phase-cycled bSSFP acquisitions) for
estimating myelin water exchange, but it was difficult to validate the obtained exchange
maps in vivo, since we do not have an established gold standard technique to estimate
exchange in vivo. Thus, we designed a urea water phantom to help validate our proposed
methodologies for estimating exchange. Though the aqueous urea system is not identical
to the myelin system that we hope to replicate, we feel that it is a reasonable proxy and a
good starting point to validate our proposed scan designs and estimation methods.

To obtain ground truth values for urea water exchange, we used inversion recovery
based NMR spectroscopy (IR-NMR) experiments [168]. We could selectively invert either
the urea or the water protons to analyze our aqueous urea system; in this chapter, we have
selectively inverted the urea protons, and obtained ground truth values for urea fraction and
the urea exchange rate. It would be interesting to repeat our experiments by selectively
inverting the water pool. This would still give us two curves (as in Fig. 4.6), but the
water signal would begin near 2 (due to selective inversion of water), while the urea signal
would begin near 0. Fitting this data using nonlinear least squares (NLLS) fitting should
theoretically result in similar fraction and exchange rates, and it would be interesting to
compare them with our ground truth values obtained by selectively inverting urea.

For estimating the ground truth exchange rates from the acquired IR-NMR spectro-
scopic data, we perform NLLS fitting on the reduced magnetization curves. The reduced

magnetization vectors are obtained after normalizing the acquired longitudinal magnetiza-
tion with respect to the equilibrium magnetization (as described in Section 4.3.2). For this
approach to work, we need to sample reasonably large values of mixing time TM to ensure
that we wait long enough to reach equilibrium. For our experiments, we sample mixing
times of up to 10s which should be sufficient to attain equilibrium. It is important to ensure
that the equilibrium magnetization values be as accurate as possible. An alternative ap-
proach might be to fit the longitudinal magnetization curves directly instead of normalizing
them to reduced magnetization vectors.

The NLLS fitting of the IR-NMR data yielded ground truth values of 0.097 for the urea
fraction, and around 55.9ms for the mean residence time of urea. As a sanity check, the
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reference value for the urea fraction (9.7%) is close to the urea fraction known from the
stoichiometry of the solution [33], which is 10% for our phantom. This gives us some
confidence in our ground truth exchange rates as well, since the urea fraction is reasonably
close to what we expect from the contents of the urea solution. One direction for future
work could be to run other established techniques to estimate exchange such as REXSY
and CEST, and to compare the ground truth exchange rates with the value obtained here
using inversion recovery NMR experiments (IR-NMR).

After obtaining ground truth values from the NMR data, we performed imaging ex-
periments to validate our proposed method of estimating urea water exchange using a set
of phase-cycled bSSFP acquisitions. Chapter 3 optimized the acquisition parameters of
phase-cycled bSSFP acquisitions (using the Cramér-Rao bound) for estimating myelin wa-
ter exchange. This chapter uses a handcrafted set of phase-cycled bSSFP acquisitions (see
details of set (S2) in Fig. 4.4) to help estimate urea water exchange. As a direction of future
work, it would be interesting to optimize bSSFP scans for estimating urea water exchange,
and compare their performance against our handcrafted acquisitions.

This chapter uses nonlinear least squares (NLLS) based estimation for the imaging ex-
periments (with phase-cycled bSSFP acquisitions) to estimate urea water exchange. Chap-
ter 3 compared NLLS with PERK (Parameter Estimation via Regression with Kernels) for
estimating myelin water exchange using numerical simulations, and found that NLLS was
less biased than PERK, albeit with a higher computational runtime. We used NLLS in
this chapter since it has lower bias, and compute time is not a major consideration for a
phantom study, as compared to in vivo settings. As a future research direction, it would be
desirable to repeat these imaging experiments with PERK as the estimator, and compare
the performance of PERK vs NLLS in the context of estimating urea water exchange.

Using the bSSFP acquisitions in (S2), we estimated all parameters of our two pool
exchanging urea water model and Table 4.2 shows the parameter estimates in our region of
interest. The values of the urea fraction (0.115 ± 0.01) and mean residence time of urea
(50.0 ms ± 5.2 ms) were in reasonable agreement with the reference values (0.097 and
55.9 ms respectively). An extension of this work might be to repeat this experiment with
aqueous urea samples at different pH values (resulting in different exchange rates [159]),
and test whether the proposed method of estimating urea water exchange is generalizable
across different samples and conditions.

From Table 4.2, we do not seem to attain good fits for a few of the parameters, e.g.,
T1 and κ, which seem to have hit the boundaries of the box constraints (see Table 4.1 for
a list of the constraints for optimization). This could be potentially attributed to a couple
of sources of model mismatch. We acquired 2D data but the signal model in our fitting

69



method does not consider slice profile effects. Also, we acquire dummy TRs at the very
beginning of the set of bSSFP acquisitions (S2), instead of taking dummy scans before
every acquisition in (S2). A future direction would be to take 3D acquisitions, so that slice
profile effects are no longer an issue, as well as acquire dummy scans before every bSSFP
acquisition. This would potentially result in better parameter fits for our bSSFP imaging
experiments. Also, for our inversion recovery NMR experiments to obtain ground truth
values, it would be interesting to explore the effects of imperfect 90◦ pulses for selective
inversion.

Finally, instead of using the handcrafted set of acquisitions in (S2), we could optimize

them using the Cramér-Rao bound (as in Chapter 3), or in an end-to-end manner [167]. A
direction for future research could be to compare the optimized scan design for urea water
exchange, with the optimized set of acquisitions for myelin water exchange in Chapter 3.
It would be interesting to see how similar or dissimilar the optimized scan designs are,
for estimating exchange in different exchanging systems (e.g., myelin water system vs.
aqueous urea system).

4.6 Conclusions

We designed an aqueous urea system to help us validate our phase-cycled bSSFP scan de-
signs for estimating exchange. We estimated urea water exchange rates using imaging ex-
periments with phase-cycled bSSFP acquisitions, and validated them against ground truth
exchange rates obtained using inversion recovery-based NMR (IR-NMR) spectroscopy ex-
periments. From the bSSFP data, the urea fraction fu and the mean residence time of urea
τu were found to be in reasonable agreement with the reference values obtained using NMR
spectroscopy. Future work includes optimizing the bSSFP acquisitions to better estimate
urea water exchange, as well as testing the generalizability of the proposed approach across
various samples with different exchange rates.

Though the urea water phantom was designed initially with an aim of helping us specifi-
cally model myelin water exchange, it could be potentially useful for other exchange related
experiments as well. We can perform time-consuming experiments such as REXSY (relax-
ation exchange spectroscopy) or CEST to obtain ground truth estimates of exchange, and
use that to validate any proposed techniques to estimate exchange, before proceeding to in

vivo data. A urea water phantom with multiple vials containing different concentrations of
urea, as well as at different pH values (resulting in different exchange rates [159]), would
be very useful as a gold standard for estimating fractions and exchange rates in a two-pool
exchanging model.
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4.7 Appendix

4.7.1 Eigen analysis of longitudinal magnetization dynamics

For a two pool exchanging model, the coefficients for the water protons in (4.14) are derived
as

cf,w =
(vf,wvs,uSw(0) − vf,wvs,wSu(0))

|V |

=
kw(Rw + kw − λs)Sw(0) − kw(kw)Su(0)

kw(Rw + kw − λs) − kw(Rw + kw − λf)

=
(Rw + kw − λs)Sw(0) − kwSu(0)

λf − λs

,

and

cs,w =
(−vs,wvf,uSw(0) + vs,wvf,wSu(0))

|V |

=
−kw(Rw + kw − λf)Sw(0) + kwkwSu(0)

kw(Rw + kw − λs) − kw(Rw + kw − λf)

=
−(Rw + kw − λf)Sw(0) + kwSu(0)

λf − λs

.

The coefficients for the urea protons in (4.14) are similarly derived as

cf,u =
(vf,uvs,uSw(0) − vf,uvs,wSu(0))

|V |

=
(Rw + kw − λf)(Rw + kw − λs)Sw(0) − (Rw + kw − λf)kwSu(0)

kw(Rw + kw − λs)− kw(Rw + kw − λf)

=
(Rw + kw − λf) {(Rw + kw − λs)Sw(0) − kwSu(0)}

kw(λf − λs)
,

and

cs,u =
(−vs,uvf,uSw(0) + vs,uvf,wSu(0))

|V |

=
−(Rw + kw − λs)(Rw + kw − λf)Sw(0) + (Rw + kw − λs)kwSu(0)

kw(λf − λs)

=
−(Rw + kw − λs) {(Rw + kw − λf)Sw(0) − kwSu(0)}

kw(λf − λs)
.
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CHAPTER 5

Stack-of-Spirals MRI Reconstruction with
Off-Resonance Correction

5.1 Introduction

Chapter 3 worked on MRI experiment design to estimate myelin water exchange in white
matter, while Chapter 4 analyzed the exchange dynamics in aqueous urea as a means to
validate our proposed methods for exchange estimation. In both chapters, we considered
fully sampled acquisitions for our analyses. This simplifies the scan design and estima-
tion problems, since we do not need to model undersampling artefacts and can perform
parameter estimation voxel-by-voxel. However, fully sampled acquisitions are typically as-
sociated with longer scan times, which can lead to issues such as motion artefacts, patient
discomfort, lower throughput etc.

The long scan times associated with fully sampled acquisitions are typically not prob-
lematic when we perform in vitro experiments since the sample is generally fixed in place,
and we do not need to worry about long acquisition times. E.g., for our in vitro exper-
iments with the urea water phantom in Chapter 4, acquisition time is not a huge factor,
since the sample is fixed in the scanner. In fact, even a time-consuming technique such as
REXSY (Relaxation Exchange Spectroscopy) could potentially be used to obtain ground
truth exchange values for such in vitro experiments [33]. However, to translate these tech-
niques for in vivo applications and to make them clinically viable, we need to ensure that
the acquisition times are reasonably low. E.g., for the in vivo scans for estimating myelin
water exchange in Chapter 3, the scan time for 40 fully sampled bSSFP acquisitions was
∼ 7 minutes (for a 192 × 168 × 8 volume). This could be prohibitively long in clinical
settings, especially when we consider larger matrix sizes for whole-brain coverage, and we
would need to reduce the acquisition time to make it clinically feasible.

A common approach to speed up MRI acquisitions is to acquire a subset of k-space data
(instead of fully sampling all of k-space), which is called undersampling. There has been
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a lot of work on developing acquisition and reconstruction methods for accelerating MRI
scans through undersampling of k-space [130, 90]. To maximize the acceleration factors
attained through undersampling, we often consider sampling trajectories that efficiently
sample k-space. Non-Cartesian sampling trajectories provide a way to achieve efficient
coverage of k-space, and in particular, spiral trajectories provide an efficient way to sample
k-space in as few shots as possible (sometimes as few as a single shot [73]) [42].

Spiral trajectories have a lot of benefits such as efficient k-space sampling, robustness
to motion (due to oversampling of the center of k-space), faster scan times etc. They have
been used in quite a few quantitative MRI applications [65, 122, 115, 172, 185]. How-
ever, spiral trajectories are also associated with a few challenges such as sensitivity to off-
resonance effects [14, 15] and the need for more complex reconstruction strategies [129].
During reconstruction, spiral trajectories require the non-uniform Fast Fourier Transform
(NUFFT) [35, 40, 176] due to the non-Cartesian nature of the sampling, which is more
computationally demanding than Cartesian acquisitions that can be reconstructed using the
standard Fast Fourier Transform (FFT).

Some of the above challenges have been dealt with by incorporating both static and
dynamic field inhomogeneities in the signal model [169], along with efficient iterative re-
construction algorithms for off-resonance correction [150, 39]. Off-resonance effects play
a bigger role in the case of spiral shots with longer readouts. E.g., in Chapter 3, we have TRs
of around 20ms and if we use spiral trajectories to achieve undersampling, off-resonance
effects would be significant at these readout durations and would potentially require cor-
rection.

For three-dimensional imaging, a common way to extend the benefits of 2D spiral tra-
jectories is to acquire a stack of 2D spiral shots, referred to as a stack-of-spirals acquisition
[64]. In a typical stack-of-spirals acquisition, we have phase encoding gradients along
the through-plane direction, and for each phase encoding step, we acquire 2D spiral shots
in-plane. The phase encoding direction along kz in 3D is often referred to as partition en-
coding to distinguish it from the ky encoding direction. Stack-of-spirals acquisitions have
been used in a variety of MRI studies [185, 86, 142, 125, 146, 61].

For reconstructing stack-of-spirals data, the 3D NUFFT is a key block of the forward
model. This is typically the computational bottleneck for iterative reconstruction, espe-
cially when modeling off-resonance effects (which is necessary for spirals of longer read-
out durations). This chapter focuses on efficient implementations for the NUFFT in the
forward model for stack-of-spirals acquisitions, when off-resonance effects are considered.
Section 5.2 provides some background for stack-of-spirals data and off-resonance correc-
tion in MRI. Section 5.3 analyses various configurations of the stack-of-spirals acquisition,
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and derives efficient ways to implement the NUFFT in the forward model. Section 5.4 pro-
vides details of experiments, while Section 5.5 discusses the obtained results (along with a
few ideas for future work). Section 5.6 talks about our conclusions from this chapter.

5.2 Background

5.2.1 Stack-of-spirals MRI

A stack-of-spirals acquisition is a popular 3D sampling trajectory used in non-Cartesian
MRI [64]. As the name suggests, it consists of a stack of 2D spiral shots, acquired at
specific kz encodes in the through-plane direction. This involves the use of spiral gradients
in-plane (kx and ky directions), and a Cartesian phase-encoding gradient along kz. This
trajectory differs from a more general 3D spiral sampling scheme, where each spiral shot
may traverse the whole of 3D k-space, instead of being constrained to a specific kz encoding
plane. The stack could contain spiral shots of any kind, e.g., Archimedian spirals, variable
density spirals (VDS) etc. [100, 42, 18]. Fig. 5.1 shows an example of a 2D VDS shot, and
a stack-of-spirals acquisition scheme consisting of VDS shots.

The specific structure of a stack-of-spirals trajectory makes it potentially easier to de-
sign the sequence and acquire data, compared to a general 3D non-Cartesian trajectory,
since we need to design just phase encoding gradient steps along kz, instead of more com-
plex gradient waveforms. Reconstructing stack-of-spirals data is also potentially easier

(a) (b)

Figure 5.1: Spiral sampling trajectories. (a) 2D variable density spiral (VDS). (b) Stack-
of-spirals acquisition consisting of 2D VDS shots.
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than general 3D spiral or other non-Cartesian trajectories, since we can exploit the Carte-
sian structure along kz to speed up reconstruction. General 3D trajectories require a 3D
gridding operation (which is part of the NUFFT), and this is a computationally expensive
operation. For stack-of-spirals data, it can be shown that the 3D gridding operation can
be replaced by 2D gridding followed by a Fourier transform along the kz direction, and
there has been work that exploits this structure to avoid 3D gridding [155]. However, a lot
of these works do not consider the effects of modeling off-resonance, where this simple
method of 2D gridding followed by a 1D FFT along kz breaks down. This chapter analyzes
the stack-of-spirals scheme under the effects of off-resonance, and demonstrates that, under
certain assumptions (low-rankness) of the off-resonance terms, we can still derive efficient
implementations of the forward model.

5.2.2 Off-resonance correction in MRI

In MRI scanners, inhomogeneities in the main magnetic field (B0 field) lead to non-uniform
precessional frequencies of spins, called off-resonance, and this can lead to artifacts in the
reconstructed images. Ref. [53] is a great review paper that describes, in detail, the sources
of off-resonance as well as strategies to mitigate off-resonance effects. Some common
sources of B0 inhomogeneity include: magnet inhomogeneity, magnetic susceptibility ef-
fects (e.g., near air-filled sinuses), chemical shift (e.g., fat-water chemical shift), and metal
implants. Off-resonance can cause artifacts in images such as: geometric distortion that
warps the anatomy, loss of signal in areas with severe off-resonance, and blurring. The

Figure 5.2: Off-resonance effects: Cartesian vs. non-Cartesian acquisitions. Spiral acquisi-
tion contains larger amount of blurring (red arrow), but with less geometric distortion (blue
arrows) compared to EPI. Figure taken from [53].
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artifacts can range from mild to severe based on various factors such as the type of acqui-
sition, anatomy, application etc. Fig. 5.2 compares the off-resonance artifacts for spiral
imaging vs. echo-planar imaging (EPI) and Cartesian imaging.

Off-resonance effects are more pronounced in acquisitions with longer readouts be-
cause of higher phase accrual due to off-resonance. In several applications, long readout
times are preferred due to factors such as the need for efficient k-space coverage (e.g., sin-
gle shot spiral imaging [52]), high echo times (e.g., BOLD fMRI [18]), and the need for
high temporal resolution in dynamic and functional imaging [73]. In such acquisitions, off-
resonance artifacts effects are typically significant and the image artifacts could be severe
if not corrected for. Modeling off-resonance effects in iterative reconstruction methods is
computationally expensive, and there has been work on developing efficient iterative algo-
rithms for off-resonance correction [150, 39]. Additionally, for the specific case of spiral
trajectories with long readouts, there have been works that study the effect of B0 inhomo-
geneities [178, 52].

5.3 Modified NUFFT for stack-of-spirals

This section analyses the forward models for four different cases: stack of identical spirals
with and without off-resonance correction, and rotated stack-of-spirals with and without
off-resonance correction. For each of the four cases, we derive efficient implementations
for the 3D NUFFT-based forward model, by exploiting the structure inherent to that specific
stack-of-spirals configuration. We progressively build up to the most general case, which
is a stack of rotated spirals, with off-resonance effects being modeled.

Notation

• Nxy : number of voxels in-plane (Nxy = NxNy)

• Nz : number of slices

• Ns : number of spiral partitions (we assume 1 shot per partition)

• Nr : number of samples in each spiral readout

In all our analyses, we assume the general case where Ns ≤ Nz, i.e., the number of
spiral partitions is at most the number of slices reconstructed. However, we do assume that
the spiral partitions lie on a Cartesian grid corresponding to the Nz slices, i.e., we do not
need to perform any interpolation along kz for our stack-of-spirals forward model. Petrov
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et al. provide an example of such a stack-of-spirals acquisition, where the central kz phase
encoding planes are fully sampled, while the remaining kz planes are randomly sampled at
every time point in an fMRI study [125].

5.3.1 Stack of identical spirals (no off-resonance correction)

We begin by considering a stack-of-spirals where every spiral shot is identical. Also, we
do not model off-resonance effects in this case. For a 3D stack-of-spirals dataset acquired
using C coils, the signal model can be written as

yc = Acx + ϵc, c = 1, . . . , C, (5.1)

where yc ∈ CNsNr denotes the complex-valued k-space measurements for the cth coil,
x ∈ CNzNxy is the transverse magnetization image to be reconstructed, Ac represents the
forward model for the cth coil while ϵc denotes complex Gaussian noise for the cth coil.

Disregarding off-resonance effects, the system matrix can be written as

Ac = F̃3Sc

= K3F3Z3Sc, (5.2)

where F̃3 ∈ CNsNr×NzNxy denotes the three-dimensional Non-Uniform Fast Fourier Trans-
form (NUFFT) operation [35, 40, 176] and each Sc ∈ CNzNxy×NzNxy represents a coil
sensitivity map. The NUFFT consists of three steps: zero-padding, oversampled FFT, and
interpolation of Cartesian samples onto a non-Cartesian grid. The NUFFT operation in
(5.2) can be broken down as F̃3 = K3F3Z3, where Z3 denotes a zero-padding operation,
F3 represents an oversampled FFT, and K3 denotes the interpolation of Cartesian k-space
values onto a non-Cartesian grid (for our spiral trajectories in this case). Note that F3 is
separable because of the properties of the discrete Fourier transform (DFT), i.e., F3 can be
written separably in terms of the FFT operations along z as well as the 2D FFT operation
in the x-y plane. We use this property to further simplify the 3D NUFFT below.

Our goal is to exploit the Cartesian structure along kz that is inherent to stack-of-spirals
acquisitions, and simplify the 3D NUFFT in (5.2). Since we acquire a stack of identical
spirals, we make the following simplifications in our NUFFT block:

Z3 = INs ⊗Z2

F3 = PFz ⊗ Fx′y′

K3 = INz ⊗K2, (5.3)
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where Z2 ∈ RNx′y′×Nxy denotes zero-padding in-plane so as to help us take the FFT on a
finer grid in the next step. Nx′y′ denotes the number of voxels in-plane after zero-padding (a
typical oversampling factor is 1.25 or 2 in each dimension). INz denotes the Nz ×Nz iden-
tity matrix. Fz ∈ CNz×Nz computes the FFT along the z direction and Fx′y′ ∈ CNx′y′×Nx′y′

denotes the oversampled 2D FFT in-plane. K2 ∈ RNr×Nx′y′ represents 2D interpola-
tion onto non-Cartesian samples. In other words, K2 denotes the in-plane interpolation
of the oversampled Cartesian k-space samples onto our desired spiral trajectory samples.
P ∈ RNs×Nz denotes a selection matrix that picks out only the required kz planes corre-
sponding to the acquired spiral partitions. Each row in P contains a single 1 corresponding
to the relevant kz plane, and the rest are zeroes. For the case when Ns = Nz, then P = INz .

In (5.3), we used the separability of F3 due to the properties of the DFT, i.e.,

F3 = (PFz ⊗ INx′y′
)(INz ⊗ Fx′y′)

= PFz ⊗ Fx′y′ . (5.4)

Using the Kronecker products from (5.3) and using the mixed-product property of Kro-
necker products1, (5.2) simplifies as

Ac = K3F3Z3Sc

= (INs ⊗K2)(PFz ⊗ Fx′y′)(INz ⊗Z2)Sc

= (INs ⊗K2)(INs ⊗ Fx′y′)(PFz ⊗ INx′y′
)(INz ⊗Z2)Sc

= (INs ⊗K2)(INs ⊗ Fx′y′)(INs ⊗Z2)︸ ︷︷ ︸
stack of Ns 2D NUFFT operations

(PFz ⊗ INxy)Sc

= (INs ⊗K2Fx′y′Z2)(PFz ⊗ INxy)Sc

= (INs ⊗ F̃2)(PFz ⊗ INxy)Sc, (5.5)

where F̃2 = K2Fx′y′Z2 is a 2D NUFFT operation performed in-plane. In (5.5), the term
(INs ⊗ F̃2) corresponds to a stack of 2D NUFFT operations applied shot-by-shot for the
Ns spiral shots. The term (PFz ⊗ INxy) corresponds to taking the 1-dimensional FFT
along the z-direction, and then selecting the desired kz planes. Thus, we have simplified
the 3D NUFFT in (5.2) in terms of a 1D FFT along the z-direction, followed by a stack of
2D NUFFT operations performed in-plane. This potentially provides a significant benefit
when Ns < Nz, since we require fewer 2D NUFFT operations than before.

1If A ∈ Rm×n and B ∈ Rp×q , then A ⊗ B = (A ⊗ Ip)(In ⊗ B) = (Im ⊗ B)(A ⊗ Iq). See
https://en.wikipedia.org/wiki/Kronecker_product.
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In (5.5), we manipulate the equations to push the (PFz ⊗ INxy) term all the way to the
right. An alternate approach is to the push it all the way to the left of the expression. This
comes in handy for the specific case when Ns = Nz, i.e., the number of slices is the same
as the number of spiral partitions acquired. When Ns = Nz, we have P = INz and the
system matrix can be written as

Ac = (Fz ⊗ INr)(INz ⊗ F̃2)Sc. (5.6)

The term (Fz⊗INr) is invertible, and its inverse is given by (F−1
z ⊗INr), which corresponds

to the 1D inverse FFT along the z-direction. This implies that we could take the 1D inverse
FFT (along z) of the acquired stack-of-spirals data once at the beginning, and then the
reconstruction simplifies to a stack of 2D NUFFT operations (parallelizable across slices).
This simplification applies only for the specific case when Ns = Nz.

5.3.2 Stack of identical spirals (with off-resonance correction)

This section continues to analyze a stack of identical spirals, but with off-resonance effects
being modeled. As discussed earlier, spiral trajectories are sensitive to off-resonance effects
due to their longer readouts [14], and this results in blurring in the reconstructed images, if
not corrected for. Correcting off-resonance effects during general MR image reconstruction
has been investigated before, and there are efficient reconstruction algorithms to deal with
B0 effects by including them in the signal model [150, 39]. In this section, we investigate
whether we can obtain a simplified forward model for a stack-of-spirals acquisition, while
accounting for off-resonance effects.

The MR signal equation at time t, when considering off-resonance effects, is given by

s(t) =

∫
V

f(r) e−i2π(k(t) · r)︸ ︷︷ ︸
non-uniform FT

e−i ∆ω(r) t︸ ︷︷ ︸
off-resonance term

dr, (5.7)

where r ∈ R3 represents spatial location, V is the imaging volume, f(r) denotes the
transverse magnetization to be reconstructed, k(t) ∈ R3 is the location in k-space at readout
time t. ∆ω(r) is the off-resonance at location r (in radians). From (5.7), the signal equation
can be written as the Hadamard product of two terms: the first term can be captured by a
non-uniform Fourier transform, while the second term captures the phase accrued due to
off-resonance effects.
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If we discretize the latent image f as well as the off-resonance map ∆ω [39] in (5.7),
we can write the system matrix for the cth coil as,

Ac = (F̃3 ⊙ Ω) Sc, (5.8)

where Ω ∈ CNsNr×NzNxy captures the phase accrual due to field inhomogeneity, i.e., Ωij =

e−i∆ωjti is the phase accrued by spins in voxel j at readout time ti. ∆ω ∈ RNzNxy denotes
the fieldmap (in units of radians) that is separately estimated. The symbol ⊙ denotes the
element-wise product or the Hadamard product. The Hadamard product arises from the
MR signal equation in (5.7), due to the product of the non-uniform FT term with the off-
resonance phase term.

Reusing the result in (5.5), we simplify (5.8) as

Ac = (F̃3 ⊙ Ω) Sc

= (K3F3Z3 ⊙ Ω) Sc

= (((INs ⊗ F̃2)(PFz ⊗ INxy)) ⊙ Ω) Sc

= ((PFz ⊗ F̃2) ⊙ Ω) Sc. (5.9)

For a stack-of-spirals acquisition, the vector of readout times t has a special repetitive
structure: every spiral shot has the same readout times. The time restarts at zero after each
excitation pulse, because spins begin in phase then. This results in a periodic structure in
the off-resonance phase matrix Ω given by

Ω =


Ω1 Ω2 . . . ΩNz

Ω1 Ω2 . . . ΩNz

...
...

...
...

Ω1 Ω2 . . . ΩNz

 = 1Ns ⊗
[
Ω1 Ω2 . . . ΩNz

]
, (5.10)

where Ωl ∈ CNr×Nxy represents the phase accrued for all voxels in slice l for all readout
times. The phase accrued in voxel j of slice l at readout time ti is given by [Ωl]ij =

e−i [∆ωl]j ti , where ∆ωl ∈ RNxy is the off-resonance map for slice l. 1Ns represents a vector
of Ns ones.

Expanding the matrices in (5.9) and using the notation [PFz]i,j = ϕi,j for the 1-
dimensional FFT along z, we obtain

Ac = ((PFz ⊗ F̃2) ⊙ Ω) Sc

80



=



ϕ1,1F̃2 ϕ1,2F̃2 . . . ϕ1,NzF̃2

ϕ2,1F̃2 ϕ2,2F̃2 . . . ϕ2,NzF̃2

...
...

...
ϕNs,1F̃2 ϕNs,2F̃2 . . . ϕNs,NzF̃2

⊙


Ω1 Ω2 . . . ΩNz

Ω1 Ω2 . . . ΩNz

...
...

...
...

Ω1 Ω2 . . . ΩNz


 Sc

=


ϕ1,1(F̃2 ⊙Ω1) . . . ϕ1,Nz(F̃2 ⊙ΩNz)

... . . . ...
ϕNs,1(F̃2 ⊙Ω1) . . . ϕNs,Nz(F̃2 ⊙ΩNz)

 Sc

=


ϕ1,1INr . . . ϕ1,NzINr

...
...

...
ϕNs,1INr . . . ϕNs,NzINr



(F̃2 ⊙Ω1)

(F̃2 ⊙Ω2)
. . .

(F̃2 ⊙ΩNz)


︸ ︷︷ ︸

Stack of Nz 2D NUFFTs with off-resonance correction

Sc

= (PFz ⊗ INr)B Sc, (5.11)

where B is a block-diagonal matrix that corresponds to a stack of Nz 2D NUFFT operations
with off-resonance correction. The structure of B lends itself to an embarrassingly parallel2

slice-by-slice implementation. The term (F̃2 ⊙Ωl) corresponds to a 2D NUFFT operation
for slice l (with off-resonance correction). We have exploited the periodicity in the off-
resonance matrix Ω, owing to the fact that the readout times repeat for every single-shot
spiral. To summarize, for the specific case of identical stack-of-spirals (with off-resonance
effects), the derivation above simplifies the forward model from a full 3D NUFFT to a stack
of 2D NUFFT operations (with off-resonance correction) followed by a 1D FFT along z.

5.3.3 Rotated stack of spirals (no off-resonance correction)

This section considers a rotated stack-of-spirals acquisition [26], i.e., the spiral interleaves
in each kz-plane are not identical, but are rotated by a pre-determined amount instead.
Also, we do not consider off-resonance effects in this subsection. This section analyzes the
forward model from two different perspectives: (i) the matrix form of the forward model,
and (ii) the MRI signal equation (integral form).

2An embarrassingly parallel problem is one which can be divided into smaller tasks that have no depen-
dencies on each other, and so can be solved independently of each other.
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5.3.3.1 Perspective: Matrix form of forward model

The forward model for a rotated stack of spirals is similar to the forward model for a stack
of identical spirals (refer to (5.2) in Section 5.3.1), with one prominent difference. For the
case of a rotated stack-of-spirals, the interpolation matrix K3 takes the form of

K3 =


K2,1

K2,2

. . .

K2,Ns

 , (5.12)

where K2,m ∈ RNr×Nx′y′ is the interpolation matrix corresponding to the mth spiral trajec-
tory. Nr is the number of samples in the spiral readout, while Nx′y′ is the number of voxels
(in-plane) on the oversampled Cartesian grid prior to interpolation. Ns is the number of
spiral shots.

Starting from the same forward model as in Section 5.3.1 and using the expression for
K3 from (5.12), we obtain

Ac = K3F3Z3Sc

= K3(PFz ⊗ Fx′y′)(INz ⊗Z2)Sc

= K3(INs ⊗ Fx′y′)(PFz ⊗ INx′y′
)(INz ⊗Z2)Sc

= K3(INs ⊗ Fx′y′)(INs ⊗Z2)(PFz ⊗ INxy)Sc

=


K2,1Fx′y′Z2

K2,2Fx′y′Z2

. . .

K2,NsFx′y′Z2

 (PFz ⊗ INxy)Sc

=


F̃2,1

F̃2,2

. . .

F̃2,Ns


︸ ︷︷ ︸

Stack of Ns 2D NUFFT operations

(PFz ⊗ INxy)Sc, (5.13)

where we used the separability of F3 into Fz and Fx′y′ (due to property of the discrete FT)
in step 2, and the mixed-product property of Kronecker products to go from step 2 to step 5.
F̃2,m denotes the 2D NUFFT operation corresponding to the mth spiral shot.
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Similar to our results in Section 5.3.1 (see (5.5)), we have simplified the 3D NUFFT
operation into a composition of a 1D FFT along z, followed by a stack of 2D NUFFT
operations performed in each of the Ns spiral partitions. This potentially provides signifi-
cant computational speedups for the case Ns < Nz, since we need to perform only Ns 2D
NUFFT operations instead of Nz of them.

5.3.3.2 Alternate perspective: MRI signal equation

This section analyses the rotated stack-of-spirals data from a different perspective: the
MRI signal equation. This perspective is potentially more informative when we consider
off-resonance effects later. The MRI signal equation for the mth spiral shot in the stack-
of-spirals (not considering off-resonance effects and coil sensitivity information) is given
by

sm(ti) =

∫
V

f(r) e−i2π(km(ti) · r) dr, m = 1, 2, . . . , Ns, (5.14)

where r ∈ R3 represents spatial location, V is the imaging volume, f(r) denotes the
transverse magnetization to be reconstructed, km(ti) ∈ R3 is the location in k-space for
the mth spiral at readout time ti. This considers the most general case of arbitrarily rotated
spiral shots in every kz-plane. Additionally, we assume that the length of the spiral readout
Nr and the readout times {ti}Nr

i=1 are identical for each of the Ns spiral shots. Expanding
the spatial location vector r as (x, y, z) and further simplifying, we obtain

sm(ti) =

∫ ∫ ∫
f(x, y, z) e−i2π(km(ti) · (x,y,z)) dx dy dz

=

∫ ∫
e−i2π((km,x(ti), km,y(ti)) · (x,y))

(∫
f(x, y, z) e−i2π(km,z(ti) z) dz

)
dx dy

=

∫ ∫
e−i2π((km,x(ti), km,y(ti)) · (x,y))

(∫
f(x, y, z) e

−i2π(
km
Nz

z)
dz

)
︸ ︷︷ ︸

1D FT (along z)

dx dy,

(5.15)

where km(ti) = (km,x(ti), km,y(ti), km,z(ti)) ∈ R3, and we have used the Cartesian
structure present in the stack-of-spirals data to write km,z(ti) = km. Also, {km}Ns

m=1 ⊆
{−Nz/2, . . . , Nz/2 − 1}( 1

Nz∆z
), since we assume that all Ns spiral partitions lie on the

Cartesian kz grid corresponding to the Nz slices. Here, ∆z denotes the resolution along z

(in units of length). In this case, the inner integral in (5.15) simplifies as the 1-dimensional
Fourier Transform (FT) of f(x, y, z) along z, evaluated at the desired values {km}, i.e.,
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sm(ti) =

∫ ∫
Fz(x, y; km) e

−i2π((km,x(ti), km,y(ti)) · (x,y)) dx dy, (5.16)

where Fz(x, y; km) represents the result of taking the 1-dimensional FT of f(x, y, z) along
z and extracting the kz-plane corresponding to km. The double integral in (5.16) is the
2-dimensional non-uniform FT of Fz(x, y; km) for the mth spiral shot. If we appropriately
discretize the transverse magnetization f(x, y, z) and write (5.16) in a block matrix for-
mulation (along with coil sensitivity information), the forward model can be written as a
composition of functions:

• Weighting by sensitivity maps

• 1D FFT along z, evaluated at {km}Ns
m=1

• Stack of Ns 2D NUFFT operations

This is the same as the result we obtained in (5.13), which we derived by writing the
forward model in the form of matrices.

5.3.4 Rotated stack-of-spirals (with off-resonance correction)

This section considers a rotated stack-of-spirals with off-resonance effects being modeled.
This is the most general configuration of a stack-of-spirals acquisition. We analyze the
forward model under both perspectives: the matrix form, as well as the integral form of
the MRI signal equation (basic principles). The matrix form seems to be challenging to
simplify (Section 5.3.4.1), while the integral form gives us more insight into deriving an
efficient implementation of the forward model (Section 5.3.4.2).

5.3.4.1 Attempt 1: Matrix form of forward model

When off-resonance effects are modeled, the system matrix is written as

Ac = (K3F3Z3 ⊙ Ω) Sc

=






F̃2,1

F̃2,2

. . .

F̃2,Ns

 (PFz ⊗ INxy)

 ⊙ Ω

 Sc, (5.17)

where we have started with the forward model from Section 5.3.2, and we have used the
result from (5.13) for simplifying the 3D NUFFT terms, i.e., K3F3Z3. Ω ∈ CNsNr×NzNxy
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captures the phase accrual due to field inhomogeneity, i.e., Ωij = e−i∆ωjti is the phase
accrued in voxel j at readout time ti. For our specific case where we assume that the
readout times are the same for every spiral shot, the structure of Ω was shown before in
(5.10). Fz denotes the 1D FFT along z, while F̃2,m denotes the 2D NUFFT operation
corresponding to the mth spiral shot.

Expanding Fz using the notation [PFz]i,j = ϕi,j and exploiting the periodic structure
of Ω shown in (5.10), we obtain

Ac =



F̃2,1

F̃2,2

. . .

F̃2,Ns



ϕ1,1INxy ϕ1,2INxy . . . ϕ1,NzINxy

ϕ2,1INxy ϕ2,2INxy . . . ϕ2,NzINxy

...
...

...
ϕNs,1INxy ϕNs,2INxy . . . ϕNs,NzINxy



⊙


Ω1 Ω2 . . . ΩNz

Ω1 Ω2 . . . ΩNz

...
...

...
...

Ω1 Ω2 . . . ΩNz


Sc

=




ϕ1,1F̃2,1 ϕ1,2F̃2,1 . . . ϕ1,NzF̃2,1

ϕ2,1F̃2,2 ϕ2,2F̃2,2 . . . ϕ2,NzF̃2,2

...
...

...
ϕNs,1F̃2,Ns ϕNs,2F̃2,Ns . . . ϕNs,NzF̃2,Ns

 ⊙


Ω1 Ω2 . . . ΩNz

Ω1 Ω2 . . . ΩNz

...
...

...
...

Ω1 Ω2 . . . ΩNz


Sc

=


ϕ1,1(F̃2,1 ⊙Ω1) ϕ1,2(F̃2,1 ⊙Ω2) . . . ϕ1,Nz(F̃2,1 ⊙ΩNz)

ϕ2,1(F̃2,2 ⊙Ω1) ϕ2,2(F̃2,2 ⊙Ω2) . . . ϕ2,Nz(F̃2,2 ⊙ΩNz)
...

...
...

ϕNs,1(F̃2,Ns ⊙Ω1) ϕNs,2(F̃2,Ns ⊙Ω2) . . . ϕNs,Nz(F̃2,Ns ⊙ΩNz)

 Sc.

(5.18)

In hopes of reducing computation, a goal is to disentangle the FFT along the z-
dimension (comprising of ϕi,j terms) from the 2D NUFFT operations with off-resonance
correction (the bracketed terms with the Hadamard product). That would result in an effi-
cient implementation of the forward model, since the 2D NUFFT operations could then be
performed slice-by-slice in parallel. However, there does not seem to be a way to do this in
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(5.18). In the following section, we start from first principles (the basic MRI signal equa-
tion) and explore whether that helps us obtain any insights (using approximations where
required).

5.3.4.2 Attempt 2: MRI signal equation

To account for off-resonance effects, we write the MRI signal equation for the mth spiral
shot as (see (5.15))

sm(ti) =

∫ ∫ ∫
f(x, y, z) e−i2π(km(ti) · (x,y,z)) e−i∆ω(x,y,z)ti︸ ︷︷ ︸

Off-resonance term

dx dy dz

=

∫ ∫
e−i2π(km,2(ti) · (x,y))

(∫
f(x, y, z) e−i∆ω(x,y,z)ti e−i2π(km,z(ti) z) dz

)
dx dy

=

∫ ∫
e−i2π(km,2(ti) · (x,y))

(∫
f(x, y, z) e−i∆ω(x,y,z)ti e

−i2π(
km
Nz

z)
dz

)
dx dy,

(5.19)

where ∆ω(x, y, z) is a separately acquired off-resonance map. km,2(ti) is the 2-
dimensional k-space location along the kx and ky axes for the mth spiral shot at readout
time ti. Unlike (5.15) in Section 5.3.3.2, we cannot simplify the inner integral into the form
of a 1D FT along z, owing to the presence of the additional e−i∆ω(x,y,z)ti term. It seems
hard to simplify further without making some approximations for the off-resonance terms.

We consider a low-rank approximation to the off-resonance terms (for each spiral shot),
given by

e−i∆ω(x,y,z)ti ≈
L∑
l=1

bl(ti) cl(x, y, z), (5.20)

where {bl(·)}Ll=1 and {cl(·)}Ll=1 are L basis functions underlying the low-rank approxima-
tion of the non-Fourier exponential terms [39]. In matrix form (after discretization of the
object), we can write this as

[e−i∆ωjti ] ≈ BC, (5.21)

where B ∈ CNr×L and C ∈ CL×Nv capture the basis functions in matrix form. Nr is the
number of samples in each spiral shot, while Nv = NzNxy is the number of voxels being
reconstructed. Using this low-rank approximation in (5.19) and rearranging, we obtain
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sm(ti) ≈
∫ ∫

e−i2π(km,2(ti) · (x,y))

(∫
f(x, y, z)

(
L∑
l=1

bl(ti) cl(x, y, z)

)
e
−i2π(

km
Nz

z)
dz

)
dx dy

=
L∑
l=1

bl(ti)

[ ∫ ∫
e−i2π(km,2(ti) · (x,y))

(∫
f(x, y, z) cl(x, y, z) e

−i2π(
km
Nz

z)
dz

)
︸ ︷︷ ︸
1D FT (along z) with a weighting function ≜ Fz(x,y;km,l)

dx dy

]

=
L∑
l=1

bl(ti)

[∫ ∫
Fz(x, y; km, l) e

−i2π(km,2(ti) · (x,y)) dx dy

]
︸ ︷︷ ︸

2D NUFFT operation

, (5.22)

where Fz(x, y; km, l) represents the result of taking the 1D Fourier Transform (FT) of the
term f(x, y, z) cl(x, y, z) along z, evaluated at the kz-plane corresponding to km.

After discretizing the integrals in (5.22), the order of operations for a practical imple-
mentation of the forward model can be written as (for l = 1, 2, . . . L):

• Scaling of input volume f(x, y, z) by the lth spatial basis function, i.e., cl(x, y, z),
and coil sensitivity maps

• 1D FFT (along z) of this scaled volume, evaluated at the desired planes {km}

• 2D NUFFT operations performed for each spiral shot in parallel

• Scaling with temporal basis functions, i.e., bl(ti), and sum over all L terms

We began with 3D NUFFT operations in the forward model, and simplified it to a com-
position of 1D FFTs (along z) and 2D NUFFT operations which is parallelizable across
spiral shots. This needs to be repeated L times, since our approximation in (5.20) consists
of L basis functions. However, the computations for each of the L terms can be indepen-
dently done, providing further opportunities for speedup. In the next section, we perform a
big-O analysis of (5.22) to investigate how much of a computational speedup it could po-
tentially offer, as compared to a conventional implementation based on the full 3D NUFFT.

87



Big-O analysis

This section analyses the computational overhead of three different implementations of the
stack-of-spirals forward model:

• Recommended formulation in (5.22) (1D FFT along z followed by 2D NUFFTs)

• Full 3D NUFFT

• Modified 3D NUFFT (exploiting Cartesian structure along kz)

Our recommended formulation in (5.22) involves taking a 1D FFT along the z direction,
followed by Ns 2D NUFFTs (i.e., one NUFFT per spiral shot), for every basis function, i.e.,
L times. For all our big-O analyses, we assume that the oversampling factor (within the
NUFFT) is 2 and that the k-space interpolator width is J along each dimension. Under
these conditions, the computational cost of our recommended approach in (5.22) is

O(L { NxyNz logNz︸ ︷︷ ︸
Cost of 1D FFT along z

+ Ns( 2
2Nxy log(2

2Nxy) + J2Nr︸ ︷︷ ︸
Cost of 2D NUFFT

)})

= O(L {NxyNz logNz + 4NsNxy log(2
2Nxy) + J2NsNr})

= O(L {NzNxy logNz + 4NsNxy logNxy + (8 log 2)NsNxy + J2NsNr}). (5.23)

For the conventional approach that does not exploit the stack-of-spirals structure and
takes full 3D NUFFTs of the whole image volume, the computational cost is [39]

O(L { 23NzNxy log(2
3NzNxy) + J3NsNr︸ ︷︷ ︸

Cost of 3D NUFFT

})

= O(L {8NzNxy log(2
3NzNxy) + J3NsNr})

= O(L {8NzNxy logNz + 8NzNxy logNxy + (24 log 2)NzNxy + J3NsNr}).
(5.24)

The implementation in (5.24) considers the full 3D NUFFT without exploiting the
stack-of-spirals structure in any way. For a more apples-to-apples comparison with our
recommended approach in (5.23), we consider a modified 3D NUFFT approach where we
exploit the Cartesian structure along z that is present in stack-of-spirals acquisitions. E.g.,
we do not need to oversample along the z dimension in the 3D NUFFT, since the kz par-
titions already lie on a Cartesian grid. Also, instead of a 3D interpolation step, we can
perform 2D interpolation in-plane. Incorporating these modifications, the computational
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Approach Computational overhead

Full 3D NUFFT (5.24)
O(L {8NzNxy logNz + 8NzNxy logNxy

+ (24 log 2)NzNxy + J3NsNr})

Modified 3D NUFFT (5.25)
O(L {4NzNxy logNz + 4NzNxy logNxy

+ (8 log 2)NzNxy + J2NsNr})

Recommended implementation (5.23)
O(L {NzNxy logNz + 4NsNxy logNxy

+ (8 log 2)NsNxy + J2NsNr})

Table 5.1: Comparison of computational costs for three different implementations of the
forward model for stack-of-spirals acquisitions.

cost is

O(L { 22NzNxy log(2
2NzNxy) + J2NsNr︸ ︷︷ ︸

Cost of modified 3D NUFFT
(exploiting Cartesian structure along z)

})

= O(L {4NzNxy log(2
2NzNxy) + J2NsNr})

= O(L {4NzNxy logNz + 4NzNxy logNxy + (8 log 2)NzNxy + J2NsNr}).
(5.25)

The modified NUFFT approach in (5.25) could potentially be implemented using existing
image reconstruction toolboxes. For instance, in MIRTorch, which is a PyTorch-based
image reconstruction toolbox [161], there are keyword arguments for oversampling factors
and k-space interpolation widths in the forward model, that knowledgeable users can select,
to exploit the Cartesian structure in stack-of-spirals data. E.g., the number of points to be
used for interpolation in the 3D NUFFT can be passed in as an argument to the forward
model. By default, this is set to a non-zero value in all three directions (typically 6). For
stack-of-spirals acquisitions, one can obtain a reconstruction speedup by modifying this
argument to ensure that no interpolation is performed along z.

Table 5.1 summarizes the computational costs of the three approaches in (5.23), (5.24)
and (5.25). Compared to the full 3D NUFFT, our recommended implementation signifi-
cantly reduces computational cost, especially as we consider higher number of interpola-
tion points J (since our recommended implementation is O(J2) vs. the full 3D NUFFT
which is O(J3)). The modified 3D NUFFT implementation provides a more apples-to-
apples comparison with our recommended implementation. The computational cost of our
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recommended implementation is slightly lower than the modified 3D NUFFT, and the sav-
ings become more pronounced when Ns is lower than Nz.

5.4 Experiments

Table 5.1 shows the reduction in computational costs obtained for the recommended
NUFFT implementation for stack-of-spirals (2D NUFFTs + 1D FFT along kz). To see
if the theoretical speed-up of the recommended approach translated to a computational
speed-up in practice, we performed simulations to obtain the wall clock times of all three
implementations of the forward model for stack-of-spirals. We simulated a stack-of-spirals
acquisition with a field of view of [22cm, 22cm, 10cm] and a matrix size of [92, 92, 42].
This imaging setup corresponds to an isotropic resolution of 2.4mm.

Fig. 5.1 shows the stack-of-spirals trajectories that we used for our experiments. For our
spiral trajectory, we used a variable density spiral (VDS) with a fully sampled center and
3-fold undersampling at the edges of k-space. We used an acceleration factor of 3 in-plane;
every kz encode has a single spiral shot, and successive shots are rotated by 120◦, for a total
of 42 shots. We used off-resonance maps estimated from a separate 3D GRE acquisition of
a human brain. For all our experiments, we used a PyTorch-based toolbox called MIRTorch
[161], which is an open-source toolbox for image reconstruction. MIRTorch uses a package
called torchkbnufft [107] for non-uniform FFT operations under the hood. We performed
all experiments on a 20-core Intel® Xeon® E5-2698 v4 processor (2.2GHz). We found that
the full 3D NUFFT implementation used ∼ 70% of total CPU time (obtained using the top

command in Linux, under the %CPU column), while the other two implementations used
an average of ∼ 50%.

Fig. 5.3 shows the timing and accuracy results of our simulations. We compared
three different implementations of the forward model for stack-of-spirals MRI: (i) Full
3D NUFFT, (ii) modified 3D NUFFT call with interpolation performed only in the kx − ky

plane, and (iii) our recommended implementation (2D NUFFT followed by a 1D FFT along
kz). For our timing experiments, we randomly initialized an input image, and simulated
each of our forward model implementations 5 times (for the same random input). We then
took the mean of all 5 runs; this was done to hopefully get a consistent estimate of wall
clock times. Fig. 5.3a shows the wall clock times vs. the number of bases used in the low-
rank approximation for off-resonance correction (denoted by L). The timing plot shows a
clear reduction in wall clock time with our recommended implementation of the forward
model. The modified implementation of the 3D NUFFT reduces the wall clock time by
∼68% compared to the full 3D NUFFT, while our recommended implementation (with 2D
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(a) (b)

(c)

Figure 5.3: Results of simulating different implementations of the NUFFT-based forward
model for a stack-of-spirals acquisition. (a) (Empirical) wall clock time, (b) (Predicted)
floating point operations (FLOPs) computed using Table 5.1, (c) NRMSD vs. number of
components in the low-rank approximation of the off-resonance terms (L).

NUFFTs + 1D FFT along kz) further reduces the wall clock time by ∼22%, at the higher
values of L. Fig. 5.3b shows the (predicted) floating point operations (FLOPs) per coil vs.
L for all three implementations; these are computed from Table 5.1 with Nx = Ny = 90,
Nz = Ns = 42, and J = 6.

To ensure that the recommended approach does not affect the accuracy of the result, we
studied the differences between our recommended approach and a baseline implementation.
For our baseline method, we used the full 3D NUFFT call in MIRTorch [161] with more
neighbors used for interpolation (11 neighbors used in all 3 directions vs. 6 used in the
default call). We then computed the normalized root mean square difference as

NRMSD =
∥y − y∗∥2
∥y∗∥2

, (5.26)

where y is the result of the given forward model implementation under consideration, and
y∗ is the result of the baseline implementation. We repeated this for all three implementa-
tions of the forward model and across a range of values of L; Fig. 5.3c shows the results. To
ensure an apples-to-apples comparison between all three implementations in Fig. 5.3c, we
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fixed the bases used in the low-rank approximation for off-resonance correction (i.e., matri-
ces B and C in (5.21) are kept fixed). In other words, we are only interested in numerical
differences caused by the NUFFT implementation, and not by the low-rank approximation
used in off-resonance correction. For the recommended implementation, we obtain a very
low value of NRMSD, on the order of 8e-5. All operations (including the non-uniform
FFT) were performed using 32 bit floating point for the real and imaginary parts, i.e., we
used the torch.complex64 datatype in PyTorch.

Images: Density-compensated adjoint reconstruction

The preceding sections analyzed the timing and accuracy of the forward model for
stack-of-spirals MRI, comparing our recommended implementation (1D FFT along z fol-
lowed by a stack of 2D NUFFT operations) against conventional 3D NUFFT-based imple-
mentations. It is also desirable to see how the recommended implementation performs with
reconstructing images. To analyze this, we implemented the adjoint of the recommended
implementation, which corresponds to a stack of 2D adjoint NUFFT operations, followed
by a 1D inverse FFT along the kz direction. Using a simple digital phantom, we compared
the adjoint reconstructions of our recommended implementation for stack-of-spirals MRI
vs. the baseline implementation based on the conventional 3D NUFFT.

Fig. 5.4 shows the results of this comparison. We created a simple digital phantom,
and simulated a stack-of-spirals acquisition with a field of view of [22cm, 22cm, 10cm]
and a matrix size of [92, 92, 42]. Fig. 5.4a shows the ground truth of our digital phantom.
In previous experiments, we demonstrated that the recommended implementation is very
close to the baseline implementations (on the order of 8e-5; see Fig. 5.3c), for a wide range
of values for L. Thus, in this set of experiments, we do not consider off-resonance effects
and only look at the adjoint reconstructed images in the absence of off-resonance. For our
stack-of-spirals trajectory, we used the same setup as described before: we used a variable
density spiral with a fully sampled center and 3-fold undersampling at the edges of k-space.
Each kz-encode contained a single spiral shot, and successive shots were rotated by 120◦.

Figs. 5.4b and 5.4c show the adjoint reconstructions (with density compensation [127])
for the baseline 3D NUFFT-based implementation and the recommended implementation
respectively. The baseline implementation involved the 3D NUFFT with J = 11 inter-
polation neighbors in all three directions. The reconstructed magnitude images are scaled
between 0 and 1 by normalizing with the maximum value over the entire volume. The
recommended implementation produces visually similar images to the baseline reference
implementation. Fig. 5.4 shows 15 slices in the middle of the digital phantom.
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5.5 Discussion

Undersampling in MRI is a major factor in obtaining faster acquisitions and higher tempo-
ral resolutions in several MRI applications (quantitative, dynamic, functional imaging etc.).
Spiral trajectories are a popular choice for undersampling because of their efficient k-space
coverage and robustness to motion, among other factors. However, depending on the appli-
cation, we often require spiral readouts with longer durations, and this makes them sensitive
to off-resonance effects. Correcting for these off-resonance effects makes the reconstruc-
tion problem more complex, and typically increases reconstruction time. This chapter aims
to reduce reconstruction time specifically for stack-of-spirals MRI, in the presence of off-
resonance.

In the absence of off-resonance effects, and if we consider a stack of identical spirals,
then it is sufficient to take a 1D FFT of the k-space data at each sample location, along the
kz direction once at the beginning, and then just work with 2D NUFFTs for each kz encode.
However, the forward model becomes more complex when we consider non-identical shots
in every partition, and if we would like to model off-resonance effects due to field inhomo-
geneities. This chapter considers the most general case of a stack of rotated spirals, as well
as with off-resonance effects being modeled. Our contribution is that we mathematically
analyze the forward model for this most general case of the stack-of-spirals, and show that
we can exploit the Cartesian structure inherent in stack-of-spirals to obtain a computational
speedup in the forward model. We show that we can replace the 3D NUFFT operation with
a stack of 2D NUFFT operations followed by a 1D FFT performed along the z direction.
We demonstrate the computational benefits of the recommended approach using timing and
accuracy plots in Fig. 5.3.

The timing plot in Fig. 5.3a shows a clear increasing linear trend for the three different
implementations of the forward model as we increase L, i.e., as we increase the number of
bases in the low-rank approximation to the off-resonance terms. Also, the gap between the
three lines increases as we move to higher values of L. For the highest value of L in the
plot, i.e., L = 40, the modified NUFFT implementation reduces wall clock time by about
68% compared to the full 3D NUFFT. In other words, if we just replace a full 3D NUFFT
call (which takes 6 neighbors in all 3 directions for interpolation) with a modified NUFFT
call (with 6 neighbors only in x and y directions, and no interpolation along z), then we
obtain a huge speedup. Additionally, our recommended approach further reduces the wall
clock time by around 22%, which is a significant speedup, especially at large values of L
and at higher spatial resolutions.
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The accuracy plot in Fig. 5.3c demonstrates very low values of normalized root mean
square difference (NRMSD) for the recommended implementation (on the order of 8e-5).
However, it is interesting that the accuracy curves for both the full 3D NUFFT as well
as the modified 3D NUFFT are lower than the recommended approach. This suggests
that our choice of the baseline implementation for the computation of the NRMSD curves
might need to be carefully examined. For our baseline implementation, we used the full
3D NUFFT call with 11 neighbors used for interpolation along all three directions, instead
of the default 6 neighbors. It would be interesting to explore a different baseline method,
based on an exact computation, though that would be very slow to evaluate.

For all of our experiments, we used a 20-core Intel® Xeon® processor. An extension of
this work would be to harness the power of graphical processing units (GPU) and poten-
tially obtain further computational speedups. Our recommended approach contains a series
of 2D NUFFT operations which could be performed slice-by-slice, and this parallelism
could be further exploited.

For speeding up iterative reconstruction with off-resonance correction, there has been
work exploiting the Toeplitz-like structure of the Gram matrix of the forward model (using
suitable approximations) [39]. A future direction could be to explore whether we could
incorporate this into our recommended implementation for stack-of-spirals MRI to obtain
further speedups.

5.6 Conclusions

We analyzed the forward model for stack-of-spirals MRI and provided a way to exploit
the Cartesian structure inherent in stack-of-spirals acquisitions (along the kz direction) to
obtain a computational speedup (even in the presence of off-resonance). We showed that
the 3D NUFFT in the forward model for stack-of-spirals MRI can be replaced with a series
of 2D NUFFT operations in-plane and a 1D FFT along the through-plane direction. We
analyzed the computational complexity of our recommended approach and showed that it
has a lower computational cost than existing implementations. We simulated the forward
model for stack-of-spirals MRI, and demonstrated that our recommended implementation
leads to faster wall clock times than the conventional 3D NUFFT-based implementations.
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(a) Ground truth

(b) Baseline 3D NUFFT implementation

(c) Recommended implementation

Figure 5.4: Comparison of density-compensated adjoint reconstructions for baseline 3D
NUFFT and recommended implementations for stack-of-spirals MRI, and ground truth.
(Note: All three sets of images were scaled individually between 0 and 1.)
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CHAPTER 6

Harmonization of Acquisition and
Reconstruction Methods for Stack-of-Spirals

MRI

6.1 Introduction

This chapter includes preliminary work on creating vendor-agnostic workflows for acquir-
ing and reconstructing stack-of-spirals MRI data. We develop and introduce a toolbox
called SOSP3d, which is an open-source package containing both acquisition and recon-
struction methods for stack-of-spirals MRI, under one umbrella.

Reproducibility and repeatability of MRI studies has been a well-researched topic over
the years, across a wide variety of different applications in MRI [105, 119]. To promote
reproducibility in the MR community, there have been a lot of challenges, tasks and datasets
released by research groups [108, 44, 8, 96]. The need for reproducibility becomes even
more important in the case of quantitative MRI (qMRI), where we would like the estimated
parameter maps to be invariant to different experimental conditions [72]. Variability in
experimental conditions could arise due to several sources such as number of channels
used for parallel imaging (e.g., 16-channel or 32-channel coils), sensitivity of the coils,
imaging gradient non-linearity, magnetic field inhomogeneity, differences in toolboxes and
algorithms used to reconstruct the data, different software versions on the scanner, as well
as other scanner related factors [184, 152, 69]. These variations make it challenging to
harmonize MRI protocols across different vendors (GE, Siemens, Philips etc.) as well as
across different scanners from the same vendor.

An important milestone on the road to achieving reproducibility of results in MRI
is harmonization of MRI protocols and workflows across different vendors and settings.
We define harmonization of MRI as designing vendor-agnostic MRI acquisition and re-
construction protocols. Studies have shown that vendor-neutral MR workflows result in
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reduced inter-vendor variability of qMRI parameters such as T1, magnetization trans-
fer ratio (MTR), and magnetization transfer saturation-index (MTsat) [72]. There are
both open-source and proprietary solutions for developing vendor-neutral MR frameworks
[24, 153, 135].

This chapter introduces a vendor-agnostic toolbox for the acquisition and reconstruc-
tion of stack-of-spirals MRI data, called SOSP3d [111]. Chapter 5 provided background
on stack-of-spirals MRI and derived efficient implementations for its forward model, in the
presence of off-resonance. This chapter provides a vendor-neutral workflow for stack-of-
spirals MRI from start to end, right from acquisition of stack-of-spirals data to reconstruct-
ing the data. For developing acquisition scripts for stack-of-spirals MRI, our toolbox uses a
Python-based open-source package for MRI pulse sequence design called PyPulseq [131].
For reconstructing the acquired data, we use a PyTorch-based image reconstruction toolbox
called MIRTorch [161].

Our SOSP3d toolbox is written in a combination of Python and MATLAB; MATLAB
is primarily used to read the acquired stack-of-spirals data (e.g., using TOPPE [116] for
GE scanners). Our toolbox is aimed at MRI users who would like to use stack-of-spirals
MRI for their own applications, and requires only basic proficiency in Python. Also, we
provide detailed documentation in the GitHub repository of our toolbox1, starting from the
very basics of setting up a Python environment with the relevant packages. By combining
both acquisition and reconstruction methods for stack-of-spirals MRI under one umbrella,
and hopefully providing sufficient documentation for practitioners who are not seasoned
Python users, we hope that our SOSP3d toolbox would be useful for researchers to cre-
ate vendor-agnostic workflows for various applications, e.g., fMRI studies using stack-of-
spirals acquisitions.

The rest of the chapter is organized as follows: Section 6.2 contains relevant back-
ground for this chapter. Section 6.3 describes the SOSP3d toolbox, while Section 6.4
provides details of our experiments using the toolbox. Sections 6.5 and 6.6 contain our
discussions and conclusions respectively, along with a few future research directions.

1https://github.com/HarmonizedMRI/SOSP3d
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6.2 Background

6.2.1 Software/toolboxes for MR acquisition

For MR pulse sequence design, there are various open-source pulse sequence development
platforms from multiple research groups [67, 95, 80, 116, 131]. These tools provide use-
ful cross-platform alternatives to vendor-supplied pulse sequence design and editing tools.
ODIN is an open-source cross-platform development environment (implemented in C++)
for NMR experiments. SequenceTree is an open-source graphical environment for pulse
sequence programming [95]. RTHawk [135] is another vendor-neutral solution for real-
time MRI, but it is a proprietary platform, which could potentially limit its use in academic
research settings.

TOPPE [116] and Pulseq [80] are two relatively recent pulse sequence prototyping
platforms. Both TOPPE and Pulseq share the same design philosophy: to clearly separate
the sequence specification from scanner implementation [116]. E.g., using Pulseq, pulse
sequence programming can be done in a hardware-independent manner (using MATLAB
or JEMRIS GUI), and the resulting file is then executed using a hardware-specific inter-
preter for the specific vendor of choice (Siemens, GE, Bruker etc.) [80]. With a push
towards open-source languages, there has been recent work with programming Pulseq se-
quences using Python, called PyPulseq [131], or using an open-source visual interface
called Pulseq-GPI [132]. There is also recent work developing an open-source MRI simu-
lation framework in Julia, called KomaMRI.jl [17].

6.2.2 Software/toolboxes for MR reconstruction

Image reconstruction is another key part of the MRI pipeline, and scanner-independent
image reconstruction platforms are essential for improving reproducibility in MRI studies.
Michigan Image Reconstruction Toolbox (MIRT)2 is a collection of open-source algorithms
for image reconstruction, written in MATLAB. Specifically for MR image reconstruction,
MIRT has a lot of relevant algorithms including the non-uniform FFT (NUFFT) as well
as algorithms for off-resonance correction. SigPy3 is another Python-based package use-
ful for iterative algorithms for signal processing and image reconstruction. Additionally,
both MIRT and SigPy also have modules for MRI pulse design. Gadgetron [49] is an-
other open-source framework proposed for image reconstruction, along with an extension
for distributed MRI [175]. BART4 is another free and open-source image reconstruction

2https://github.com/JeffFessler/mirt
3https://github.com/mikgroup/sigpy
4https://mrirecon.github.io/bart/index.html
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toolbox [154], providing support for both MATLAB and Python; it has a suite of iterative
algorithms as well as algorithms for sensitivity map estimation.

MIRTorch [161] is another open-source differentiable image reconstruction toolbox
based on PyTorch. MIRTorch is inspired by MIRT, and contains a suite of linear oper-
ators and algorithms for various imaging applications such as MRI and SPECT. It has a
modular structure, which facilitates easy development of novel image reconstruction algo-
rithms. With native PyTorch support, MIRTorch supports the implementation of modern
model-based deep learning methods, since it is fully auto-differentiable. Also, MIRTorch
provides fast iterative algorithms for image reconstruction, supported by GPU implemen-
tations.

6.3 SOSP3d toolbox

SOSP3d is our open-source toolbox for implementing stack-of-spirals MRI in a vendor-
agnostic manner, from start to finish. We provide tools for implementing both acquisition
and reconstruction, and help facilitate rapid prototyping of entire workflows based on stack-
of-spirals MRI. This toolbox is written in a combination of Python and MATLAB. We use
Python for all of our acquisition and reconstruction code, while MATLAB is currently
used for the vendor-specific parts such as reading in the data acquired on the scanner (e.g.,
reading GE data using TOPPE).

For reconstruction, we use code for iterative algorithms from MIRTorch. The aim is
to create a toolbox for users who are not necessarily proficient in Python or maybe not
very well-versed with iterative reconstruction in general. To that end, we implemented
wrappers around simple iterative algorithms such as CG-SENSE [129] (implemented using
MIRTorch), with default settings that should hopefully work right out of the box for many
applications. More knowledgeable users can adjust other settings such as regularization
strength, NUFFT arguments, number of iterations etc. to optimize for better image quality
or faster reconstruction. Our reconstruction algorithms expect the stack-of-spirals data in
a vendor-independent format, either as .h5 or .mat files. The vendor-specific k-space data
from the scanner needs to be converted into either of these two formats. We also provide an
option for off-resonance correction in CG-SENSE; there are options to estimate fieldmaps
using either MATLAB (MIRT) or Julia (MRIFieldmaps.jl5).

For acquisition, we base our stack-of-spirals pulse sequence design on the PyPulseq
[131] framework. For generation of gradients for the spiral trajectories, as well as other

5https://github.com/MagneticResonanceImaging/MRIFieldmaps.jl
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parts of the RF pulse design itself, we use the mri.rf module6 in the SigPy package. The
output of pulse sequence design is a .seq file (which is a vendor-independent open file
format) that can be directly run on Siemens scanners. To run on GE scanners, we require
a GE-specific interpreter that has been recently developed for arbitrary Pulseq sequences
[117].

6.4 Experiments

6.4.1 SOSP3d-based reconstruction

This subsection describes experiments that test only the reconstruction part of our SOSP3d
toolbox, and not the acquisition module. We used TOPPE to write the stack-of-spirals
acquisition code. Fig. 6.1 shows the variable density spirals (VDS) used in our stack-
of-spirals acquisition. Each of our spiral shots has a fully sampled center and is 3-fold
undersampled at the outer edges of k-space. For this set of experiments, we acquired a
field-of-view (FOV) of 22.08 × 22.08 × 10.08 cm3, with a matrix size of 92 × 92 × 42 on
a GE 3T scanner. This corresponds to an isotropic resolution of 2.4 mm. For estimation of
fieldmaps, we acquired two gradient echo (GRE) scans with an echo time shift of ∼ 2.27
ms.

For our stack-of-spirals scan, we acquired fully sampled data, i.e., 3 spiral shots per
kz-encode, for a total of 126 shots. We retrospectively undersampled the data to process

(a) (b)

Figure 6.1: Stack-of-spirals trajectories used for our experiments. (a) 2D variable density
spiral (VDS). (b) Stack-of-spirals acquisition consisting of 2D VDS shots.

6https://sigpy.readthedocs.io/en/latest/mri_rf.html
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Figure 6.2: Stack-of-spirals brain data acquired using TOPPE and reconstructed (with off-
resonance correction) using our SOSP3d toolbox. (Undersampling factors: Rxy = 3,
Rz = 1.)

just 1 spiral shot per kz-encode (for a total of 42 shots). To obtain a rotated stack-of-spirals
dataset, we rotated successive spiral shots by 120◦. This corresponds to an undersampling
factor of Rxy = 3 in-plane, and Rz = 1 in the through-plane direction.

We reconstructed the undersampled stack-of-spirals data using our SOSP3d toolbox.
We ran 10 iterations of CG-SENSE [129] with regularization using a quadratic roughness
penalty, along with off-resonance correction [39]. Fig. 6.2 shows the field maps, as well as
the reconstructed images (with and without off-resonance correction).

6.4.2 SOSP3d-based acquisition and reconstruction

This subsection describes our experiments to test both the acquisition and reconstruction
modules of our SOSP3d toolbox, using the ball phantom. In contrast with the previous set
of experiments in Section 6.4.1, we developed our acquisition scripts using PyPulseq (as
part of our toolbox), instead of using TOPPE. We used the same stack-of-spirals setup with
variable density spirals (VDS) as shown in Fig. 6.1. The VDS shots are fully sampled in
the center and are 3-fold undersampled at the outer edges of k-space. We acquired a field
of view of 21.6 × 21.6 × 14.4 cm3, with a matrix size of 90 × 90 × 60, corresponding to
an isotropic resolution of 2.4 mm.

For our stack-of-spirals acquisition, we acquired a prospectively undersampled dataset
with 1 spiral shot per kz-encode, for a total of 60 shots. Shots in successive kz-encodes were
rotated by 120◦. We reconstructed the acquired data using the reconstruction module of our
toolbox. We ran 20 iterations of conjugate gradient with SENSE (CG-SENSE), without off-
resonance correction. For regularization, we used a quadratic roughness penalty. Fig. 6.3
shows the reconstructed images of the ball phantom.
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Figure 6.3: Reconstructed images of the ball phantom both acquired as well as recon-
structed with our SOSP3d toolbox. (Acquisition: stack-of-spirals with undersampling fac-
tors of Rxy = 3 and Rz = 1.)

6.5 Discussion

This chapter develops tools for harmonizing acquisition and reconstruction methods for
stack-of-spirals MRI; in particular, we introduced a toolbox called SOSP3d that contains
both acquisition as well as reconstruction modules for stack-of-spirals under one umbrella.
Section 6.4 described our experiments to test the acquisition and reconstruction modules
of our SOSP3d toolbox. We tested our PyPulseq-based acquisition scripts using a ball
phantom; Fig. 6.3 shows the reconstructed images. The next step would be to acquire a
brain dataset using a volunteer, and to verify that the stack-of-spirals acquisition module
works well with an example of a human brain.

For non-Cartesian trajectories such as spiral trajectories, it is especially important to
have knowledge of the actual trajectory that was acquired on the scanner; this is required
for the non-uniform FFT (NUFFT) based reconstruction methods. However, the actual
trajectory might be different from the desired trajectory due to hardware imperfections
[171]. For our experiments, during reconstruction, we modeled a gradient delay so as to
minimize the differences between the desired trajectory and the measured trajectory; this
refinement reduced artifacts in the reconstructed images. A future direction of research
could be to measure the actual spiral trajectory played out on the scanner, e.g., using a field
camera [31].
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The objective of our toolbox is to make it easy to design cross-vendor workflows for
any applications involving stack-of-spirals MRI. With that in mind, a future direction of
research would be to test our toolbox in a multi-vendor, multi-scanner setting. It would be
interesting to explore the reproducibility of our experiments across different scanners from
the same vendor, as well as different vendors (e.g., GE and Siemens).

To achieve our goal of repeatability and reproducibility of studies across scanners and
vendors, it might be important to build quality assurance into our toolbox. There have been
many studies evaluating MRI quality assurance of scanners using a standard phantom (e.g.,
the American College of Radiology (ACR) phantom) [19, 63]. A future extension of this
work might be to incorporate quality metrics into our toolbox, e.g., geometric accuracy,
high-contrast resolution, slice thickness accuracy, slice position accuracy, image intensity
uniformity, percent signal ghosting, and low-contrast object detectability [19]. As an initial
sanity check in multi-site experiments, we could run an initial scan of the ACR phantom,
and evaluate the desired image quality metrics as quality assurance.

Another extension of our work in this chapter would be to use our toolbox for functional
MRI (fMRI) applications based on stack-of-spirals acquisitions. We could acquire stack-
of-spirals data for fMRI purposes, and process them to obtain activation maps. Another
direction for future research could be to compare the activation maps obtained using our
toolbox with maps obtained using other popular techniques such as simultaneous multi-
slice echo planar imaging (SMS-EPI) [20].

Our SOSP3d toolbox has been developed using a combination of Python and MAT-
LAB. We currently use MATLAB mainly for interfacing with the acquired data on the
scanner, e.g., reading the P-files acquired using a GE scanner. Future work could focus on
developing code in either Python or Julia to interface with the acquired data. This would
help us align with the push towards using open-source languages for all of our code.

6.6 Conclusions

Reproducibility of MRI studies is an extremely important goal to achieve, and harmoniza-
tion of MRI tools in a cross-vendor manner is a key milestone on the path to achieving
this. This chapter develops tools to harmonize acquisition and reconstruction methods for
stack-of-spirals MRI. We introduce a toolbox called SOSP3d that can be used to create
vendor-agnostic workflows for applications involving stack-of-spirals MRI. We demon-
strate the feasibility of acquiring and reconstructing structural data for stack-of-spirals MRI
using our toolbox. As an extension of this work, we could design functional MRI (fMRI)
workflows using our toolbox, and process them to obtain activation maps.
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CHAPTER 7

Future Work

7.1 Myelin water imaging

CRB-based scan designs to estimate both fraction and exchange

Chapter 3 described our methods to estimate myelin water exchange in white matter. We
optimized our scan design using a cost function based on the Cramér-Rao bound (see (3.5)
for more details). The cost function contains a diagonal weighting matrix W that deter-
mines the relative importance of estimating the different unknown parameters. For our
work, we set W to all zeros, except for a single 1 corresponding to myelin water exchange
(i.e., mean residence time of myelin τf→s). Previous work has explored scan designs for es-
timating the myelin water fraction, by setting the corresponding entry (ff) to 1 in W [166].
An interesting future research direction would be to focus on scan designs for estimating
multiple parameters; e.g., we could optimize the Cramér-Rao bound based cost function in
(3.5) to help estimate both myelin water fraction as well as myelin water exchange. This
would potentially help us obtain both fraction and exchange information in a single set of
acquisitions, thereby reducing acquisition time.

End-to-end scan design for exchange

Optimizing MR acquisitions for quantitative MRI using the Cramér-Rao bound (CRB)
comes with a caveat; the CRB helps minimize the variance in parameter estimates but
is only directly applicable to unbiased estimators. The optimized scan designs might be
sub-optimal when paired with a specific estimator, since most estimators in practice are
biased in nature. An alternative approach to MR experiment design is to use an end-to-end
design that directly minimizes the mean square error of our parameter(s) of interest, e.g.,
myelin water exchange, or cost functions based on other combinations of bias and variance.
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The CRB-based cost function in (3.5) in Chapter 3 can be alternatively formulated in
an end-to-end manner (using the mean square error) as

P̂ = argmin
P∈P

Ψ(P ), Ψ(P ) = E
x,ν

[
(xe − x̂e(P ;ν))2

]
, (7.1)

where Ψ(P ) is the MSE-based end-to-end cost function to be optimized, P̂ is the opti-
mized scan design and P is the search space of acquisition parameters. As described in
Chapter 3, x contains the unknown parameters, and ν contains the known information
(e.g., separately estimated B0 maps). xe is the true value of the exchange parameter (e.g.,
mean residence time of myelin), while x̂e(P ;ν) is the estimated value using our estimator
of choice, e.g., PERK [114]. The end-to-end approach in (7.1) is tailored to a specific es-
timator, and potentially leads to scan designs that work well with our estimator of choice.
Such an end-to-end optimization scheme has been previously used to design MR acquisi-
tions for estimating myelin water fraction, when paired with PERK as the estimator [167].
Estimating myelin water exchange through this end-to-end training would be an interesting
future direction to explore.

Undersampled acquisitions for estimating exchange

For our Cramér-Rao bound analyses, as well as our experiments in Chapter 3, we assumed
that every bSSFP scan had full k-space sampling. However, to achieve clinically feasible
times, we would potentially need to incoporate undersampling in our acquisitions. This
complicates uncertainty analysis since systematic errors (due to aliasing artefacts) tend to
dominate over random errors in the highly undersampled regime [68]. A future direction
of research would model these undersampling artifacts in our uncertainty analysis, instead
of grouping all sources of noise into random Gaussian noise. We could model the aliasing
artifacts directly from first principles using computer simulations [68]. An alternate ap-
proach might be to model the undersampling effects through an additional Gaussian noise
term, whose magnitude is signal-dependent [71].

Since we acquired fully sampled bSSFP data for estimating exchange, Chapters 3 and
4 used the simple inverse FFT method for reconstruction. However, to reconstruct non-
Cartesian undersampled acquisitions, we would likely require non-uniform FFT (NUFFT)
based iterative algorithms. Additionally, since there is potentially a lot of correlation along
the contrast dimension (e.g., 40 bSSFP acquisitions to estimate myelin water exchange in
Chapter 3), an extension of this work is to explore the use of regularizers along the contrast
dimension, e.g., group sparsity [62].
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Acquisition of transient data

Chapters 3 and 4 assumed that we acquire only steady-state data for our bSSFP scans. It
seems intuitive that, to better estimate exchange values, we might benefit from recording
data in the transient regime. A direction for future work could be to sample the transient
regime by collecting data while we wait for the bSSFP acquisitions to reach steady-state
[137, 170]. Another option could be to use fingerprinting-like sequences (instead of steady-
state sequences) to drive the system into a persistent transient state [65, 48] and potentially
encode more information about exchange. An extension of our Cramér-Rao bound analysis
would potentially model the acquisition of both transient and steady-state data.

Combination of acquisitions for estimating exchange

This dissertation proposed the use of phase-cycled bSSFP acquisitions to estimate myelin
water exchange, and we optimized the flip angles and RF phase cycling factors of a set of
bSSFP scans to help estimate exchange. An area of future research would explore a com-
bination of MR sequences instead of only bSSFP acquisitions. Estimating exchange is part
of a complex multi-parametric estimation problem, and different types of MR acquisitions
might help estimate different parameters of the joint estimation problem. For instance, we
could design a composite set of MR sequences including bSSFP, SPGR (spoiled gradient-
echo), and MESE (multi-echo spin echo) acquisitions. The SPGR acquisitions could po-
tentially provide us with B0 information, while the MESE scans might help with estimating
myelin water fraction.

7.2 Validation using aqueous urea system

Test generalizability to different exchange rates

Exchange rates in an aqueous urea system can be manipulated by altering pH and tem-
perature [159]. A future direction of work could be to design phantoms with different
concentrations of urea, as well as at different pH values, resulting in different urea fraction
values and urea water exchange rates. Such phantoms would be a good test of the general-
izability of the proposed exchange estimation methods to different urea fractions as well as
exchange rates.
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REXSY/CEST as a baseline method for exchange

Relaxation exchange spectroscopy (REXSY) [33] and chemical exchange saturation trans-
fer (CEST) [173] have previously been used to study exchange in exchanging systems, but
are not feasible in vivo due to their prohibitively long acquisition times. However, they
could potentially serve as baseline techniques for our aqueous urea system, since scan time
is not a limiting factor for in vitro experiments. Chapter 4 uses inversion recovery NMR
(IR-NMR) [168] spectroscopic experiments to obtain ground truth exchange values; a fu-
ture direction of research could be to use REXSY or CEST to generate ground truth data
and compare them with the estimates obtained from IR-NMR data. REXSY and CEST
involve different methods and mechanisms of characterizing exchange, and we hope to get
more insight into quantifying urea water exchange through these different techniques.

Suite of acquisitions to characterize urea water phantom

Chapter 4 specifically focused on estimating urea water exchange in our aqueous urea sys-
tem. It might potentially be helpful to run separate acquisitions to obtain estimates of other
parameters such as the T1 values, T2 values, and chemical shift; we could use these esti-
mates to inform our nonlinear least squares fitting process. An important future direction
would be to characterize our designed aqueous urea system in a more complete manner.
This becomes even more important when we have a phantom with multiple urea solutions
(with different concentrations and pH values), and it would be useful to characterize each
sample separately. For instance, using a dedicated NMR spectrometer such as the Agi-
lent 700 MHz NMR spectrometer, we could run a battery/suite of acquisitions to obtain
relevant information about our sample. For instance, inversion recovery (IR) acquisitions
would help us obtain compartment-specific T1 values for both urea and water proton pools.
Similarly, fitting data to GRE acquisitions would give us T2 values for both pools. It would
also be interesting to get estimates of the chemical shift in our aqueous urea sample through
techniques such as chemical shift imaging [16].

Characterizing our urea water phantoms in this manner also would help us with our
proposed techniques for estimating exchange using phase-cycled bSSFP; we could poten-
tially use these acquisitions to guide our estimator. E.g., this suite of acquisitions could
help inform our training ranges for PERK, or to set our bounds for non-linear least squares
(NLLS) fitting.
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Stability of aqueous urea system over time

The rate of exchange in the aqueous urea system is highly dependent on factors such as
pH and temperature [159]. Studies have shown that one potential issue with the aqueous
urea model is pH instability, which arises due to decomposition of urea into ammonium
and cyanate ions [88]. Previous work has shown that buffering the urea solution (e.g., us-
ing phosphate buffer) stabilizes the pH value but the buffer itself can increase exchange, if
added in relatively high concentrations [33]. For our urea water phantom, it would be inter-
esting to explore the stability of exchange rates over time. We could conduct experiments
to estimate urea fraction and urea water exchange rates, and repeat them over a course of
time to test the repeatability and reproducibility of those measurements in our designed
urea water system.

7.3 Stack-of-spirals MRI

Efficient implementation on GPU

Chapter 5 analyzed and derived an efficient implementation of the forward model for stack-
of-spirals MRI. We demonstrated the computational speedup of the recommended imple-
mentation over conventional 3D non-uniform FFT (NUFFT) based implementations. The
next step would be to implement this using graphical processing units (GPU), using soft-
ware packages such as torchkbnufft1 [107] and MIRTorch2 [161].

BOLD fMRI studies with PRESTO gradients

Chapter 6 described our attempts to harmonize acquisition and reconstruction methods for
stack-of-spirals MRI using our SOSP3d3 toolbox. We demonstrated the use of our toolbox
to acquire and reconstruct structural stack-of-spirals scans. An interesting future direction
would be to run functional MRI (fMRI) studies or quantitative MRI (qMRI) scans using
the toolbox.

BOLD (blood-oxygen-level-dependent) fMRI protocols require reasonably high tem-
poral resolution (typically ∼ 0.8s per frame). However, we require fairly long echo times
(∼ 30 ms) to see the relevant T ∗

2 contrast for BOLD fMRI4, and this could be a limiting
factor in achieving the desired temporal resolution. The PRESTO technique is an approach

1https://github.com/mmuckley/torchkbnufft
2https://github.com/guanhuaw/MIRTorch
3https://github.com/HarmonizedMRI/SOSP3d
4https://mriquestions.com/bold-pulse-sequences.html
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to overcome this, and allows for echo times longer than the sequence repetition time [156].
There has been work combining the PRESTO technique with stack-of-spirals acquisitions
for fMRI applications [66]. A future direction would be to incorporate the PRESTO tech-
nique in the acquisition module of our SOSP3d toolbox, and run fMRI studies with it. It
would also be interesting to compare the performance of stack-of-spirals fMRI with other
popular fMRI acquisition protocols such as simultaneous multi-slice echo planar imaging
(SMS-EPI) [20].

Explore complex regularizers for stack-of-spirals fMRI

Chapter 6 demonstrates the use of our SOSP3d toolbox for harmonizing acquisition and
reconstruction methods for stack-of-spirals MRI. For all of our experiments with structural
scans, we used a simple quadratic roughness penalty as the regularizer. One of our areas for
future work is to use our toolbox for fMRI studies using stack-of-spirals acquisitions. To
achieve the necessary temporal resolution for fMRI studies, we would potentially need to
undersample even more in our stack-of-spirals acquisitions, and a simple quadratic rough-
ness regularizer might not be sufficient. An extension of this work could explore more
complex regularizers along the temporal dimension too, e.g., low-rank + sparsity based ap-
proaches [125]. Such regularizers would also be important for qMRI studies where good
spatial resolution is desired.
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