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ABSTRACT

Magnetic resonance imaging (MRI) is an important imaging modality in modern medicine that
provides various biomarkers without harmful radiation. However, the low acquisition speed of
MRI limits its spatiotemporal resolution, affordability, and patient experience. Efficient data ac-
quisition schemes can enhance the quality and speed of MRI, thereby improving its scientific and
clinical values.

Designing efficient and optimal sampling schemes is an important yet challenging task due to
the scale and complexity of the problem. Current research broadly adopts oversimplified models
and heuristics-driven methods, which have effectively sped up MRI, but hinder the design of even
more efficient sampling schemes. Therefore, there is a need to explore new methods to automati-
cally design or tailor sampling trajectories.

This dissertation presents new methods for optimizing MRI sampling trajectories using
optimization-based and data-driven methods. We proposed gradient methods for optimizing non-
Cartesian sampling trajectories, as well as Bayesian methods for optimizing Cartesian sampling
trajectories. The proposed optimization methods can simultaneously improve image quality, hard-
ware conformity, and patient comfort. Notably, these methods can automatically learn efficient
sampling patterns from raw datasets, and the results are tailored to specific anatomical structures,
scanning protocols, and hardware. To solve this large-scale, non-convex optimization problem, we
introduced several computational methods, such as accurate Jacobian approximations for system
matrices, parallel computing, and high-efficiency solvers.

We evaluated the proposed methods in multiple MRI applications, such as structural imaging,
functional imaging, and dynamic imaging. In both simulation and prospective in-vivo studies, our
methods improved image quality by 2-5 dB (in PSNR) and increased acquisition speed by 8-10×.
The optimization results also enhanced the patient experience by minimizing uncomfortable pe-
ripheral nerve stimulation. Notably, our learning-based approaches exhibited strong generalization
ability and robustness to the shift between in-silico training and real-world prospective experi-
ments, which can be explained by simple signal and system theories. These promising preliminary
results highlight the potential of our methods to practically accelerate MRI and contribute to ad-
vancements in medical imaging research. To promote reproducible research, the accompanying
codes, as well as an open-source reconstruction toolbox MIRTorch, are publicly available.

xiv



CHAPTER 1

Introduction

Magnetic resonance imaging (MRI) provides powerful tools to noninvasively visualize anatomy
and physiology without ionizing radiation. In the modern continuum of care, MRI plays a pivotal
role from early screening to diagnosis and monitoring. In addition to clinical values, MRI meth-
ods have also been driving scientific innovations across multiple areas, such as neuroscience and
oncology. However, access to MRI is limited to only one-third of the world’s population, and is
heavily restricted by elevated cost, long scanning time, and patient discomfort during scans (such
as nerve stimulation and acoustic noise) [47]. For scientific applications, the impossible triangle of
image acquisition, the trade-offs between speed, quality, and precision, restrains the potential for
further clinical and physiological discoveries. Therefore, accelerated MRI is of both high clinical
and scientific values.

MRI is a primarily sequential imaging modality, where raw measurements are sampled one at a
time rather than simultaneously (such as in digital cameras.) For example, a high-resolution brain
scan may involve 107-108 samples, with each sample taking 10-6-10-5s, resulting in a total scan
on the order of magnitude of 102-103s. Efficient sampling strategies increase acquisition speed
by reducing the number of samples, while designing such efficient sampling is a challenging task
due to the large scale. For instance, the degree of freedom of optimization is also 107-108 in the
previous case. Many current methods rely on heuristics and strong simplifications in designing
sampling strategies, and researchers may need to use trial-and-error approaches and conduct many
experiments to tune relevant parameters. This approach limits both the efficiency of research and
the improvement of MRI speed. Therefore, there is a growing demand for automatic and computer-
based design.

This dissertation research addresses these challenges by combining optimization and machine
learning to improve medical imaging acquisition and reconstruction. We build a ‘digital twin’
or simulation model of MR imaging physics, with sampling trajectories as tunable parameters.
Then, we adopt common optimization concepts, such as gradient descent and greedy algorithm
to optimize sampling schemes. The learning-based optimization can learn to optimize scan pro-
tocols, and the result is specific to anatomy and hardware, avoiding the limitations of fixed and
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non-adaptive signal sampling strategies. The methods are carefully designed to generalize well
between simulation studies and real-world systems. In many simulation studies and prospective
in-vivo experiments, these methods significantly improved image quality, acquisition efficiency,
and patient comfort, while remaining robust and interpretable.

The following chapters detail our proposed optimization methods:

• Ch. 3 discusses the theoretical and computational fundamentals for optimizing non-Cartesian
sampling trajectories. We analytically derive the Jacobian operators involving non-
uniform fast Fourier transform, which are more accurate and efficient than standard auto-
differentiation methods by a factor of 102-103. This proposed method enables the application
of gradient-based methods for optimizing sampling trajectories. The chapter demonstrates
that gradient methods can learn anatomy-specific and reconstruction-specific information.
The related results are published in [144].

• Ch. 4 delineates the joint optimization of 2D non-Cartesian sampling trajectories and
learning-based reconstruction methods. We propose several optimization techniques to im-
prove the results of this non-convex optimization problem, which successfully help avoid
suboptimal local minima encountered in previous works [154]. The learned protocols were
prospectively evaluated on MR scanners, demonstrating improved image quality and reduced
artifacts than standard trajectories and heuristics-based trajectory optimization methods [85].
The learned sampling trajectory and reconstruction methods also generalized well between
in-silico training and in-vivo experiments and did not require fine-tuning. This chapter is
based on a journal publication [146].

• Ch. 5 extends the optimization to 3D sampling trajectories, which pose computational chal-
lenges due to their larger scale and potential side effects, such as peripheral nerve stim-
ulation. This chapter proposes and evaluates several strategies for efficient computation,
successfully reducing memory cost by 98%. The optimization can optimize parameters in
existing protocols, making it more practical and generalized. We applied the optimized tra-
jectory to multiple applications, including structural and functional imaging. In the prospec-
tive studies, by optimizing the rotation angles of a stack-of-stars (SOS) trajectory, SNOPY
reduced the NRMSE of reconstructed images from 1.19 to 0.97 compared to the best em-
pirical method (RSOS-GR). Optimizing the gradient waveform of a rotational EPI trajectory
improved participants’ rating of the PNS from ‘strong’ to ‘mild.’ A journal paper [147]
presents related results.

• Ch. 6 focuses on Cartesian sampling, which has broader acceptance in current clinical set-
tings. The chapter proposes patient-specific adaptive sampling patterns based on Bayesian
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experimental design that can predict the next sampling locations on-the-fly according to ex-
isting observations. Compared to non-adaptive sampling, in several simulation experiment
settings, the proposed method effectively improved the image quality by 1-3 dB in PSNR,
and better restored subtle details. Preliminary results are presented in a preprint [148].

• Ch. 7 briefly presents several representative side projects, such as motion correction and
longitudinal imaging, which are important practical topics in MRI. The related preliminary
results are published in [145, 149].

• Ch. 8 discusses future research topics for sampling trajectory optimization.

3



CHAPTER 2

Background

MRI is a relatively complex sensing system, partially because it detects weak and subtle in-vivo
signals, in the sense that only several out of a million nuclei are in the ‘active’ mode. Addi-
tionally, MRI signals typically have wavelengths in the radiofrequency (RF) range, making them
susceptible to interference from a variety of sources. MRI can be broadly categorized into three
steps: signal generation, data sampling, and image reconstruction (while new schemes such as
[98] are being investigated.) Signal generation involves exciting certain atoms in the human body
using carefully designed RF temporal waveforms, also known as pulse sequences. Data sampling
typically encodes spatial information into frequency domains via gradient fields, and image recon-
struction generates final images from raw signals. These steps are not strictly divided, and each one
includes physical processes from other steps. The majority of MR research focuses on optimizing
individual steps, whereas this dissertation research proposes a systemic optimization approach that
leverages information from all three steps to achieve better results.

2.1 Excitation

MR physics typically uses the classical ‘gyroscope’ model for easier conceptual understanding.
Nuclei have quantized spin values that can be half-integer or integer numbers, usually denoted
as I . Only nuclei with non-zero spin can absorb and emit electromagnetic waves, and are hence
detectable. In MRI, the most widely used nucleus is 1H, while isotopes such as 13C are useful in
specific applications. Under external magnetic fields (B0 in NMR terminology), charged nuclei
precess around the field direction at the Lamour frequency ω0 = γB0, where γ is the gyromagnetic
ratio. Due to the thermal flip, the alignment of spins follows a Boltzmann distribution between the
lower energy state (parallel to the field) and higher energy state (anti-parallel to the field). A net
proportion of spins runs parallel to the field, generating the average magnetic dipole density known
as longitudinal equilibrium magnetization (M0). To detect such magnetization, it needs to be tipped
from the main field direction, or the low-energy state, to the transverse plane, which generates
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detectable signals in receiving channels. The electromagnetic field used for flipping should match
the Larmor frequency, which usually falls within the RF range. The corresponding field vector is
often denoted as B1 in NMR terminology. The flipped-down M0 has a 3D distribution, represented
as a vector M = [Mx My Mz]

T .
The magnetization vector also experiences relaxation, the restoration to lower energy levels.

There are two types of relaxation: spin-spin relaxation, or T2 relaxation which can be described
by Mxy(t) = Mxy(t0)e

− t−t0
T2 , and spin–lattice relaxation or T1 relaxation following Mz(t) = M0 +

(Mz(t0)−M0)e
− t−t0

T1 . More generally, the Bloch equation describes how magnetic fields interacts
with nuclear magnetization

d

dt

 Mx

My

Mz

 =

 − 1
T2

γBz −γBy

−γBz − 1
T2

γBx

γBy −γBx − 1
T1


 Mx

My

Mz

+

 0

0
M0
T1

 . (2.1)

The B = [Bx By Bz] includes contributions from B0, B1, gradient field, and other sources like
concomitant fields. By altering the timing of data sampling, images can have different ‘contrasts’
based on the tissue properties.

Many mechanisms can influence the observed magnetization of a voxel in MRI, such as diffu-
sion, magnetization transfer, flow, and local B0 variability. Together with T1 and T2 relaxations,
these mechanisms enable various contrasts in MRI, such as diffusion-weighted imaging (DWI),
susceptibility-weighted imaging (SWI), blood oxygenation level-dependent (BOLD) imaging, and
chemical exchange saturation transfer (CEST) imaging. Additionally, objective quantities such
as T1, T2 or even temperature can be measured. A key research paradigm in MRI for medicine
involves coupling various contrasts with pathologies and indications.

2.2 Sampling

The second step performs signal sampling. Directly recording the flux brought by Mxy produces
a temporal waveform, similar to NMR. MRI differentiates from NMR in encoding spatial infor-
mation, which can be achieved through several strategies. One such strategy is the excitation of a
thin slice in 2D/multi-slice imaging. Another strategy involves assigning different local fields to
locations, typically via a linear magnetic field with a gradient G = [Gx Gy Gz]. The gradient may
vary across time, denoted as G(t). As a result, each spatial location at a distance of r = [rx ry rz]

to isocenter experiences an additional field of G · r, leading to different rotation frequencies of
the magnetization at different locations. By sampling the temporal waveform at a rate higher than
the Nyquist rate, the spatial information can be encoded into the measured waveforms as differ-
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ent frequency components. Mathematically, this encoding process resembles the structure of a
Fourier transform when completely ignoring other physics processes such as relaxation and field
inhomogeneity

s(t) =

∫
D
ρ(x)e−ıγ

∫ t
τ=0 G(τ)τ ·xdτdx, (2.2)

where t denotes the sampling time, D denotes the FOV, and ρ(x) denotes the magnetization
density that is proportional to Mxy. To encoding 2D/3D spatial dimensional, G(t) is usu-
ally carefully designed using strategies such as frequency encoding (FE) and phase encoding
(PE). To conceptualize the temporal trajectory of G(t), k-space location vectors are defined as
k(t) =

∫ t

τ=0
γ
2π
G(τ)τdτ . Obviously, signals in spatial domain ρ(x) and signals in the frequency

domain (k-space) s(t) construct a Fourier pair. With the concept of k-space, k(t) can take various
geometrical forms. The common designs include Cartesian rasters, and spiral/radial curves.

2.3 Reconstruction

The reconstruction of MRI can be viewed as an inverse problem of the forward process

y = Ax+ ε. (2.3)

ρ(x) is a continuous object intrinsically. However, due to limited sampling bandwidth, x is typ-
ically assumed to be band-limited, and parameterized by basis functions such as the Dirac pulse
and spline functions. y is the sampled k-space data. A describes the excitation, relaxation, and
sampling processes discussed above. If we consider the simplest case where the system is perfect
without motion, A can be represented as a discrete Fourier transform (DFT). For non-Cartesian
sampling, A is a more general non-equidistant Fourier transform with elements

aij = e−ıω⃗i·r⃗j , (2.4)

where ω⃗i denotes a k-space sampling location and r⃗j denotes the center of a voxel. Non-uniform
fast Fourier transform (NUFFT) is often used to accelerate the non-equidistant Fourier transform.
For parallel receiving coils, A should also consider sensitivity maps. Suppose there are Nc receiver
coils

A = (INc ⊗ F )


S1

...
SNc

 . (2.5)

A may further involve factors such as B0 inhomogeneity and motion, which will be discussed in
following sections. Generally, if A is sampled equidistantly and satisfies the Nyquist rate, the re-
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construction simply involves inverse FFT (iFFT) (possibly with correction procedures such as for
B0 inhomogeneity [104].) For non-Cartesian sampling patterns, gridding operations can interpo-
late non-Cartesian samples to the Cartesian grid before applying iFFT. To accelerate MRI, A can
be under-sampled, which poses a (potentially) under-determined inverse problem. Various recon-
struction algorithms can solve the undersampled k-space data. Interpolation of the k-space data is a
common approach that utilizes characteristics such as conjugate symmetry or linear predictability
[99]. Representative works include GRAPPA [50], homodyne [105], LORAKS [57], and ESPIRiT
[141]. The interpolation can either be ‘learned’ from the signal itself using the coil dependence, or
from a historical databank.

Many other methods regard reconstruction as a parameter estimation problem. In particular, the
maximum a posteriori (MAP) approach and constrained reconstruction have been extensively stud-
ied. These methods have a general form of finding an estimate of x, denoted as x̂, that minimizes
the following objective function:

x̂ = argmin
x

1

2
∥Ax− y∥22 + R(x). (2.6)

The first term ∥Ax−y∥22 is usually referred to as data fidelity term or data consistency term, which
can be interpreted as the maximum likelihood estimation considering a Gaussian noise distribution.
The term R(x) denotes image-domain regularizers. For example, in CG-SENSE, R(x) = λ∥x∥22,
which is a Tikhonov regularizer. In compressed sensing, R(x) = λ∥Tx∥1 is a regularizer that
promote sparsity, where T is a total variation transform or wavelet transform. Recent years have
also seen studies on learned regularizers, where R(x) is either learned from a training dataset or
from a single image itself. Related works also proposed to jointly estimate elements in A, such
as sensitivity maps and field maps with x [44, 140]. Newer methods, including deep learning and
Bayesian methods, are also receiving widespread attention.

2.4 Imperfections and Constraints

Similar to any sensing system, an MRI system also suffers from innate defects and imperfections.
Given the widespread use of MRI for medical purposes, artifacts or distortions present in the im-
ages may result in serious consequences such as misdiagnosis. As a result, extensive research and
development efforts are devoted to minimizing, compensating for, and correcting these imperfec-
tions to enhance image fidelity. Furthermore, since the imaging object is typically a human or
animal, special attention must be paid to avoid tissue damage and discomfort.

In Ch. 2.1, it is assumed that the B0 magnetic field is spatially uniform, which poses a chal-
lenging and costly engineering problem, especially under high magnetic field strengths. Even a
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small deviation from the nominal field strength (e.g., 10 parts per million, ppm) can have a nega-
tive impact on both excitation and sampling in MRI. To address this issue, modern MRI scanners
use passive and active shimming techniques to improve the B0 uniformity. Additionally, vari-
ous approaches, including pulse sequences [136], hardware design [135], sampling schemes [122],
reconstruction algorithms [40], and post-processing methods [7, 106, 164], can be used to prospec-
tively or retrospectively correct for B0 non-uniformity. It is also important to note that the B0 field
can drift over time [36], and the gradient field can introduce concomitant fields [153] that may
affect phase-contrast-based applications such as MRI thermometry.

B1 also suffers from imperfect spatial profiles, due to hardware imperfections and conductiv-
ity/permittivity of subjects [129]. Specific hardware [161, 162], pulse designs [170], shimming
methods [13, 96] and retrospective correction methods [8] can correct potential B1 inhomogeneity.
For the in-vivo study, RF pulse may introduce thermal energy following SAR ∝ ω2

0B2
1. Therefore,

for in-vivo applications, the design of pulse sequences should also consider SAR limits [150].
The gradient system is also affected by various factors such as heating and eddy currents, which

may impact the accuracy of gradients. Passive and active shielding [139], pre-emphasis [4], mea-
surements and retrospective correction [31, 35, 142] are particularly useful for non-Cartesian and
EPI-like trajectories. Image post-processing methods can also correct certain artifact incarnations
[174]. The linearity of the gradient varies spatially, deteriorating the image quality around edges
and corners of the FOV [34]. The maximum value of G(t) (gradient strength) and its derivative
S(t) = ∂G(t)

∂t
(slew rate) is bound by hardware limits, which is an important factor in trajectory

design. The gradient also introduces peripheral nerve stimulation (PNS). Suppression of PNS may
require hardware design [138, 153], and optimization-based methods that are discussed in Ch. 5.
Gradient systems may also introduce mechanical vibrations and cause motion artifacts.

2.5 Efficient Signal Sampling for Accelerated MRI

MRI is a slow imaging modality because its data sampling is primarily sequential. The total scan-
ning time is proportional to the number of measurements taken. The prolonged scanning time
increases the cost for payers and reduces MRI’s availability. Additionally, patients unavoidably
move their bodies if the scan lasts long, which further deteriorates image quality. Some subjects
may experience claustrophobia inside the closed bore. For certain dynamic imaging applications,
such as functional MRI (fMRI) or cardiac MRI, the long scanning time results in lower spatiotem-
poral resolution that hampers new scientific discoveries. Hence, accelerated MRI is of both scien-
tific and clinical value, with research spanning fields including hardware design, pulse sequence
design, inverse problems, and image processing.

Efficient pulse design improves the duty cycle, which refers to the ratio of data sampling com-
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pared to the whole sequence, by effectively utilizing signal relaxation under an acceptable SAR
and SNR. Reducing the number of measurements during data sampling can also accelerate the
scan. However, simply skipping measurements violates the Nyquist rate and can introduce alias-
ing artifacts. To address this issue, parallel imaging introduces parallel arrays of coils that have
spatially-variant sensitivity, providing additional information for image reconstruction. As men-
tioned in the previous section, many reconstruction methods have been proposed to reconstruct the
multi-channel and undersampled images. Recently, deep learning has also emerged as a promising
approach for accelerating MRI scans, and has been demonstrated to be effective in many settings.

Efficient sampling strategies in k-space are important for accelerated data acquisition. However,
due to the complexity of the MRI system, the concept of ‘efficiency’ can be difficult to be translated
to an optimization objective. There are several factors to consider, including signal-to-noise ratio,
spatial resolution, eddy currents, field inhomogeneity, SAR, PNS, and most importantly, the trade-
off between scan time and image quality. EPI and spiral trajectories are commonly used due to
their high sampling efficiency and have been the standard for fMRI and diffusion imaging, but
they also have limitations, such as susceptibility to image artifacts and blurring. CAIPIRINHA
was proposed for parallel imaging to reduce the aliasing. For 3D sampling, trajectories such as
rosettes and cones also receive wide attention. However, designing these trajectories is a complex
optimization problem, with many degrees of freedom and a large search space. For example, for a
3D radial trajectory with 10000 spokes, the design involves 20000 degrees of freedom.

Moreover, a long-neglected question is how the reconstruction interacts with the data acquisi-
tion. For example, Fig. 2.1 shows the point spread functions (PSFs) of three sampling trajectories,
including phase-encoding undersampling, Poisson-disk sampling, and CAIPI [19]. The PSF of the
1D sampling pattern causes aliasing in the undersampling direction, while the PSF of the Poission-
disk is similar to a 2D blurring kernel. Therefore, they will benefit from different regularization
terms of image reconstruction. Recently, data-driven methods have investigated the synergy be-
tween sampling patterns and reconstruction [1, 9, 154], which is also the subject of Ch. 3 and
Ch. 4. Additionally, tailoring sampling trajectories to different anatomies and hardware is also of
great value in accelerating acquisition and improve image contrast, and has been investigated in
my dissertation research.

In general, MRI has two categories of sampling patterns: Cartesian and Non-Cartesian. Carte-
sian sampling patterns are based on rastering in k-space, while non-Cartesian patterns are continu-
ous. Correspondingly, the Optimization of Cartesian sampling trajectories poses a discrete subset
selection problem which is discussed in Ch. 6. On the other hand, non-Cartesian sampling patterns
are continuous, and in Ch. 3, Ch. 4 and Ch. 5, we propose a series of gradient methods to optimize
them.
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Figure 2.1: Examples of k-space sampling patterns (first row), as well as corresponding image
domain PSFs (second row.)
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CHAPTER 3

Gradient-based Methods for Optimizing
Non-Cartesian Sampling Trajectories

3.1 Introduction

There are several computational imaging modalities where the raw measurements can be modeled
as samples of the imaged object’s spectrum, where those samples need not lie on the Cartesian grid,
including radar, diffraction ultrasound tomography, parallel-beam tomography, and MRI. Image
reconstruction methods for such modalities may use non-uniform fast Fourier transform (NUFFT)
operations to accelerate computation [41]. The quality of the reconstructed image depends both
on the image reconstruction method and on the characteristics of the frequency domain sampling
pattern.

MRI has particular flexibility in designing frequency domain sampling patterns. Many MR
sampling patterns are discrete subsets of the Cartesian grid, and the corresponding optimiza-
tion/learning strategies include greedy algorithms [56, 119, 175], reparameterization [9, 20, 70, 80,
127], Bayesian optimization [58, 125], and system matrix analysis [46, 89, 143]. The other type is
non-Cartesian sampling, which uses a collection of continuous functions in k-space. Several stud-
ies applied gradient methods to optimize non-Cartesian sampling trajectories [1, 124, 146, 154],
and it is also possible to use derivative-free optimization algorithms in certain applications. This
paper develops efficient tools for applying gradient methods to non-Cartesian sampling pattern
optimization1.

Some data-driven optimization methods for non-Cartesian sampling solve an optimization prob-
lem involving both forward system models and image reconstruction methods [1, 146, 154]. The
forward models and reconstruction methods both depend on NUFFT operations. In principle, the
Fourier transform operation is a continuous function of the k-space sample locations and thus
should be applicable to gradient-based optimization methods. In practice, the NUFFT is an ap-

1This chapter is based on our journal paper [144].
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proximation to the non-uniform discrete Fourier transform (NUDFT) and that approximation often
is implemented using non-differentiable lookup table operations or other interpolation techniques
[11, 28]. Such approximations are sufficient for image reconstruction (forward mode), but have
problematic efficiency and accuracy if one attempts to use standard auto-differentiation tools for
gradient-based optimization. Standard auto-differentiation methods using subgradients can lead to
incorrect NUFFT Jacobians. They also require prohibitively large amounts of memory for back-
propagation through certain algorithm stages such as conjugate gradient (CG) steps that involve
NUFFT operations.

This chapter proposes an efficient approach that replaces memory-intensive and inaccurate auto-
differentiation steps with fast Jacobian approximations that are themselves based on NUFFT oper-
ations [144]. The proposed approach requires substantially less memory for iterative updates like
CG steps.

We applied the proposed Jacobian to learn MRI sampling trajectories via stochastic gradient de-
scent. By applying the forward system model and subsequent reconstruction, reconstructed images
were simulated from reference images in the training set. The similarity between simulated and
reference images was the metric for updating the sampling trajectory. We used model-based recon-
struction methods, such as regularized least-squares and compressed sensing. In comparison with
previous works using reconstruction neural networks (NN) [154], such model-based reconstruction
methods can be more robust and require less training data.

In addition to simple NUFFT-based sensing matrices, we also considered several scenarios
in MR sampling and reconstruction, including the multi-coil (sensitivity-encoded) imaging [110]
system models that account for B0 field inhomogeneity [134]. The derivation also includes fast
Jacobian approximations for Gram and ‘data consistency’ operations commonly used in iterative
reconstruction methods.

Jacobians with respect to the non-Cartesian sampling pattern are also relevant for tomographic
image reconstruction problems with unknown view angles (like cryo-EM) where the view angles
must be estimated [168].

3.2 Theory

3.2.1 Efficient Jacobian Approximation

We denote matrices, vectors and scalars by A, a and a, respectively. A′, AT and A∗ denote the
Hermitian transpose, the transpose and the complex conjugate of A, respectively.

Consider a scalar function f(z), z = x + yı ∈ C, x, y ∈ R. Following the conventions in
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Wirtinger calculus [114, p. 67], the differential operators are defined as

∂

∂z
=

1

2

∂

∂x
− ı

2

∂

∂y
,

∂

∂z∗
=

1

2

∂

∂x
+

ı

2

∂

∂y
.

A function f is complex differentiable or holomorphic iff ∂f
∂z∗

= 0 (Cauchy–Riemann equation)
[114, p. 66]. In the context of optimization, a cost function L (usually a real scalar) is not holo-
morphic w.r.t. complex variables. A common approach (as adopted by PyTorch and TensorFlow)
regards the real and imaginary components of a complex variable as two real-valued variables, and
updates them separately, similar to the real-valued calculus [82]. For example, the nth gradient
descent step uses an update

zn+1 = zn − α

(
∂L

∂x
+ ı

∂L

∂y

)
= zn − 2α

∂L

∂z∗ ,

where α ∈ R+ denotes the step size. The chain rule still applies to calculating ∂L
∂z∗ [65] [114,

p. 68]; for s = f(z):
∂L

∂z∗ =

(
∂L

∂s∗

)∗
∂s

∂z∗ +
∂L

∂s∗

(
∂s

∂z

)∗

. (3.1)

To derive the Jacobians of system matrices, we initially consider the simplified (single-coil,
homogeneous) MRI measurement model for non-Cartesian sampling based on the NUDFT [38]:

y = Ax+ ε,

where y ∈ CM denotes the measured k-space data, x ∈ CN denotes the unknown image to be
reconstructed, and A ∈ CM×N denotes the system matrix or encoding matrix, where A = A(ω)

has elements
aij = e−ıω⃗i·r⃗j , i = 1, . . . ,M, j = 1, . . . , N (3.2)

for ω⃗i ∈ RD and r⃗j ∈ RD where D ∈ {1, 2, 3 . . .} denotes the image dimension, and where

ω = [ω[1] ω[2] . . .ω[D]]

is the M × d matrix consisting of all the k-space sampling locations and ω[d] ∈ RM denotes its
dth column. (For simplicity here, we ignore other physical effects like field inhomogeneity and
relaxation that are sometimes included in the forward model in MRI [38].) The center locations of
voxels {r⃗j} usually lie on a Cartesian grid, but the k-space sample locations ω in principle can be
arbitrary subject to the Nyquist constraint.

Typically A is approximated by a NUFFT [41]. Usually, the NUFFT operator involves
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frequency-domain interpolation operations that are often non-differentiable. One previous tra-
jectory optimization approach that used auto-differentiation [154] replaced the non-differentiable
lookup table with a bilinear interpolator. Bilinear interpolation is differentiable everywhere except
at the sample locations. Auto-differentiation of bilinear interpolation involves differentiating some
floor and ceiling operations and those derivatives are defined to be zero in popular deep
learning frameworks such as PyTorch and TensorFlow, leading to suboptimal sub-gradient calcu-
lations. Nearest-neighbor interpolation has even worse properties for auto-differentiation because
its derivative is zero almost everywhere, leading to a completely vanishing gradient.

Instead, we investigate a different approach where we analyze the Jacobians w.r.t. ω and x

using the NUDFT expression. Analytically, the Jacobian for the forward system matrix A is:

∂Ax

∂x
= 0,

∂Ax

∂ω[d]
= −ı diag

{
A(x⊙ r[d])

}
. (3.3)

The Jacobian for the adjoint system matrix A’ is:

∂A′y

∂y
= 0,

∂A′y

∂ω[d]
= ı diag

{
r[d]
}
A′diag{y} . (3.4)

The Jacobian for the Gram matrix A′A is:

∂A′A

∂x
x = 0,

∂A′A

∂ω[d]
x = −ıA′diag

{
A(x⊙ r[d])

}
+ ı diag

{
r[d]
}
A′diag{Ax} . (3.5)

The Jacobian for the ‘inverse’ operator F = A′A+ λT ′T is:

∂F−1x

∂x
= 0,

∂F−1x

∂ω[d]
= −F−1

(
− ıA′diag

{
A(z ⊙ r[d])

}
+ ı diag

{
r[d]
}
A′diag{Az}

)
. (3.6)

The appendix provides the detailed derivation and the use of sensitivity and field inhomogeneity
information within A does not affect the formulation.

For efficient implementation, one may replace the NUDFT operations (A) within the Jacobians
with NUFFT approximations. The next section numerically examines the accuracy of such approx-
imations and the appendix discusses the error bounds. This approach enables faster computation
and reduces memory requirements, which is crucial for stochastic optimization of large-scale sam-
pling trajectories.
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3.2.2 Applying Gradient Methods

For modern MRI systems, the sampling trajectory ω is a programmable parameter. Traditionally
ω is a geometrical curve controlled by few parameters (such as radial spokes or spiral leaves), and
its tuning relies on derivative-free optimizers such as grid-search. In this paper, we optimize ω by
minimizing a training loss function from image reconstruction, where the descent direction of ω
is the negative gradient of that loss [146, 154]. We adopt such a ‘reconstruction loss’ because the
terminal goal of sampling pattern optimization is to improve image quality. To learn from large
datasets, the optimization uses stochastic gradient descent (SGD)-like algorithms. Additionally,
the loss function may include other terms, such as a penalty on the maximum gradient strength and
slew rate [146, 154] or peripheral nerve stimulation effects [147].

For image reconstruction, consider a convex and smooth regularizer R(·) for simplicity. Since
the noise statistics are Gaussian, a typical regularized cost function used for model-based image
reconstruction is (2.6):

Ψ(x) =
1

2
∥Ax− y∥22 + R(x).

During training, the observation y can be retrospectively simulated using y = A(ω)xtrue. For
illustration, consider applying the kth step of gradient descent (GD) to that cost function:

xk+1 = xk − α∇Ψ(xk)

= xk − αA(ω)′ (A(ω)xk − y)− α∇R(xk),

where xk ∈ CN , α ∈ R+ is the step size. After K iterations, we have a reconstructed image
(batch) xK = xK(ω) = f(ω,y), where the reconstruction method f(ω,y) is a function of both
the data y and the sampling pattern ω. To learn/update the sampling pattern ω, consider a simple
loss function for a single training example:

L(ω) =
∥∥xK(ω)− xtrue

∥∥2
2

(3.7)

where xtrue is the reference fully-sampled image (batch). Learning ω via backpropagation (or
chain-rule) requires differentiating L w.r.t. the sampling pattern ω, which in turn involves Jaco-
bians of quantities like A(ω) that we derived above.

Here we use the forward operator as an example to illustrate one step in propagation. As needed
in a backpropagation step (Jacobian-vector product, JVP), the Jacobian (3.3) is multiplied with a
gradient vector v = ∂L

∂(Ax)∗
∈ CM calculated in the prior step. Using (3.1), the corresponding JVP

is
∂L

∂ω
= real

{
(−ı A(x⊙ r[d]))′ ⊙ v

}
. (3.8)
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Efficiently computation can simply apply a NUFFT operation to x⊙r[d], followed by a point-wise
multiplication with v. The Gram (3.5) and PSD inverse (3.6) (‘data consistency’) terms follow a
similar pattern during backpropagation.

Although we illustrate the GD algorithm with a simple smooth regularizer, more generally, the
reconstruction method f(ω,y) can involve more sophisticated regularizers such as neural networks
[154, 146] or non-smooth sparsity models [91] used in compressed sensing. In such cases, back-
propagation uses sub-gradients, instead of gradients, as is common in stochastic optimization. The
loss JVPs are backpropagated through iterative reconstruction steps to compute a gradient w.r.t. ω.

The proposed approach is applicable only to non-Cartesian MRI, because Cartesian sampling
pattern design is usually a discrete optimization problem, incompatible with gradient-based meth-
ods. However, one could optimize phase-encoding locations continuously (in 2D or 3D) with the
frequency-encoding direction being fully sampled, leading to a hybrid Cartesian / non-Cartesian
approach [1].

3.3 Validation

This section validates the accuracy and efficiency of the proposed methods. We performed numer-
ical experiments to examine the following test cases:

∂ ∥f(x)∥22
∂ω[d]

and
∂ ∥f(x)∥22

∂x∗ ,

where f(·) denotes multiplication by A, by the Gram matrix A′A, or by the ‘inverse of PSD
matrix’ of sensitivity-informed NUFFTs. The Gram and inverse experiments implicitly test the
adjoint operator’s approximations. The x adopted is a 40 × 40 patch cropped from the center
of a Shepp–Logan phantom with random additional phases uniformly distributed in [−π, π]. S

is a simulated 8-channel sensitivity map, and ω is one radial spoke crossing the k-space center.
The Jacobian calculation methods are: (1) auto-differentiation of NUFFT; the lookup table oper-
ation [28] is replaced by bilinear interpolation to enable auto-differentiation, similar to [154], (2)
our approximation described above, (3) auto-differentiation of exact non-uniform discrete Fourier
transform (NUDFT), implemented with single precision. We regard method 3 (NUDFT) as the
ground truth. Since NUDFT (in its simplest form) involves only one exponential function, multi-
plication, and addition for each element, its backpropagation introduces minimal numerical errors.
For the PSD inverse, we applied 20 CG iterations for all three methods, which was sufficiently
close to convergence based on the residual norm ∥r∥/∥b∥ (the definition follows [128, (45)]).

Fig. 3.1 and Fig. 3.2 illustrate representative profiles of the gradients w.r.t. x and ω. For ω, the
auto-differentiation (method 1) approach has larger deviations from method 3 (NUDFT) because
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Figure 3.1: Examples of gradients w.r.t. x∗ (the real part is plotted) via different calculation meth-
ods. Plots show one representative row of a 40 × 40 matrix (rescaled to [-1,1]). The rows are the
forward, Gram, and PSD inverse operator cases. The horizontal axis is the pixel index. The leg-
end reports the normalized root-mean-square difference (NRMSD) compared with the referential
NUDFT calculation.
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Figure 3.2: Examples of gradients w.r.t. ω via different calculation methods. Plots show one spoke
of 80 points (rescaled to [-1,1]). The rows are the forward, Gram, and PSD inverse operator cases.
The proposed approximation better matches the gradient of the NUDFT. The legend reports the
normalized root-mean-square difference (NRMSD) compared with the reference NUDFT calcula-
tion. The proposed approximation has 400× smaller NRMSD for this nonlinear case.
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of the non-differentiability of interpolation operations w.r.t. coordinates. For the gradient w.r.t.
x, both method 1 and method 2 generate accurate results for forward and Gram operators. The
reason is that in method 1 (auto-diff), the interpolation operation w.r.t x is linear, hence accurately
differentiable. For the PSD inverse, method 1 led to a slightly inaccurate gradient, stemming from
the accumulated errors of backpropagating CG iterations.

Table 3.1 and Table 3.2 compare the time and memory cost of methods 1 (auto-diff) and 2 (pro-
posed). The CPU is Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz and the GPU is an Nvidia(R)
RTX2080Ti. We used PyTorch 1.9.1 and torchkbnufft 1.1.0. The memory usage was tracked by
torch.cuda.max memory allocated on Nvidia GPUs. We implemented the numerical
experiments with torchkbnufft [101] and MIRTorch toolboxes.

Our method is much faster than auto-differentiation on both GPUs and CPUs, and uses less
memory. Importantly, the PSD inverse Jacobian is impractical for the 3D case, whereas the pro-
posed approach fit comfortably in GPU’s onboard memory.

Table 3.1: Computation time of test cases via different Jacobian calculations.

Gram Inverse
auto-diff proposed auto-diff proposed

Large image - GPU 0.3s 0.2s 4.3s 2.5s
Small image - GPU 0.1s 0.1s 1.3s 0.9s
Large image - CPU 5.2s 1.7s 276.2s 48.5s
Small image - CPU 0.8s 0.5s 27.4s 6.9s
Large size: 400× 400; small size: 40× 40
20 CG iterations were applied in the PSD inverse cases.

Table 3.2: Memory use of test cases via different Jacobian calculations.

Gram Inverse
standard proposed standard proposed

Small 3.1MB 2.8MB 145.7MB 2.9MB
Large 375.9MB 267.5MB 5673.2MB 272.0MB
3D N/A 10.1GB N/A 10.8GB
Large size: 400× 400; small size: 40× 40;
3D size: 200× 200× 100.
N/A: the memory usage was too large for a single GPU.
20 CG iterations were applied in the PSD inverse cases.

19



3.4 Trajectory Optimization

This initial experiment optimized the MRI sampling trajectory using the proposed Jacobian ap-
proximations and stochastic optimization. The reconstruction methods (2.6) here consider two
types of algorithms, namely smooth (regularized) least-squares reconstruction and sparsity-based
reconstruction.

The smooth reconstruction method uses the cost function

Ψ(x) =
1

2
∥E(ω)x− y∥22 +

λ

2
∥Tx∥22,

where T is a finite-difference operator encouraging smoothness. Correspondingly, the recon-
structed image is:

xK = (E′E + λT ′T )−1E′y,

which we solved using CG [128]. The following descriptions refer to this method as quadratic
penalized least-squares (QPLS). We also implemented a simpler case, where T = I , which is
referred as CG-SENSE. In both scenarios, we set λ to 10−3 empirically and still applied 20 CG
iterations. The initialization of CG used the density compensated reconstruction [67].

The sparsity-based compressed (CS) sensing algorithm adopts a wavelets-based sparsity
penalty, and has the following objective function

Ψ(x) =
1

2
∥E(ω)x− y∥22 + λ∥Wx∥1,

where W is an orthogonal DWT matrix and we set λ = 10−5 empirically. We used 40 iterations of
the proximal optimized gradient method (POGM) [39, 78] to solve this non-smooth optimization
problem.

For the purpose of comparing trajectories and image quality, we also applied the proposed
approximations to an unrolled neural network (UNN) reconstruction method that followed the
definition of [2] (Ch. 4 extends it to non-Cartesian cases.) We used the same network configuration
as in Ch. 4.

To optimize the k-space trajectory for each of these reconstruction methods, the training loss
(3.7) is:

L(ω) =
∥∥xK(ω)− xtrue

∥∥2
2
+ µ1ϕγ∆tgmax(|D1ω|) + µ2ϕγ∆t2smax

(|D2ω|),

where xtrue is the conjugate phase reconstruction of fully sampled Cartesian data [104]. The
second and third terms applied a soft constraint on gradient strength and slew rate similar to Ch. 4
and Ch. 5, where ϕλ(|x|) =

∑
max(|x| − λ, 0). The maximum gradient strength (gmax) was 5
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Gauss/cm and the maximum slew rate (smax) was 15 Gauss/cm/ms. µ1 = µ2 = 10. We estimated
sensitivity maps in E using ESPIRiT [141], and simulated noiseless raw signals y = E(ω)xtrue

retrospectively w.r.t. candidate trajectories. The training used the fastMRI brain dataset [167]
containing 15902 T1w slices, 16020 T2w slices, and 3311 FLAIR slices cropped to size 320×320.
The number of coils ranges from 2 to 28. We used the Adam optimizer [79], with step size 10−4

and mini-batch size 12. We used 6 epochs for training model-based methods (CG-SENSE, QPLS
and CS) and 60 epochs for the UNN training. The initialization of learned trajectories was an
under-sampled radial trajectory in all experiments. The initialization had 16 ‘spokes’ and each
spoke was 5ms long with 1280 sampling points. We also adopted the k-space parameterization
trick detailed in (4.2) to avoid sub-optimal local minima, and parameterized each shot with 40
quadratic spline kernels.

Figure 3.3: Optimized sampling trajectories for several iterative reconstruction methods. The left
column shows the uniform radial initialization. The second row shows the 8× zoomed-in central
k-space.

Fig. 3.3 showcases the trajectories optimized for each of the reconstruction methods. The cen-
ters of trajectories optimized with quadratic regularizers (CG-SENSE and QPLS) are not aligned
with the k-space origin. We hypothesize that regularizers (and corresponding iterative algorithms)
handle image phases differently, resulting in distinct trajectory centers.

Table 3.3 reports the average image reconstruction quality (PSNR and SSIM [68], fully sampled
image as the ground truth) on 500 test slices. It also showcases the image quality of these learned
trajectories with reconstruction methods different from the training phase. All learned trajectories
led to improved reconstruction quality compared to the initial radial trajectory (unopt.), even with
different reconstruction methods. Importantly, the same reconstruction algorithm across training
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Figure 3.4: Examples of the reconstructed images with unoptimized (left) and optimized trajecto-
ries (right). Rows 3 and 5 show corresponding error maps.

and test led to the greatest improvement (the bold diagonal entries). Fig. 3.4 shows reconstruction
examples.

Figure 3.5: Learned trajectories with different NUFFT accuracies.

The major computation cost of trajectory learning is proportional to NUFFTs and their Jacobian
calculations. An empirical acceleration method is to use faster NUFFT approximations (low over-
sampling factors and/or small interpolation neighborhoods) in training. Later, when the learned
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Table 3.3: Average reconstruction quality on test set with trajectories learned for different recon-
struction methods.

SSIM
PPPPPPPPPTest

Learn
QPLS SENSE CS UNN unopt.

QPLS 0.963 0.963 0.962 0.961 0.947
SENSE 0.964 0.964 0.963 0.961 0.946
CS 0.962 0.963 0.966 0.964 0.946
UNN 0.960 0.960 0.958 0.964 0.950

PSNR (in dB)
PPPPPPPPPTest

Learn
QPLS SENSE CS UNN unopt.

QPLS 35.1 35.1 34.9 35.0 33.1
SENSE 35.2 35.2 34.9 35.1 33.1
CS 34.8 34.9 35.4 35.2 33.0
UNN 34.6 34.6 34.5 35.0 33.5
Learn: reconstruction method in joint optimization.
Test: reconstruction method being tested.
unopt.: the unoptimized initialization.

trajectory is deployed on test data or prospectively acquired data, one could use default NUFFT
accuracy. We investigated learning trajectories with two different NUFFT accuracies: (1) gridding
size = 1.25× image size, interpolation kernel size = 5 and (2) gridding size = 2× image size,
interpolation kernel size = 6 which is a commonly used setting. On our GPUs, the lower-accuracy
setting was 1.4× faster than the higher-accuracy one. We used the CS-based reconstruction and
corresponding training strategy described in the previous subsection. Fig. 3.5 shows the trajectory
optimized for the two NUFFT accuracy levels. To compare the trajectory optimized by these two
settings, we used the reconstruction image quality as the evaluation metric. We simulated and
reconstructed images using the two trajectories on the test data (same as the previous experiment).
The trajectories optimized with the ‘low accuracy’ and ‘high accuracy’ NUFFT had mean PSNR
values of 35.4±4.6 dB and 35.4±4.7 dB.

3.5 Discussion

This chapter presents a model-based approximation of Jacobian matrices involving NUFFTs.
Compared to direct auto-differentiation, the proposed method is faster, needs less memory, and
better approximates the reference NUDFT results. As discussed, the error of auto-differentiation is
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not a software limitation, but rather a problem that stems from the non-differentiability of interpola-
tion or lookup table operations. NUFFT alternatives such as re-gridding or filtered back-projection
also suffer from similar non-differentiability issues and are less effective than (NUFFT-based) it-
erative reconstruction.

Sampling patterns learned with different reconstruction methods showed distinct characteris-
tics. This phenomenon was also observed in previous literature [56, 175]. The differences in
sampling patterns may stem from different regularizers, as well as different iterative algorithms.
Importantly, as shown in Table 3.3, synergistic sampling and reconstruction led to the best image
quality. Several previous studies [1, 154] only used NN-based reconstruction methods, while the
stability and generalizability of NN-based reconstruction are still being investigated. In compari-
son, using our method, one may optimize trajectories for model-based reconstruction methods that
may be more robust. Our results show that with a suitably tailored sampling pattern, traditional
model-based reconstruction can compete with NN-based reconstruction, reinforcing related obser-
vations in recent studies [51]. Future studies should conduct more comprehensive validation on
this point. Additionally, sampling optimization for model-based reconstruction requires less train-
ing data than for NN-based reconstruction. This property is beneficial for medical imaging where
the data availability is often limited.

The training used discrete-space image datasets, whereas the actual objects in practice are con-
tinuous. Ideally, using an accurate continuous image model could better approximate the actual
situation. This implicit bias is common for learning-based methods, and may lead to subopti-
mal results, such as the backtracking in the edge/corner of k-space (Fig. 3.3). The training also
ignored physical processes such as relaxation and magnetization transfer. Future studies may con-
sider these processes in the forward system model. The mismatch or domain shift from training to
prospective scans may influence the results. For example, there exist differences in protocols (RF
pulses, FOVs, and resolutions), hardware (field strengths and Tx/Rx coils), system imperfections
(eddy currents, gradient non-linearity, and inhomogeneity), demography, and pathology. Ch. 4 and
Ch. 5 tested the optimized trajectory in prospective in-vivo experiments, and discussed practical
issues, including eddy currents, and contrast/SNR mismatch between the training set and prospec-
tive protocols. Subsequent studies should evaluate the robustness of learned sampling trajectories
in more scenarios.
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CHAPTER 4

Joint Optimization of 2D Sampling Trajectories and
Model-based Deep Learning-based Reconstruction

4.1 Introduction

In MRI, most scanning protocols sample data points sequentially according to a pre-determined
sampling pattern. The most common sampling patterns are variants of Cartesian rasters and non-
Cartesian trajectories such as radial spokes and spiral interleaves. The local smoothness of these
patterns facilitates ensuring that they obey hardware limits, namely the maximum gradient and slew
rate that constrain the speed and acceleration when traversing k-space. These patterns also easily
ensure sufficient sampling densities. In recent years, hardware improvements, especially with the
RF and gradient systems, enable more complex gradient waveform. For a given readout time,
optimized designs can cover a broader and potentially more useful region in k-space, reducing the
overall scanning time and/or improving image quality, particularly when combined with multiple
receive coils.1

For fast imaging, many works focus on acceleration in the phase-encoding (PE) direction with
fully sampled frequency-encoding (FE) lines [23, 80, 83, 125, 151]. Usually, there is enough time
for ∆k shifts in the PE direction, so gradient and slew rate constraints are readily satisfied. More
general non-Cartesian trajectory designs in 2D and 3D can further exploit the flexibility in the FE
direction. However, in addition to hardware physical constraints, MRI systems are affected by
imperfections such as the eddy currents that cause the actual trajectory to deviate from the nominal
one and introduce undesired phase fluctuations in the acquired data [116]. Some studies optimize
properties of existing trajectories such as the density of spiral trajectories [87] or the rotation angle
of radial trajectories [159]. More complex waveforms, e.g., wave-like patterns [14], can provide
more uniform coverage of k-space and mitigate aliasing artifacts. To accommodate the incoher-
ence requirements of compressed sensing-based methods, [15, 92] introduce slight perturbations

1This chapter is based on our journal paper [146].
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to existing trajectories, like radial or spiral trajectories. Some works explore genetic algorithms to
solve this non-convex, constrained problem [118].

The recent SPARKLING method [85, 86] considers two criteria for trajectory design: (1) the
trajectory should match a pre-determined sampling density according to a certain measure, and (2)
the sampling points should be locally uniform to avoid clusters or gaps. The density and unifor-
mity criteria are transformed into ‘attraction’ and ‘repulsion’ forces among the sampling points.
The work uses fast multipole methods (FMM) [42] to efficiently calculate the interactions between
points. Projection-based optimization handles the gradient and slew rate constraints [24]. In-vivo
and simulation experiments demonstrate that this approach reduces aliasing artifacts for 2D and
3D T*

2-weighted imaging. However, in SPARKLING, the density is determined heuristically; de-
termining the optimal sampling density for different protocols remains an open problem. The work
also does not consider some k-space signal characteristics such as conjugate symmetry. Further-
more, the point spread function (PSF) of the calculated trajectory for high under-sampling rates
may be suboptimal for reconstruction algorithms like those based on convolution neural networks,
because the reconstruction algorithm is not part of the SPARKLING design process.

With rapid advances in deep learning and auto-differentiation software, learning-based signal
sampling strategies are being investigated in multiple fields such as optics and ultrasound [37, 69].
In MRI, most learning-based works have focused on sampling patterns of phase encoding loca-
tions. Some studies formulate the on-grid sampling pattern as i.i.d. samples from multivariate
Bernoulli distribution [9, 70]. Since random sampling operations are not differentiable, different
surrogate gradients, such as Gumbel-Softmax, are developed in these works. Instead of gradient
descent, [119] uses a greedy search method. [175] further reduces the complexity of greedy search
by Pareto optimization, an evolutionary algorithm for sparse regression [111]. Some works have
used reinforcement learning. For example, [74] and [169] adopted a double network setting: one
for reconstruction and the other for generating a sampling pattern, where the first work used Monte-
Carlo Tree Search (MCTS) and the second used Q-learning to optimize 1D sub-sampling. Instead
of using an end-to-end CNN as the reconstruction algorithm in other works, [127] constructs a
differentiable compressed sensing reconstruction framework. [1] used an unrolled neural network
as the reconstruction algorithm. To our knowledge, PILOT [154] is the first work to optimize a 2D
non-Cartesian trajectory and an image reconstruction method simultaneously. The training loss is
the reconstruction error since the ultimate goal of trajectory optimization is high image quality.
The trained parameters were the locations of sampling points and the weights of the reconstruction
neural network. Large datasets and stochastic gradient descent were used to optimize the param-
eters. To meet the hardware limits, a penalty was applied on the gradient and slew rate. Since
the reconstruction involves non-Cartesian data, PILOT uses a (bilinear, hence differentiable almost
everywhere) gridding reconstruction algorithm to map the k-space data into the image domain,

26



followed by a U-Net [117] to refine the gridded image data. Simulation experiments report en-
couraging results compared to ordinary trajectories. Nevertheless, the algorithm often gets stuck
in sub-optimal local minima where the initial trajectory is only slightly perturbed yet the slew rate
rapidly oscillates. To reduce the effect of initialization, [154] uses a randomized initialization al-
gorithm based on the traveling salesman problem (TSP) which works only with single-shot long
TE sequences, limiting its utility in more applications. The implementation in [154] relies on auto-
differentiation to calculate the Jacobian of the non-uniform Fourier transform; here we adopt a new
NUFFT Jacobian approximation that is faster and more accurately approximates the non-Cartesian
discrete Fourier transform (DFT), as described in Ch. 3.

To overcome the limitations of previous methods and further expand their possible applications,
this chapter introduces an improved supervised learning workflow called B-spline parameterized
Joint Optimization of Reconstruction and K-space trajectory (BJORK). Our main contributions
include the following. (1) We parameterize the trajectories with quadratic B-spline kernels. The
B-spline reparameterization reduces the number of parameters and facilitates multilevel optimiza-
tion, enabling non-local improvements to the initial trajectory. Moreover, the local smoothness
of B-spline kernels avoids rapid waveform oscillations. (2) We adopt an unrolled neural network
reconstruction method for non-Cartesian sampling patterns [2]. Compared to the image-domain
U-Net implemented in previous works, the proposed approach combines the strength of learning-
based and model-based reconstruction, improving the effect of both reconstruction and trajectory
learning. (3) We adopt accurate and efficient NUFFT-based approximations of the Jacobian matri-
ces of the DFT operations used in the reconstruction algorithm. (See [144] for detailed derivations
and validation.) (4) In addition to a simulation experiment, we also conducted phantom and in-vivo
experiments with protocols that differ from the training dataset to evaluate the generalizability and
applicability of the model. (5) We used a k-space mapping technique to correct potential eddy-
current-related artifacts. (6) Compared with SPARKLING, the proposed learning-based approach
does not need to assume signal characteristics such as spectrum energy density. Instead, BJORK
learns the sampling trajectories from a large data set in a supervised manner.

The remaining materials are organized as follows. Ch. 4.2 details the proposed method. Ch. 4.3
describes experiment settings and control methods. Ch. 4.4 and Ch. 4.5 present and discuss the
results.

4.2 Methods

This section describes the proposed approach for supervised learning of the sampling trajectory
and image reconstruction method.
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Figure 4.1: Diagram of the proposed BJORK method. To optimize the sampling trajectory and
the reconstruction algorithm jointly using a stochastic gradient descent (SGD)-type method, we
construct a differentiable forward MRI system matrix A(ω) that simulates k-space data w.r.t. tra-
jectory ω from ground truth images, and an unrolled neural network for reconstruction. The re-
construction errors compared with the ground truth are used as the training loss to update learnable
parameters (the trajectory ω and the network’s parameters θ).

4.2.1 Problem Formulation

Fig. 4.1 shows the overall workflow of the proposed approach. The goal is to optimize ω ∈
RNs×Nd , a trainable (possibly multi-shot) sampling pattern, and θ ∈ RM , the M parameters of
the image reconstruction method, where Ns denotes the total number of k-space samples, and Nd

denotes the image dimensionality. (The results in this chapter are for Nd = 2, i.e., 2D images, but
the method is general.)

The training loss for jointly optimizing the parameters is as follows:

argmin
ω∈RNs×Nd ,θ∈RM

Ex∈X [ℓ(fθ(ω;A(ω)x+ ε),x)] (4.1)

s.t. ∥D1ω
[d]∥∞ ≤ γ∆tgmax,

∥D2ω
[d]∥∞ ≤ γ∆t2smax, d = 1, . . . , Nd,

where each x ∈ CNv is a fully sampled reference image having Nv voxels drawn from the training
data set X and ε is simulated additive complex Gaussian noise. (In practice the expectation is
taken over mini-batches of training images.) The system matrix A = A(ω) ∈ CNsNc×Nv describes
the MR imaging physics (encoding), where Nc denotes the number of receiver coils. For multi-
coil non-Cartesian acquisition, it is a non-Cartesian SENSE operator [109] that applies a pointwise
multiplication of the sensitivity maps followed by a NUFFT operator (currently we do not consider
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field inhomogeneity but it would be straightforward to extend because the Jacobian approximation
in Ch. 3 can cover such cases.) The function fθ(ω; ·) denotes an image reconstruction algorithm
with parameters θ that is applied to simulated under-sampled data A(ω)x + ε. As detailed in
section 4.2.3, we use an unrolled neural network. The reconstruction loss ℓ(·, ·) quantifies the sim-
ilarity between a reconstructed image and the ground truth, and can be a combination of different
terms. Here we chose the loss ℓ to be a combined ℓ1 and square of ℓ2 norm. The matrices D1 and
D2 denote the first-order and second-order finite difference operators. ∆t is the raster time and γ

denotes the gyromagnetic ratio. For multi-shot imaging, the finite difference operator applies to
each shot individually. The optimization is constrained by maximum gradient field strength (gmax),
and slew rate (smax). To use the stochastic gradient descent (SGD) method, we convert the box
constraint into a penalty function ϕ, where

ϕλ(|x|) = 1T max .(|x| − λ, 0),

where max .(·) operates point-wisely. Our final optimization problem has the following form:

argmin
ω∈CNs×Nd ,θ∈RM

Ex∈X [ ℓ(fθ,ω(ω;A(ω)x+ ε),x)] + µ1ϕγ∆tgmax(|D1ω|) + µ2ϕγ∆t2smax
(|D2ω|).

We update θ and ω simultaneously for each mini-batch of training data.

4.2.2 Parameterization and Multi-level Optimization

We parameterize the sampling pattern with 2nd-order quadratic B-spline kernels:

ω[d] = Bc[d], d = 1, . . . , Nd, (4.2)

where B ∈ RNs×L denotes the interpolation matrix, and c[d] denotes the dth column of the coef-
ficient matrix c ∈ RL×Nd . L denotes the length of c[d], or the number of interpolation kernels in
each dimension. The decimation rate in Fig. 4.8 is defined as Decim. = Ns/L. B-spline kernels
reduce the number of individual inequality constraints (on maximum gradient strength and slew
rate) from 4NdNs to 4NdL where typically L≪ Ns. See [61] for more details.

Early versions of previous work [154] and our preliminary experiments found optimized tra-
jectories that were often local minima near the initialization, only slightly perturbing the initial
trajectory. We use a multilevel training strategy to improve the optimization process [17].

We initialized the decimation rate Ns/L with a large value (like 64). Thus, many neighboring
sample points are controlled by the same coefficient, which introduces more ‘non-local’ improve-
ments. After both c and θ converge, we reduce the decimation rate, typically by a factor of 2, and
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begin a new round of training initialized with ω and θ of the previous round. Fig. 4.8 depicts the
evolution along with decimation rates.

4.2.3 Reconstruction

In the joint learning model, we adopted a model-based unrolled neural network (UNN) approach
to image reconstruction [2, 60, 121, 163]. Compared to the previous joint learning model (PILOT)
that used a single image domain network [154], an unrolled network can lead to a more accurate
reconstruction [2], at the price of longer reconstruction time.

A typical cost function for regularized MR image reconstruction has the form:

x̂ = argmin
x
∥Ax− y∥22 + R(x). (4.3)

The first term is usually called the data-consistency term that ensures the reconstructed image
is consistent with the acquired k-space data y. (In the training phase, A(ω)x + ε is the simu-
lated y.) The regularization term R(·) is designed to control aliasing and noise when the data is
under-sampled. By introducing an auxiliary variable z, one often replaces (4.3) with the following
alternative:

x̂ = argmin
x

min
z
∥Ax− y∥22 + R(z) + µ∥x− z∥22, (4.4)

where µ > 0 is a penalty parameter. Using an alternating minimization approach, the optimization
updates become:

xi+1 = argmin
x
∥Ax− y∥22 + µ∥x− zi∥22, (4.5)

zi+1 = argmin
z

R(z) + µ∥xi+1 − z∥22. (4.6)

The analytical solution for the x update is

xi+1 = (A′A+ µI)−1(A′y + µzi),

which involves a matrix inverse that would be computationally prohibitive to compute directly.
Following [2], we use a few iterations of the conjugate gradient (CG) method for the x update. The
implementation uses the Toeplitz embedding trick to accelerate the computation of A′A [40, 101].

For a mathematically defined regularizer, the z update would be a proximal operator. Here we
follow previous work [2, 49] and use a CNN-based denoiser zi+1 = Dθ(xi+1). To minimize mem-
ory usage and avoid over-fitting, we used the same θ across iterations, though iteration-specific
networks may improve the reconstruction result [121].

For the CNN-based denoiser, we used the Deep Iterative Down-Up CNN (DIDN) [121, 166].
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As a state-of-art model for image denoising, the DIDN model uses less memory than popular
models like U-Net [117] with improved reconstruction results. In our experiments, it also led to
faster training convergence than previous denoising networks.

Since neural networks are sensitive to the scale of the input, a good and consistent initial esti-
mate of x is important. We used the following quadratic roughness penalty approach to compute
an initial image estimate:

x0 = argmin
x
∥Ax− y∥22 + λ∥Tx∥22 (4.7)

= (A′A+ λT ′T )−1A′y,

where T denotes the Nd-dimensional first-order finite difference (roughness) operator. We also
used the CG method to (approximately) solve this quadratic minimization problem.

4.2.4 Correction of Eddy-current Effects

Rapidly changing gradient waveforms may suffer from eddy-current effects, even with shielded
coils. This hardware imperfection requires additional measurements and corrections so that the
actual sampling trajectory is used for reconstructing real MRI data. Some previous works used a
field probe and corresponding gradient impulse-response (GIRF) model [142]. In this chapter, we
adopted the ‘k-space mapping’ method [35, 116] that does not require additional hardware. Instead
of mapping the kx and ky components separately as in previous papers, we excited a pencil-beam
region using one 90◦ flip and a subsequent 180◦ spin-echo pulse [103]. We averaged multiple rep-
etitions to estimate the actual acquisition trajectory. We also subtracted a zero-order eddy current
phase term from the acquired data [116].

The following pseudo-code summarizes the BJORK training process.

4.3 Experiments

Table 4.1: Protocols for data acquisition

Protocols for the prospective experiment:
Name FOV(cm) dz(mm) Gap(mm) TR(ms) TE(ms) FA Acqs dt(us) Time
Radial-like 22*22*4 2 0.5 318.4 3.56 90° 32*1280 4 0:11
Radial-full 22*22*4 2 0.5 318.4 3.56 90° 320*1280 4 1:40
dz: slice thickness; Gap: gap between slices; Acqs: number of shots * readout points; FA: flip angle
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Algorithm 1 Training algorithm for BJORK
Require: Training set X ; denoiser Dθ for initial CNN weights θ0; initial trajectory ω0; levels

of optimization Nlevel; number of epoch Nepoch; step size of denoiser update ηD; step size of
trajectory update ηω; penalty parameter for gradient/slew rate constraint µ1 and µ2.

Ensure: ω = Bc
1: θ ← θ0

2: ω ← ω0

3: Pre-train Dθ with fixed ω0.
4: for l = 1 to Nlevel do
5: Initialize new coefficient matrix Bl.
6: Initialize new coefficient c0l with ωl−1 ≈ Blc

0
l .

7: for j = 1 to Nepoch do
8: for training batches xK in X do
9: Simulate the k-space w.r.t. ωl:

10: yK = A(ωK
l )xK + ε

11: Reconstruction with UNN:
12: Reconstruct initial images using (4.7) with CG
13: for i = 1 to Niter do
14: xi+1: UNN reconstruction update of zi using (4.5)
15: Apply CNN: zi+1 = Dθ(xi+1)
16: end for
17: Calculate loss function:
18: L = ℓ(x̂K ,xK) + µ1ϕγ∆tgmax(|D1ω

K
i |) + µ2ϕγ∆t2smax

(|D2ω
K
i |)

19: Update denoiser and trajectory:
20: θK = θK−1 − ηD∇θK−1L
21: ωK

l = ωK−1
l − ηω∇ωK−1

l
L

22: end for
23: end for
24: end for
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We compared the proposed BJORK approach with the SPARKLING method for trajectory de-
sign in all experiments, and have set the readout length and physical constraints to be the same for
both methods.

Both BJORK and PILOT [154] are methods for joint sampling design and reconstruction op-
timization. We compared three key differences between the two methods individually. (1) The
NUFFT Jacobian matrices, as discussed in [144]. (2) The reconstruction method involved. Our
BJORK approach uses an unrolled neural network, while PILOT uses a single reconstruction neu-
ral network in the image domain (U-Net). We also presented the effect of trajectory parameteri-
zation (BJORK uses quadratic B-splines following [61], whereas versions 1-3 of PILOT used no
parameterization and more recent versions of PILOT use cubic splines [154]).

To evaluate the reconstruction quality provided by different trajectories, we used two types
of reconstruction methods in the test phase: unrolled neural network (UNN) (with learned θ)
and a compressed sensing approach (sparsity regularization for a discrete wavelet transform).
For SPARKLING-optimized trajectories and standard undersampled trajectories (radial/spiral), we
used the same unrolled neural networks as in BJORK for reconstruction. Only the network param-
eters θ were trained, with the trajectory ω fixed.

We also used compressed sensing-based reconstruction to test the generalizability of BJORK-
optimized trajectories. The penalty function is the ℓ1 norm of a discrete wavelet transform with a
Daubechies 4 wavelet. The ratio between the penalty term and the data-fidelity term is 10−7. We
used the SigPy package2 and its default primal-dual hybrid gradient (PDHG) algorithm (using 50
iterations). This study includes two evaluation metrics: the structural similarity metric (SSIM) and
peak signal-to-noise ratio (PSNR) [68].

For both simulation and real acquisition, the acquisition sampling time and gradient raster time
are both 4 µs, with a target matrix size of 320×320. The maximum gradient strength is 50 mT/m,
and the maximum slew rate is 149 T/m/s, which were set to limit peripheral nerve stimulation.

To demonstrate the proposed model’s adaptability, we investigated two types of initialization of
waveforms: an undersampled in-out radial trajectory with a shorter readout time (∼5 ms) and an
undersampled center-out spiral trajectory with a longer readout time (∼16 ms). For the in-out radial
initialization, the number of spokes is 16/24/32, and each spoke has 1280 points of acquisition (4
µs samples). The rotation angle is equidistant between −π/2 and π/2. For the center-out spiral
initialization, the number of spokes is 8, and each leaf has ∼4000 points of acquisition. We used
the variable-density spiral design package3 from [87]. For SPARKLING, τ = 0.6 and d = 2.5 for
32-spoke radial and τ = 0.5 and d = 2 for 8-shot spiral ([85, Eqn. 8]) which are selected by grid
search using CS-based reconstruction.

2https://github.com/mikgroup/sigpy
3https://mrsrl.stanford.edu/˜brian/vdspiral/
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The simulation experiments used the NYU fastMRI brain dataset to train the trajectories and
neural networks [167]. The dataset consists of multiple contrasts, including T1w (23220 slices),
T2w (42250 slices), and FLAIR (5787 slices). FastMRI’s knee subset was also used in a separate
training run to investigate the influence of training data on learned sampling patterns. The central
320× 320 region was cropped (or zero-filled). Sensitivity maps were estimated using the ESPIRiT
method [141] with the central 24 phase-encoding lines, and the corresponding conjugate phase
reconstruction was regarded as the ground truth during training.

The batchsize was 4. The number of blocks or the number of outer iterations for the unrolled
neural network was 6. The weight µ in (4.4) could also be learned, but this operation would double
the computation load with minor improvement. We set µ = 2. The number of training epochs
was set to 3 for each level of B-spline kernel length, which is empirically enough for the training
to converge. We used Nlevel = 4 optimization levels, and Nepoch = 3 so the total number of
epochs was 12. We set Niter = 6 of the unrolled neural network. For training the reconstruction
network with existing trajectories (radial, spiral, and SPARKLING-optimized), we also used 12
training epochs. We used the Adam optimizer [79], with parameter β = [0.5, 0.999], for both
trajectories ω and network parameters θ. The learning rate linearly decayed from 10−3 to 0 for
the trajectory update, and from 10−5 to 0 for the network update. We did not observe obvious
over-fitting phenomena on the validation set. The training on an Intel Xeon Gold 6138 CPU and
an Nvidia RTX2080Ti GPU took around 120-150 hours.

4.3.1 Prospective Studies

Table 4.1 details the scanning protocols of the RF-spoiled, gradient echo (GRE) sequences used.
For in-vivo acquisitions, a fat-saturation pulse was applied before the tip-down RF pulse. We
chose the TR and FA combination for desired T1w contrast. For radial-like sequences, we tested a
GRE sequence with 3 different readout trajectories: standard undersampled radial, BJORK initial-
ized with undersampled radial, and SPARKLING initialized with undersampled radial. Radial-full
denotes the fully sampled radial trajectory. Both simulation experiments (training) and real exper-
iments used the same readout trajectory.

We also acquired an additional dual-echo Cartesian GRE image for generating the sensitive
map and (potentially) B0 map. The sensitivity maps were generated by ESPIRiT [141] methods.
The sequences were programmed with TOPPE [103], and implemented on a GE MR750 3.0T
scanner with a Nova Medical 32-channel head coil. Subjects gave informed consent under local
IRB approval. For phantom experiments, we used a water phantom with 3 internal cylinders.

The k-space mapping was implemented on a water phantom. The thickness of the pencil beam
was 2mm × 2mm. The trajectory estimates were based on an average of 30 repetitions.
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Table 4.2: Quantitative results for simulation experiments

SSIM:
Standard SPARKLING BJORK

radial-like
UNN 0.957 0.963 0.968
CS 0.932 0.946 0.956

spiral-like
UNN 0.986 0.989 0.990
CS 0.976 0.978 0.981

PSNR (in dB):
Standard SPARKLING BJORK

radial-like
UNN 35.0 36.0 36.9
CS 33.9 35.7 36.3

spiral-like
UNN 40.9 41.7 41.9
CS 39.9 40.4 40.7

Figure 4.2: Learned radial-like trajectories with different acceleration ratios.
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Figure 4.3: Examples from the simulation experiment using the UNN-based reconstruction algo-
rithm, with three different acceleration ratios. Ns stands for the number of shots or spokes. The
first slice is FLAIR contrast. The second slice is T1w contrast. The third slice is T2w contrast.
Red boxes indicate zoom-in regions and red arrows point to reconstruction artifacts/blur. Below
the zoomed-in regions are the corresponding error maps, compared with fully sampled images.
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Figure 4.4: The gradient strength and slew rate of one spoke from BJORK-optimized radial trajec-
tory.

4.4 Results

4.4.1 Simulation Study

The test set includes 1520 slices, and the validation set includes 500 slices. Table 4.2 shows
the quantitative results (SSIM and PSNR). The radial-like sequences have 32 spokes. Fig. 4.2
displays optimization results under different acceleration ratios. Fig. 4.3, Fig. 4.4, and Fig. 4.5
display the reconstruction results, gradient waveforms, and training loss curve of the optimization
results. The proposed method has significant improvement compared with un-optimized trajec-
tories (P < 0.005). It also has improved reconstruction quality compared with SPARKLING
considering unrolled neural network-based reconstruction. Compared to the undersampled radial
trajectory or SPARKLING trajectory, the proposed method has a better restoration of details and
lower levels of artifacts. In the experiment, different random seeds in the training led to nearly
identical learned sampling trajectories.

Fig. 4.6 displays point spread functions of 32-spoke radial-like trajectories. The BJORK’s
PSF has a narrower central lobe than SPARKLING and fewer streak artifacts than standard radial.
Fig. 4.7 shows the approximate conjugate symmetry relationship implicitly learned in the BJORK
trajectory. However, it is important to note that quadratic reconstruction, as discussed in Ch. 3,
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Figure 4.5: Smoothed training losses of a 16-spoke radial-initialized sequence. We use 4 levels
and each level contains 3 epochs. The three columns are the reconstruction loss, penalty on the
maximum slew rate, and penalty on the maximum gradient strength.

38



Figure 4.6: PSFs of different sampling patterns. Each middle plot is the averaged profile of
different views (angles) through the origin. The FWHM for undersampled radial, BJORK, and
SPARKLING are 1.5, 1.6, and 2.1 pixels, respectively.

Figure 4.7: The dash-dot line shows the 180◦ rotated BJORK trajectory. The original and rotated
trajectory have little overlap, suggesting that the BJORK automatically discovered a sampling
pattern that exploits the (approximate) k-space Hermitian symmetry.
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does not display obvious conjugate symmetry, as indicated by the Jacobian expression in (3.6).
Fig. 4.8 shows the evolution of sampling patterns using our proposed multi-level optimization.

Different widths of the B-spline kernels introduce different levels of improvement as the trajectory
is optimized. Fig. 4.8 also shows a nonparametric trajectory that is similar to early versions of the
PILOT paper [154, versions 1-3]. Directly optimizing sampling points seems only to introduce a
small perturbation than the initialization.

Fig. 4.9 shows radial-initialized trajectories trained by BJORK with brain and knee datasets.
Different trajectories are learned from different datasets. We hypothesize that the difference is
related to frequency distribution of energy, as well as the noise level, which requires further study.
This phenomenon was also observed in [9].

Figure 4.8: The evolution of the learned trajectories. Decim denotes Ns/L in (4.2). Nonparametric
means the locations of each sampling points are independent trainable variables, rather than being
parameterized by quadratic B-spline kernels. SSIM denotes the average reconstruction quality on
the evaluation set of each level. The rightmost zoomed-in set shows the very small perturbations
produced by the nonparametric approach (stuck into local-minima).

Table 4.3: Effects of different contrasts on learned models.

PPPPPPPPPtest
training

T1w T2w FLAIR

T1w +noise 0.981 0.980 0.981
T2w +noise 0.951 0.953 0.953
FLAIR+noise 0.974 0.974 0.975

To explore the influence of image contrast in the training set, we trained the model with one
image contrast from the fastMRI brain dataset (without simulated additive noise), and tested the
learned trajectory with all contrasts (with simulated additive Gaussian noise whose variance is
10−3 of the mean magnitude of the signal). Each contrast has 4500 training slices and 500 test
slices. We fine-tuned the reconstruction unrolled neural network for different test contrasts. The
initialization is a 16-spoke radial trajectory. Table 4.3 reports the average reconstruction quality.
The learned trajectories are insensitive to different contrasts within the fastMRI dataset.
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Figure 4.9: Trajectories learned from different datasets.

To test the influence of reconstruction methods on trajectory optimization, we tried a single
image-domain refinement network as the reconstruction method in the joint learning model, simi-
lar to PILOT’s approach. Quadratic roughness penalty reconstruction in (4.7) still is the network’s
input. The initialization of the sampling pattern is an undersampled radial trajectory. Table 4.4
shows that the proposed BJORK reconstruction method (unrolled neural network, UNN) improves
reconstruction quality compared to a single end-to-end model. Such improvements are consis-
tent with other comparisons between UNN methods and image-domain CNN methods using fixed
sampling patterns (reconstruction only) [2, 121, 163].

To show the effect of warm initialization, we compared two inputs of the unrolled neural net-
work: the adjoint of undersampling signal (A′y) and quadratic roughness penalized reconstruction
(A′A + λT ′T )−1A′y. The experiment optimized a 16-spoke radial trajectory and used 1520 test
slices. The average reconstruction quality (SSIM values) of the two settings are 0.944 and 0.950,
respectively.

Table 4.4: Effects of different reconstruction networks involved in the joint learning model

SSIM PSNR(dB)
UNN 0.968 36.9
Single U-Net 0.934 32.8

4.4.2 Prospective Experiments

Fig. 4.10 shows the results of a water phantom for different reconstruction algorithms. The right-
most column is the fully-sampled ground truth (Radial-full). Note that the unrolled neural network
(UNN) here was trained with fastMRI brain dataset, and did not receive fine-tuning in all prospec-
tive experiments. The BJORK-optimized trajectory leads to fewer artifacts and improved contrast
for the UNN-based reconstruction.
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Figure 4.10: Representative results of the prospective phantom experiment using CS-based and
UNN-based reconstruction algorithms. The sequences involved were radial-like GRE (detailed in
Table 4.1) with T1w contrast. The parameters of UNNs are trained with fastMRI dataset with-
out fine-tuning. The readout length was 5.12 ms, and we used 32/320 spokes for undersampled
(Radial-Under, SPARKLING, BJORK) trajectories and the fully-sampled radial trajectory, respec-
tively.
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Figure 4.11: Results of the T1w prospective in-vivo experiment. The trajectories were also radial-
like (detailed in Table 4.1). The readout time was 5.12 ms. The parameters of UNNs are trained
with the fastMRI dataset without fine-tuning. The number of shots for undersampled trajectories
was 32, and for the fully-sampled radial trajectories was 320 (10× acceleration). The FOV was 22
cm. Red arrows point out reconstruction artifacts.
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Fig. 4.11 showcases one slice from the in-vivo experiment. For CS-based reconstruction, the
undersampled radial trajectory exhibits stronger streak artifacts than SPARKLING- and BJORK-
optimized trajectories. For UNN-based reconstruction, all trajectories’ results show reductions of
artifacts compared to CS-based reconstruction. The proposed method restores most of the struc-
tures and fine details, with minimal artifacts.

4.4.3 Correction of Eddy Currents

Fig. 4.12 displays the CS-based reconstruction of real acquisitions reconstructed using both the
nominally designed trajectories and the measured trajectories.

Fig. 4.13 shows the results of the trajectory measurements. Using the measurement of the actual
trajectory seems to mitigate the influence of eddy current effects in the reconstruction results.

Figure 4.12: Compressed sensing-based reconstruction of a water phantom. The left column is the
reconstruction with the nominal trajectory, and right is with the measured trajectory. Reconstruc-
tion with the mapped trajectory introduced fewer artifacts.

4.5 Discussion

This chapter proposes an efficient learning-based framework for the joint design of MRI sampling
trajectories and NN-based reconstruction parameters. Defining an appropriate objective function
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Figure 4.13: The influence of eddy currents on readout waveform. The solid line is the nominal
trajectory, and the dotted line is the measurement.

for trajectory optimization is an open question. We circumvented this long-lasting problem by
directly using the reconstruction quality as the training loss function in a supervised learning
paradigm. The workflow includes a differentiable reconstruction algorithm for which the learning
process obtains an intermediate gradient w.r.t. the reconstruction loss. However, solely depend-
ing on backpropagation and stochastic gradient descent cannot guarantee optimal results for this
non-convex problem. To improve the training effect, we adopted several techniques, including
trajectory parameterization, multi-level training, warm initialization of the reconstruction network,
and an accurate approximation of NUFFT’s Jacobian (Ch. 3). Results show that these approaches
can stabilize the training and provide better local minimizers than previous methods.

We trained an unrolled neural network-based reconstruction method for non-Cartesian MRI
data. The single image-domain network used in previous work does not efficiently remove alias-
ing artifacts. Additionally, the k-space ‘hard’ data-consistency trick for data fidelity [97, 120] is
inapplicable for non-Cartesian sampling. An unrolled algorithm can reach a balance between data
fidelity and the de-aliasing effect across multiple iterations. For 3D trajectory design using the pro-
posed approach, the unrolled method’s memory consumption can be huge. More memory-efficient
reconstruction models, such as the memory-efficient network [88] should be explored in further
study. We would also investigate recent calibration-less unrolled neural networks, which do not
require external sensitivity maps, and shows improved performance relative to MoDL [100].

For learning-based medical imaging algorithms, one main obstacle towards clinical application
is the gap between simulation and the physical world. Some factors include the following.

First, inconsistency exists between training datasets and real-world acquisitions, such as differ-
ent vendors and protocols, posing a challenge to reconstruction algorithms’ robustness and gen-
eralizability. Our training dataset consisted of T1w/T2w/FLAIR Fast Spin-Echo (FSE or TSE)
sequences, acquired on Siemens 1.5T/3.0T scanners. The number of receiver channels includes
4, 8, and 16, etc. We conducted the in-vivo/phantom experiment on a 3.0T GE scanner equipped
with a 32-channel coil. The sequence is a GRE sequence that has lower SNR compared to FSE
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sequences in the training set. Despite the very large differences with the training set, our work
still demonstrated improved and robust results in the in-vivo and phantom experiment, without any
fine-tuning.

We hypothesize that several factors could contribute to the generalizability: (1) the reconstruc-
tion network uses the quadratic roughness penalized reconstruction as the initialization, normalized
by the median value. Previous works typically use the adjoint reconstruction as the input of the
network. In comparison, our regularized initialization helps provide consistency between differ-
ent protocols, without too much compromise of the computation time/complexity, (2) the PSF of
the learned trajectory has a compact central lobe, without significant streak artifacts. Therefore,
the reconstruction is reduced to a de-blurring/denoising task that is a local low-level problem and
thus may require less training data than de-aliasing problems. For de-blurring of natural images,
networks are usually adaptive to different noise levels and color spaces, and require small cohorts
of data [90, 102]. For trajectories like radial and SPARKLING, in contrast, a reconstruction CNN
needs to remove global aliasing artifacts, such as streak artifacts and ringing artifacts. The dynam-
ics behind the neural network’s ability to resolve such artifacts is still an unsolved question, and
the training requires a large amount of diverse data. Other theories, such as restricted isometry
property (RIP), may also be exploited to probe the properties of optimized sampling trajectories.

Secondly, it is not easy to simulate system imperfections like eddy currents and off-resonance
in the training phase. These imperfections can greatly affect image quality in practice. We used a
trajectory measurement method to correct the eddy-current effect. Future works should consider
field inhomogeneity in the workflow.

Furthermore, even though the BJORK sampling was optimized for a UNN reconstruction
method, the results in Fig. 4.10 and Fig. 4.11 suggest that the learned trajectory is also useful
with a CS-based reconstruction method or other model-based reconstruction algorithms. This ap-
proach can still noticeably improve the image quality by simply replacing the readout waveform
in the existing workflow, promoting the applicability of the proposed approach, similar to [9]. We
plan to apply the general framework to optimize a trajectory for (convex) CS-based reconstruction
and compare it to the (non-convex) open-loop UNN approach in future work.

Though the proposed trajectory is learned via a data-driven approach, it can also reflect the
ideas behind SPARKLING and Poisson disk sampling: sampling patterns having large gaps or tight
clusters of points are inefficient, and the sampling points should be somewhat evenly distributed
(but not too uniform). Furthermore, BJORK appears to have learned some latent characteristics,
like the conjugate symmetry for these spin-echo training datasets. To combine both methods’
strengths, a promising future direction is to use SPARKLING as a primed initialization of BJORK.

The learning used here exploited a big public data set. As is shown in the results, knee imag-
ing and brain imaging led to different learned trajectories. This demonstrates that the data set can
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greatly influence the optimization results, as was observed in [9]. We also implemented a com-
plementary experiment on a smaller training set (results not shown). We found that a small subset
(3000 slices) also led to similar learned trajectories. Therefore, for some organs where a sizeable
dataset is not publicly available, this approach may still work with small-scale private datasets. To
examine the influence of scanner models, field strength, and sequences, follow-up studies should
investigate more diverse datasets.

The eddy-current effect poses a long-term problem for non-Cartesian trajectories and impedes
their widespread clinical use. This work used a simple k-space mapping technique as the correction
method. The downside of this method is its long calibration time, although it can be performed in a
scanner’s idle time. This method is waveform-specific, which means that correction should be done
for different trajectories. Other methods relying on field probes can get a more accurate correction
with less time, albeit with dedicated hardware. In a future study, the eddy current-related artifacts
could be simulated according to the GIRF model in the training phase, so that the trajectory is
learned to be robust against eddy-current effects.

Aside from practical challenges with GPU memory, the general approach described here is
readily extended from 2D to 3D sampling trajectories, which will be discussed in Ch. 5 A more
challenging future direction is to extend the work to dynamic imaging applications like fMRI and
cardiac imaging, where both the sampling pattern and the reconstruction method should exploit
redundancies in the time dimension, e.g., using low-rank models [72]. To optimize sampling in
higher dimensions, the next chapter will introduce additional regularizations on the PNS effect.
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CHAPTER 5

Optimization of High-dimensional Sampling
Trajectories

5.1 Introduction

Most magnetic resonance imaging systems sample data in the frequency domain (k-space) follow-
ing prescribed sampling trajectories. Efficient sampling strategies can accelerate acquisition and
improve image quality. Many well-designed sampling strategies and their variants, such as spiral,
radial, CAIPIRINHA, and PROPELLER [3, 19, 84, 108], have enabled MRI’s application to many
areas [43, 48, 75, 165]. Sampling patterns in k-space are either located on the Cartesian raster or
arbitrary locations (non-Cartesian sampling). This paper focuses on optimizing 3D non-Cartesian
trajectories and introduces a generalized gradient-based optimization method for automatic trajec-
tory design or tailoring.1

The design of sampling patterns usually considers certain properties of k-space signals. For
instance, the variable density (VD) spiral trajectory [87] samples more densely in the central k-
space where more energy is located. For higher spatial frequency regions, the VD spiral trajectory
uses larger gradient strengths and slew rates to cover k-space as quickly as possible. Compared
to 2D sampling, designing 3D sampling analytically is more challenging for several reasons. The
number of parameters increases in 3D, and the parameter selection is more difficult due to the
larger search space. For example, a 3D radial trajectory with 10000 spokes has 20000 degrees of
freedom, while its 2D multi-slice counterpart with 200 spokes per slice has only 200 degrees of
freedom. Additionally, analytical designs usually are based on the Shannon-Nyquist relationship
[54, 77, 173] that might not fully consider properties of sensitivity maps and non-linear reconstruc-
tion methods. For 3D sampling patterns with high undersampling (acceleration) ratios, there are
limited analytical tools for designing sampling patterns with an anisotropic FOV and resolution.
The peripheral nerve stimulation (PNS) effect [59] is also more severe in 3D imaging because of

1This chapter is based on our paper [147].
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the additional spatial encoding gradient, further complicating manual designs. For these reasons,
automatic designs of 3D sampling trajectories are crucial for efficient acquisition.

Many 3D sampling approaches exist. The ‘stack-of-2D’ strategy stacks 2D sampling patterns
in the slice direction [75, 173]. This approach is easier to implement and enables slice-by-slice 2D
reconstruction. Another design applies Cartesian sampling in the frequency-encoding direction
and non-Cartesian sampling in the phase-encoding direction [1, 14]. However, these approaches
do not fully explore the design space in three dimensions and may not perform as well as true 3D
sampling trajectories [21].

Recently, 3D SPARKLING [21] proposes to optimize 3D sampling trajectories based on the
goal of conforming to a given density while distributing samples as uniformly as possible [85].
That method demonstrated improved image quality compared to the ‘stack-of-2D-SPARKLING’
approach. In both 2D and 3D, the SPARKLING approach uses a pre-specified sampling density in
k-space that is typically an isotropic radial function. This density function cannot readily capture
distinct energy distributions of different imaging protocols. In SPARKLING, the PNS effects are
not controlled explicitly, and the user may need to lower the slew rate to reduce PNS. SPARKLING
optimizes the location of every sampling point, or the gradient waveform (freeform optimization),
and cannot optimize parameters of existing sampling patterns.

In addition to analytical methods, learning-based methods have been investigated for designing
trajectories. Since different anatomies have distinct energy distributions in the frequency domain,
an algorithm may learn to optimize sampling trajectories from training datasets. Several studies
have shown that different anatomies produce distinct optimized sampling patterns, and these op-
timized sampling trajectories can improve image quality [9, 55, 70, 74, 119, 127, 146, 154, 169].
Some methods can optimize sampling trajectories with respect to specific reconstruction algo-
rithms to further enhance reconstruction image quality [1, 144]. Several recent studies also applied
learning-based approaches to 3D non-Cartesian trajectory design. J-MoDL [1] proposes to learn
sampling patterns and model-based deep learning reconstruction algorithms jointly. J-MoDL op-
timizes the sampling locations in the phase-encoding direction, to avoid the computation cost of
non-uniform Fourier transform. PILOT/3D-FLAT [6, 154] jointly optimizes freeform 3D non-
Cartesian trajectories and a reconstruction neural network with gradient-based methods. These
studies use the standard auto-differentiation approach to calculate the gradient used in optimiza-
tion, which can be inaccurate and lead to sub-optimal optimization results [144].

This chapter extends Ch. 3 and Ch. 4, and introduces a generalized Stochastic optimization
framework for 3D NOn-Cartesian samPling trajectorY (SNOPY). The proposed method can au-
tomatically tailor given trajectories and learn k-space features from training datasets. We present
several optimization objectives, including image quality, hardware constraints, PNS effect sup-
pression and image contrast. Users can simultaneously optimize one or multiple characteristics
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Figure 5.1: Diagram of SNOPY. The sampling trajectory (and possibly reconstruction parame-
ters) are updated using gradient methods. The training/optimization process uses differentiable
programming to obtain the gradient necessary for the update.

of a given sampling trajectory. Similar to previous learning-based methods [1, 9, 146, 154], the
sampling trajectory can be jointly optimized with trainable reconstruction algorithms to improve
image quality. The joint optimization approach can thus exploit the synergy between acquisition
and reconstruction, and learn optimized trajectories specific for different anatomies and recon-
struction methods [1, 56, 144, 146, 175]. The algorithm can optimize various properties of a sam-
pling trajectory, such as readout waveforms, or rotation angles of readout shots, making it more
practical and applicable. We also introduced several techniques to improve efficiency, enabling
large-scale 3D trajectory optimization. We tested the proposed methods with multiple imaging
applications, including structural and functional imaging. These applications benefited from the
SNOPY-optimized sampling trajectories in both simulation and prospective studies.

5.2 Methods

This section describes the proposed gradient-based methods for trajectory optimization. We use the
concept of differentiable programming to compute the descent gradient with respect to sampling
trajectories required in the gradient-based methods. The sampling trajectory and reconstruction pa-
rameters are differentiable parameters, whose gradients can be computed by auto-differentiation.
To learn or update these parameters, one may apply (stochastic) gradient descent algorithms.
Fig. 5.1 illustrates the basic idea. The sampling trajectories can be optimized in conjunction with
the parameters of learnable reconstruction algorithms so that the learned sampling trajectories and
reconstruction methods are in synergy and produce high-quality images. The SNOPY algorithm
combines several optimization objectives to ensure that the optimized sampling trajectories have
desired properties. Ch. 5.2.1 delineates these objective functions. Ch. 5.2.3 shows that the pro-
posed method is applicable to multiple scenarios with different parameterization strategies. For
non-Cartesian sampling, the system model usually involves non-uniform fast Fourier transforms
(NUFFT). Ch. 5.2.4 suggests several engineering approaches to make this large-scale optimization
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problem solvable and efficient.

5.2.1 Optimization Objectives

This section outlines the optimization objectives in SNOPY. As SNOPY is a stochastic gradient
descent-like algorithm, the objective function, or loss function, is by default defined on a mini-
batch of data. The final loss function can be a linear combination of following loss terms to ensure
the optimized trajectory possesses multiple required properties.

5.2.1.1 Image quality

For many MRI applications, efficient acquisition and reconstruction aim to produce high-quality
images. Consequently, the learning objective should encourage images reconstructed from sam-
pled k-space signals to match the reference images. We formulate this similarity objective as the
following image quality training loss:

Lrecon = ℓ(fθ,c(A(ω(c))x+ ε)− x). (5.1)

Here, ω(c) ∈ RNfe×Ns×Nd denotes the trajectory to be optimized, with Ns shots, Nfe sampling
points in each shot, and Nd image dimensions. For 3D MRI, Nd = 3. ε is simulated complex
Gaussian noise. A(ω) is the forward system matrix for sampling trajectory ω(c) [41]. c denotes
the parameterization coefficients of sampling trajectories ω, which is introduced in Ch. 5.2.3. In
this study, A also incorporated multi-coil sensitivity information [109]. x denotes the reference
image from the training set X , which is typically reconstructed from fully-sampled signals. In
addition to contrast-weighted imaging, if the training dataset X includes quantitative parameter

maps, one may also simulate x using the Bloch equation, and A can subsequently consider imaging
physics such as relaxation. fθ,ω(·) is the reconstruction algorithm to be delineated in Ch. 5.2.2.
θ denotes the reconstruction algorithm’s parameters. It can be kernel weights in a convolutional
neural network (CNN), or the regularizer coefficient in a model-based reconstruction method. The
similarity term ℓ(·) can be ℓ1 norm, ℓ2 norm, or a combination of both. There are also other ways to
measure the distance between x and fθ,ω(A(ω)x+ε), such as the structural similarity index (SSIM
[152]) and perceptual loss [76]. For simplicity, this work used a linear combination of ℓ1 norm and
square-of-ℓ2 norm, which is a common practice in deep learning-based image reconstruction[172].
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5.2.1.2 Hardware limits

The gradient system of MR scanners has physical constraints, namely maximum gradient strength
and slew rate. Ideally, we would like to enforce a set of constraints of the form

∥gi[j, :]∥2 ≤ gmax, gi = D1ω[:, i, :]/(γ∆t) ∈ R(Nfe−1)×Nd ,

for every shot i = 1, . . . , Ns and time sample j = 1, . . . , Nfe, where gi denotes the gradient
strength of the i shot and gmax denotes the desired gradient upper bound. One may use a Euclidean
norm along the spatial axis so that any rotation of the sampling trajectory still obeys the constraint.
Applying the penalty to each individual gradient axis is also feasible. A similar constraint is
enforced on the Euclidean norm of the slew rate si = D2ω[:, i, :]/(γ∆t2), where D1 and D2

denote first-order and second-order finite difference operators applied along the readout dimension.
∆t denotes the raster time interval and γ denotes the gyromagnetic ratio.

To make the optimization more practical, we follow previous studies [146, 154], and formulate
the hardware constraint as a soft penalty term:

Lg =
Ns∑
i=1

Nfe−1∑
j=1

ϕgmax(∥gi[j, :]∥2) (5.2)

Ls =
Ns∑
i=1

Nfe−2∑
j=1

ϕsmax(∥si[j, :]∥2). (5.3)

Here ϕ is a penalty function, and we use a simple soft-thresholding function ϕλ(x) = max(|x| −
λ, 0), because it is sub-differentiable and easy to implement. It is possible to use more sophisticated
functions. Since ϕ here is a soft penalty and the optimization results may exceed the threshold,
smax and gmax can be slightly lower than the scanner’s actual physical limits to ensure that the
optimization results are feasible on the scanner. Applying a sanity check before sequence pro-
gramming is also useful. In addition to the soft-penalty approach, recent studies [45] also used
projection-based methods.

5.2.1.3 Suppression of PNS effect

The additional gradient axis in 3D imaging can result in stronger peripheral nerve stimulation
(PNS) effects compared to 2D imaging. To quantify possible PNS effects of candidate gradient
waveforms, SNOPY uses a convolution model described in [123]:

Rid(t) =
1

smin

∫ t

0

sid(θ)c

(c+ t− θ)2
dθ, (5.4)
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where Rid denotes the PNS effect of the gradient waveform from the ith shot and the dth dimension.
sid is the slew rate of he ith shot in the dth dimension. c (chronaxie) and smin (minimum stimulation
slew rate) are scanner-specific parameters.

Likewise, we discretize the convolution model and use a soft penalty term as the following loss
function:

pid[j] =

j∑
k=1

sid[k]c∆t

smin(c+ j∆t− k∆t)2
,

Lpns =
Ns∑
i=1

Nfe∑
j=1

ϕpmax((

Nd∑
d=1

pid[j]
2)

1
2 ). (5.5)

Again, ϕ denotes the soft-thresholding function, with PNS threshold pmax (usually ≤
80%[123]). This model combines the 3 spatial axes via the sum-of-squares manner and does not
consider anisotropic characteristics of PNS [29]. The implementation may use an FFT (with zero
padding) for efficient convolution.

5.2.1.4 Image contrast

In many applications, the optimized sampling trajectory should maintain certain parameter-
weighted contrasts. For example, ideally the (gradient) echo time (TE) should be identical for
each shot. Again, we replace this hard constraint with an echo time penalty. Other parameters, like
repetition time (TR) and inversion time (TI), can be predetermined in the RF pulse design. Specif-
ically, the corresponding loss function encourages the sampling trajectory to cross the k-space
center at certain time points:

Lc =
∑

{i,j,d}∈C

ϕ0(|ω[i, j, d]|), (5.6)

where C is a collection of gradient time points that are constrained to cross the k-space zero
point. ϕ is still a soft-thresholding function, with threshold 0.

The total loss function is a linear combination of the above terms

L = λreconLrecon + λgLg + λsLs + λpnsLpns + λcLc.

Note that not every term is required. For example, experiment 5.3.2.2 only used the Lrecon. Ch. 5.5
further discusses how to choose linear weights λs.
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5.2.2 Reconstruction

In (5.1), the reconstruction algorithm fθ,ω(·) can be various algorithms. Consider a typical cost
function for regularized MR image reconstruction

x̂ = argmin
x
∥A(ω)x− y∥22 + R(x). (5.7)

R(x) here can be a Tikhonov regularization ν∥x∥22 (CG-SENSE [95]), a sparsity penalty ν∥Tx∥1
(compressed sensing [91], T is a finite-difference operator), a roughness penalty ν∥Tx∥22 (penal-
ized least squares, PLS), or a neural network (model-based deep learning, MoDL [2]). Ch. 5.4
shows that different reconstruction algorithms lead to distinct optimized sampling trajectories. In
training, y is retrospectively simulated as ȳ = A(ω)x+ε (following (5.1)). In prospective studies,
y is the acquired k-space data.

To get a reconstruction estimation x̂, one may use iterative reconstruction algorithms. Specif-
ically, the algorithm should be step-wise differentiable (or sub-differentiable) to enable differen-
tiable programming. The backpropagation uses the chain rule to traverse every step of the iterative
algorithm to calculate gradients with respect to variables such as ω.

5.2.3 Parameterization

As is shown in [146], directly optimizing every k-space sampling location (or equivalently every
gradient waveform time point) may lead to sub-optimal results. Additionally, in many applications,
one may need to optimize certain properties of existing sampling patterns, such as the rotation
angles of a multi-shot spiral trajectory, so that the optimized trajectory can be easily integrated into
existing workflows. For these needs, we propose two parameterization strategies.

The first approach, spline-based freeform optimization, represents the sampling pattern using a
linear basis, i.e., ω = Bc, where B is a matrix of samples of a basis such as quadratic B-spline
kernels and c denotes the coefficients to be optimized [146, 154]. This approach fully exploits the
generality of a gradient system. Using a linear parameterization like B-splines reduces degrees of
freedom and facilitates applying hardware constraints [61, 146]. Additionally, the parameterization
can be combined with multi-scale optimization to avoid sub-optimal local minima and further
improve optimization results [85, 146, 154]. However, freeformly optimized trajectories could
introduce implementation challenges. For example, some MRI systems can not store hundreds of
different gradient waveforms.

The second approach is to optimize attributes c of existing trajectories, where ω(c) is a dif-
ferentiable function of the attributes c. For example, many applications use radial trajectories,
where the rotation angles can be optimized. Suppose s ∈ R3×N is one radial sampling spoke, and
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Table 5.1: The memory/time use reduction brought by proposed techniques. Here we used a 2D
400×400 test case, and CG-SENSE reconstruction (20 iterations). ‘+’ means adding the technique
to previous columns.

Plain +Efficient Jacobian +In-place ops +Toeplitz embed. +Low-res NUFFT

5.7GB / 10.4s 272MB / 1.9s 253MB / 1.6s 268MB / 0.4s 136MB / 0.2s

consider an M -shot 3D radial trajectory,

ω =
[
R1 · · · RM

]
IM ⊗ s, (5.8)

where Ri ∈ R3×3 denotes a rotation matrix, IM denotes an identity matrix of size M , and ⊗
denotes the Kronecker product. In this case, the list of Ri is the coefficient to be optimized. This
approach is easier to implement on scanners, and can work with existing workflows.

5.2.4 Efficient Optimization

5.2.4.1 Optimizer

Generally, to optimize the sampling trajectory ω and other parameters (such as reconstruction pa-
rameters θ) via stochastic gradient descent-like methods, each update takes a step (in the simplest
form)

θK = θK−1 − ηt
∂L
∂θ

(ωK−1,θK−1)

ωK = ωK−1 − ηω
∂L
∂ω

(ωK−1,θK−1),

where L is the loss function described in Section 5.2.1 and where ηt and ηω denote step-size
parameters.

The optimization is highly non-convex and may suffer from sub-optimal local minima. We
used stochastic gradient Langevin dynamics (SGLD) [156] as the optimizer to improve results and
accelerate training. Each update of SGLD injects Gaussian noise into the gradient to introduce
randomness

θK = θK−1 − ηt
∂L

∂θK−1
+
√

2ηθN (0, 1)

ωK = ωK−1 − ηω
∂L

∂ωK−1
+
√

2ηωN (0, 1). (5.9)

Across most experiments, we observed that SGLD led to improved results and faster conver-
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gence compared with SGD or Adam [79]. Fig. 5.2 shows a loss curve of SGLD and Adam of
experiment 5.3.2.3.

Figure 5.2: The evaluation loss curve for SGLD and Adam. The training process costs ∼1 hr.

Figure 5.3: The optimized sampling trajectory of experiment 5.3.2.1. The training process involves
the SKM-TEA dataset and CG-SENSE reconstruction. The upper row shows a zoomed-in region
from different viewing perspectives. The lower row displays one shot from different perspectives.

5.2.4.2 Memory saving techniques

Due to the large dimension, the memory cost for naive 3D trajectory optimization would be pro-
hibitively intensive. We developed several techniques to reduce memory use and accelerate train-
ing.

In the similarity loss (5.1), the sampling trajectory is embedded in the forward system matrix A.
The system matrix for non-Cartesian sampling usually includes NUFFT operators [41]. Updating
the sampling trajectory in each optimization step requires the Jacobian, or the gradient with respect
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Figure 5.4: Profile of gradient strength and slew rate for one shot in experiment 5.3.2.1.

to the sampling trajectory. The NUFFT operator typically involves interpolation in the frequency
domain, which is non-differentiable due to rounding operations. Several previous works used
auto-differentiation (with sub-gradients) to calculate an approximate numerical gradient [154, 6],
but that approach is inaccurate and slow [144]. As discussed in Ch. 3, we derived an efficient and
accurate Jacobian approximation method. Calculating this Jacobian simply uses another NUFFT,
which is more efficient than the auto-differentiation approach. We also used in-place operations in
certain reconstruction steps, such as the conjugate gradient (CG) method, because with careful
design it will not interrupt auto-differentiation. (See our open-source code2 for details.) The
primary memory bottleneck relates to 3D NUFFT operators. One can pre-calculate the Toeplitz
embedding kernel to save memory and accelerate computation [40, 101]. In the training phase, we
used NUFFTs with lower accuracy, for instance, with a smaller oversampling ratio for gridding.
Table 5.1 shows the incrementally improved efficiency achieved with these techniques. Without the
proposed techniques, optimizing 3D trajectories would require hundreds of gigabytes of memory,
which would be impractical for a single node. SNOPY enables solving this otherwise prohibitively
large problem on a single GPU.

5.3 Experiments

5.3.1 Datasets

We used two publicly available datasets; both of them contain 3D multi-coil raw k-space data.
SKM-TEA [30] is a 3D quantitative double-echo steady-state (qDESS [157]) knee dataset. It was
acquired by 3T GE MR750 scanners and 15/16-channel receiver coils. SKM-TEA includes 155
subjects. We used 132 for training, 10 for validation, and 13 for the test. Calgary brain dataset [133]
is a 3D brain T1w MP-RAGE [18] k-space dataset. It includes 67 available subjects, acquired by

2https://github.com/guanhuaw/Bjork
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Figure 5.5: Experiment 5.3.2.1 with two types of initialization.

Table 5.2: The quantitative reconstruction quality (NRMSE) of the test set.

CG-SENSE PLS MoDL

3D kooshball 28.1 dB 28.1 dB 30.0 dB
SNOPY 32.3 dB 32.4 dB 33.6 dB

an MR750 scanner and 12-channel head coils. We used 50 volumes for training, 6 for validation,
and 7 for testing. All sensitivity maps were calculated by ESPIRiT [141].

5.3.2 Simulation Experiments

We experimented with multiple scenarios to show the broad applicability of the proposed method.
All the experiments used a node equipped with an Nvidia Tesla A40 GPU for training.

5.3.2.1 Optimizing 3D gradient waveform

We optimized the sampling trajectory with a 3D radial (‘kooshball’) initialization [10, 63]. As
is described in 5.2.3, the experiment optimized the readout waveform of each shot with B-spline
parameterization, to reduce the number of degrees of freedom and enable multi-scale optimization.
The initial 3D radial trajectory had a 5.12 ms long readout (raster time = 4 µs) and 1024 shots (8×
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Figure 5.6: Visualization of the optimized trajectory in experiment 5.3.2.1. The upper subfigure
displays PSFs (log-scaled, single-coil) of trajectories optimized with different reconstruction meth-
ods. The lower subfigure shows the density of sampling trajectories, obtained by convolving the
sampling points with a Gaussian kernel. Three rows are central profiles from three perspectives.
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Figure 5.7: Examples of the reconstructed images for two knee slices in experiment 5.3.2.1.

acceleration), using the rotation angle described in [21]. The training used the SKM-TEA dataset.
The retrospectively cropped FOV was 158×158×51 mm3 with 0.76×0.62×1.6 mm3 simulated
resolution. The receiver bandwidth was ±125 kHz (dwell time = 4 µs). The training loss was

L = Lrecon + 103Lg + 103Ls + Lpns.

The gradient strength (gmax) and slew rate (smax) were 50 mT/m and 150 mT/m/ms (for individual
axis). The PNS threshold (pmax) was 80%. The simulated noise ε was 0. The batch size was 3. The
learning rate ηω decayed from 10−4 to 0 linearly. For multi-level optimization, we used 3 levels
(with B-spline kernel widths = 32, 16, and 8), and each level used 200 epochs. The total training
time was ∼240 hrs. The trajectory was optimized with respect to several image reconstruction
algorithms. We used a regularizer weight ν = 10−3 and 30 CG iterations for CG-SENSE and PLS.
For learning-based reconstruction, we used the MoDL [2] network that alternates between a neural
network-based denoiser and data consistency updates. We used a 3D version of the denoising
network [166], 20 CG iterations for the data consistency update, and 6 outer iterations. Similar
to previous investigations [1, 146], SNOPY jointly optimized the neural network’s parameters and
the sampling trajectory using (5.9).

5.3.2.2 Optimizing rotation angles of stack-of-stars trajectory

This experiment optimized the rotation angles of a stack-of-stars trajectory, which is a widely used
volumetric imaging sequence. The training used the Calgary brain dataset. We used PLS as the
reconstruction method for simplicity, with ν = 10−3 and 30 iterations. The simulated noise ε was
0 and the batch size was 12. We used 200 epochs and a learning rate linearly decaying from 10−4
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Figure 5.8: Prospective results of 5.3.2.2, optimizing the rotation angles of the stack-of-stars (6×
acceleration). ‘Best empirical’ uses the design from a previous study [173]. The upper subfigure
shows two slices from prospective in-vivo experiments. The reconstruction algorithm was PLS.
Avg. PSNR denotes the average PSNR of the 4 subjects compared to the fully sampled reference.
The lower subfigure shows the log-scaled PSF (single-coil) of two trajectories.

61



Figure 5.9: Sampling trajectories in experiment 5.3.2.2. Each figure shows an inplane (kx − ky)
sampling trajectory for a kz location.

to 0. The FOV was retrospectively cropped to 256×218×32 mm3 with 1 mm3 resolution. We used
40 spokes per kz location (6× acceleration), and 1280 spokes in total. The readout length was 3.5
ms. The receiver bandwidth was ±125kHz (dwell time = 4 µs). The trajectory was a stack of 32
kz planes, hence SNOPY optimized 1280 rotation angles in this case.

Since optimizing rotation angles does not impact the gradient strength, slew rate, PNS, and
image contrast, we only used the reconstruction loss L = Lrecon. We regarded the method (RSOS-
GR) proposed in previous works [173] as the best empirical scheme. We applied 200 epochs with
a linearly decaying learning rate from 10−3 to 0. The training cost ∼20 hrs.

5.3.2.3 PNS suppression of 3D rotational EPI trajectory for functional imaging

The third application optimizes the rotation EPI (REPI) trajectory [115], which provides an effi-
cient sampling strategy for fMRI. For high resolution (i.e., ≤1 mm), we found that subjects may
experience strong PNS effects introduced by REPI. This experiment aimed to reduce the PNS ef-
fect of REPI while preserving the original image contrast. We optimized one shot of REPI, being
parameterized by B-spline kernels (width=16). The optimized readout shot was rotated using the
angle scheme similar to [115] for multi-shot acquisition.

We designed the REPI readout for an oscillating stead steady imaging (OSSI) sequence, a novel
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Figure 5.10: Prospective results of experiment 5.3.2.3. We showed three different trajectories: the
unoptimized REPI, as well as SNOPY-optimized with PNS thresholds of 80% and 70%. The left
subfigure shows one slice of reconstructed images. The reconstruction used PLS and 120 shots
(volume TR = 2s). The right subfigure shows subjective scores of the PNS effect.

fMRI signal model that can improve the SNR [53, 52]. The FOV was 200×200×12 mm3, with 1
mm3 isotropic resolution, TR = 16 ms, and TE = 7.4 ms. The readout length was 10.6 ms. The
receiver bandwidth was± 250kHz (dwell time = 2 µs). The gradient strength (gmax), and slew rate
(smax) constraints were 58 mT/m and 200 mT/m/ms (3 axes combined).

To accelerate training, the loss term here excluded the reconstruction loss Lrecon

L = 10−2Lg + 10−2Ls + Lpns + 102Lc.

The training used 40,000 steps, with the learning rate decaying linearly from 10−4 to 0. The
training cost ∼1 hrs.

5.3.3 In-vivo Experiments

We implemented the optimized trajectory prospectively on a GE UHP 3.0T scanner equipped with
a Nova Medical 32-channel head coil. Participants gave informed consent under local IRB ap-
proval. Since the cache space in this MR system cannot load hundreds of distinct gradient wave-
forms, the experiment 5.3.2.1 was not implemented prospectively. Readers may refer to the cor-
responding 2D prospective studies [146] for image quality improvement and correction of eddy
current effects. For experiment 5.3.2.2, we programmed the sampling trajectory with a 3D T1w
fat-saturated GRE sequence [103], with TR/TE = 14/3.2 ms and FA = 20°. The experiment in-
cluded 4 healthy subjects. For experiment 5.3.2.3, to rate the PNS effect, we asked 3 participants
to score the nerve stimulation with a 5-point Likert scale from ‘mild tingling’ to ‘strong muscular
twitch.’
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5.3.4 Reproducible Research

The code is publicly available3. As an accompanying project, MIRTorch4 facilitates applying
differentiable programming to MRI sampling and reconstruction.

5.4 Results

For the spline-based freeform optimization experiment delineated in 5.3.2.1, Fig. 5.3 presents an
example of the optimized trajectory, along with zoomed-in regions and plots of a single shot. Simi-
lar to the 2D case [146] and SPARKLING [21, 85], the multi-level B-spline optimization generates
a swirling trajectory that can cover more k-space in the fixed readout time, to reduce large gaps
between sampling locations and, consequently, aliasing artifacts. Notably, the zoomed-in region
highlights that different shots were automatically learned not to overlap with each other, which
implicitly improved the sampling efficiency [85]. Fig. 5.6 displays point spread functions (PSFs)
of trajectories jointly optimized with different reconstruction algorithms. To visualize the sam-
pling density in different regions of k-space, we convolved the trajectory with a Gaussian kernel,
and Fig. 5.6 shows the density of central profiles from different views. Compared with 3D koosh-
ball, the SNOPY optimization led to fewer radial patterns in PSFs, corresponding to fewer streak
artifacts in Fig. 5.7. Trajectories optimized with different reconstruction algorithms generated dif-
ferent PSFs and densities, which agrees with previous studies [56, 144, 175]. Table 5.2 lists the
quantitative reconstruction quality of different trajectories. The image quality metric is the average
peak signal-to-noise ratio (PSNR) of the test set. SNOPY led to ∼4 dB higher PSNR than the
kooshball initialization. Fig. 5.7 includes examples of reconstructed images. Compared to koosh-
ball, SNOPY’s reconstructed images have reduced artifacts and blurring. Though MoDL (and its
variants) are well-performing NN-based reconstruction algorithms according to the open fastMRI
reconstruction challenge [100], many important structures are distorted using the kooshball trajec-
tory. Using the SNOPY-optimized trajectory, a simple model-based reconstruction (CG-SENSE)
can reconstruct such structures. The gradient strength and the slew rate of optimized sampling
trajectories are exhibited in Fig. 5.4. SNOPY solves a non-convex problem; therefore, its results
depend on the initialization. We compared different initialization trajectories, including stack-of-
stars (SOS) and 3D radial, as illustrated in Fig. 5.5. The number of readout points, as well as
training configurations, were kept constant for both initialization methods. The average PSNR on
the test set was 32.4 dB for the optimized trajectory using 3D radial initialization, and 34.8 dB for
the optimized trajectory using SOS initialization.

3https://github.com/guanhuaw/SNOPY
4https://github.com/guanhuaw/MIRTorch
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Figure 5.11: The first row of plots displays the PNS effect calculated by the convolution model
(5.5) used in experiment 5.3.2.3. The second row shows the corresponding readout trajectories
before and after SNOPY optimization.

For experiment 5.3.2.2, Fig. 5.8 shows the PSF of the optimized and RSOS-GR schemes [173].
For the in-plane (x-y) PSF, the SNOPY rotation shows noticeably reduced streak-like patterns. In
the y-z direction, SNOPY optimization leads to a narrower central lobe and suppressed aliasing
artifacts. The prospective in-vivo experiments also support this theoretical finding. In Fig. 5.8, the
example slices (reconstructed by PLS) from prospective studies show that SNOPY reduced streak-
ing artifacts. The average PSNR of SNOPY and RSOS-GR for the 4 participants were 39.23 dB
and 37.84 dB, respectively. Fig. 5.9 show the rotation angles before and after SNOPY optimization.

In experiment 5.3.2.3, we tested three settings: unoptimized REPI, optimized with PNS thresh-
old (pmax in (5.5)) = 80%, and optimized with pmax = 70%. Fig. 5.10 shows one slice of recon-
structed images by the CS-SENSE algorithm, as well as the subjective ratings of PNS. Though
SNOPY suppressed the PNS effect, the image contrast was well preserved by the image contrast
regularizer (5.6). Fig. 5.11 presents one shot before and after the optimization, and one plot of sim-
ulated PNS effects. The SNOPY optimization effectively reduced subjective PNS effects of given
REPI readout gradients in both simulation and in-vivo experiments. Intuitively, SNOPY smoothed
the trajectory to avoid a constantly high slew rate, preventing a high PNS effect. To show the effect
of penalty weights, we also tested 4 different settings of experiment Ch. 5.3.2.3 to showcase the
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impact of different weight combinations, including

L = 10−2Lg + 10−2Ls + 10−3Lpns + 102Lc,

L = 10−2Lg + 10−2Ls + 10−2Lpns + 102Lc,

L = 10−2Lg + 10−2Ls + 10−1Lpns + 102Lc,

L = 10−2Lg + 10−2Ls + Lpns + 102Lc.

Fig. 5.12 displays the optimized sampling trajectory and the corresponding PNS calculation. A
higher weight of Lpns led to better adherence to the PNS constraint.

5.5 Discussion

SNOPY presents a novel and intuitive approach to optimizing non-Cartesian sampling trajectories.
Via differentiable programming, SNOPY enables the application of gradient-based and data-driven
methods to trajectory design. Various applications and in-vivo experiments demonstrated the ap-
plicability and robustness of SNOPY and its 2D predecessor [146].

Figure 5.12: Examples of experiment 5.3.2.3 optimized by training losses with different weight
combinations. The first row of figures shows the PNS effect calculated by the convolution model.
The second row depicts the optimized trajectory.

Experiments 5.3.2.1 and 5.3.2.2 used SNOPY to tailor sampling trajectories according to spe-
cific training datasets and reconstruction algorithms, by formulating reconstruction image quality
as a training loss. One concern was whether the learned trajectories would overfit the training
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dataset. In experiment 5.3.2.2, the training set used an MP-RAGE sequence, while the prospective
sequence was an RF-spoiled GRE. Similarly, 2D prospective and retrospective experiments [146]
showed that trajectories learned with particular pulse sequences and hardware still improved the
image quality of other sequences and hardware, and the NN-based reconstruction did not require
fine-tuning with respect to prospective experiments. These empirical studies suggest that trajectory
optimization is robust to moderate distribution shifts between training and inference. An intuitive
explanation is that SNOPY can improve the PSF by reducing aliasing, and such improvements are
universally beneficial. Future investigations will explore the robustness of SNOPY in more diverse
settings, such as optimizing trajectories with healthy controls and prospectively testing them with
pathological participants to examine image quality for pathologies. It will also be desirable to test
SNOPY with different FOVs, resolutions, and B0 strengths.

Our experiments demonstrated that iterative reconstruction with simple analytical regularizers,
such as CG-SENSE, can benefit from the SNOPY-optimized sampling trajectories. As depicted
in Fig. 5.3, CG-SENSE with SNOPY optimization can successfully reconstruct many anatomical
structures that were blurred in the MoDL reconstruction without SNOPY trajectory. This result
is consistent with Ch. 3, where compressed sensing algorithms with trajectory optimization also
outperformed NN-based reconstruction. These findings indicate untapped potentials of model-
based reconstruction by optimizing sampling trajectories.

A model mismatch may happen at the digitization level: the training set typically consists of
concrete discrete-space images, whereas real objects are continuous. This inverse crime is common
in learning-based methods and may lead to suboptimal results. Future research should investigate
strategies for mitigating this issue.

SNOPY uses a relatively simplified model of PNS. More precise models, such as [29], may
lead to improved PNS suppression results.

The training process incorporates several loss terms, including image quality, PNS suppres-
sion, hardware limits, and image contrast. By combining these terms, the optimization can lead
to trajectories that have multiple desired characteristics. One may alter the optimization results
by controlling the coefficients. For example, with a larger coefficient of the hardware constraint
loss, the trajectory will better conform to smax and gmax. Setting the weights of several terms can
be complicated. Empirically, the weight of soft constraints, including hardware (Lg and Ls), PNS
suppression (Lpns), and contrast (Lc) can be tuned to a higher value if the optimized trajectory
significantly violates these constraints. Additionally, the training losses may sometimes contradict
each other, and the optimization process would get stuck in a local minimum. To address this,
several empirical tricks have been employed. Similar to SPARKLING [85], the constraint on max-
imum gradient strength can be relaxed using a higher receiver bandwidth. Bayesian optimization
is another option for finding optimal loss weights, but may increase training time. Using SGLD
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can introduce randomness that helps escape local minima. In spline-based optimization, one can
use a larger B-spline kernel width in the early stages of a coarse-to-fine search.

Trajectory optimization is a non-convex problem. SNOPY uses several methods, including
effective Jacobian approximation, parameterization, multi-level optimization, and SGLD, to alle-
viate the non-convexity and achieve better optimization results. These methods were also found
to be effective in Ch. 4. Initialization is also important for non-convex problems, as demonstrated
in Fig. 5.5. SNOPY can leverage existing knowledge of MR sampling as a benign initialization.
For instance, our experiments used the widely accepted golden-angle stack-of-stars as optimiza-
tion bases. The SNOPY algorithm can sequentially improve these skillfully designed trajectories
to combine the best of both stochastic optimization and researchers’ insights.

SNOPY has a wide range of potential applications, including dynamic and quantitative imaging,
particularly if large-scale quantitative datasets are available. These new applications may require
task-specific optimization objectives in addition to the ones described in Ch. 5.2.1. In particular, if
the reconstruction method is not easily differentiable, such as the MR fingerprinting reconstruction
based on dictionary matching [93], one needs to design a surrogate objective for image quality.
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CHAPTER 6

Subject-specific Adaptive Sampling using Langevin
Dynamics

6.1 Introduction

Many imaging systems acquire measurements sequentially. Reducing the number of measure-
ments can accelerate the signal acquisition process and benefit modalities that require lower radia-
tion, such as computed tomography (CT) and scanning electron microscopy (SEM). Nevertheless,
this can result in an under-determined image reconstruction problem. To address this challenge,
various reconstruction methods have been proposed, such as compressed sensing [33], to enable
the recovery of an object from undersampled measurements.

Sampling strategy also plays a critical role in achieving high-quality images. For instance,
many sub-Nyquist sampling patterns have been investigated in MRI, including analytical and data-
driven designs [175]. However, predetermined strategies may not always be optimal for various
imaging scenarios. To address this challenge, adaptive sampling or dynamic sampling techniques
can select the next batch of ‘important’ data points based on existing observations. This approach
enables better use of prior information from both signal statistics and observed signals, leading
to improved image quality and acquisition speed. Relevant methods include Bayesian experimen-
tal design (BED) [58], neural network-based regression [171], and reinforcement learning [107].
These methods improved image quality in various applications. However, many neural network-
based methods may lack generalization ability and explainability to out-of-distribution test sets
and real-world applications.

This chapter presents a model-based dynamic sampling approach that predicts new sampling
locations by greedily minimizing the variance of posterior samples drawn from the posterior distri-
bution [32].1 The sampler uses stochastic gradient Langevin dynamics (SGLD) [156] and supports
various image priors. We applied the proposed dynamic sampling to accelerate Cartesian MRI ac-

1This chapter is based on our preprint [148].
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quisition. Across many experiment settings, the proposed approach significantly improved image
quality.

6.2 Theory

Figure 6.1: Comparison of different 1D sampling strategies with the analytical (roughness) prior.
The undersampling ratio is 5× for all sampling patterns. The test set has n = 20 slices. Dynamic
sampling leads to reduced aliasing artifacts.

Consider a linear sensing system
y = Ax+ ε,

where A ∈ CM×N denotes a sensing matrix, x ∈ CN denotes the object, and y ∈ CM denotes raw
measurements. To accelerate the acquisition, we consider the ‘undersampled’ case where y has
L < N non-zero entries. Typically, the locations of non-zero entries in y follows pre-determined
patterns. The proposed method, instead, dynamically chooses additional sample locations in a
sequence of K sampling iterations where the samples for iteration k+1 are based on the measure-
ments (y1, . . . ,yk) recorded in previous iterations.

Specifically, we apply a Bayesian approach [156]. At the k iteration of additive sampling, based
on the measurements acquired up until this point y(k) = (y1, . . . ,yk), the first step draws samples
from the posterior distribution p(x|y(k)), yielding a collection of reconstructed images denoted
{x̂(k)

i }
Nsamplep
i=1 . We use an SGLD sampler detailed below. The second step projects each estimate

x̂
(k)
i (typically in the image domain) back to the measurement domain using the sensing equation

ŷ
(k)
i = Ax̂

(k)
i . The third step selects the next sampling locations by greedily minimizing the

variance of samples
{
ŷ
(k)
i

}
in the measurement domain. In detail, we select the next measurement

location(s) l for the k + 1 iteration using the k-space locations having the maximum variance:

l = argmax
n∈1,2,...N

Var{[ŷ(k)
1 ]n, . . . , [ŷ

(k)
Nsamplep

]n}.
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To compute a collection of reconstructions or estimates {x̂i}, we sample from the posterior

x̂ ∼ p(x|y(k)) = p(x)p(y(k)|x)/p(y(k)),

where p(x) denotes the prior and p(y(k)|x) denotes the likelihood. In contrast, a typical iterative
image reconstruction algorithm gives a point estimate, such as the MAP estimator. SGLD [156]
samples from the posterior distribution using the update

∆xt = ηt(∇ log p(y(k)|xt) +∇ log p(xt)) +
√
2ηtN (0, 1),

where ηt denotes the time-dependent step size [71, 130]. Intuitively, SGLD explores the solution
space by injecting Gaussian noise similar to the Langevin Monte Carlo sampler.

Algorithm 2 Adaptive sampling algorithm

Require: Score function fθ(x) ≈ ∇ log p(x); number of additive dynamic sampling iterations
Nadd; number of SGLD steps Nstep; number of samples drawn from a posterior distribution
Nsample p; step size in SGLD η; penalty parameter for image prior µ;

1: Acquire initial measurements y0

2: (optional) Pre-train fθ(x) on dataset X via score matching.
3: for k = 1 to Nadd do
4: for i = 1 to Nsample p do
5: for t = 1 to Nstep do
6: Initialize x̃0

7: x̃t = x̃t−1 + µtfθ(x̃t−1)− µtηtA
′(Ax̃t−1 − y(k)) +

√
2µtN (0, 1)

8: end for
9: x̂

(k)
i = x̃Nadd

10: ŷ
(k)
i = Ax̂

(k)
i + ε

11: end for
12: l = argmaxn∈1,2,...N Var{[ŷ(k)

1 ]n, . . . , [ŷ
(k)
Nsamplep

]n}.
13: Acquire additive measurements with index l and concatenate it with previous measure-

ments y(k) = [y(k−1), yl].
14: end for

In applications where the noise ε is Gaussian, the gradient of likelihood has the closed-form
solution∇ log p(y|x) = −A′(Ax−y). The prior term p(x), or the score function∇ log p(x) can
take various forms. For example, a simple prior that penalizes first-order roughness has the form
p(x) = e−λ∥Tx∥22/2, where T is the first-order finite difference transform; its corresponding score
function is ∇ log p(x) = −λT ′Tx. Analytical priors may not be informative and many studies
propose to learn score functions from datasets. Score matching approximates the score function
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with a learnable function fθ(x) and learns from a training set X :

argmin
θ

Ex∈X∥ log p(x)− fθ(x)∥22

Recent improvements in score matching, such as sliced score matching and denoising score
matching [71, 130], have extended the method’s effectiveness and made it more applicable to large
datasets [66, 131] To demonstrate the adaptability of our algorithm, we tested both analytical priors
and score functions based on neural networks. Alg. 2 details the proposed approach.

Figure 6.2: Comparison of 2D sampling strategies with reconstruction based on an analytical
(roughness) prior. The undersampling ratio was 12× for both sampling patterns. The test set
had n = 10 volumes. Dynamic sampling reduced blurring and artifacts.

6.3 Experiments

We applied the proposed dynamic sampling method to MRI data that reside in the Fourier domain
(k-space). For our experiment with Cartesian sampling, the sensing matrix A contained both FFT
and coil sensitivity (calculated by methods described [141]). The score functions included both
a simple analytical one f(x) = −λT ′Tx and a learned U-Net-based model. We evaluated the
analytical priors on multiple MRI datasets [30, 133, 167], using both 1D and 2D sampling patterns.
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Figure 6.3: Comparison of 2D sampling strategies with the learned (NCSN++) prior. The un-
dersampling ratio was 10× for both sampling patterns. The test set had n = 16 slices. Adaptive
sampling improved tissue contrast and reduced blurring.

We compared the dynamic sampling patterns with well-received fixed sampling patterns, such as
Poisson-disk, for Nadd = 50 and Nstep = 200.

We used the same U-Net-based architecture (NCSN++) and configurations as in [132] to train
the learned prior on the fastMRI brain dataset. The complex-valued image was formulated as two
input channels. To demonstrate the generalization ability, we tested it on test sets that contained
different anatomies and sequences than the fastMRI database, including an MP-RAGE sequence of
human brains [133] and a GRE sequence of mouse brains, without any fine-tuning. For the mouse
brain dynamic contrast-enhanced (DCE) data, we learned the sampling pattern from a ‘pilot’ frame
and then applied it to subsequent frames. We used Nadd = 30 and Nstep = 100 and the accelerated
sampler described in [25]. The sequence η used the same configuration as described in [132].

6.4 Discussion

The posterior sampling processes can be computationally expensive, determined by both the sys-
tem matrix A and the score function ∇ log p(x). Simpler analytical priors may accelerate the
sampling process. The sampling process is embarrassingly parallel and can leverage parallel com-
puting and hardware improvements. In its current form, the proposed dynamic sampling is partic-
ularly useful for dynamic imaging applications such as fMRI and DCE-MRI where a ‘pilot’ scan is
available to design tailored sampling patterns for subsequent frames and avoid the long computa-
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tion time that may compromise the benefits of dynamic sampling. The sampling from the posterior

Figure 6.4: Comparison of 2D sampling strategies with the learned (NCSN++) prior. The first row
shows the Poisson-disk sampling pattern. The second row displays the adaptive sampling pattern
optimized with the 1st frame and applied to the 17th frame. The third row shows the reference
images. The undersampling ratio was 4× for both sampling patterns. Adaptive sampling led to
reduced artifacts and higher SNR across different time frames.

distribution may benefit from faster samplers [160]. Some ‘single-shot’ samplers based on neural
network methods can sample faster than SGLD [137] however, they are trained on a certain dataset
and may lack the ability to generalize to out-of-distribution applications.

The proposed dynamic sampling method has demonstrated decent robustness in simulated ex-
periments and analytical priors worked well for different test cases. The learned priors were trained
on a fastMRI brain dataset but generalized well to different anatomies, vendors, sequences, and
field strengths. Future work will include a systematic comparison with prior arts such as [9, 175]
and prospective in-vivo experiments.
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CHAPTER 7

Other Contributions

7.1 Model-based Motion Correction for fMRI

Motion correction is critical for fMRI due to the long acquisition time. Currently, registration-
based retrospective correction is standard in post-processing pipelines [73]. Typically, this ap-
proach estimates the motion parameters for the whole volume at a certain time frame. For high-
resolution multi-shot fMRI, the intra-frame motion between shots may impede image-based ap-
proaches and cause blurring. We propose an iterative approach for fine-grained motion correction
and reconstruction. Our method iterates between motion estimation and model-based reconstruc-
tion to achieve improved motion correction compared to single-pass registration. The implemen-
tation utilizes multiple GPUs to accelerate computation.

Our proposed method alternates between motion estimation, using registration, and motion-
informed model-based reconstruction to synergistically improve both. The first step reconstructs a
‘crude’ image for each shot. We initialize this step with a ‘data-sharing’ (multi-shot) reconstruction
to avoid strong aliasing artifacts. Next, we estimate rigid motion using gradient correlation as the
metric. Then the method updates the k-space data and corresponding system matrices of each shot,
including the sampling trajectory and coil sensitivity and B0 inhomogeneity maps, according to the
motion parameters.

Our model-based reconstruction involves minimizing the cost function x̂ = argminx ∥Ax −
y∥22 + R(x), where A denotes the system matrix. Here the system matrix is a stack of system
matrices of different shots

A =


Ashot1

Ashot2

...
Ashotn

 ,

to accommodate different trajectories and shifted sensitivity/B0 maps. R(x) denotes the regular-
ization terms, such as a Tikhonov regularizer.
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Compared to standard reconstruction, the proposed reconstruction method requires more
NUFFTs. The implementation uses the GPU-based MIRTorch and torchkbnufft [101] for efficient
computation.

Figure 7.1: Workflow of the proposed motion correction method.

Figure 7.2: Results of the phantom experiment. In the presence of strong motion, the registration-
based method (MCFLIRT) cannot resolve the blurring caused by the inter-shot movement.

We evaluated the proposed motion correction using oscillating steady state (OSS) fMRI [53], a
novel high-SNR BOLD fMRI method. The sampling trajectory used the rotation EPI (REPI) [115],
as shown in Fig. 7.1. The FOV was 20×20×3.2 cm, with a 2 mm isotropic resolution. The TR was
16 ms, and TE was 7.4 ms. We used 10 shots and 10 OSS ‘fast-time’ acquisitions to reconstruct
a single time frame. In the phantom experiment, we cyclically rotated a cylinder water phantom.
In the in-vivo task-based study, a volunteer performed a finger-tapping task and rotated the head

76



Figure 7.3: Results of the in-vivo experiment. Two slices from the same time frame are displayed,
and corrected by different methods. Similar to the phantom experiment, the proposed method
effectively reduced blurring artifacts.

Figure 7.4: Activation maps for the two motion correction methods. MCFLIRT led to scattered
false positives due to motion, while the proposed iterative method reflected accurate correlations
in the motor cortex.
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to simulate motion. The baseline registration used the standard MCFLIRT function in the FSL
toolbox [73]. The reconstruction algorithm was CG-SENSE reconstruction (roughness penalty, 20
iterations) and used Nvidia RTX8000 GPUs.

Fig. 7.2 depicts the results of the phantom experiment. Compared with MCFLIRT, our method
effectively reduced the blurring artifacts caused by the intra-frame motion. Fig. 7.3 presents the
in-vivo reconstruction results, where the proposed method reduced blurring. Fig. 7.4 shows acti-
vation maps calculated from MCFLIRT and the proposed method. MCFLIRT erroneously showed
activation in the skull due to motion, whereas the proposed method accurately reflected voxels in
the motor cortex. Our approach with the multi-GPU optimization significantly improves compu-
tation efficiency: the reconstruction time of using 3 GPUs was less than 1 hr, whereas an 18-core
CPU calculation took more than 20 hr (for 60 temporal frames).

This section presented an application of our method to fMRI, which can also benefit other
applications such as diffusion imaging and MR fingerprinting.

7.2 Model-based Acceleration for Longitudinal Imaging

Longitudinal MRI holds great potential for tracking in-vivo dynamics, such as aging, disease pro-
gression, and cognitive change [16, 81, 158]. Based on the underlying similarity between longitu-
dinal scans, we propose Delta Scan, a model-based and explainable method that uses the previous
MRI exams to accelerate future scans.1

The basic assumptions of modeling longitudinal imaging include: (1) exams from the same
participant have similar energy distribution (in k-space), and (2) structural changes between exams
should be sparse (under a certain transform). For (1), the sampling pattern is optimized based
on the spectrum of the first exam. For (2), we design a model-based reconstruction algorithm to
exploit prior information. The sampling pattern optimization workflow uses a Pareto optimization
paradigm [175]. We propose to use stochastic optimization when extending to the non-cartesian
case. The underlying assumption is that the energy distribution for the same subject should be
similar across time. For image reconstruction, we model images as a combination of two compo-
nents: (1) historical static information (i.e., the majority of the tissue structure remains the same),
which we formulate as a block-matching process; (2) dynamic information (i.e., accounting for
possible structural changes in tissue level and/or positional changes due to subject motion), which
was modeled as a dictionary learning problem. The two sources of information are incorporated

1This section is based on a conference abstract [145], accomplished during the internship at Q Bio, Inc.
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into the following two-stage optimization problem. The cost function of the first stage is:

x1 = argmin
x

min
ij∈{1,2...N}

∥Ax− y∥22 + ν

N1∑
j=1

∥∥∥Pjx−D
ij
1

∥∥∥2
2
, (7.1)

where A denotes MRI forward model and P is a patch operator that decomposes the image into
local patches, with N1 patches in total. The first term is usually termed as ‘data consistency.’
The second term involves block-matching operations inspired by the BM3D method [27], with
D1 extracted from previous scans using the same P . To make the block-matching process more
robust, the algorithm subtracts the phase and normalizes the atoms. The optimization alternates
between the minimization of the data-consistency term (solved by conjugate gradient) and the
block-matching operation. With the solution (x1) of the first step, the cost function of the second
stage is

x2 =

{
argmin

x
min
D2,Z2

∥A (x+ x1)− y∥22 + λ1 ∥Px−D2Z2∥22 + λ2
2 ∥Z2∥0

}
+ x1 (7.2)

The second stage assumes that the changes between exams should be sparse w.r.t. a certain trans-
form. Instead of using fixed operations, such as wavelet transforms or discrete cosine transforms
(DCT), we learn a sparsifying dictionary D2 and its sparse code Z2 adaptively [113].

Table 7.1: The average image quality of different reconstruction methods.

Methods CS Delta LACS DL
SSIM 0.964 0.986 0.974 0.981
PSNR 30.3dB 32.1dB 28.0dB 31.3dB

In simulation experiment, we compared the Delta reconstruction with previous reference-based
MRI methods, namely LACS [155], which uses a weighted point-wise similarity constraint be-
tween MRI exams. We also compared the proposed method with referenceless methods, including
ℓ1-wavelet CS [91] and blind dictionary learning (DL) [113]. The cost function of the dictionary
learning method is similar to (7.2) without x1.

The cohort consisted of 8 subjects. Each received two consecutive exams with at least a six
months gap on a 1.5T GE scanner. Local IRB approved. Each exam acquired a 3D MP-RAGE
sequence with FOVs between 24-26 cm and a matrix size of 192*192*170. The first scan used a
1D 2.5x undersampling pattern, while the second scan was fully sampled.

We compared the following experiment settings to simulate reference scans and corresponding
aggressively undersampled scans:

(1) The second exam was further retrospectively undersampled, with an undersampling ratio
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Figure 7.5: Reconstructed examples for the experiment setting (1), where the reference scan is
the first fully-sampled scan. We performed a further under-sampling of the second scan to 8×
acceleration. Here we regard the CS-based reconstruction of 2.5× accelerated second scan as the
high-quality reference reconstruction. Red arrows indicate artifacts, and yellow arrows indicate
the possible over-fitting on the reference scan. Compared with CS and DL, Delta Recon produces
fewer artifacts. Compared with LACS, Delta Scan tracks the changes more faithfully.
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Figure 7.6: Reconstructed examples for the experiment setting (2), where the reference scan is the
CS reconstruction of 2.5× accelerated second exam. We retrospectively undersampled the first
example with a 10× accelerated Poisson disk mask. Red arrows indicate artifacts, and yellow
arrows point out over-fitting with the reference scan. Delta reconstruction shows fewer artifacts
and improved stability than other reconstruction methods.
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Figure 7.7: Examples of the joint optimization of sampling pattern and reconstruction. The opti-
mized sampling pattern leads to a higher SNR.
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∼8×. For reference-based methods, we used the conjugate phase reconstruction of the first fully-
sampled exam as the prior. Fig. 7.5 shows the results.

(2) The first exam was retrospectively undersampled following a 10x Poisson-disk sampling
pattern. For reference-based methods, we used a CS-based reconstruction of the 2.5× undersam-
pled second exam as the prior. Fig. 7.6 shows the results.

(3) Joint sampling pattern optimization and delta reconstruction. Fig. 7.7 shows related results.
Fig. 7.5, Fig. 7.6, and Fig. 7.7 exhibit examples of reconstructed images in different scenarios.

Compared with referenceless (CS or DL) reconstruction, Delta reconstruction improved the image
quality, with the fully-sampled reference scans as priors. More importantly, it can still represent
subtle anatomical changes (yellow arrows) not existing in the reference exam. Fig. 7.6 demon-
strates that even if the reference exam is undersampled, the Delta reconstruction can still enhance
the following exams. Compared to LACS, the method is more robust and avoids overfitting on the
first exam. Though (7.1) is not convex, the convergence rate w.r.t. ground truth is still pretty fast,
usually within 5-6 iterations when ν is small.

In conclusion, Delta Scan provides a fast, explainable, and robust method for longitudinal MRI,
where the longitudinal MR exams are substantially accelerated with the structural information from
the past scans as an image. In the future, we will conduct a more comprehensive reader study and
extend Delta Scan to non-Cartesian and multi-contrast MRI.

7.3 MIRTorch: An Open-source Differentiable Image Recon-
struction Toolbox

Image reconstruction converts raw signals into digitized images and is an essential part of modern
medical imaging. High-quality image reconstruction results provide powerful tools for radiolo-
gists in accurate diagnosis. Consequently, fast and accurate image reconstruction has become an
active area of research in optimization, signal processing, and computational imaging. Image re-
construction toolboxes provide algorithmic infrastructures and baselines to support these research
efforts.

For many imaging modalities, such as magnetic resonance imaging (MRI), image reconstruc-
tion is an inverse problem that is often underdetermined and large-scale. Reconstruction toolboxes
should model the imaging physics, implement regularization, and provide corresponding solvers.
Recent years have also seen a surge in deep learning-based reconstruction that learns to invert [97].
One may integrate physics modeling into deep learning frameworks to combine the best of both
worlds [2]. These model-based or physics-informed deep learning methods received wide atten-
tion because of their robustness and explainability. The main goal of MIRTorch is to assist research
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on image reconstruction algorithm development using data-driven approaches. Natively built with
PyTorch, MIRTorch fully supports auto-differentiation (AD), having an affinity to deep learning
modules such as CNN or Transformers.2

Following the earlier MIRT (Michigan Image Reconstruction Toolbox)3 and SigPy4, MIRTorch
has a clear and modular structure, facilitating fast prototyping of novel algorithms. The main fea-
tures and components include: (1) Generalization of linear operators as matrices. In many image
modalities, the forward system model is linear; thus, one may regard these models as matrices
(though they may have otherwise efficient implementations like FFTs). By overloading operators
such as +. -, *, MIRTorch aids researchers in defining system models and avoiding erroneous hard-
coding. (2) Efficient iterative solvers. MIRTorch includes various solvers, including CG [128],
FISTA [12], and primal-dual [26]. Users can easily combine learnable modules (such as CNNs)
with numerical solvers to investigate model-based deep learning methods. Several common prox-
imal operators are also provided.

With native PyTorch support, MIRTorch satisfies the following specific needs. (1) Fast pro-
totyping of model-based deep learning. Many related projects hard-coded the physics-informed
components, such as system operators and iterative solvers. This non-modular approach hampers
reproducibility and comparability. MIRTorch provides a standardized and modular implementa-
tion. It also facilitates transferring algorithms across different imaging modalities. Additionally,
the code using MIRTorch better matches the mathematical expressions, facilitating understanding.
(2) Optimization of the imaging system. Since the toolbox is fully differentiable, it enables gradi-
ent methods for tuning imaging system parameters. For example, Ch. 4 and Ch. 5 use MIRTorch
to optimize MRI sampling trajectories via stochastic gradient descent. (3) User-friendly GPU-
based fast reconstruction. Many applications, such as fMRI, are vectorized and large-dimensional.
CPU-based computation can be very time-consuming for iterative algorithms. Benefitting from
PyTorch’s intrinsic multi-GPU support, user-friendly installation, and cross-platform capability,
MIRTorch provides researchers with fast reconstruction at a minimal switching cost.

2This section is based on a conference abstract [149].
3https://github.com/JeffFessler/mirt
4https://github.com/mikgroup/sigpy
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CHAPTER 8

Future Work

The preceding chapters present a series of methods to optimize MRI sampling strategies. This
chapter discusses several unsolved problems of current studies, and potential future research topics.

As discussed in Ch. 2.4, MRI systems exhibit various innate imperfections. Ch. 4 demonstrated
the feasibility of implementing eddy currents correction for a 2D freeform optimized trajectory. In
future studies, incorporating system imperfections into the forward learning/optimization phase,
such as off-resonance maps and gradient delay [142], may enhance the intrinsic robustness of the
optimized trajectory. However, this approach requires the distribution of system imperfections,
which is typically scanner-specific. To address this limitation, we plan to investigate prospec-
tive simulation approaches in future studies. SNOPY-like algorithms can also incorporate other
optimization objectives to encourage properties such as robustness to field inhomogeneity and re-
duction of acoustic noise. The pre-compensation to field inhomogeneity can be reformulated as a
penalty of the point spread function considering a spatially constant B0 shift [5, 106]. The reduc-
tion of acoustic noise can use noise response models as a loss term [62].

One question of particular interest is how the receiver coil layout affects the training. Other
factors to consider include the variability of image phases (considering TE and off-resonance) and
long-readout trajectories. Future studies should include related simulations and prospective studies
to investigate these effects.

In Ch. 4 and Ch. 5, the optimized sampling trajectories showed good generalization ability
between simulation and in-vivo prospective experiments. The protocols are also robust to the
shift of image contrasts and hardware. We use the PSF as an intuitive explanation of the superior
robustness. In the future, we plan to implement several relevant studies. For example, the sampling
trajectories can be optimized with healthy cohorts and tested with pathological cases.

Ongoing and future research can extend the design by incorporating both upstream (signal gen-
eration) and downstream (post-processing and analysis) aspects of medical imaging scans. The
physics-informed learning should include the (general) Bloch equation to consider physical pro-
cesses such as relaxation, which will enable the learning of pulse sequences for both qualitative and
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quantitative imaging. Notably, this can lead to the discovery of new MR sequences that enhance
contrast for specific pathologies by jointly optimizing with AI-based image analysis.

Lastly, the proposed methods can contribute to clinical and physiological studies. They are
mostly compatible with existing hardware and require minimal modification of workflows. The
high image quality and spatiotemporal resolution may facilitate clinical and scientific innovations.
Potential topics include:

• Neuroimaging. The proposed methods can optimize existing protocols such as simultane-
ous multi-slice (SMS) [126] to improve the spatiotemporal resolution and improve the pa-
tient experience (by suppressing the PNS effect and acoustic noise). The learned sampling
trajectories can better utilize modern neuroimaging hardware, especially powerful gradient
systems.

• Quantitative imaging. The dissertation research is also promising to improve the speed and
quality of quantitative imaging by systematic optimization of pulse sequences, signal sam-
pling, image reconstruction, and parameter estimation. As suggested, future research may
automatically discover pulse sequences that maximize the contrast for certain pathologies
with quantitative datasets and paired pathological annotations.

• Dynamic imaging and MR-guided intervention. Future studies should also consider the mo-
tion in the optimization. The extended SNOPY may also learn to compensate for the system
imperfections and produce intrinsically robust protocols suitable for MR-guided intervention
and low-field scanners.
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APPENDIX A

Jacobians for Linear Operations Involving NUFFTs

A.1 Notations and Basics

For Jacobian matrices, we follow the ‘numerator-layout’ notation. For example, the derivative of
an m-element column vector y w.r.t. an n-element vector x is an m× n matrix:

∂y

∂x
≜


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
... . . . ...

∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn

 . (A.1)

However, this convention does not handle scenarios such as the derivatives of the elements of one
matrix w.r.t. the elements of another matrix. Thus, we adopt a natural extension by using the vec

(vectorization) operation. Specifically, for a M ×N matrix A that is a function of a P ×Q matrix
B, we write the derivative as a MN × PQ matrix by applying (A.1) to the vec of each matrix:

DB A = DB A(B) ≜
∂ vec(A)

∂ vec(B)
. (A.2)

The following equalities are useful in our derivations. (Equalities involving products all assume
the sizes are compatible.) For A ∈ CK×L, B ∈ CL×M , C ∈ CM×N :

vec(ABC) = (IN ⊗AB) vec(C)

= (CTBT ⊗ IK) vec(A). (A.P1)

In general:
(A⊗B)(C ⊗D) = (AC)⊗ (BD). (A.P2)
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For A ∈ CK×L, B ∈ CM×N :

A⊗B = (IK ⊗B)(A⊗ IN) = (A⊗ IM)(IL ⊗B). (A.P3)

For A ∈ CM×N , x ∈ CN :

DA (Ax) = xT ⊗ IM , DA∗ (Ax) = 0. (A.P4)

For an invertible matrix A:

A ∈ CN×N =⇒ DA A−1 = −(AT )−1 ⊗A−1,

DA∗ A−1 = 0. (A.P5)

The chain rule still holds for the extended Jacobian formulation. Suppose F : CK×L → CM×N

and G : CM×N → CP×Q are both holomorphic. For X ∈ CK×L, the Jacobian of the composite
function is:

DX G(F (X))︸ ︷︷ ︸
PQ×KL

= DY G(Y )|Y =F (X)︸ ︷︷ ︸
PQ×MN

DX F (X)︸ ︷︷ ︸
MN×KL

,

DX∗ G(F (X)) = 0. (A.P6)

Equalities (A.P1)-(A.P3) are common matrix vectorization properties. See [94, Ch. 9] for (A.P4),
[65] for (A.P5) and (A.P6).

A.2 Approximation of Jacobians involving NUFFT

Consider the (single-coil, initially) MRI measurement model for non-Cartesian sampling based on
the NUDFT [38]:

y = Ax+ ε,

where y ∈ CM denotes the measured k-space data, x ∈ CN denotes the unknown image to be
reconstructed, and A ∈ CM×N denotes the system matrix or encoding matrix, where A = A(ω)

has elements
aij = e−ıω⃗i·r⃗j , i = 1, . . . ,M, j = 1, . . . , N

for ω⃗i ∈ RD and r⃗j ∈ RD where D ∈ {1, 2, 3 . . .} denotes the image dimension, and where

ω = [ω[1] ω[2] . . .ω[D]]
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is the M × d matrix consisting of all the k-space sampling locations and ω[d] ∈ RM denotes its dth
column.

We first focus on the forward operation A(ω)x and determine Jacobian matrices with respect
to x and ω. The M ×N Jacobian matrix of the forward linear operation with respect to x is

∂Ax

∂x
= A,

∂Ax

∂x∗ = 0.

For the dth column of the spectrum sampling pattern ω, the Jacobian has elements

[
∂Ax

∂ω[d]

]
il

=
∂[Ax]i

∂ω
[d]
l

=
∂

∂ω
[d]
l

N∑
j=1

e−ıω⃗i·r⃗jxj

=

−ı
∑N

j=1 e
−ıω⃗i·r⃗jxjr

[d]
j , i = l

0, otherwise,

for i, l = 1, . . . ,M . The above summation is the product of the ith row of−ıA with x⊙r[d]. Thus
the M ×M Jacobian matrix for the partial derivatives of Ax w.r.t. ω[d] is (3.3):

∂Ax

∂ω[d]
= −ı diag

{
A(x⊙ r[d])

}
.

Consequently, the Jacobian calculation should apply A to vector x⊙r[d] once. In the above deriva-
tion, A is a NUDFT operator. In the practical implementation, we use a NUFFT to approximate
A, both for the forward model and for the Jacobian calculation.

Derivations of the Jacobians for the adjoint operation A′(ω)y follow a similar approach. For
y:

∂A′y

∂y
= A′,

∂A′y

∂y∗ = 0.

For the dth column of ω, the N ×M Jacobian matrix has elements:[
∂A′y

∂ω[d]

]
jl

=
∂[A′y]j

∂ω
[d]
l

=
∂
∑M

i=1 e
ıω⃗i·r⃗jyi

∂ω
[d]
l

= ıeıω⃗i·r⃗jyir
[d]
j .

Thus the Jacobian matrix is (3.4):

∂A′y

∂ω[d]
= ı diag

{
r[d]
}
A′diag{y} .

The product A′(ω)A(ω)x of the Gram matrix of the NUDFT with a vector also arises in
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optimization steps and requires appropriate Jacobian matrices. For x:

∂A′Ax

∂x
= A′A,

∂A′Ax

∂x∗ = 0.

The (k, j)th element of the N × N matrix containing the partial derivatives of the Gram matrix
w.r.t. ω[d]

l is [
∂A′A

∂ω
[d]
l

]
k,j

=
∂

∂ω
[d]
l

M∑
i=1

e−ıω⃗i·(r⃗j−r⃗k)

= −ı (r[d]j − r
[d]
k ) e−ıω⃗l·(r⃗j−r⃗k)

= −ı (r[d]j − r
[d]
k ) a∗lkalj. (A.3)

In matrix form:

∂A′A

∂ω
[d]
l

= ı diag
{
r[d]
}
A′ele

′
lA− ıA′ele

′
lAdiag

{
r[d]
}
. (A.4)

When multiplying the Jacobian with a vector x:

∂A′A

∂ω
[d]
l

x = ı diag
{
r[d]
}
al(a

′
lx)− ıala

′
ldiag

{
r[d]
}
x

= ı (a′
lx)(r

[d] ⊙ al)− ı(a′
l(x⊙ r[d]))al, (A.5)

where al = A′el denotes the lth column of A′.
Consider the extended Jacobian expression:

D
ω
[d]
l
A′A = vec

(
∂A′A

∂ω
[d]
l

)
.
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Multiplying by x yields:

∂A′A

∂ω
[d]
l

x = vec

(
∂A′A

∂ω
[d]
l

x

)

= (xT ⊗ IN) vec

(
∂A′A

∂ω
[d]
l

)
(use A.P1)

= (xT ⊗ IN)
(
D

ω
[d]
l
A′A

)
= (DA′A A′Ax)

(
D

ω
[d]
l
A′A

)
(use A.P4)

= D
ω
[d]
l
A′Ax. (use A.P6)

Concatenating (A.5) by columns leads to the matrix (3.5):[
∂A′A

∂ω
[d]
1

. . .
∂A′A

∂ω
[d]
M

]
x = −ıA′diag

{
A(x⊙ r[d])

}
+ ı diag

{
r[d]
}
A′diag{Ax} .

Alternatively, we can express the extended Jacobian as[
∂A′A

∂ω
[d]
1

. . .
∂A′A

∂ω
[d]
M

]
x = (xT ⊗ In) (Dω[d] A′A)

= (DA′A A′Ax) (Dω[d] A′A)

= Dω[d] A′Ax. (A.6)

Again we use NUFFT operations for efficient approximation.
Image reconstruction methods based on algorithms like the augmented Lagrangian approach

[64] use “data consistency” steps [2, 22, 112] that often involve least-squares problems with solu-
tions in the following form:

(A′A+ λI)−1x,

for some vector x ∈ CN , or
(A′A+ λT ′T )−1x, (A.7)

where T denotes a linear regularization operator that is independent of ω. In both cases, λ > 0

and the null spaces of T and A are usually disjoint, so the Hessian matrix is invertible. A few
iterations of a CG method usually suffices to efficiently compute the approximate product of such
a matrix inverse with a vector. The direct inverse is impractical for large-scale problems like MRI.
Following [2], we treat CG as solving the above equations accurately, so that we can derive efficient
approximations as follows. Otherwise, attempting to auto-differentiate through a finite number of
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CG iterations would require large amounts of memory. Here we derive the corresponding Jacobian
matrices for the exact inverse to (A.7) and then apply fast approximations. For x, the N × N

Jacobian is

∂(A′A+ λT ′T )−1x

∂x
= (A′A+ λT ′T )−1,

∂(A′A+ λT ′T )−1x

∂x∗ = 0.

We can still use CG (with NUFFT) to efficiently multiply this Jacobian by a vector, albeit
approximately.

To consider the Jacobian w.r.t. the sampling pattern ω[d], define z = (A′A + λT ′T )−1x and
F = A′A + λT ′T . We assume that A and T have disjoint null spaces, so that F is positive
definite and hence invertible. Applying equalities derived above leads to the following expression
for the M ×N Jacobian:

Dω[d] F−1x =
(
DF F−1x

)
(Dω[d] F ) use A.P6

= −(xT ⊗ I)((F T )−1 ⊗ F−1) (Dω[d] F ) use A.P5

= −
(
(xT (F T )−1)⊗ F−1

)
(Dω[d] F ) use A.P2

= −F−1(xT (F T )−1 ⊗ I) (Dω[d] F ) use A.P3

= −F−1 (Dω[d] Fz) use A.P4

= −(A′A+ λT ′T )−1
(
−ıA′diag

{
A(z ⊙ r[d])

}
+ ı diag

{
r[d]
}
A′diag{Az}

)
use (3.5).

We apply this Jacobian to a vector by using four NUFFT operations followed by running CG to
approximate the product of F−1 times a vector. Notably, the memory cost of (3.6) is constant w.r.t
the number of iterations, whereas the standard auto-differentiation approach has linear memory
cost. Using the proposed method, one may apply enough iterations to ensure convergence to a
desired tolerance. This new fast and low-memory Jacobian approximation is particularly important
for the MRI applications shown in the following sections. Without this approximation, memory
cost can be prohibitively large.

In multi-coil (parallel) acquisition, the MRI system model contains another linear operator

S =


S1

...
SNc

 ,
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where Si = diag{si} denotes a diagonal matrix containing the receiver coil sensitivity map [110].
The total number of receiver channels is Nc. The system matrix (E) for MRI in this case becomes
(INc ⊗ A)S. Because of the special block-diagonal structure of S, all the Jacobian matrices in
previous sections still hold by simply replacing A with E.

The Jacobian derivations are as follows. For the forward operator, one can show

∂Ex

∂ω[d]
=

∂


AS1x

...
ASNcx


∂ω[d]

=


−ı diag

{
A(s1 ⊙ x⊙ r[d])

}
...

−ı diag
{
A(sNc ⊙ x⊙ r[d])

}


= ı diag
{
(INc ⊗A)S(x⊙ r[d])

}
= ı diag

{
E(x⊙ r[d])

}
.

The adjoint operator follows the same proof and produces

∂E′y

∂ω[d]
= ı diag

{
r[d]
}
E′diag{y} .

For the gram operator we have

∂E′Ex

∂ω[d]
=
∑
i

∂S′
iA

′ASix

∂ω[d]
=
∑
i

S′
i

∂A′ASix

∂ω[d]

=
∑
i

−ıS′
iA

′diag
{
A(Sx⊙ r[d])

}
+ ıS′

idiag
{
r[d]
}
A′diag{ASix}

=
∑
i

−ıS′
iA

′diag
{
A(Sx⊙ r[d])

}
+ ı diag

{
r[d]
}
S′

iA
′diag{ASix}

= −ıE′diag
{
E(x⊙ r[d])

}
+ ı diag

{
r[d]
}
E′diag{Ex} . (A.8)

For the inverse of the PSD matrix let G = E′E + λT ′T and z = G−1x (in the usual case
where the regularizer matrix T is designed such that G is invertible). Combining (3.6) and (A.8)
produces:

∂ (E′E + λT ′T )−1 x

∂ω[d]
= −G−1 (xTG(t)−1 ⊗ I)Dω[d] G

= −(E′E + λT ′T )−1
(
− ıE′diag

{
E(z ⊙ r[d])

}
+ ı diag

{
r[d]
}
E′diag{Ez}

)
.
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Again, we apply this Jacobian matrix to a vector by combining NUFFTs and CG.
For MRI scans with long readouts, one should also consider the effects of off-resonance (e.g.,

B0 field inhomogeneity), in which case the system matrix elements are given by [38]

aij = e−ıω⃗i·r⃗j e−ıwjti ,

where wj denotes the field map value at the jth voxel and ti is the time of the ith readout sample.
This form is no longer a Fourier transform operation, but there are fast and accurate approxima-

tions [40] that enable the use of NUFFT steps and avoid the very slow matrix-vector multiplication.
Such approximations of system matrix E usually have the form:

Ef ≈
L∑
l=1

diag{bil}A(ω) diag{clj} ,

where A denotes the usual (possibly non-uniform) DFT that is usually approximated by a NUFFT,
bil ∈ CM , and bil ∈ CN . It is relatively straightforward to generalize the Jacobian expressions in
this paper to handle the case of field inhomogeneity, by simply replacing A with Ef , similar to the
sensitivity map case.

A.3 Error Bounds

The maximum error is

εp ≜ ∥vec(E)∥∞ = max
m,n
|emn|

≤
maxn,ωm

∣∣∣∑l ̸=0 cn+lK e−ıωm·(n+lK)
∣∣∣

minn |cn|
.

The maximum absolute value of emn depends on the frequency behavior of the interpolator, and is
tabulated in figures in [41] for various NUFFT parameters p.

The Jacobian of the forward operator (3.3) is

J =
∂Ax

∂ω
= −ı diag{A(x⊙ r)} .

Let J̃ denote the case where an NUFFT is applied. Since the backpropagation uses Jacobians in
the JVP calculation, here we analyze the error of JVPs using J and J̃ . We define the worst-case
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relative error for a JVP with a (gradient) vector v as follows:

E1(ω,x, p) ≜ max
∥v∥∞=1

∥J̃v − Jv∥∞/ ∥x∥2

= max
∥v∥∞=1

∥(E (x⊙ r))⊙ v∥∞ / ∥x∥2

≤ ∥E (x⊙ r)∥∞ / ∥x∥2
≤ εp ∥x⊙ r∥2 / ∥x∥2 ≤ εp ∥r∥∞ . (A.9)

Similarly, the worst-case relative error of a JVP with (3.4) is bounded by

E2(ω,x, p) ≜ max
∥v∥∞=1

∥diag{r}E′diag{y}v∥∞ / ∥y∥2

≤ max
∥v∥∞=1

∥r∥∞ ∥E
′(y ⊙ v)∥∞ / ∥y∥2

≤ εp ∥r∥∞ max
∥v∥∞=1

∥y ⊙ v∥2 / ∥y∥2

≤ εp ∥r∥∞ ∥y∥2 / ∥y∥2 ≤ εp ∥r∥∞ . (A.10)

In both cases, the worst-case error of the NUFFT approximation for a JVP is bounded by the
usual NUFFT error multiplied by a constant ∥r∥∞ that is usually half of the field of view (FOV)
in imaging applications. This constant is expected from unit analysis. If the sampling grid rj has
a unit in cm, then the sample locations ω have units in radians/cm. Corresponding, the Jacobian
matrices in (3.3) and (3.4) have units in cm, because A is unitless. The NUFFT error εp is unitless,
so there is an r-related factor in the JVP error E. In other words, the error bounds above depend
on the choice of units. One could express the FOV in voxels to get the unitless error bound
εpN/2. However, the accuracy of JVPs does not necessarily deteriorate with a larger N . Above
we normalized the error by ∥x∥2 or ∥y∥2, whereas the Jacobians are ‘ scaled’ with ∥x⊙ r∥2 or
∥y∥2 ∥r∥2. A relative error could better describe the effect on optimization.

An alternate definition uses the worst-case in the numerator relative to an average case in the
denominator, considering the stochastic gradient descent-like optimizers. For example, this relative
error for the JVP of Jacobian (3.4) is

ϵ ≜
max∥x∥2=1 ∥J̃ − J∥F√

Ep(x)[∥J∥2F]
=

max∥x∥2=1 ∥E (x⊙ r)∥2√
Ep(x)[∥A (x⊙ r)∥22]

≤
max∥x∥2=1

√
M ∥E (x⊙ r)∥∞√

Ep(x)[∥A (x⊙ r)∥22]
≤

√
Mεp ∥r∥∞√

Ep(x)[∥A (x⊙ r)∥22]
,
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where Ep(x)[·] denotes expectation w.r.t. a certain distribution p(x). For parity with the unit sphere
constraint in the numerator, we consider the case where p(·) is the random distribution on the unit
N -sphere. Use the cyclic property of the trace:

∥A (x⊙ r)∥22 = x′diag{r}A′Adiag{r}x

= Tr{diag{r}A′Adiag{r}xx′} .

Since the covariance of random points on the N -sphere is (1/N)I , the denominator’s expectation
is

Ep(x)[∥A (x⊙ r)∥22] = Tr
{
diag{r}A′Adiag{r}Ep(x)[xx

′]
}

=
1

N
Tr{diag{r}A′Adiag{r}}

=
1

N

∑
j

r2j [A
′A]jj =

M

N

∑
j

r2j =
M

N
∥r∥22 .

Thus we have the following bound for the relative error:

ϵ ≤
√
Mεp ∥r∥∞√
M/N ∥r∥2

= εp
√
N
∥r∥∞
∥r∥2

≤ εp
√
N. (A.11)

Note that the bound can be tighter when considering specific formulations of r. Similarly, for the
Jacobian operator (3.4), the alternate error of the JVP is

ϵ ≤ εp
√
M. (A.12)
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