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ABSTRACT

The goals of functional Magnetic Resonance Imaging (fMRI) include high spatial

and temporal resolutions with a high signal-to-noise ratio (SNR). We introduce a

novel method for fMRI named Oscillating Steady-State Imaging (OSSI). OSSI can

provide 2 to 3 times higher SNR than the standard method. However, the SNR

improvement comes at a cost of spatial-temporal resolution.

To simultaneously improve spatial and temporal resolutions and maintain the high

SNR advantage of OSSI, we present novel pipelines for fast acquisition and high-

resolution fMRI reconstruction and physics parameter quantification. We design a

sparse sampling pattern to accelerate scan time. Because OSSI images are high-

dimensional, we propose a patch-tensor low-rank model to exploit the local spatial-

temporal low-rankness of the images. The proposed method enables high-resolution

3D fMRI with a factor 10 acceleration and 1.3 mm spatial resolution, and yields 2

times higher SNR than the standard fMRI methods with 2 times more brain activa-

tion.

To accurately model the nonlinearity of OSSI oscillation pattern, instead of ap-

plying subspace models that might not be perfectly suited for the data, we propose

a physics-based manifold model that builds the MR physics for OSSI signal gener-

ation as a regularizer for the undersampled reconstruction. The proposed manifold

model reconstructs high-resolution fMRI images with high SNR and a factor of 12

acceleration. Furthermore, the model enables dynamic tracking of important physics

parameters for more accurate brain activity monitoring with a 150 ms temporal res-

olution.

To exploit learning-based approaches for dynamic MRI with better temporal mod-

eling and richer representations, we propose a voxel-wise attention network that com-

bines MR physics with the attention mechanism for temporal learning and mapping.

We also develop a two-stage learning scheme to resolve the training data limitation.

The proposed network reconstructs dynamic MRI sequences with a factor of 12 under-

sampling and provides high-quality functional maps with 4 times faster reconstruction

xx



than model-based approaches.

With novel models for acquisition and reconstruction, we demonstrate that we can

improve SNR and resolution simultaneously without compromising scan time. All the

proposed models outperform other comparison approaches with higher resolution and

more functional information.
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CHAPTER I

Introduction

1.1 Motivation

Three factors, simple but overwhelmingly important, have governed the quality of

magnetic resonance imaging (MRI): the signal-to-noise ratio (SNR), the resolution,

and the scan time. The trade-offs among SNR, resolution, and scan time, have been

sources of inspiration for MRI research.

In functional MRI (fMRI), a time series of MRI images are acquired to track

brain activity. Because signal changes for brain activation are very small, we need

high SNR to distinguish brain signals from noise sources. Because functional units

of the brain are on the order of 1 mm or smaller, we need fine spatial resolution to

precisely locate functional signals. As SNR is proportional to voxel size, high SNR is

essential for high spatial resolution. To achieve high spatial resolution or high SNR,

traditional methods must increase scan time for each image in the fMRI time series.

The increased scan time per image or decreased temporal resolution would diminish

the temporal accuracy of fMRI signals.

1.2 Background

1.2.1 High SNR Functional MRI

Functional MRI acquires a time series of MRI images to track brain activity. The

SNR of an fMRI image [1, 2, 3] is determined by

SNR ∝ BCV
√
T , (1.1)
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where B represents magnetic field strength, C is a head coil dependent term, V is

the voxel volume for the brain image, and T is proportional to the scan time for

each image. The scan time for collecting each of the images in the time series is also

referred to as the temporal resolution of fMRI.

Brain activity related signal changes are small and can be easily buried in noise.

As SNR is proportional to voxel volume and functional units of the brain are on the

order of 1 mm or smaller, high SNR is critical for high-quality and high-resolution

fMRI. However, current methods for SNR improvement are limited.

Improvements in B and C require a new set of hardware. Increasing B with higher

field strength systems is a costly investment and leads to severe distortion issues in the

images. Increasing the number of coils for C in a head array suffers from diminishing

returns as coil elements get smaller, particularly for deep brain structures.

For software related factors, V and T correspond to spatial resolution and scan

time of an image, respectively. There is a triangle trade-off between SNR, spatial

resolution, and scan time in MRI. To increase the SNR, one would need to increase

scan time, or compromise resolution; to improve resolution, SNR would be sacrificed

or the scan time would need to increase; to reduce scan time, the SNR and/or the

resolution of the image would decrease. It is very hard to improve all three factors

at the same time, and the main goal of this thesis is to improve SNR, resolution, and

scan time simultaneously without costly equipment.

1.2.2 High-Resolution Image Reconstruction

In MRI, the data collected via scanning are in “k-space”, and a Fourier transform

relationship holds between the object image and the acquired k-space data [4, 5].

Therefore, the k-space is basically the Fourier domain of an MRI image, and the

simplest way to reconstruct the image is to take the inverse Fourier transform of

the k-space data. Collecting data with a larger k-space extent can increase spatial

resolution at the expense of scan time.

To improve resolution without compromising scanning time, compressed sensing

[6, 7] and model-based reconstruction [8, 9] propose random sparse sampling (dramat-

ically reduced sampling rates compared to the Nyquist sampling criteria) in k-space.

Furthermore, prior information on images is imposed to solve the undetermined prob-

lem with a limited amount of measurements. The image reconstruction problem is
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formulated as

arg min
X

1

2
∥A(X)− y∥22 + αR(X), (1.2)

where X are the images to be reconstructed, and y denotes the small number of

k-space measurements. A is a linear operator representing the MR physics, and A
represents the Fourier transform for single-coil MRI with Cartesian sampling. R(·)
regularizes the images with prior information and assumptions. α is the regularization

parameter.

Typical priors used as constraints on the images include total variation [8, 9], low-

rank and/or sparse [10, 9, 11], and learned dictionary [12]. Recent works [13, 14, 15]

use neural networks as regularizers for undersampled reconstruction. In this work, we

propose novel models and techniques for high SNR and high-resolution fMRI image

reconstruction.

1.3 Outline and Contributions

This thesis is organized as follows:

Chapter II, published in [16], describes a new Oscillating Steady-State Imaging

(OSSI) method for high SNR fMRI. OSSI establishes a new steady state by combin-

ing balanced gradients in balanced steady-state free precession [17] and quadratic RF

phase progression in RF-spoiled GRE [18]. The resulting oscillating steady-state sig-

nal combines high SNR of the balanced steady state and the T ∗
2 contrast of gradient

echo (GRE) imaging for fMRI. OSSI provides at least 2 times higher SNR than stan-

dard GRE fMRI without costly equipment investments. However, the SNR advantage

of OSSI comes at a price of spatial and temporal resolutions.

Chapter III, published in [19], describes a novel pipeline for fast acquisition and

high-resolution and high-dimensional fMRI. As the unique oscillation pattern of OSSI

images makes it well suited for high-dimensional modeling, we propose a patch-tensor

low-rank model to exploit the inherent high-dimensional structures and local spatial-

temporal low-rankness of the images. We also develop a practical sparse sampling

scheme with improved sampling incoherence. With an alternating direction method

of multipliers based algorithm, we improve OSSI spatial and temporal resolutions

with a factor of 12 acquisition acceleration and 1.3 mm isotropic spatial resolution in

prospectively undersampled experiments. Compared to the standard GRE imaging

at the same spatial-temporal resolution, the proposed model demonstrates 2 times
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higher SNR with 2 times more functional activation.

Chapter IV, under revision and available in [20], describes a new manifold model

for high-resolution fMRI joint quantification and reconstruction. Because OSSI sig-

nals exhibit a nonlinear oscillation pattern and to accurately model the nonlinearity,

instead of using subspace models that might not be perfectly suited for the data, we

build the MR physics for OSSI signal generation as a regularizer for the undersampled

reconstruction. Our proposed physics-based manifold model turns the disadvantages

of OSSI acquisition into advantages. OSSI manifold model (OSSIMM) outperforms

subspace models and reconstructs high-resolution fMRI images with a factor of 12

acceleration and without spatial-temporal smoothing. Furthermore, OSSIMM can dy-

namically quantify and track important physics parameters for more accurate brain

activity monitoring with a 150 mm temporal resolution.

Chapter V describes a novel learning-based approach and training scheme for dy-

namic MRI acceleration and reconstruction. Because learning-based temporal mod-

eling in dynamic MRI is an open question and often requires large amounts of train-

ing data, we propose a voxel-wise attention network that incorporates an attention

mechanism for temporal learning and mapping. The proposed network combines MR

physics with a data fidelity layer for end-to-end inference. We also develop a two-stage

learning scheme that pretrains the network with voxel-wise simulated data, and then

fine-tunes with human data to resolve the lack of training data. Our proposed model

reconstructs dynamic MRI images with a factor of 12 undersampling, and provides

high-quality images and functional maps. The proposed voxel-wise, attention-based

model can potentially be used for MR fingering reconstruction and other dynamic

reconstruction applications.

Chapter VI proposes future work on other novel spatial-temporal models for MRI

image sequence reconstruction and acceleration.

4



CHAPTER II

Oscillating Steady-State Imaging (OSSI): A Novel

Method for Functional MRI

Signal-to-noise ratio (SNR) is crucial for high-resolution fMRI, however, current

methods for SNR improvement are limited. A new approach, called Oscillating

Steady-State Imaging (OSSI), produces a signal that is large and T ∗
2 -weighted, and is

demonstrated to produce improved SNR compared to gradient echo (GRE) imaging

with matched TE and spatial-temporal acquisition characteristics for high-resolution

fMRI. Quadratic phase sequences were combined with balanced gradients to pro-

duce a large, oscillating steady-state signal. The quadratic phase progression was

periodic over short intervals such as 10 TRs, inducing a frequency-dependent phase

dispersal. Images over one period were combined to produce a single image with ef-

fectively T ∗
2 -weighting. The OSSI parameters were explored through simulation and

phantom data, and 2D and 3D human fMRI data were collected using OSSI and

GRE imaging. Phantom and human OSSI data showed highly reproducible signal

oscillations with greater signal strength than GRE. Compared to single slice GRE

with matched TE and spatial-temporal resolution, OSSI yielded more activation in

visual cortex by a factor of 1.84 and an improvement in temporal SNR by a factor of

1.83. Voxelwise percentage change comparisons between OSSI and GRE demonstrate

a similar T ∗
2 -weighted contrast mechanism with additional T ′

2-weighting of about 15

ms immediately after the RF pulse. OSSI is a new acquisition method that exploits

a large, oscillating signal that is T ∗
2 -weighted and suitable for fMRI. The steady-state

signal from balanced gradients creates higher signal strength than single slice GRE

at varying TEs, enabling greater volumes of functional activity and higher SNR for
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high-resolution fMRI. 1

2.1 Introduction

Because the signal-to-noise ratio (SNR) in MRI is proportional to voxel volume,

and the functional units of the brain are on the order of 1 mm, high SNR is required

for functional MRI (fMRI) of these small brain structures. Many common methods for

improving SNR have already been well-used, but now face limitations. For example,

extending readouts increases sensitivity to off-resonance distortions, and increasing

the number of coils in a head array suffers from diminishing returns as coil elements

get smaller, particularly for deep brain structures. One can also enhance SNR by

going to higher field systems, but this requires a costly investment. Thus, there is a

compelling need for alternative approaches to improving the SNR in fMRI.

Functional MRI using the blood oxygenation (BOLD) effect has been based on

T ∗
2 -weighted gradient echo (GRE) imaging from its inception and has commonly been

implemented using single-shot fast imaging methods like echo-planar imaging (EPI) or

spiral imaging. There has also been some work on acquisition using steady-state meth-

ods. These include T ∗
2 -weighted, 3D GRE acquisitions of several variations [23, 24]

and short TR, fast recovery (STFR) sequences that preserve magnetization through

principles of driven equilibrium [25]. There are also variants of balanced steady-state

methods like balanced steady-state free precession (bSSFP, also known as True FISP,

FIESTA, bFFE), such as transition-band bSSFP [26, 27], have exploited shifts in

resonant frequency associated with changes in blood oxygenation. At the same time,

blood oxygenation changes have also led to observable signal changes using passband

bSSFP resulting from changes in T2 directly and from diffusive effects around small

vessels [28, 29, 30].

Standard implementations of bSSFP use constant excitation phase or a linear

phase sequence for RF pulses. In this work we use a similar balanced-gradient pulse

sequence, but with quadratic phase sequences, which is equivalent to a linearly sweep-

ing frequency. Since the frequency response is periodic in the frequency domain, a

frequency sweep will lead to periodic signal oscillation. We note that if the gradients

are not balanced (e.g. gradient spoiled), the quadratic phase sequence will lead to

a RF-spoiled gradient echo acquisition, provided that the sweep rate is sufficiently

1This chapter was published in [16, 21, 22].
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fast. Also, if the quadratic phase sequence is sufficiently slowly evolving, then the

balanced-gradient acquisition leads to contrast that is very similar to the standard

bSSFP contrast though the response slowly shifts over time. In this work, we explore

a novel domain using balanced-gradients but with a quadratic phase sequence that is

rapid, having a period on the order of 10 TRs, which leads to an oscillatory signal. We

refer to this approach as Oscillating Steady-State Imaging (OSSI). We show that the

OSSI signal is large compared to Ernst angle GRE imaging and further show that the

OSSI signal is sensitive to changes in T ∗
2 , making it suitable for high-resolution fMRI.

We distinguish our approach using quadratic phase sequences from other oscillatory

steady states resulting from sequences of alternating patterns of phase [31, 32], which

have a different contrast.

In this work, we demonstrate a novel fMRI acquisition method that has the poten-

tial to improve the SNR over GRE with matched TE and spatial-temporal acquisition

characteristics. It focuses on a unique oscillating steady-state source of signal that is

large and T ∗
2 -weighted, and we explore its signal properties in both simulation and

experimental studies.

2.2 Theory

2.2.1 Oscillating Steady-State Imaging

Quadratic phase sequences in conjunction with a constant gradient dephasing is

a well-recognized approach for establishing a spoiled steady state. The sequence is

typically applied using the RF phase increment [33]

ϕ(n)− ϕ(n− 1) = ψAn+ ψB, (2.1)

where ψA is commonly chosen to provide full cancellation of the transverse magneti-

zation prior to the next RF pulse; typical values for spoiling are ψA = 117◦, 50◦, 150◦,

etc. The constant term, ψB, represents a constant frequency shift and is not im-

portant in most of these analyses. The linear phase increment is equivalent to a

quadratic phase sequence, for example, ϕ(n) = ψAn
2/2 is the same as in (2.1) for the

case of ψB = −ψA/2. In this work, we examine such quadratic phase sequences with

balanced gradients, which maintains the steady-state components leading to stronger

signals. This approach was proposed by Foxall [34] to implement bSSFP with T2-like
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Figure 2.1: Simulation of OSSI spin behavior and signals.
(a) and (b) Periodic motion of magnetization through RF pulses (the filled squares
are at the end of the RF pulse) and free precession for a gray matter spin at -20 Hz off-
resonance frequency, T1 = 1433.2 ms, T2 = 92.6 ms, TR = 15 ms, nc = 10, and FA =
10◦ from two different views. (c) Magnitude signal variation of different isochromats
(6.67 Hz apart) for the magnetization in (a) and (b) just after the RF pulse, the
black dashed line is the Ernst angle signal for spoiled-GRE. (d) Spin positions during
free precession for different isochromats (same isocromats as in (c)) leading to phase
dispersion and T ∗

2 -weighting. The cyan circles mark the center of the precession
interval.
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weighting whereby the frequency-dependent bands in image intensity slowly shifted

over the acquisition. Foxall argued that bSSFP-like contrast would be preserved if the

phase increment is kept small (ψA < 3◦). We have observed that larger phase incre-

ments also leads to steady-state signals, however that the contrast is no longer similar

to bSSFP contrast, but instead has contrast that is both T2- and T ′
2-weighted, and

thus effectively T ∗
2 -weighted. With appropriate selection of ψA, the phase sequence

can be made to be periodic with cycle length nc by setting

ψA =
2π

nc

. (2.2)

This periodic sequence leads to oscillations in the steady-state signal with period

TOSSI = ncTR. Maintenance of transverse components via a steady state tends to

make the resultant signals T2-weighted, while the different phases of different isochro-

mats lead to T ′
2-weighting. We note that Wang et al. [35] have similarly observed

that quadratic phase RF pulses lead to frequency dependent phase variations and

T ∗
2 -weighting.

The OSSI signals have a variety of interesting properties. Like bSSFP, the OSSI

response is frequency dependent and the spectral properties are periodic with 1/TR

in the frequency domain. Further, it can be shown that shifts in frequency will lead

to signal being shifted in time. Specifically, a frequency shift of 1/TOSSI will lead

to the phase sequence being shifted by exactly one TR, which leads to the OSSI

response being similarly shifted in time by one TR. Note that a frequency shift of

1/TOSSI is equivalent to ∆ψB = 2π/TOSSI. Frequency shifts that are not integer

multiples of 1/TOSSI will also have oscillatory behavior, but with slightly different

temporal signal responses. Thus, different isochromats within an image will have

unique time courses, each of which is periodic with TOSSI, and depending on the

frequency, these time courses will be shifted in time and/or have slightly different

shape. The shifts in time for different isochromats induces a frequency dependent

phase dispersal, effectively leading to T ∗
2 -like contrast. In order to produce a stable

and usable time course for fMRI analyses, we commonly combine the nc images for

one period of the OSSI signal by some method, for example using root mean square

(RMS) or 2-norm combination.
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Figure 2.2: Simulation for signal properties just after the RF pulse, where the pulse
duration was adjusted to minimize off-resonance phase accumulation during the RF
pulses (TE < 0.02 ms). The left and right panels show simulated OSSI signal mag-
nitude and phase, respectively. (a) and (b) show magnitude and phase responses as
a function of off-resonance frequency and time (TR number), observe the periodicity
in time (TOSSI = ncTR) and frequency (1/TR = 66.67 Hz). (c) and (e) are mag-
nitude response of the signal vs. time and frequency, respectively, and (d) and (f)
are the phase responses showing phases after correction for the excitation RF phase.
The blue and red lines in temporal plots (c) and (d) correspond to two isochromats
at off-resonance -33.33 Hz and -32.67 Hz, respectively. It can be seen that an off-
resonance amount of less than 1/TOSSI lead to some modest changes in the shape of
the response. The green curve in (e) and (f) are the magnitude and phase of the
frequency response, respectively, and indicate the manifold on which the steady-state
response exists. The blue and red lines connect 6.67 Hz apart samples of the manifold
and start from off-resonance -33.33 Hz and -32.67 Hz respectively. Particularly, by
comparing (c) and (e), (d) and (f), it is clearly shown that the time and samples of
frequency responses have exactly the same shape, only flipped.
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2.2.2 OSSI Spin Behavior and Signal Simulation

OSSI spin behavior was examined using a Bloch equation simulator for spins

having relaxation parameters similar to gray matter using the average of reported

values [36] T1 = 1433.2 ms and T2 = 92.6 ms at 3T, and pulse sequence parameters

TR = 15 ms with an excitation pulse length of 3.2 ms, number in phase cycle (nc)

= 10, and flip angle (FA) = 10◦. The phase progression with nc = 10 is equivalent

to a spoiling seed of 36◦ for spoiled-GRE. An example of magnetization progression

at steady state is shown for a spin with off-resonance -20 Hz in Fig. 2.1, with the

pattern repeating every nc TRs. The signal intensity varies as magnetization moves

towards and away from the center in (a), and the spin moves up and down in mz (b).

From Fig. 2.1 (c), we can see that the magnitude of the OSSI signal right after the

excitation at TE = 1.6 ms has a periodicity of ncTR and is substantially larger than

the spoiled GRE signal for the same parameters. Observe that off-resonance shifts

of multiples of 1/TOSSI = 1/(ncTR) = 6.67 Hz lead to exactly the same temporal

waveform with a shift of 1 TR in time. The isochromats in Fig. 2.1 (c) and (d) cover

a frequency range of 13.3 Hz and result in a 74.1◦ phase spread for the time point

right after the RF pulse. Note that the phase between isochromats increases during

the readout, which indicates increased T ′
2-weighting, and there is no spin-echo signal

formed at the center of readout, demonstrating a very different contrast mechanism

compared to bSSFP. The observed phase accumulation is equivalent to a T ′
2-weighting

with an effective TE of 15.4 ms at beginning and 27.2 ms at the end of the readout

interval, respectively.

Fig. 2.2 (a) and (b) shows the magnitude and phase responses, respectively, as a

function of time and frequency. In Fig. 2.2 (c) and (d), one can see that frequency

shifts that are not multiples of 1/TOSSI lead to slightly different time courses in

magnitude and phase. The duality between time and frequency is shown in Fig. 2.2

(e) and (f). Here one can see that samples in frequency spaced at integer multiples of

1/TOSSI will give exactly the same waveform as the time courses in Fig. 2.2 (c) and

(d), but reversed. More specifically, the OSSI signal MT and the frequency response

MF have the following relationship

MT (k mod nc; f0) =MF

(

f0 +
1− k mod nc

ncTR

)

, (2.3)

where k is the TR number, and f0 denotes the off-resonance frequency. From this
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expression, one can clearly see that the steady-state frequency response is the manifold

on which the time-course signals are found.

2.2.3 Acquisition Parameter Optimization

In seeking to optimize the OSSI signal, there are a variety of measures of goodness.

First, since we are interested in applying this method to functional MRI, we wish to

maximize sensitivity to changes in the signal resulting from changes in T ′
2, normalized

by the square root of imaging time. It is desirable to have smaller nc as fewer TRs

are needed to complete a single image, while longer TRs are preferred because they

allow a longer time for acquisition. We also desire to maximize uniformity of the

RMS combined OSSI signal as a function of frequency shifts smaller than 1/TOSSI.

To understand the impact of pulse sequence parameters on the OSSI signal, ad-

ditional Bloch simulations were carried out. Fig. 2.3 (a) shows the RMS combined

signal intensity for OSSI as a function of nc and flip angle for TR = 15 ms. Note

that nc = 1 corresponds to bSSFP, and for nc > 120, the OSSI signal behaves simi-

larly to bSSFP with a flat phase response (spin-echo-like contrast) over some range

of off-resonance frequencies [34]. However, the bright signals in the upper left corner,

bounded by the box, were somewhat unexpected and are the focus of this chapter.

Here, we examine a range of parameters with respect to sensitivity for fMRI studies

and to undesired sources of signal variation. Deoxygenation of blood at 3T primarily

affects T ′
2 in tissue [37] and causes an approximately exponential decay exp(−t/T ′

2)

of the BOLD signal. This effect can be modeled by averaging complex signals from

a large number of spins with different off-resonance frequencies. When the number

of spins is sufficiently large, there exists a Fourier relationship between exp(−|t|/T ′
2)

and the probability density function of off-resonance frequency f , yielding the Cauchy

distribution G(f) = γ/(π(γ2+f 2)), where γ is the scale parameter of the distribution

and T ′
2 = 1/(2πγ).

Therefore, to simulate the T ∗
2 -weighted signal of a voxel in the static dephasing

regime, we generated complex OSSI signals from 2000 spins with off-resonance fre-

quencies uniformly ranging from -150 Hz to 150 Hz, and calculated weighted sum of

the complex signals. The weighting function is the Cauchy distribution G(f) centered

at a specific off-resonance frequency and using T ′
2 = 148.3 ms and 135.5 ms, corre-

sponding to T ∗
2 of 57 ms and 55 ms given an underlying T2 = 92.6 ms for gray matter,

which were selected to model baseline and active conditions, respectively. The T ∗
2
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Figure 2.3: Simulation of acquisition parameters for spiral-out readouts (TE = 1.6
ms). (a) to (c) are T ∗

2 sensitivity defined as Sactivated – Srest in units of M0 = 1.
(a) shows the RMS combined magnitude signal as a function of nc and flip angle for
a fixed TR of 15 ms. Notice the bright spot around nc = 10 and flip angle = 10◦. We
focus on the region denoted by the blue square for OSSI fMRI acquisition parameter
optimization, and the results are in (b) to (e). (b) shows how T ∗

2 sensitivity varies with
TR and flip angle for a fixed nc = 10. The signal is normalized by

√

(TR− c)/TR ≈
√

TA/D with c = 5 ms for SNR efficiency. (c) shows how T ∗
2 sensitivity varies with

nc and flip angle for TR = 15 ms. (d) gives off-resonance sensitivity at different TR
and flip angles for nc = 10. (e) gives off-resonance sensitivity at different nc and flip
angles for TR = 15 ms.
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difference represents a typical 1.9% signal change for a T ∗
2 -weighted GRE image with

TE = 30 ms. The OSSI baseline and active signals were obtained by applying RMS

combination to every nc = 10 consecutive and non-overlapping time points of the

T ∗
2 -weighted signals.

The OSSI signal of each spin was simulated using a range of parameters for TR,

FA, and nc. We varied two parameters while fixing the third parameter, and per-

formed the simulation for at least 5 T1s to ensure the signal was in steady state. The

T ∗
2 sensitivity is defined by the difference of the active (T ∗

2 = 55 ms) and baseline

(T ∗
2 = 57 ms) signals in units of M0 either just after the RF pulse for spiral out

acquisitions or just before the subsequent RF pulse for spiral-in acquisition. Fig. 2.3

(b) and (c) gives the T ∗
2 sensitivity for a spiral-out acquisition (TE = 1.6 ms) as a

function of different TRs and flip angles for nc = 10, and different nc and flip angles

at a fixed TR of 15 ms, respectively. Supporting Information Fig. 2.10 (b) and (c)

presents the same relationship for a spiral-in acquisition (TE = TR - 1.6 ms).

As noted above and shown in Fig. 2.2, the OSSI pulse sequence is very frequency

sensitive but for the use in fMRI an important question is the sensitivity of the

combined (RMS over nc points) signal vs. frequency. An example of this effect is the

small difference between RMS combined signal of blue and red lines in Fig. 2.2 (c).

The combined signal is periodic in the frequency domain with 1/TOSSI = 1/(ncTR),

so we varied the central frequency offset over this range to obtain the signal variability

due to field inhomogeneity. The variability was calculated by taking the maximum

difference of the combined signals at different central frequencies. Fig. 2.3 (d) and

(e) give the frequency-dependent signal variability for the spiral-out acquisition as

a function of different TRs and flip angles for nc = 10, and different nc and flip

angles at a fixed TR of 15 ms, respectively. Supporting Information Fig. 2.10 (d)

and (e) shows the same relationship for a spiral-in acquisition. Note that the small

central frequency dependent variations were averaged across 1/TOSSI for Fig. 2.3 (a)-

(c). To assess the T ∗
2 -weighting of OSSI in comparison to GRE using as long of a TE

as possible (equivalent to a spiral-in acquisition), we plot the maximal T ∗
2 -weighted

signal change vs. TR in the Supporting Information, Fig. 2.11.
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Figure 2.4: Images of steady state with quadratic phase progression (nc = 10) with
(a) balance gradients (OSSI) and (b) spoiling gradients (GRE). Each panel has 10
images across the periodic phase pattern and is shown twice to demonstrate the
reproducibility. The 2-norm combined images are given on the right. The OSSI and
GRE images are not on the same intensity scale.

2.3 Methods

All the studies were performed on a 3T GE MR750 scanner (GE Healthcare,

Waukesha, WI) with a 32-channel head coil (Nova Medical, Wilmington, MA). We

implemented the OSSI pulse sequence using the vendor’s standard pulse programming

language, EPIC, and collected data with matched spatial and temporal resolutions

using both OSS and GRE approaches.

2.3.1 Phantom Experiments

To demonstrate the principles of OSSI, we collected images of the FBIRN phantom

[38] (approximate T1/T2 = 530/60 ms) using both balanced and spoiled gradients. An

oblique slice with FOV = 220 mm and slice thickness = 2.5 mm was acquired, and the

voxel size = 6.29 × 6.29 × 2.5 mm3. For OSSI, we chose TR = 15 ms, nc = 10, FA

= 10◦, and a fully sampled single-shot spiral-out trajectory. The spoiled-GRE data

were acquired with the same parameters, except for the addition of spoiling gradients

and the use of a spiral-in readout to make the effective TEs of the two acquisitions

more similar. Specifically, the OSSI spiral-out TE = 2.7 ms, which corresponds to

an effective TE of 17.5 ms. To bring GRE TE closer to OSSI effective TE and to

increase GRE T ∗
2 -sensitivity with the limited TR = 15 ms, we used GRE spiral-in TE
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Figure 2.5: Time courses for a 4-voxel ROI in the phantom for OSSI (red) and
GRE (blue). Both before and after 2-norm combination, OSSI shows signal strengths
roughly two times larger than the spoiled GRE signal.

= 11.2 ms. The number of time points = 100 with 10 s discarded acquisition prior to

collecting data. Every nc = 10 images (1 period of the oscillations) were combined

pixel-wise using the 2-norm.

2.3.2 Human Experiments

2.3.2.1 2D Human Studies

Human functional imaging studies were performed on 5 subjects using both OSSI

and GRE methods with informed consent and IRB approval. The functional task

was a left vs. right reversing-checkerboard visual stimulus (with 5 cycles of 20 s L/20

s R). The 2D sampling pattern for both GRE and OSSI was multi-shot (number

of interleaves ni = 8) fully sampled variable-density spirals with a densely sampled

core (300 k-space points). A single oblique slice through visual cortex was selected

with FOV = 220 mm and 2.5 mm slice thickness. The voxel size was 1.77 × 1.77 ×
2.5 mm3 (matrix size 124 × 124). All the 2D images were reconstructed as 128 ×
128 matrices. The experiments include 4 spiral-out acquisitions of 4 subjects and 4

spiral-in acquisitions of 4 subjects.

For the OSSI method, we chose TR = 15 ms, nc = 10, and nominal FA = 10◦.

The OSSI effective TR for each spiral = 150 ms (TR · nc) and the volume TR =
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1.2 s (TR · nc · ni). For the GRE acquisition, we carefully matched spatial-temporal

resolution of OSSI, each interleave was acquired with GRE TR = 150 ms, volume TR

= 1.2 s (TR · ni), and the Ernst flip angle FA = 27◦ to optimize SNR. The number

of time points for OSSI was 1670 or 167 combined images, and the number of time

points for GRE was 167 with no combination necessary, corresponding to the 200 s

of the functional task. To establish the steady state, no data were collected for the

first 10 s for both acquisitions. OSSI actual TE was set to minimum (TE = 2.7 ms)

for spiral-out imaging and TE = 11.6 ms for the spiral-in case. Recognizing that the

OSSI acquisition has some inherent T ∗
2 -weighting with spiral-out effective TE = 17.5

ms and spiral-in effective TE = 27.5 ms according to the simulations, we used slightly

varying GRE TEs for different experiments to get an robust real data estimation of

OSSI effective TE. For the 4 spiral-out experiments, we selected GRE TE = 17.5, 20,

20, and 23 ms, and for the 4 spiral-in experiments, we selected GRE TE = 27.5, 30,

30, and 33 ms.

Additionally, a T1-weighted image was acquired for each subject and used to create

a mask for the brain regions using the Brain Extraction Tool [39].

2.3.2.2 3D Human Studies

As an anecdotal demonstration, we acquired a 3D data set for a single human

subject. The functional study was the same visual stimulus as in 2D studies (5 cycles

of 20s on/20s off). An oblique 12-slice 3D volume was acquired using a stack of

single-shot spirals with spiral-out readouts. The matrix size = 64 × 64 × 12, and the

voxel size = 3.44 × 3.44 × 3 mm3. For 3D OSSI imaging, TR = 15 ms, nc = 10, FA =

10◦, TE = 2.2 ms for each slice, and the volume TR = 1.8 s (TR · nc · nz). The spiral

sampling trajectory in the kx-ky plane was a variable-density spiral with a linearly

decreasing sampling density, leading to a factor of 3 undersampling. Along the kz

direction, the spirals were rotated 45◦ for each spiral platter to reduce undersampling

artifacts. For the GRE imaging, the 12 slices were collected using a 2D spiral-out

sequence with fully sampled uniform-density spirals, GRE TR = 1.8 s, TE = 23 ms

to approximately match OSSI effective TE, and FA = 75◦. The number of volumes

= 112 for both OSSI (after 2-norm combination) and GRE, for a total about 200 s of

acquisition, which followed 10 s of discarded acquisition used to establish the steady

state.

We also acquired 2D multi-slice images using a standard spin-warp acquisition for

17



generating SENSE maps. The 32-channel coil images were compressed to 28 virtual

coils, and the SENSE maps were generated using ESPIRiT [40, 41]. The 3D OSSI

images were reconstructed from the undersampled measurements using the conjugate

gradient SENSE [42, 43], with an edge-preserving regularizer implemented through

[44]. The fully sampled GRE data were reconstructed using the gridding method.

2.3.3 Data Analysis

As mentioned above, every nc = 10 consecutive and non-overlapping OSSI images

were combined by taking the 2-norm. Functional imaging performance was evaluated

for both OSSI and GRE BOLD by evaluating activation maps and the temporal

SNR (tSNR). The data from the first cycle (40 s) of the task were discarded to

avoid the modeling error in the initial rest period. To reduce the effects of scanner

drift, detrending was applied using lower order discrete cosine transform bases. The

correlation coefficients were determined by correlation with a reference waveform, and

the activated regions were defined by the magnitude of the correlation coefficients

larger than a 0.5 threshold. The reference waveform was generated by convolving

the canonical hemodynamic response function [45] with the task. The number of

activated voxels were counted at the bottom third of the brain, where the primary

visual cortex is located. The tSNR maps were calculated by dividing the mean of the

time course by the standard deviation of the time course residual (after removing the

mean and the task) for each voxel. We calculated the average tSNR over the whole

brain over an ROI limited to the brain region and excluding the skull and scalp.

To determine the effective TE of OSSI, we generated scatter plots based on the

percent signal change for voxels that were active in both GRE and OSSI acquisitions.

In GRE, the percent signal change is approximately equal to ∆R′
2 · TE [46]. By

establishing the relationship between OSSI and GRE percent change and under the

assumption that activation change (∆R′
2) is the same in both cases, we can estimate

the effective TE for OSSI using TEeff = b · TEGRE when the percent changes of

OSSI and GRE are highly correlated, where b is the slope of the OSSI-GRE percent

change relationship. Due to variability in both data sets, we performed a model II

fit with standardized major axis (SMA) regression and 0 intercept to estimate the

slope of the relationship for each experiment. Voxels with a percent change greater

than 4% in either method, which likely represent vascular signals, were found to be

highly variable and were excluded from the regression. In addition, the linearity of
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Figure 2.6: OSSI and GRE functional results from multi-shot spiral-out acquisition
with OSSI TE = 2.7 ms and GRE TE = 23 ms. At left, the activation map uses a
threshold of 0.5 for the correlation with a reference waveform, and the background is
the mean image of the OSSI combined or GRE images. The time course for a 4-voxel
ROI is shown for each method together with the reference waveform (intensity units
are arbitrary signal units). At right, the temporal SNR maps are also shown for both
methods.

the relationship between OSSI and GRE percent signal changes was assessed using

Pearson’s correlation coefficient.

2.4 Results

The phantom images in Fig. 2.4 (a) present the evolution of the oscillation pattern

for OSSI over the nc = 10 phase cycles and show the highly reproducible nature of

the oscillations. Note that magnetic field inhomogeneity leads to an inhomogeneous

spatial pattern in the OSSI data, and that different isochromats have different tem-

poral patterns. Fig. 2.4 (b) shows the same slice with spoiled gradients. Although the

spoiled steady-state images are free of oscillations, their magnitudes are much lower.

The 2-norm combination of every non-overlapping nc = 10 OSSI images produces spa-

tially and temporally uniform signals. The time courses in Fig. 2.5 show oscillating
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Figure 2.7: OSSI and GRE functional results from multi-shot spiral-in acquisition
with OSSI TE = 11.6 ms and GRE TE = 33 ms. The activation map uses a threshold
of 0.5 for the correlation with a reference waveform, and the time course for a 4-
voxel ROI is shown with the reference waveform for each method (intensity units are
arbitrary signal units). The temporal SNR maps are also shown for both OSSI and
GRE acquisitions. Compared to the spiral-out results in Fig. 2.6, we can see that
spiral-in gives more activations, but relatively lower signal strength and temporal
SNR for both OSSI and GRE.

steady-state signal and the stable signal after the 2-norm combination. In compari-

son to spoiled GRE with matched resolutions and TE, the OSSI signal strength was

roughly 2 times larger than the spoiled signal, though the exact relationship is highly

dependent on phantom/tissue T1s and T2s.

Fig. 2.6 gives 2D human spiral-out activation maps, time courses, and tSNR maps

for visual stimulation. Compared to GRE with matched acquisition characteristics

and TE, the OSSI result shows more activations according to the activation maps, a

larger task-related signal change as in the time course, and higher tSNR presented

by the tSNR maps. The OSSI signals appear localized more in parenchyma with less

signal from the sulci and vascular regions near the sagittal sinus.

Fig. 2.7 shows 2D human spiral-in functional results and tSNR maps. The OSSI

acquisition results in larger activation regions and much higher tSNR in comparison
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to GRE. Though anecdotal, the time course of OSSI appears to be less noisy. The

spiral-in scheme uses a closer to optimal TE for fMRI (at 3T, a common choice is

TE = 30 ms), thereby leading to more activations for both OSSI and GRE compared

to the spiral-out results in Fig. 2.6 in spite of the overall lower signal intensity and

tSNR.

Fig. 2.8 shows OSSI and GRE percent signal change scatter plots for spiral-out

data of Fig. 2.6 and spiral-in data of Fig. 2.7, and the slope of the scatter plots

depicts the relationships between OSSI effective TE and GRE TE. The slope resulted

from the SMA regression is 0.73 for spiral-out and 0.82 for spiral-in. As described

in Methods, we can calculate the effective TE for OSSI as spiral-out OSSI TEeff =

16.7 ms, and spiral-in OSSI TEeff = 27.1 ms for this subject. Scatter plots for the

other subjects can be found in the Supporting Information, Fig. 2.16. The mean

OSSI TE effective across all the subjects is 17.8 ms for spiral-out, and is 27.1 ms for

spiral-in, given the actual TE’s of 2.7 ms and 11.6 ms, respectively, which correspond

to an effective T ′
2-weighting of about 15 ms at the time of the excitation pulse for

both spiral-out and spiral-in cases. The average correlation coefficient between OSSI

and GRE across all subjects was 0.5, and linearity of the relationship was found to

be significant (p < 0.05) for all data sets. The high correlation of OSSI and GRE

percent signals in the common activated regions is consistent with a similar contrast

mechanism for OSSI and GRE acquisitions.

Quantitative measurements for all visual fMRI experiments including number of

activated voxels (at the bottom third of the brain) and average tSNR of the whole

brain are given in Table 2.1. OSSI shows a 1.84 ratio (s.d. = 0.5) of number of

activation voxels in comparison to GRE with matched spatial-temporal resolutions

and similar effective TEs. The tSNR ratio of OSSI to GRE has a mean of 1.83 (s.d.

= 0.19). tSNR values were compared using a paired t-test, and OSSI was found to

be significantly higher (p < 0.05). The columns in Table 2.1 directly corresponds to

the columns in Supporting Information Fig. 2.13, which presents activation maps and

tSNR maps for the 5 subjects. For each subject and GRE TE ranging from 17.5 ms

to 33 ms, the OSSI acquisition provides larger activation regions and higher tSNR

than GRE. Subject 2 demonstrated motion artifacts, which led to lower tSNR ratios,

artifacts in the tSNR maps, and some false positive activations (near the edge of the

brain). The circular spatial variation in tSNR maps are believe to result from pulsatile

flow at ventricles and vessels in combination with the multi-shot (8-shot) acquisition.
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Table 2.1: Quantitative results including number of activated voxels and average
tSNR.

Spiral-Out Spiral-In
Subject ID 1 2 3 4 1 2 3 5 Mean (SD)

OSSI 215 159 210 84 264 165 236 123 182
# Activated

Voxels
GRE 133 113 116 55 151 84 144 41 105
Ratio 1.62 1.41 1.81 1.53 1.75 1.96 1.64 3.0 1.84 (0.5)

Average
tSNR

OSSI 85.1 55.1 74.7 68.2 71.4 47.2 60.6 47.9 63.8
GRE 40.9 34.9 41.9 37.8 34.6 29.5 34.1 24.7 34.8
Ratio 2.08 1.58 1.78 1.80 2.06 1.60 1.78 1.94 1.83 (0.19)

OSSI, oscillating steady-state imaging; GRE, gradient echo imaging; tSNR, temporal
signal-to-noise ratio.

When averaging tSNR over an ROI that is away from artifacts, the tSNR ratio of

OSSI to GRE is generally greater than 2.

Fig. 2.9 is a preliminary demonstration of 3D activation results in visual cortex.

OSSI and GRE acquisitions give comparable activation maps even through the OSSI

data were undersampled. For OSSI, the number of activated voxels = 705 and the

average tSNR = 57.2. For GRE, the number of activated voxels = 883 and the average

tSNR = 62.4.

2.5 Discussion

This chapter describes a fundamentally new approach to fMRI acquisition that

uses a novel oscillating steady-state source of signal that is very large and also sen-

sitive to the blood oxygenation, thereby offering the potential for high SNR fMRI.

The proposed quadratic phase progression in conjunction with balanced gradients

produces this new steady state. As with other steady-state imaging methods, the

OSSI method has large signals because it reuses rather than spoils the magnetiza-

tion. The oscillating steady-state signals available prior to gradient dephasing contain

typically more than twice the average signal amplitude of spoiled signals. We have

also noted that this pulse sequence with its quadratic phase sequence is very sensitive

to off-resonance. Indeed, a frequency dependent phase dispersal is important for gen-

erating the T ′
2- or T

∗
2 -contrast that makes it suitable for fMRI. In our experiments, we

found T ′
2-weighting of approximately 15 ms at the time of excitation pulse. Additional

T ′
2 weighting can be obtained with increased TE as shown in Supporting Information
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Figure 2.8: Percent signal change of OSSI vs. GRE for active voxels in Fig. 2.6 and
Fig. 2.7 where the percentage signal change was below 4% in both methods (spiral
out TEs: OSSI = 2.7 ms, GRE = 23 ms; spiral in: OSSI = 11.6 ms, GRE = 33
ms). These figures demonstrate a high correlation between the methods, indicating
the potential utility of OSSI as an alternative to GRE fMRI. The slope of the line
was fit via Model II regression.
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Figure 2.9: Functional MRI of 10 slices drawn from volumetric 3D OSSI acquisition
(volume TR = 1.8 s, TE = 2.2 ms, matrix size = 64 through undersampling in-plane)
and 2D multi-slice GRE (TR = 1.8 s, TE = 23 ms, matrix size = 64) showing similar
activation patterns in visual cortex.
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Fig. 2.12.

OSSI signals oscillate with a periodicity of ncTR, however, the oscillations are

highly reproducible, and by combining nc time points generates stable time courses

required for fMRI analysis. As demonstrated in the high-resolution visual stimulation

fMRI study, the OSSI approach improves tSNR by about 83% and the number of

activated voxels was increased by about 84%, both relative to GRE imaging at the

Ernst angle with the carefully matched spatial-temporal acquisition characteristics

and effective TEs. The 2D human fMRI experiments used relatively high spatial

resolution and thus were closer to thermal noise limit. The same data were subjected

to low spatial resolution reconstructions with the results shown in the Supporting

Information, Fig. 2.19 and Table 2.2. While the OSSI data still had SNR advantages,

the SNR gain of OSSI was reduced relative to the high-resolution and more thermal

noise limited cases. Similarly for the anecdotal low-resolution 3D human data that

was likely to be physiological noise limited and for the low-resolution phantom data

that is systematical noise limited [47], the SNR advantage is compromised.

Because we acquired GRE with a longer TE, there is a possible concern that

the longer TR might alter temporal noise characterstics, so we compared the OSSI

method to GRE with a 3× shorter GRE TR. As shown in Supporting Information

Fig. 2.20 and Table 2.3, for the experimental conditions used (high spatial resolution,

likely thermal noise limited regime), the shorter TR leads to similar functional results

and tSNR values as GRE with longer TR. We also considered the possible use of other

steady state methods, such as FISP/S1 SSFP and found that while it has more signal

than GRE for short TRs, it does not have the increased T ∗
2 sensitivity of OSSI.

We note that further improvements in performance are possible and in fact, likely.

For example, our simulations show that TR = 15 ms, nc = 10, and FA = 10◦ is a

good combination to get high SNR and functional MRI responses, but it is by no

means optimal. The short readouts can limit SNR efficiency, so there are potential

advantages to going to longer TRs and longer readouts. As shown in Fig. 2.3 and

Supporting Information Fig. 2.10, multiple combinations of imaging parameters give

a similar T ∗
2 -sensitivity and off-resonance sensitivity. There is a complex interplay

between these sensitivity measures and the major imaging parameters including TR,

nc, FA, and TE (including TE locations from different readouts, e.g. spiral-out,

spiral-in, or EPI with TE in the center). The RF (FA) inhomogeneity in the brain

at 3T may influence the actual FA to use when acquiring slices at different parts of
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the brain, which further complicates the optimization. We also note that the optimal

FA appears to be small in comparison to many bSSFP applicaitons where FAs > 30◦

are common, which would indicate that RF heating is unlikely to be an issue with

OSSI. Curiously, the optimal FAs are often not far from the Ernst angle, e.g. 8.3◦

for TR = 15 ms. The final optimization will require practical experience regarding

which factors are most important for particular fMRI studies.

The sensitivity to frequency as noted above, will lead to substantial physiological

noise, and in particular, artifacts and noise from respiration, which is known to lead to

oscillations shifts in resonant frequency [48]. Fig. 2.18 presents residual time courses

and spectra of OSSI and GRE at a non-active region, and the OSSI spectrum shows

a prominent peak near respiration frequencies. We investigated the standard phys-

iological noise removal technique RETROICOR [49] applied to individual temporal

phases as well as the combined images, and also k-domain methods (RETROKCOR

[50]) applied to individual temporal phases. We found only modest improvements in

tSNR and activation maps when applying corrections over limited time windows and

no improvements over longer windows [21]. This, we believe, is due to the complex

and non-linear nature of the interaction between frequency and the temporal signal

(see Fig. 2.2 (c, d), for example). In addition, the use of a 2D slice for the visual study

makes it sensitive to inflow and pulsatility artifacts. Physiological noise correction is

an active area of research [51] and will be the topic of a future manuscript. As such,

no physiological noise corrections for OSSI were applied in the present work, but we

believe that after correction, further tSNR and activation improvements close to the

increases in signal strength will be possible.

Like most steady-state methods, the short TR largely prevents interleaving of

slices, when combined with the time needed to reach steady state, dictates that OSSI

methods are best suited to 3D acquisitions. Furthermore, the need to acquire vol-

umetric images for each temporal phase implies that nc times as many images are

required for a study. Fortunately, the reproducible nature of oscillating signal may

allow dramatic reductions in the acquisition time. For example, the use of sparse

sampling in k-space and modeling of the oscillations using patch-tensor low-rank [52]

or a dictionary based regularizer [53] can fully recover the missing data in the image

reconstruction process. This again, is a topic of active research, and preliminary re-

sults suggest that larger than a 13-fold reduction in k-space is possible with minimal

performance degradation. We have anecdotally demonstrated the ability to acquire
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3D images, though without acceleration using the spatiotemporal models described

here. We note that most 2D acquisitions would include acceleration using 2D simul-

taneous multi-slice imaging [54, 55], but also note that undersampling in 3D exploits

roughly the same parallel imaging concepts [56]. So, we believe that similiar acceler-

ations are possible for OSSI and the use of temporal modeling will help resolve the

inefficiency of acquiring nc images. The slow volume TR reduces temporal resolution,

but does not reduce SNR due to averaging of signal and noise across the nc temporal

phases. As pointed out above, the short TR does limit the length of the readout

which can reduce the SNR efficiency.

In prior work, bSSFP imaging for fMRI has taken advantage of different phenom-

ena, for example, frequency shifts, changes in T2 associated with changes in blood

oxygenation, or changes due to inhomogeneous effects and diffusion around small

vessels [28, 29]. In this work, we argue that the OSSI signal changes are due to more

traditional, size-scale invariant changes in T ∗
2 or T ′

2 of the tissues, again in response to

changes in blood oxygenation. We argue that this sensitivity is due to frequency sen-

sitivity of OSSI signal that leads to frequency-dependent phase variations as shown

in the simulations of Fig. 2.1 (d). The percent signal plots in Fig. 2.8 and Fig. 2.16

clearly show a very linear relationship (average p-value for the slope = 0.01 using

standard linear regression) of OSSI and GRE percent signal changes, which would be

consistent with a similar signal change mechanism between the two methods. We note

that further work is necessary to fully elucidate the mechanism, including the effects

of diffusion around vessels. The simulation and percent signal change analysis are

both consistent with the OSSI signal being inherently T ∗
2 or T ′

2 weighted, specifically

OSSI leads to an additional T ′
2-weighting of approximately 15 ms for the parameters

used (TR = 15 ms, nc = 10, FA = 10◦).

The analysis of percent change signal in OSSI and GRE excluded voxels with

a percent change greater than 4% in at least one of the methods. Above 4%, the

signal change for OSSI seemed to flatten and the relationship was no-longer suitable

for linear regression. These very high GRE percent changes, which likely represent

vascular signals as shown in Fig. 2.17, have had a lower signal change in OSSI perhaps

due to flow-related signal changes. If so, this partial suppression of vascular signals

could be seen as a desirable feature as it will improve functional localization.

There are a number of unstudied phenomena we wish to address in the future.

Long T2-species like cerebrospinal fluid in the ventricles are very bright in OSSI, but
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when combined with cardiac pulsatility lead to low tSNR as seen in the first and

third rows of Fig. 2.13. Part of the high variability may arise from the in-flow effects

associated with the 2D acquisition and may be partially resolved by 3D imaging.

Pulsatile effects and in-flow phenomena with vessels require further investigation.

The short TR makes implementation of fat suppression more challenging, however,

the relaxation and spectral characteristics of lipids seem to lead to relatively low

signal intensity and limited artifacts in the images. Still, the signal characteristics

of lipids, as well as the possible use of slab-selective spectral spatial pulses, should

be investigated. As with most fMRI studies, detection and bulk correction of head

motion will be needed. In this case, we will also need to consider any impact on the

steady-state signal due to head motion.

Another interesting question is what occurs in the presence of large magnetic fields

gradients near regions of large susceptibility differences in the brain, for example,

the orbitofrontal cortex. Such gradients might have a similar impact as applying

unbalanced gradients, leading to signal spoiling and a reduction of the additional

T ′
2-weighting of 15 ms common to OSSI. The signal may gracefully transition to a

spoiled GRE signal with relatively short TE. This phenomenon is closely related to

partial spoiling described by Ganter [57], except that very small phase increments

with large gradients are used in Ganter’s paper, while here we have large phase

increments between RF pulses but partial gradient spoiling. We are also interested in

other possible applications of the OSSI signal. Frequency sensitivity may be useful in

applications where frequency tracking is needed, for example, in tracking temperature-

dependent frequency changes in therapeutic ultrasound.

2.6 Conclusion

The OSSI approach departs from traditional acquisition approaches by exploit-

ing a novel T ∗
2 -weighted signal mechanism that produces large steady-state signals,

and to our knowledge, has never been used before for fMRI. We show in both sim-

ulations and experimental data that the proposed approach has a similar contrast

mechanism and percent signal change as GRE and leads to a substantial increase

in signal strength and tSNR with matched spatial-temporal resolutions and effective

TE, thereby enabling detection of 84% greater volumes of functional activity. The

SNR advantages were shown for a specific case of single slice fMRI using a short
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TR, and extensions to volumetric acquisition and implementation of physiological

noise corrections will be critical for general application. Still, this approach offers the

prospect of high-resolution fMRI without the need for higher magnetic field strength

systems.
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2.7 Supporting Information

The supplemental material presents Oscillating Steady-State Imaging (OSSI) sim-

ulation and human data results.

Simulations consist of acquisition parameter optimization for spiral-in readouts,

OSSI to GRE T ∗
2 -sensitivity comparison, and how OSSI T ∗

2 -weighting changes with

increased TE. Human data results include activation maps, tSNR maps, z-maps, his-

tograms of all 8 visual experiments, additional percent signal change plots, maps

showing vascular activations, residual time courses, low spatial resolution reconstruc-

tions, and comparison to GRE TR = 50 ms.

2.7.1 Simulations

Fig. 2.10 presents spiral-in acquisition parameter optimization results. OSSI to

GRE T ∗
2 -sensitivity comparison as a function of TR is shown in Fig. 2.11. OSSI

T ∗
2 -weighting increases almost linearly with increased TE as given in Fig. 2.12.

2.7.2 Human Data

2.7.2.1 All Visual Experiments

Fig. 2.13 presents activation maps and tSNR maps for all visual fMRI experi-

ments. For each experiment, the OSSI acquisition provides larger activation regions

and higher tSNR compared to the standard GRE approach. Fig. 2.14 shows the cor-

responding z-maps, and Fig. 2.15 histograms compare OSSI and GRE voxel counts

over a z-threshold. The relationships between OSSI and GRE percent signal changes

of subject 2-5 are in Fig. 2.16. Fig. 2.17 shows the potential vasculature nature for

signals where percent signal changes were large and thus excluded from effective TE

analysis. Fig. 2.18 contains example residual time courses and spectra averaged over

a large ROI away from activations comparing noise patterns of OSSI and GRE.

2.7.2.2 Low Spatial Resolution Reconstructions

Human data shown in Fig. 2.13 were reconstructed with a limited k-space (64/FOV)

to obtain images with a lower spatial resolution. The activation maps and tSNR maps

in Fig. 2.19 and quantitative measurements in Table 2.2 demonstrates a reduced SNR

advantage of OSSI to GRE at lower resolutions.
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Figure 2.10: Simulation of acquisition parameters for spiral-in readouts (TE = TR -
1.6 ms). (a) to (c) are in units of M0 = 1.
(a) shows the RMS combined magnitude signal as a function of nc and flip angle for
a fixed TR of 15 ms. We focus on the region denoted by the blue square for OSSI
fMRI acquisition parameter optimization, and the results are given in (b) to (e). (b)
shows how T ∗

2 sensitivity (Sactivated – Srest) varies with TR and flip angle for a fixed
nc = 10. The signal is normalized by

√

(TR− c)/TR ≈
√

TA/D with c = 5 ms for
SNR efficiency. (c) shows how T ∗

2 sensitivity varies with nc and flip angle for TR =
15 ms. (d) gives off-resonance sensitivity at different TR and flip angles for nc = 10.
(e) gives off-resonance sensitivity at different nc and flip angles for TR = 15 ms.
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Figure 2.11: T ∗
2 -sensitivity (Sactivated – Srest in units of M0) changes with varying TR

for GRE spiral-in (TE = TR - 1.6 ms), OSSI spiral-out (TE = 1.6 ms), and OSSI
spiral-in (TE = TR - 1.6 ms). The signals are normalized by

√

(TR− c)/TR ≈
√

TA/D with c = 5 ms for SNR efficiency and are maximized over flip angle for each
method.

Figure 2.12: Simulated OSSI T ∗
2 -weighting and percent signal increase almost linearly

with increased TE for TR = 15 ms, nc = 10, and flip angle = 10◦.
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Figure 2.13: Comparison of OSSI and GRE activation maps and tSNR maps for all
5 subjects.

Figure 2.14: Z-maps of all the experiments.

33



Figure 2.15: Histograms of voxel counts over z-score threshold = ±7, which corre-
sponds to correlation = ±0.5 for the GRE TR = 150 ms case.

Table 2.2: Quantitative results including number of activated voxels and average
tSNR from low spatial resolution reconstructions.

Low-Resolution Spiral-Out Spiral-In
Subject ID 1 2 3 4 1 2 3 5 Mean (SD)

OSSI 124 90 118 51 129 97 134 98 105
# Activated

Voxels
GRE 89 62 88 53 92 72 116 97 84
Ratio 1.39 1.45 1.34 0.96 1.40 1.35 1.16 1.01 1.26 (0.19)

Average
tSNR

OSSI 138.3 78.9 118.1 94.9 109.9 66.4 88.9 65.6 95.1
GRE 68.7 60.6 72.6 60.0 58.0 50.8 55.9 36.2 57.8
Ratio 2.01 1.3 1.63 1.58 1.89 1.31 1.59 1.81 1.64 (0.26)

OSSI, oscillating steady-state imaging; GRE, gradient echo imaging; tSNR, temporal
signal-to-noise ratio.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.16: Percent signal change of OSSI vs. GRE for active voxels for subjects 2-5
where the percentage signal change was below 4% in both methods. Actual OSSI TE
is 2.7 ms for spiral-out and is 11.6 ms for spiral-in.
These figures demonstrate a high correlation between the methods, indicating the
potential utility of OSSI as an alternative to GRE fMRI. The slope of the line was
fit via Model II regression.
(a) subject 2 spiral-out acquisition, GRE TE = 20 ms, slope = 1.05, and OSSI TEeff

= 21 ms.
(b) subject 2 spiral-in acquisition, GRE TE = 30 ms, slope = 1.06, and OSSI TEeff

= 31.7 ms.
(c) subject 3 spiral-out acquisition, GRE TE = 17.5 ms, slope = 0.83, and OSSI TEeff

= 14.5 ms.
(d) subject 3 spiral-in acquisition, GRE TE = 27.5 ms, slope = 0.85, and OSSI TEeff

= 23.2 ms.
(e) subject 4 spiral-out acquisition, GRE TE = 20 ms, slope = 0.95, and OSSI TEeff

= 19 ms.
(f) subject 5 spiral-in acquisition, GRE TE = 30 ms, slope = 0.87, and OSSI TEeff

= 26.2 ms.
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Figure 2.17: GRE background image with vasculature (left) and the activated voxels
with > 4% percent signal changes overlaid to the GRE background image (right).

Figure 2.18: The residual time courses and spectra averaged over a larger ROI (20×20
voxels) away from the active regions after mean and drift removal. The large ROI
eliminates the effect of thermal noise. The OSSI spectrum has higher physiological
noise due, in part, to larger signals, but the presence of a prominent peak near res-
piration frequencies demonstrates potential greater sensitivity of physiological noise.
The phyisological noise may cause the tSNR improvement to be less than that pre-
dicted from signal strength alone.
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Figure 2.19: Comparison of OSSI and GRE activation maps and tSNR maps for all
the experiments reconstructed at a lower spatial resolution.

2.7.2.3 Comparison to GRE TR = 50 ms

We further compared OSSI to GRE TR = 50 ms with 3× more time points.

It is shown in Fig. 2.20 and Table 2.3 that GRE TR = 50 ms or 150 ms for each

interleave give similar functional results and tSNR values for the thermal noise limited

experimental conditions.
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Figure 2.20: Z-maps and tSNR maps of OSSI, GRE TR = 50 ms, and GRE TR =
150 ms for both spiral-out and spiral-in acquisitions. The z-score threshold = ±7 and
corresponds to correlation = ±0.5 for the GRE TR = 150 ms case. For GRE TR =
50 ms, averaged images of every 3 time points are used for tSNR calculation.

Table 2.3: Quantitative measures including number of voxels beyond a z-score thresh-
old of ±7 and average tSNR within the brain.

Spiral-Out Spiral-In

OSSI
GRE TR
50 ms

GRE TR
150 ms

OSSI
GRE TR
50 ms

GRE TR
150 ms

# Activated
Voxels

182 120 125 194 145 128

Average
tSNR

74.4 41.1 41.9 60.5 36.3 34.0

OSSI, oscillating steady-state imaging; GRE, gradient echo imaging;
tSNR, temporal signal-to-noise ratio.
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CHAPTER III

High-Resolution Oscillating Steady-State fMRI

using Patch-Tensor Low-Rank Reconstruction

The goals of fMRI acquisition include high spatial and temporal resolutions with

a high signal to noise ratio (SNR). Oscillating Steady-State Imaging (OSSI) is a new

fMRI acquisition method that provides large oscillating signals with the potential for

high SNR, but does so at the expense of spatial and temporal resolutions. The unique

oscillation pattern of OSSI images makes it well suited for high-dimensional model-

ing. We propose a patch-tensor low-rank model to exploit the local spatial-temporal

low-rankness of OSSI images. We also develop a practical sparse sampling scheme

with improved sampling incoherence for OSSI. With an alternating direction method

of multipliers (ADMM) based algorithm, we improve OSSI spatial and temporal res-

olutions with a factor of 12 acquisition acceleration and 1.3 mm isotropic spatial

resolution in prospectively undersampled experiments. The proposed model yields

high temporal SNR with more activation than other low-rank methods. Compared

to the standard gradient echo (GRE) imaging with the same spatial-temporal reso-

lution, 3D OSSI tensor model reconstruction demonstrates 2 times higher temporal

SNR with 2 times more functional activation. 1

3.1 Introduction

Functional magnetic resonance imaging (fMRI) measures neural activity based

on blood-oxygenation-level-dependent (BOLD) contrast and the hemodynamic cor-

relations [59] by acquiring a time series of T ∗
2 -weighted brain images. BOLD signal

1This chapter was published in [19, 52, 58].
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change from fMRI images acquired with the standard gradient echo (GRE) imaging

is small and can be easily buried in noise. Furthermore, as signal to noise ratio (SNR)

is proportional to voxel size and functional units of the brain are on the order of 1 mm

or smaller, high SNR is critical for high-resolution and high-quality fMRI. However,

current methods for SNR improvements are limited: multi-coil head arrays suffer

from diminished returns for deep brain structures, and high magnetic field systems

are costly. This chapter focuses on Oscillating Steady-State Imaging (OSSI) [16], a

new fMRI acquisition method that has the potential to provide 2 times higher SNR

than the standard GRE approach.

OSSI combines balanced gradients and a quadratic RF phase progression with

large phase increments, and leads to a combination of high SNR of the balanced

steady state and T ∗
2 -weighting of GRE imaging. The quadratic RF phase cycling is

ϕ(n) = πn2/nc, where n is the RF index and nc is the cycle length. For nc = 1, ∆ϕ

between RF pulses is 180◦, which is balanced steady-state free precession (bSSFP). For

nc ≥ 120 with very small ∆ϕ, the mechanism leads to bSSFP-like contrast [34]. OSSI

acquisitions use 1 < nc < 120 that produce large and oscillating signals. Specifically,

by selecting a short repetition time (TR) with nc = 10, OSSI demonstrates a similar

T ∗
2 -weighted contrast mechanism as GRE with additional T ′

2-weighting of about 15 ms

immediately after the RF pulse. Details on how the SNR and T ∗
2 -sensitivity vary with

nc and other acquisition parameters can be found in [16].

The OSSI signal oscillates with a periodicity dictated by the quadratic RF phase

cycling, and OSSI images have a periodic oscillation pattern that repeats every nc im-

ages as illustrated in Figs. 3.1, 3.9 and 3.10. Thus, one must acquire and combine nc

as many images to get images that are free of oscillations and suitable for fMRI anal-

ysis. With standard reconstruction methods, this need would compromise temporal

resolution by a factor of nc, and the short TR requirement necessary for steady-state

imaging (e.g., TR = 15 ms) limits the time for traversing k-space and thus limits

the single-shot spatial resolution. We aspire to improve the spatial and temporal

resolutions by designing a sparse sampling scheme and an accurate reconstruction

method.

Past works on reconstructing fMRI time series use models such as low-rank [60],

low-rank and sparse [61], and low-rank plus Fourier domain sparsity [62, 10] that

impose low-rankness and/or sparsity on matrices of the vectorized space dimension

and time. We found them insufficient for OSSI, as the oscillations in OSSI images
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make them neither low-rank nor sparse along the time dimension. To simultaneously

exploit redundancy in the oscillation pattern of OSSI and the repeated acquisition

for fMRI time courses, we structure OSSI images to have two time dimensions and

develop a patch-based tensor model.

Based on the n-rank definition [63] and tensor nuclear norm [64] for tensor compe-

tition [64, 65], global tensor low-rank or low-rank plus sparse reconstruction models

have been applied to dynamic MRI via space x× space y× time [66], cardiac MRI

via space × time × cardiac phases [67], and quantitative cardiovascular magnetic

resonance multitasking with multiple time dimensions [68].

Instead of tensor nuclear norm, global tensor low-rank models have also been ex-

plored via Tucker decomposition or higher-order SVD (HOSVD) [63, 69] for dynamic

MRI with sparse core tensors [70], high-dimensional MR imaging with sparsity con-

straints and tensor subspace estimated from navigator data [71], multi-dimensional

dynamic phosphorus-31 magnetic resonance spectroscopy and imaging [72], and elec-

tron paramagnetic resonance oxygen imaging [73] with specialized sparse sampling

strategies. Furthermore, the CANDECOMP/PARAFAC (CP) decomposition [63]

was exploited for multi-contrast dynamic cardiac MRI denoising [74] and for tensor

completion with designed regular sub-Nyquist sampling with applications for fMRI

acceleration [75].

Previous patch-wise tensor low-rank models impose low-rank constraints on spa-

tial submatrices of the tensor unfoldings [76, 77], select patches with both local and

non-local similarities and exploit patch-tensor low-rankness using HOSVD for multi-

contrast MRI reconstruction [78], or compare CP and Tucker decompositions for

local and global low-rank tensor denoising [74]. Because both CP and Tucker decom-

positions require selection of tensor ranks, our work focuses on tensor nuclear norm

minimization that avoids explicit selection of tensor ranks, and structures local patch-

tensors to exploit the local and high-dimensional spatial-temporal low-rankness. We

further design a sparse sampling scheme that prospectively undersamples the data

with a 12-fold acceleration for 2D and a 10-fold acceleration for 3D. The proposed

model provides high-resolution reconstructions with high temporal SNR (tSNR) and

more functional activation than global tensor or matrix low-rank models.

Patch-tensor low-rank (patch-tensor LR) reconstruction and the sparse sampling

schemes are new for fMRI, and the application to OSSI fMRI data is also new.

Compared to standard GRE imaging, the proposed OSSI tensor model demonstrates
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a factor of 2 tSNR improvement for fMRI with 2 times larger functional activation.

The chapter is organized as follows. Section II presents notations and definitions

for tensors. Section III proposes the patch-tensor model and optimization algorithm.

Section IV develops the incoherent undersampling and describes the experimental

setup for OSSI fMRI studies. Section V demonstrates the improved functional per-

formance using the proposed approach compared to other reconstruction and acqui-

sition methods. Section VI discusses future directions, and Section VII concludes the

chapter.

3.2 Background and Notation

A tensor is a multidimensional array [63]. We denote tensors according to their

dimensions. One-dimensional tensors or vectors are denoted by bold lowercase letters,

e.g., x, and tensors of dimension two or higher are denoted by bold capital letters,

e.g., X. Scalars are denoted by italic letters, e.g., x.

The inner product of two tensors X,Y ∈ C
I1×I2×···×IN is defined as the sum of the

element-wise products [69],

⟨X,Y⟩ =
I1
∑

i1=1

I2
∑

i2=1

· · ·
IN
∑

iN=1

y∗i1i2···iNxi1i2···iN ,

where ∗ denotes the complex conjugate. Naturally, the norm of tensor X is ∥X∥ =
√

⟨X,X⟩.
The process of reforming a tensor to matrices by reordering the vectors of the

tensor is known as matricization or unfolding. Each dimension of a tensor is known

as a mode, and the number of modes is known as the tensor’s order or number of

dimensions. After unfolding, the tensor becomes matrices of different modes, and

the number of these matrices equals the number of dimensions. Figure 3.2 illustrates

unfolding a three-dimensional tensor to three matrices. The mode-n unfolding of

tensor X is denoted by X(n), accordingly, refolding the mode-n matrix back to X is

Refoldn

(

X(n)

)

. As seen in [63] and [69], different papers may use different permu-

tations of the vectors to get the unfoldings; the specific order is unimportant as long

as it is consistent.

The n-rank of X is the column rank of X(n) and is denoted by rank
(

X(n)

)

= rn.

Therefore, X is a rank-(r1, r2, . . . , rN) tensor.
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Figure 3.1: OSSI images with periodic oscillation patterns are structured along “fast
time” and “slow time” dimensions. Every nc = 10 fast time images can be 2-norm
combined to generate fMRI images that are free of oscillations and have T ∗

2 -sensitivity
comparable to standard GRE imaging.

3.3 Reconstruction Methods

This section introduces the patch-tensor LR model based reconstruction problem,

the optimization algorithm, important implementation details, and other reconstruc-

tion methods for comparison.

3.3.1 Tensor Model Problem Formulation

fMRI involves acquiring a time series of images to track brain activity. In OSSI

fMRI, the images periodically oscillate with every nc time points along with the regu-

lar fMRI time course as shown in Fig. 3.1. Typically, we combine every nc consecutive

and non-overlapping images with root sum squared (2-norm) to get uniform images

for fMRI analysis [16]. To simultaneously exploit the redundancy in OSSI oscillatory

patterns and the repetition along fMRI time series, we structure OSSI fMRI images

into two time dimensions. The fast oscillation dimension is called “fast time”, and

the fMRI time dimension is called “slow time”.

To improve both spatial and temporal resolutions for OSSI fMRI, and to model the

reproducibility in both fast and slow time dimensions, we propose a tensor low-rank

model for the undersampled reconstruction. The tensor dimensions include vectorized

space, fast time = nc, and slow time. Since the exact form of the oscillations is

resonant frequency dependent and resonant frequency usually varies slowly across

space, low-rankness involving the fast oscillations is a local feature (more similarities

among neighboring pixels than between non-local pixels or over the whole image).
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Figure 3.2: A 3D patch-tensor (left), its three matrix unfoldings of different modes
(top right), and the singular values of the unfoldings demonstrating the patch-tensor
low-rank (bottom right).

Furthermore, due to the complexity of functional activity, imposing low-rankness

on temporal blocks instead of the whole fMRI time series improves the modeling

accuracy. Therefore, we propose a patch-tensor LR model with limited spatial and

temporal extent, and impose low-rankness on all the unfoldings of the patch-tensor.

The whole fMRI time series is broken into non-overlapping time blocks. For

each block, we reshape 3D (spacex × space y × time t) or 4D (space x × space y ×
space z × time t) OSSI images into 4D (x × y × fast timenc × slow time ts) or 5D

(x × y × z × fast timenc × slow time ts) tensors. We partition the 4D or 5D tensors

into patches, and vectorize all the spatial dimensions to form 3D low-rank patch-

tensors (vectorized space sp × nc × ts). Figure 3.2 visualizes an in vivo 3D patch-

tensor, its three unfoldings, and the corresponding singular values demonstrating

the low-rankness of the unfoldings. The patch-tensor is from the center of a brain

with no activation, and Fig. 3.13(a) plots the corresponding log-scale singular values.

Figure 3.13(b) presents low-rank unfoldings of a different patch-tensor in an activated

region.

The proposed patch-tensor LR model based reconstruction problem with non-

overlapping patches is

arg min
X

M
∑

m=1

3
∑

i=1

λi rank (Pmi(X)) +
1

2
∥A(X)− y∥22, (3.1)
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whereX ∈ C
x×y (×z)×t is a complex OSSI fMRI time block to be reconstructed. Linear

operator P(·) partitions and reshapes its input into M locally low-rank patch-tensors

with Pm(X) ∈ C
sp×nc×ts , m = 1, . . . ,M . Pmi(X) = Pm(X)(i) denotes the mode-i

unfolding of the mth tensor patch Pm(X). λi is the regularization parameter for low-

rankness of the mode-i unfolding. Linear operator A represents the MRI physics; it

consists of coil sensitivities and the non-uniform Fourier transform (NUFFT) includ-

ing undersampling. y denotes sparsely sampled k-space measurements.

We focus on the following convex relaxation of (3.1):

arg min
X

M
∑

m=1

3
∑

i=1

λi∥Pmi(X)∥∗ +
1

2
∥A(X)− y∥22. (3.2)

This formulation encourages low-rankness of all the patch-tensor unfoldings by mini-

mizing the sum of their singular values. Meanwhile, the data fidelity term encourages

correspondence between the images and the acquired k-space samples.

3.3.2 Optimization Algorithm

The regularizers in the unconstrained cost function (3.2) can be handled via the

alternating direction method of multipliers (ADMM) [79, 65] applied to the equivalent

constrained optimization problem:

arg min
Z

min
{Xi}

M
∑

m=1

3
∑

i=1

λi∥Pmi(Xi)∥∗ +
1

2
∥A

(

Z
)

− y∥22

subject to Xi = Z, i = 1, 2, 3,

(3.3)

with Xi ∈ C
x×y (×z)×t, i = 1, 2, 3 constrained to be equal to Z ∈ C

x×y (×z)×t. The

scaled form of the corresponding augmented Lagrangian is

L ({Xi},Z, {Ui}) =
M
∑

m=1

3
∑

i=1

λi∥Pmi(Xi)∥∗

+
1

2
∥A(Z)− y∥22 +

ρ

2

3
∑

i=1

∥Xi − Z+Ui∥2 −
ρ

2

3
∑

i=1

∥Ui∥2.
(3.4)

We update the variables {Xi}, Z and scaled dual variables {Ui} sequentially, holding

the other variables fixed.
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For non-overlapping patch-tensors, the update step for each patch of {Xi}3i=1 is:

Pm(X
k+1
i ) = arg min

Pm(Xi)

Lmi

(

Pm(Xi),Z
k,Uk

i

)

(3.5)

for m = 1, . . . ,M and i = 1, . . . , 3 at iteration k + 1, where

Lmi = λi∥Pmi(Xi)∥∗ +
ρ

2
∥Pm(Xi)− Pm(Z

k −Uk
i )∥2

= λi∥Pmi(Xi)∥∗ +
ρ

2
∥Pmi(Xi)− Pmi

(

Zk −Uk
i

)

∥2F .
(3.6)

Because Pmi(Xi) and Pmi

(

Zk −Uk
i

)

are matrices, patch update Pmi

(

Xk+1
i

)

is easily

obtained with a singular value soft-thresholding operator SVT(·) with threshold λi/ρ,

Pmi

(

Xk+1
i

)

= arg min
Pmi(Xi)

Lmi

(

Pmi(Xi) ,Z
k,Uk

i

)

= SVTλi/ρ

(

Pmi

(

Zk −Uk
i

))

.

(3.7)

Therefore, the update for the patches of {Xi} becomes

Pm(X
k+1
i ) = Refoldi

(

Pmi

(

Xk+1
i

))

. (3.8)

We parallelize this step over all the unfoldings and patches.

The Z update simplifies to:

Zk+1 =arg min
Z

L
(

{Xk+1
i },Z, {Uk

i }
)

=arg min
Z

(

1

2
∥A(Z)− y∥22

+
ρ

2

3
∑

i=1

∥Z−
(

Xk+1
i +Uk

i

)

∥2
)

.

(3.9)

We use the conjugate gradient method for this least-squares minimization.

The scaled dual variables {Ui}3i=1 are updated in the usual ADMM way by

Uk+1
i = Uk

i +Xk+1
i − Zk+1. (3.10)
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3.3.3 Practical Considerations

3.3.3.1 Random Cycle Spinning

The singular value soft-thresholding operation for non-overlapping patch-tensors

leads to blocking artifacts at the boundaries of the patches. Using overlapping patches

would be computationally intensive, so instead we apply random cycle spinning in

every iteration as in [80, 81]. We perform a randomly chosen circular shift along

each dimension of the input tensor before partitioning and reshaping, and unshift the

tensor back after updating and placing the patch-tensors together. Accordingly, the

actual update for the patches of each Xi is

Pm

(

Shift
(

Xk+1
i

))

=

Refoldi

(

SVTλi/ρ

(

Pmi

(

Shift
(

Zk −Uk
i

))))

.
(3.11)

3.3.3.2 Overlapping Time Blocks

We reconstruct each fMRI time block separately to lighten the memory burden, so

random cycle spinning only removes patch boundary artifacts within each block. To

further reduce potential artifacts at the temporal boundaries of the blocks, we recon-

struct overlapping time blocks and discard additional time points near the boundaries

for all the methods. Figure 3.17 illustrates how the ranges and discarded portions of

the time blocks are selected.

3.3.3.3 ADMM Implementation Details

We scale the k-space data to have maximum magnitude of 1 before applying

ADMM. With this normalization, simply setting the regularization parameters λ1 =

λ2 = 1 works well. Because X(3) has lower rank than X(1) and X(2) as shown in

Fig. 3.2, we choose λ3 = 2 to provide more weighting to the low-rankness of X(3).

For ADMM penalty parameter ρ, we investigated a range of ρ values and found ρ

= 121 empirically to be a good initialization. Furthermore, for our application, using

varying penalty parameter or increasing ρ after a number of inner iterations con-

tributes to a faster convergence. After T inner iterations updating variables {Xi}, Z,
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and {Ui}, the following updates are performed in the outer iteration:

ρ 7→ rρ

Ui 7→ Ui/r.
(3.12)

We chose rate r = 3, and rescale the scaled dual variable Ui after updating ρ. This

scheme is adapted from [79, 65]. Algorithm 1 summarizes the method.

Algorithm 1 Patch-tensor low-rank reconstruction algorithm

Input: A, y, {λi} = [1 1 2], ρ = 121, r = 3, S = 2, T = 11
Output: OSSI images Zk+1

1: for s = 0, . . . , S − 1 do
2: for t = 0, . . . , T − 1 do
3: k = s ∗ T + t
4: Update Zk+1 using (3.9)
5: for i = 1, 2, 3 do
6: Update Xk+1

i using (3.11)
7: Uk+1

i = Uk
i +Xk+1

i − Zk+1

8: end for
9: end for
10: Update ρ and each Ui using (3.12)
11: end for
12: return Zk+1

3.3.4 Other Reconstruction Approaches

We compare the proposed reconstruction method to matrix local low-rank (MLLR)

[82], global tensor low-rank (GTLR), patch-tensor low-rank plus sparse (patch-tensor

L+S), and conjugate gradient SENSE [42, 43] with an edge-preserving regularizer

(regularized CG-SENSE).

MLLR imposes low-rank constraints on space × time matrices by vectorizing

image patches for the spatial dimension. The cost function for MLLR is the same as

setting i = 1 in (3.2). GTLR enforces low-rankness on all the unfoldings of the tensor

of size space xy × nc × ts without taking patches. The cost function is the same as

(3.2) with M = 1 and without spatial partitioning. GTLR reconstructs fMRI time

blocks and is global in spatial sense but not in temporal sense. It is less convenient

for computation to impose low-rankness on a temporal global tensor.
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The optimization problem for patch-tensor L+S is

arg min
L,S

1

2
∥A(L+ S)− y∥22 +

M
∑

m=1

3
∑

i=1

λi∥Pmi(L)∥∗ + µ∥Φ(S)∥1,

where L,S ∈ C
x×y×t denote the image components to be reconstructed and Φ denotes

2D Fourier transform along both fast and slow time dimensions to enhance the Fourier

domain sparsity of the sparsity component S. The low-rank component L has the

same regularization as in (3.2), and λi and µ are regularization parameters.

The optimization problem for regularized CG-SENSE is

arg min
X

1

2
∥A(X)− y∥22 +

J
∑

j=1

ψ ([CX]j) ,

where X ∈ C
xy denotes one vectorized image of the time series, C ∈ R

J×xy is the 2D

spatial finite difference matrix with J = 2xy, and ψ is the Huber potential function.

We used ADMM to perform the MLLR, GTLR, and patch-tensor L+S recon-

structions. The ADMM parameters for patch-tensor L+S were the same as (3.12) for

patch-tensor LR. The CG update in the ADMM inner iterations and the regularized

CG-SENSE reconstruction were implemented with the Michigan Image Reconstruc-

tion Toolbox [44].

3.4 Acquisition Methods

Each oscillating state (index n) of OSSI was acquired with quadratic RF phases

ϕ(n) = πn2/nc, cycle length nc = 10, TR = 15 ms, and flip angle = 10◦ for the desired

SNR and T ∗
2 -sensitivity [16]. The short TR of 15 ms limits the readout, and nc = 10

compromises temporal resolution. Hence, sparse sampling is important for improving

OSSI spatial and temporal resolutions.

This section develops practical sparse sampling schemes with increased sampling

incoherence for OSSI, and describes human fMRI studies. We collected 2D “mostly

sampled” with retrospective undersampling, 2D prospectively undersampled, and 3D

prospectively undersampled data. With FOV = 220 mm, slice thickness = 2.5 mm,

and matrix size = 168 × 168, the spatial resolution = 1.3 × 1.3 × 2.5 mm3 for all

experiments.
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3.4.1 Variable-Density Spiral Sampling Trajectory

We focus on variable-density (VD) spiral trajectories that travel quickly through

k-space. The sampling density of VD spirals varies at different k-space radii. By

dense sampling in the center of k-space where the MR energy concentrates and sparse

sampling at outer k-space, VD spirals can reduce imaging time and off-resonance blur

[83, 84] compared to uniform-density (UD) spirals. We design VD spirals based on [85,

86] with uniform density and over-sampling in the k-space center, and then linearly

decrease the sampling density as the spirals approach the outer part of k-space. The

trajectory is parameterized by (ni, a, b, d), where ni = number of interleaves, a =

effective FOV (in mm) at k-space center, b = effective FOV at the edge of k-space,

and d denotes the number of central k-space points with uniform sampling density

determined by a.

We used (ni, a, b, d) = (9, 310, 110, 300) for the retrospective sampling pattern

with spiral-out readouts. The effective FOV for ni = 9 interleaves was a = 310 mm at

the center of k-space for the first d = 300 sampling points, then decreased linearly to

b = 110 mm at the edge of k-space. The readout length for each interleave was 8.3 ms.

The k-space of each image can be mostly covered with all the 9 interleaves. However,

due to the variable-density nature of the trajectories, the 9-interleave trajectory was

still undersampled by approximately a factor of 1.5, and we refer to this sampling

pattern as “mostly sampled”. We chose a = 300 mm and b = 80 mm for prospective

undersampling with spiral-in readouts to increase T ∗
2 -sensitivity, and the readout

length was 7.4 ms.

We took 1 interleave out of ni = 9 VD spirals as the undersampled trajectory.

Compared to a UD spiral with the same FOV and matrix size, the single-shot un-

dersampled trajectory provided a factor of 12 acceleration in-plane as presented in

Fig. 3.3 (a). We selected the VD spiral parameters for a good balance between the

undersampling factor and reconstruction performance.

3.4.2 Incoherent Sampling for Time Dimensions and 3D

The proposed spiral trajectory provides aggressive undersampling in-plane and

would introduce reconstruction artifacts if used without regularization. As we are

using a tensor model with two time dimensions for the undetermined reconstruction

problem, we prefer the sampling pattern to be incoherently varying along the two
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Figure 3.3: (a) Compared to the fully sampled trajectory, the designed single-shot
variable-density spiral trajectory for each time frame or kz plane enables a 12-fold
acquisition acceleration. (b) Prospective 2D undersampling pattern with the incoher-
ent rotations between fast time (the oscillation dimension) and slow time (the fMRI
time dimension). (c) 3D undersampled stack-of-spirals providing a 10-fold accelera-
tion with one spiral for the outer kz planes, two spirals for the two central kz planes,
and golden-angle rotations between kz planes.
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dimensions for artifact reduction [87]. Therefore, we rotate the VD spiral using a

golden-angle based approach for each temporal frame to avoid overlapping trajectories

in both fast and slow time dimensions.

We define an interleave index k = 0, . . . , K−1 for a time series of OSSI images with

K interleaves in total. For 2D retrospective sampling with multi-shot acquisition, the

rotation angle for each interleave k was

ga · k + 2 · ga · ⌊k/nc/ni⌋ , (3.13)

where ga = 111.246◦ is the golden angle, nc = 10 is the size of fast time dimension,

ni is the number of interleaves, and ⌊·⌋ denotes the floor function. The acquisition

for the interleaves first looped through OSSI oscillation states 1 to nc, then looped

through multi-shot 1 to ni, and after that proceeded to the next slow time point.

For 2D prospective undersampling, only 1 VD interleave was collected for each

image, and the rotation angle was

ga · k + ga · ⌊k/nc⌋ . (3.14)

The index k looped through OSSI fast time oscillations for every slow time point.

Figure 3.3 (b) presents the prospective sampling pattern. The baseline rotation was

determined by the golden angle. The second terms in (3.13) and (3.14) were designed

specifically to increase sampling incoherence along slow time as shown in Figs. 3.14

and 3.15 for prospective undersampling and retrospective undersampling, respectively.

For 3D prospective undersampling, we used a stack of VD spirals with 2-shot

acquisition at the 2 central kz planes and single-shot acquisition at other kz locations

as in Fig. 3.3 (c), providing a 10-fold acceleration compared to the fully sampled

k-space. Rotations in (3.14) were applied, where k looped through OSSI oscillations,

then kz planes, and finally the slow time points.

Because of the increased sampling incoherence in the two time dimensions, the

angular dimension of k-space can be mostly covered with sampling trajectories of 9

or 10 consecutive time frames. We used this feature and combined k-space data of

every 10 slow time points to compute data-shared initialization for reconstruction,

which helped decrease the number of CG iterations and computation time.
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3.4.3 Human fMRI Studies

We implemented the OSSI pulse sequence and the proposed sampling scheme using

GE’s standard pulse programming environment EPIC. All the data were collected

on a 3T GE MR750 scanner (GE Healthcare, Waukesha, WI) with a 32-channel

head coil (Nova Medical, Wilmington, MA) using the proposed retrospective and

prospective undersampling schemes. Prospectively undersampled OSSI studies were

further compared to standard GRE fMRI with matched spatial-temporal resolution.

The human studies were carried out under IRB approval. The fMRI task was a

left vs. right reversing-checkerboard visual stimulus of 210 s with 10 s rest, 5 cycles

of left or right stimulus of 20 s (20 s L/20 s R × 5 cycles).

2D OSSI used an oblique slice passing through the visual cortex. The 2D mostly

sampled data were acquired with multi-shot VD spirals with number of interleaves ni

= 9, volume TR = 1.35 s (TR·nc ·ni), and spiral-out TE = 2.7 ms. The rotation angles

between interleaves and time frames were determined by (3.13). The number of time

frames (both fast time nc and slow time) was 1490 with 10 s discarded acquisition to

ensure the steady state. The retrospectively undersampled data only contained the

first VD interleave of every 9 interleaves.

The 2D prospectively undersampled data were collected with single-shot VD spi-

rals (ni = 1) with volume TR = 150 ms (TR · nc) and spiral-in TE = 11.7 ms. The

rotation angles of the spirals were selected by (3.14). The number of fast time frames

was 13340 with 10 s discarded acquisition. As every nc images were 2-norm combined

for fMRI analysis, the temporal resolution for the prospectively undersampled data

was 150 ms. 2D GRE fMRI images with the same spatial resolution and temporal

resolution of 150 ms as OSSI were also acquired for comparison. Specifically, GRE

imaging used multi-shot spiral acquisition with ni = 3, TR = 50 ms, Ernst flip angle

= 16◦, and spiral-in TE = 30 ms. Each interleave was VD spiral with (ni, a, b, d) =

(3, 240, 120, 300) and readout length = 21.9 ms.

For 3D imaging, an oblique slab was selected. Prospectively undersampled OSSI

was compared to GRE imaging with matched spatial resolution and matched temporal

resolution of 2.1 s. The number of 3D volumes was 96 for the 200 s task. For OSSI,

the number of kz planes nz = 12, volume TR = 2.1 s (TR ·nc ·nz), and spiral-in TE =

10.3 ms. For GRE, multi-slice TR = 700 ms with 14 slices, multi-shot acquisition with

ni = 3, spiral-in TE = 30 ms, Ernst flip angle = 16◦, and same VD spiral trajectories

for each slice as in 2D GRE imaging were used.
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For calculation of coil sensitivity maps, we collected images with a standard spin-

warp sequence at TR = 50 ms, TE = 6.3 ms, and Ernst flip angle = 16◦. The

32-channel coil images were compressed to 16 virtual coils for 2D and 24 virtual

coils for 3D via PCA [88], and coil sensitivity maps were calculated using ESPIRiT

[40, 41]. We also created coil-combined images for extraction of the brain region using

the Brain Extraction Tool [39].

3.4.4 Performance Evaluation

The reconstruction and functional performances were evaluated with normalized

root-mean-square difference (NRMSD) for retrospectively undersampled data, acti-

vation maps, and tSNR maps.

The retrospectively undersampled reconstruction X̂ was compared to Xref recon-

struction from “mostly sampled” data by regularized CG-SENSE, using the metric

NRMSD = ∥Xref − X̂∥/∥Xref∥.
Every nc = 10 reconstructed images of OSSI were combined via 2-norm for func-

tional analysis. The data from the first cycle (40 s) of the task were discarded to

avoid the modeling error in the initial rest period. To reduce scanner drift effects, we

detrended the data using the first 4 discrete cosine transform basis functions for both

OSSI combined and GRE fMRI images.

The background of the activation map was the mean of reconstructed fMRI im-

ages. The activated regions were determined by correlation coefficients above a 0.45

threshold. Correlation coefficients were defined by correlating the fMRI time course

for each voxel with the task-related reference waveform, and the reference waveform

was given by convolving the task with the canonical hemodynamic response function

[45]. The tSNR maps were generated by dividing the time course mean by the stan-

dard deviation of the time course residual (without the mean and the task) for each

voxel. NMRSD within the brain (excluding the scalp and skull) from reconstructed

images, number of activated voxels at the lower third of the brain (where the visual

activation concentrates), and averaged tSNR within the brain were calculated for

quantitative evaluations.
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3.5 Reconstruction and Results

This section compares OSSI undersampled reconstructions using the proposed

tensor model and other low-rank related approaches. 3D OSSI reconstruction is

further compared to multi-slice GRE to demonstrate the SNR advantage of OSSI.

3.5.1 Regularization Parameter Adjustment

To ensure that different reconstructions have similar spatial-temporal resolutions,

we compared the local impulse responses [89, 90] of the reconstruction methods.

Specifically, we added an impulse perturbation εA (δj,t) to the undersampled k-space

data y and reconstructed the perturbed data with different models. We selected j

and t to be in the spatial and temporal center of the time block being reconstructed,

respectively, and we chose ε = 1 (about 10% of the OSSI signal magnitude). Accord-

ingly, the local impulse response is h(j, t) =
(

B
(

εA (δj,t) + y
)

− B(y)
)

/ε, where B(·)
denotes a reconstruction method.

Profiles of the impulse response along spatial dimension and temporal dimensions

can help assess the spatial-temporal sharpness of the reconstructions for B ≠ A−1.

As shown in Fig. 3.16, we selected regularization parameters to ensure that impulse

responses of different reconstructions had similar peaks and were close to the mag-

nitude for the regularized CG-SENSE reconstruction. Based on the ratios for the λi

values in (3.2), the final 2D reconstruction parameters were {λi} = [1 1 2] ∗ 0.4 for

patch-tensor LR, λ3 = 1.6 for MLLR, {λi} = [1 1 2] ∗ 4 for GTLR, {λi} = [1 1 2] ∗ 0.3
and µ = 3 for patch-tensor L+S.

Furthermore, with carefully adjusted regularization parameters, reconstructing

overlapping time blocks or non-overlapping time blocks for the fMRI time series led

to similar results, as demonstrated by example time courses and spectra of the patch-

tensor LR reconstruction in Fig. 3.18.

3.5.2 Retrospective and Prospective 2D Reconstructions

OSSI 2D retrospectively and prospectively undersampled data were reconstructed

using the proposed method and the comparison methods. OSSI 2D mostly sampled

data were reconstructed using regularized CG-SENSE. For the proposed retrospec-

tively undersampled reconstructions, the number of time points before combination =

330 for every overlapping time block, and the patch-tensor size = 64 (8 ∗ 8)× 10× 33.
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Figure 3.4: Fast time images from the retrospectively undersampled reconstructions
are compared to the mostly sampled results. The proposed approach outperforms
other methods with less noisy fast time images, less structure in the difference maps
before combination, and high-resolution 2-norm combined images.

Figure 3.5: Activation maps and temporal SNR maps from retrospectively under-
sampled reconstructions. A contiguity (cluster-size) threshold of 2 was applied for
the activated regions. The proposed model provides more functional activation than
other approaches with high temporal SNR, and shows similar results as the patch-
tensor low-rank plus sparse model.
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Table 3.1: Quantitative comparisons of OSSI retrospectively undersampled recon-
structions

Mostly
Sampled

Proposed MLLR GTLR
CG-

SENSE
Patch
L+S

NRMSD
Before Comb

- 0.17 0.22 0.18 0.25 0.17

NRMSD
After Comb

- 0.05 0.06 0.07 0.07 0.06

# Activated
Voxels

229 168 73 68 46 153

Average
tSNR

37.1 43.6 32.4 44.1 25.6 41.1

Similarly for prospectively undersampled data, the number of time points = 420 for

each overlapping time block, and the patch-tensor size = 64 (8∗8)×10×42. We used

S = 2 outer iterations, T = 11 inner iterations for ADMM, and 4 iterations for the

CG update of Z. The number of iterations for regularized CG-SENSE reconstruction

was 19. All the OSSI reconstructions were initialized with data-shared images.

Figure 3.4 shows reconstructions from mostly sampled data, the proposed patch-

tensor LR, MLLR, GTLR, regularized CG-SENSE, and patch-tensor L+S models.

The fast time image reconstructed using the proposed approach is less noisy compared

to the mostly sampled reference and other reconstructions. The oscillatory patterns

and the high-resolution details of the fMRI image (after 2-norm combination of the

fast time images) are also well preserved. The difference maps after combination is

presented in Fig. 3.19.

Figure 3.5 gives functional results including activation maps and tSNR maps. The

proposed model enables high-resolution fMRI with larger activated regions than other

undersampled reconstructions, and maintains the SNR advantage of OSSI with tSNR

values that are comparable to the mostly sampled reconstruction. patch-tensor LR

regularization and the patch-tensor L+S model present similar results, suggesting

that L+S decomposition and Fourier sparsity along the two time dimensions were

not critical given the patch-tensor modeling of the data.

The quality of the retrospectively undersampled reconstructions was further as-

sessed with ROC analysis. ROC curves for the activation maps of different reconstruc-

tion approaches were compared with mostly sampled activation at the lower third of
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the brain as ground truth. Figure 3.20 shows that the proposed approach leads to

the largest area under the ROC curve.

Figure 3.6 presents prospectively undersampled reconstructions. Compared to

OSSI regularized CG-SENSE reconstruction and standard GRE fMRI, the proposed

approach yields more functional activity, less noisy time courses, and higher tSNR

with the largely improved spatial and temporal resolutions. Other qualitative and

quantitative comparisons for 2D prospectively undersampled reconstructions are in

Fig. 3.23 and Table 3.3.

Table 3.1 summarizes quantities from different reconstructions including NRMSD

for the whole dataset before and after fast time combination, number of activated

voxels, and average tSNR within the brain. The proposed patch-tensor modeling

outperforms other reconstruction methods with more functional activation and a high

average tSNR.

Reconstruction comparisons of a different subject are presented in Figs. 3.26, 3.27,

3.28, and Table 3.6 for retrospectively undersampled data, and Fig. 3.29 and Table 3.6

for prospectively undersampled data.

3.5.3 3D OSSI to GRE Comparison

The 3D OSSI prospectively undersampled data were reconstructed using the pro-

posed model with number of time points before combination = 120 for each non-

overlapping time block. The patch-tensor size = 108 (6 ∗ 6 ∗ 3) × 10 × 12, and

{λi} = [1 1 2]. Number of ADMM outer iterations S = 2, inner iterations T =

11, and number of CG iterations = 7 for every Z update. We used data-shared im-

ages to initialize each Xi and Z. The multi-slice GRE data were reconstructed with

regularized CG-SENSE with 19 CG iterations for each slice.

Figure 3.7 shows the activation maps of 3D OSSI and multi-slice GRE. The pro-

posed tensor model almost fully recovers the high-resolution structures of the OSSI

images with a factor of 10 acquisition acceleration, and presents larger activated re-

gions than multi-slice Ernst angle GRE.

Figure 3.8 shows the 3D tSNR maps, where OSSI provides higher average tSNR

than GRE. The OSSI acquisition combined with the proposed undersampling design

and tensor model reconstruction enable high-resolution and high SNR fMRI.

Quantitatively as presented in Table 3.2, the proposed 3D OSSI tensor reconstruc-

tion improves the amount of functional activity and average tSNR within the brain
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Figure 3.6: OSSI tensor model prospectively undersampled reconstruction demon-
strating high-resolution and high SNR fMRI with high-resolution background and
larger activated regions for the activation map, less noisy time course (red curve
showing the reference waveform), and higher SNR for the temporal SNR map.
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Figure 3.7: 3D OSSI (prospectively undersampled) and GRE activation maps of
the central 10 slices. A contiguity (cluster-size) threshold of 2 was applied for the
activated regions. With matched spatial and temporal resolutions, 3D OSSI acquired
and reconstructed using the proposed method presents 2 times more activated voxels
compared to multi-slice Ernst angle GRE imaging at TE = 30 ms.

60



Figure 3.8: 3D OSSI (prospectively undersampled) and GRE temporal SNR maps of
the central 10 slices. At the same spatial-temporal resolution, 3D OSSI acquired and
reconstructed using the proposed method presents at least 2 times higher temporal
SNR than standard multi-slice GRE imaging.
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Table 3.2: Functional performances of proposed OSSI prospectively undersampled
reconstruction and standard GRE imaging

# Activated Voxels Average tSNR

2D 3D 2D 3D

OSSI 322 2150 32.8 34.7

GRE 83 947 9.8 15.9

Ratio 3.9 2.3 3.3 2.2

by a factor of 2 more than standard GRE imaging at matched spatial and temporal

resolutions.

3.6 Discussion

To our knowledge, the patch-tensor LR model is new for fMRI data. Reshap-

ing and partitioning the data to patch-tensors facilitates exploiting high-dimensional

structures, and considering all the unfoldings of the tensors better uses spatial-

temporal low-rankness. Therefore, the model is flexible and adaptive to other high-

dimensional image reconstruction problems that satisfy the patch-tensor LR con-

straints. Local models may be more valid than assuming low-rankness of the whole

dataset.

Other reconstruction methods such as MLLR account for the locality of low-rank

representations while treating the time dimension as a whole. GTLR separates the

fast and slow time dimensions but enforces the low-rankness globally on the images.

The proposed patch-tensor LR model combines the advantages of both methods by

exploiting local low-rankness with two time dimensions, and improved the reconstruc-

tion and functional performances.

Another feature of the work is an incoherent sparse sampling scheme formed by

properly rotating VD spirals along fast time and slow time. The angular dimension

of the k-space can be mostly covered with different frames, and the trajectory is

well accommodated with the spatial-temporal regularizers used here. Moreover, we

noticed that for 3D undersampling, increasing number of interleaves in the central

kz planes greatly improves the amount of functional activation recovered and reduces
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false positives. The sampling pattern is practical, and the prospective undersampling

is easy to implement.

We selected and vectorized patches of spatial size 8 × 8 (2D) or 6 × 6 × 3 (3D)

based on the empirical reconstruction performance. The choice of spatial patch size

is still an open question. At one extreme, the spatially global GTLR preserves little

activation for 2D retrospectively undersampled reconstruction as presented in Fig. 3.5

and Table 3.1, but performs similar to the proposed method for 2D prospective un-

dersampling as in Fig. 3.23 and Table 3.3. In both cases, GTLR used temporal

patches.

We investigated multi-scale low-rank decomposition [81] with multi-scale patch-

tensors of the OSSI images to explore the idea that different parts of the data may have

different density and different low-rankness; however, it provided limited performance

improvement and made the reconstruction more time-consuming. We also tested a

4D patch-tensor LR model with two spatial dimensions and two temporal dimensions.

The cost function is the same as (3.2) without vectorizing spatial dimensions in Pm.

That model gave similar results as the 3D patch-tensor LR approach, making it well

suited for potential applications such as GRE fMRI. The comparison results of the

new models including functional maps, ROC curves, and quantitative evaluations are

in Figs. 3.24, 3.25, and Table 3.4.

We imposed low-rankness on all the unfoldings of all the patch-tensors. However,

some unfoldings of some patches are not very low-rank, especially for the second

unfolding that is greatly affected by the nonlinear fast time oscillations. Therefore,

nonlinear mapping approaches such as kernel methods or neural networks, that map

the fast time data to a low-dimensional linear subspace [91], may further improve the

model capacity, which might also help optimize combination of the OSSI fast time

images instead of combing with 2-norm to yield band-free post-combined images. Be-

cause OSSI images are not very sparse in the Fourier domain, as shown in Figs. 3.11

and 3.12, the patch-tensor L+S reconstruction results in a very small sparse com-

ponent seen in Fig. 3.22. Therefore, future work on adaptive sparsity [92] might be

beneficial.

Because low-rank approaches might cause spatial-temporal smoothing that makes

tSNR comparisons less compelling, we assessed and matched the amount of regu-

larization for fast time image reconstructions based on their impulse responses. To

evaluate spatial resolutions of the fMRI dynamics for different reconstructions after
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combination, we compared spatial autocorrelations of the different correlation maps

(at the center of the brain without activation). Figure 3.21 demonstrates that the

proposed approach has similar autocorrelation profiles as the mostly sampled recon-

struction and preserves fMRI spatial resolution. We also compared ROC curves of

different approaches with varying activation thresholds; these curves are invariant to

the degrees of freedom for performance evaluation. The effective degrees of freedom

calculation for the nonlinear reconstructions will be explored in the future as in [93].

The proposed sparse sampling uses fast VD spirals with designed rotations along

the two time dimensions to increase sampling incoherence for the spatial-temporal

models. However, the sampling incoherence from VD spirals is limited by the shape

of the spiral, and the non-Cartesian nature requires NUFFT that needs more compu-

tation than FFT for Cartesian sampling. More importantly, designing the sampling

pattern according to reconstruction models can improve the performance [94, 95], so

we will further explore joint optimization of the sampling pattern and the reconstruc-

tion model.

3.7 Conclusion

We proposed a novel fMRI reconstruction method based on patch-tensor low-

rank for the oscillating nature of OSSI images. We also introduced an incoherent

variable-density sampling pattern that is easy to implement, and retrospectively and

prospectively undersampled the multi-coil data with less than 10% of the fully sam-

pled k-space. By exploiting the inherent high-dimensional structure and local spatial-

temporal low-rankness of OSSI images, the proposed model was able to recover high-

resolution images and preserve functional signals compared to matrix local low-rank

and tensor low-rank methods. It further enabled 3D high SNR fMRI with 2 times

more functional activity and 2 times higher tSNR compared to standard GRE imag-

ing.
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3.8 Supporting Information

This supplemental material presents: (1) OSSI signal properties including ex-

ample OSSI images and time courses before and after Fourier transform, and tensor

low-rankness for patch-tensors at different regions of the brain; (2) the incoherent tra-

jectory rotation schemes for both retrospective and prospective undersampling; (3)

reconstruction details including effects of overlapping time blocks and regularization

parameter selection based on impulse perturbation; (4) reconstruction comparisons

for 2D retrospective and prospective undersampling; (5) other reconstruction methods

including 4D patch-tensor low-rank and multi-scale tensor low-rank; (6) reconstruc-

tion results of a different subject.

3.8.1 OSSI Signal Properties

This section presents in-vivo OSSI images and time courses, and demonstrates

local low-rankness of OSSI fMRI time-series. Fig. 3.9 shows 2 cycles of OSSI fast time

images with periodic oscillation patterns. Fig. 3.10 provides example time courses

from non-activated and activated ROIs of the OSSI images. Fig. 3.11 gives 1D Fourier

transformed (along fast time) results for the complex time series corresponding to the

images in Fig. 3.9, and Fig. 3.12 presents the Fourier transformed time courses of

Fig. 3.10. OSSI images are not very sparse before or after Fourier transform due

to the nonlinear oscillations. Fig. 3.13 gives log-scale singular value plots of non-

activated and activated 3D patch-tensors from an OSSI fMRI time block.

Figure 3.9: Example OSSI fast time magnitude images for 2 cycles of the periodic
oscillations.

3.8.2 Incoherent Sampling Pattern

This section illustrates how the proposed spiral rotations help increase tempo-

ral incoherence for OSSI acquisition. For prospective undersampling, the baseline
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Figure 3.10: OSSI fast-time time courses (magnitudes) of 4 different voxels within a
brain region that is not activated (left) or activated (right). The signal oscillation
pattern repeats every nc = 10 TRs, as indicated by the vertical green dashed line.

Figure 3.11: Results after taking 1D Fourier transform along fast time of the OSSI
images shown in Fig. 3.9. Magnitude is shown and temporal frequency 0 is in “middle”
(6th image from left). OSSI fast time images are not very sparse in the Fourier
domain.

Figure 3.12: Results after taking 1D Fourier transform along fast time (every nc =
10 TRs) of the OSSI time courses in Fig. 3.10. Magnitude of one cycle is shown and
temporal frequency 0 is in “middle”. OSSI fast time signals are not very sparse in
the Fourier domain.
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Figure 3.13: Log-scale singular value plots for all 3 unfoldings of a 3D patch-tensor
(a) at the center of the brain with no activation (b) at the activation region. For both
activated and non-activated patch-tensors, the unfoldings show a similar pattern that
X(3) has lower rank than X(1) and X(2).
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Figure 3.14: Demonstration of the incoherent rotations for 2D prospective under-
sampling. The proposed scheme of ga · k + ga · ⌊k/nc⌋ in (a) increases the sampling
incoherence along slow time compared to a baseline rotation scheme of ga · k in (b).

rotation of ga · k for frame k leads to an angle difference of 10ga mod 360◦ = 32◦

between consecutive slow time points. With the additional angle of ga · ⌊k/nc⌋, the
angle difference becomes 11ga mod 360◦ = 144◦, which increases sampling incoher-

ence along slow time as compared in Fig. 3.14. Similarly for retrospective under-

sampling, the angle difference between undersampled slow time points changes from

90ga mod 360◦ = −68◦ to 92ga mod 360◦ = 155◦ with improved incoherence as in

Fig. 3.15.

68



Figure 3.15: Demonstration of the incoherent rotations for 2D retrospective under-
sampling. The proposed scheme of ga·k+2·ga·⌊k/nc/ni⌋ in (a) increases the sampling
incoherence along slow time compared to a baseline rotation scheme of ga · k in (b).
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Figure 3.16: Impulse responses of different reconstructions along spatial dimension
(left) and temporal dimension (right). Enlarging the central part of the impulse re-
sponses (bottom left and right) shows that impulse responses for different reconstruc-
tion models are of similar magnitudes and preserve spatial and temporal resolution
with relatively small tails. Because the perturbation of δ(j, t) added to the image
domain is real, and the imaginary parts of the impulse responses are small enough to
be neglected, the real parts of the impulse responses are shown.

3.8.3 Reconstruction Adjustment

This section presents practical adjustments to the reconstruction methods includ-

ing local impulse responses for regularization parameter selection and structuring

overlapping time blocks for the OSSI fMRI time course.

3.8.3.1 Regularization Parameter Selection

The local impulse response profiles in Fig. 3.16 demonstrate that we have tuned

the different reconstruction methods so that they are regularizing the data by similar

amounts without excessive spatial or temporal smoothing.
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Figure 3.17: The OSSI fMRI time course is broken into overlapping time blocks of
about 300 time points (denoted by black horizontal lines) for reconstruction. The
overlapping portion of 20 time points at both ends of the time blocks (denoted by
red crosses) are discarded after reconstruction except for the beginning and ending
portions of the whole time series.

3.8.3.2 Overlapping Time Blocks

Fig. 3.17 illustrates ranges of overlapping time blocks and the formation of the

entire reconstructed time course after discarding the overlapping portions. Fig. 3.18

compares activated time courses and spectra from reconstructions using non-overlapping

time blocks or overlapping time blocks. With carefully adjusted regularization pa-

rameters, reconstructing overlapping blocks or non-overlapping blocks led to similar

results.

3.8.4 Comparison and Results

This section presents additional reconstruction results for 2D retrospectively and

prospectively undersampled data.

3.8.4.1 2D Retrospectively Undersampling

Fig. 3.19 shows difference maps of 2-norm combined reconstructions compared to

the mostly sampled case. ROC curves for the activation maps of different reconstruc-

tion approaches in Fig. 3.20 shows that the proposed approach leads to the largest

area under the ROC curve (AUC). Mostly sampled activation at the lower third of

the brain was used as ground truth, and the activation threshold ranges from -0.1

to 0.99 with a 0.001 spacing. Fig. 3.21 presents autocorrelations of the correlation

maps for different reconstructions. It verifies that the proposed approach preserves

spatial resolution for fMRI. Fig. 3.22 shows the low-rank and sparse components (10

fast time points) of the patch-tensor low-rank plus sparse reconstruction. The sparse

component is small and contains little information.
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Figure 3.18: For both prospectively and retrospectively undersampled data, recon-
structing overlapping time blocks or non-overlapping time of the whole OSSI fMRI
time course leads to very similar time courses and spectra.

Figure 3.19: Reconstructed images and difference maps (compared to the mostly
sampled reconstruction) of different models after 2-norm combination. The proposed
approach presents less residual in the difference map.
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Figure 3.20: ROC curves of different reconstruction approaches with mostly sampled
activation at the lower third of the brain as ground truth. The proposed method
outperforms other approaches with the largest area under the ROC curve (left). The
ROC curve of the proposed approach is also the closest to the top left corner, especially
for the reasonable range with false positive rate less than 0.05 (right).

Table 3.3: Quantitative comparisons of OSSI 2D prospectively undersampled recon-
structions

Proposed MLLR GTLR
CG-

SENSE
Patch
L+S

GRE

# Activated
Voxels

322 233 311 149 324 83

Average
tSNR

32.8 25.6 32.1 18.2 32.4 9.8

3.8.4.2 2D Prospectively Undersampling

Fig. 3.23 and Table 3.3 give qualitative and quantitative results for 2D prospec-

tively undersampled data reconstructed using patch-tensor LR, MLLR, GTLR, CG-

SENSE, and patch-tensor L+S approaches with comparison to GRE fMRI. The patch-

tensor LR, GTLR, and patch-tensor L+S models result in similar performances. The

2D prospectively undersampled data have better temporal resolution (by a factor of

9) than the 2D retrospectively undersampled data, which helps improve the quality

of the data-shared initialization and thus the reconstructions.

3.8.5 4D Patch-Tensor and Multi-Scale Patch-Tensor Low-Rank Models

This section focuses on comparisons to other models including 4D patch-tensor

low-rank and multi-scale patch-tensor low-rank. Instead of vectorizing the spatial
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Figure 3.21: Correlation maps and normalized autocorrelations of the correlation
map for the different reconstructions at the center of the brain without activation.
The proposed model results in similar autocorrelation profiles along diagonal as the
mostly sampled reconstruction.
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Figure 3.22: The low-rank and sparse components (first 10 fast time points) of the
patch-tensor low-rank plus sparse reconstruction with 2D retrospectively undersam-
pled data. The sparse component is very small and contain limited structural infor-
mation.

Figure 3.23: Activation maps, temporal SNR maps, and time courses in the activated
regions from prospectively undersampled reconstructions and GRE fMRI. A contigu-
ity threshold of 2 was applied for the activation maps. The patch-tensor low-rank,
global tensor low-rank, and patch-tensor low-rank plus sparse reconstructions outper-
form other approaches with more functional activation and cleaner time courses.

75



Figure 3.24: Activation maps and temporal SNR maps from retrospectively under-
sampled data and reconstruction models including the proposed 3D patch-tensor low-
rank, 4D patch-tensor low-rank, and multi-scale tensor low-rank. A contiguity thresh-
old of 2 was applied for the activated regions. All three approaches perform well with
similar amounts of activation and temporal SNR.

Table 3.4: Quantitative comparisons of other OSSI 2D retrospectively undersampled
reconstructions

Mostly
Sampled

3D Patch 4D Patch Multi-Scale

NRMSD
Before Comb

- 0.17 0.19 0.17

NRMSD
After Comb

- 0.05 0.06 0.05

# Activated
Voxels

229 168 145 146

Average
tSNR

37.1 43.6 41.4 41.2
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Figure 3.25: ROC curves of different reconstruction models including the proposed
3D patch-tensor low-rank, 4D patch-tensor low-rank, and multi-scale tensor low-rank.
The activation of the mostly sampled data at the lower third of the brain is used as
ground truth. All three models perform well with large areas under the ROC curve
(left), and the ROC curve of the 4D patch-tensor low-rank model is slightly closer
to the top left corner than other approaches, especially for the reasonable range with
false positive rate less than 0.05 (right).

dimensions as for the proposed 3D patch-tensor low-rank, 4D (or 5D for 3D OSSI

fMRI with 2 time dimensions) patch-tensor low-rank model keeps all the spatial

dimensions of the tensor for imposing low-rank constrains. The cost function is the

same as equation (2) without vectorization of spatial dimensions in Pm. The cost

function for the multi-scale low-rank model we tested can be expressed as

arg min
X

3
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3
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∥
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(

∑3
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Xn

)

− y
∥

∥

∥

2

2
, (3.15)

where Xn is composed of scale-n patch-tensors. Specifically, we imposed tensor low-

rank on patches of different spatial dimension 4× 4, 8, and 14. Here, P(·) partitions
and reshapes the input into Mn low-rank patch-tensors for different scale n. The

regularization parameters for the new models were also selected based on their impulse

responses with similar magnitudes to the 3D patch-tensor LR model.

All three models are of similar reconstruction and functional performance. Fig. 3.24

provides activation maps and tSNR maps of 3D patch-tensor LR, 4D patch-tensor

LR, and multi-scale patch-tensor LR with comparison to the mostly sampled recon-

struction. Quantitative evaluations including NRMSD and functional activation are

in Table 3.4. Fig. 3.25 shows the ROC curves for the models.
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Figure 3.26: The retrospectively undersampled reconstructions of a different subject
are compared to the mostly sampled results. The proposed approach outperforms
other methods with less noisy fast time images and less structure in the difference
maps before and after combination.

3.8.6 Other Subjects

This section presents 2D reconstruction results of a different subject. Both ret-

rospectively and prospectively undersampled data were acquired with spiral-out tra-

jectories. Retrospectively undersampled reconstruction results before and after 2-

norm combination, and difference maps compared to the mostly sampled data are in

Fig. 3.26. Fig. 3.27 presents functional activation maps and tSNR maps demonstrat-

ing that the proposed model outperforms other approaches with more activation. Ta-

ble 3.5 summarises quantitative values of different reconstructions. Fig. 3.28 provides

ROC curves of the activation maps. 2D prospectively undersampled reconstruction

results including activation maps, tSNR maps, and example time courses are given

in Fig. 3.29. Table 3.6 gives the corresponding quantitative evaluations.
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Figure 3.27: Activation maps and temporal SNR maps from retrospectively under-
sampled reconstructions of a different subject. A contiguity (cluster-size) threshold
of 2 was applied for the activated regions. The proposed model provides more func-
tional activation than other approaches and shows similar results as the patch-tensor
low-rank plus sparse model.

Figure 3.28: ROC curves for a different subject with mostly sampled activation at
the lower third of the brain as ground truth. The proposed method outperforms
other approaches with the largest area under the ROC curve (left). The ROC curve
of the proposed approach is also the closest to the top left corner, especially for the
reasonable range with false positive rate less than 0.05 (right).
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Table 3.5: Retrospectively undersampled reconstructions of a different subject

Mostly
Sampled

Proposed MLLR GTLR
CG-

SENSE
Patch
L+S

NRMSD
Before Comb

- 0.19 0.28 0.2 0.36 0.2

NRMSD
After Comb

- 0.12 0.13 0.13 0.14 0.13

# Activated
Voxels

225 166 52 48 34 164

Average
tSNR

40.2 41 25.2 46.1 19 42.1

Figure 3.29: Activation maps, temporal SNR maps, and activated time courses
from prospectively undersampled reconstructions of a different subject. A contiguity
(cluster-size) threshold of 2 was applied for the activation maps. The patch-tensor
low-rank, global tensor low-rank, and patch-tensor low-rank plus sparse reconstruc-
tions outperform other approaches with more functional activation and cleaner time
courses.

80



Table 3.6: Prospectively undersampled reconstructions of a different subject

Proposed MLLR GTLR
CG-

SENSE
Patch
L+S

# Activated
Voxels

225 120 223 89 227

Average
tSNR

33.5 21.1 34.9 20.6 34
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CHAPTER IV

Manifold Model for High-Resolution fMRI Joint

Reconstruction and Dynamic Quantification

In Chapter III, we exploited high-dimensional spatial-temporal similarities of OSSI

fMRI time series using the patch-tensor low-rank model. The structured patch-tensor

has one vectorized spatial dimension from a local patch and two time dimensions (fast

and slow times). We noticed that due to the nonlinear oscillations in OSSI images,

the unfolded matrix along fast time is not very low-rank compared to other unfoldings

as presented in Fig. 3.2. This chapter focuses on OSSI fast time images, and aims

to accurately model the nonlinearity of fast time signals with a manifold model. We

compare the proposed manifold model to a subspace model that imposes matrix low-

rankness on fast time images with global spatial and fast time dimensions.

OSSI is a recent fMRI acquisition method that exploits a large and oscillating

signal, and can provide high SNR fMRI. However, the oscillatory nature of the signal

leads to an increased number of acquisitions. To improve temporal resolution and

accurately model the nonlinearity of OSSI signals, we build the MR physics for OSSI

signal generation as a regularizer for the undersampled reconstruction rather than

using subspace models that are not well suited for the data. Our proposed physics-

based manifold model turns the disadvantages of OSSI acquisition into advantages

and enables joint reconstruction and quantification. OSSI manifold model (OSSIMM)

outperforms subspace models and reconstructs high-resolution fMRI images with a

factor of 12 acceleration and without spatial or temporal resolution smoothing. Fur-

thermore, OSSIMM can dynamically quantify important physics parameters, includ-

ing R∗
2 maps, with a temporal resolution of 150 ms. 1

1This chapter is based on [20, 53, 96].
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4.1 Introduction

Functional magnetic resonance imaging (fMRI) is an important tool for brain

research and diagnosis. In its most common form, it detects functional activation

by acquiring a time-series of MR images with blood-oxygen-level-dependent (BOLD)

contrast [97]. However, the BOLD effect has a relatively low signal-to-noise ratio

(SNR) [98], and the SNR further decreases with improved spatial resolution. Because

the functional units (cortical columns) of the brain are on the order of 1 mm, high

resolution with high SNR is critical for some fMRI experiments. This chapter focuses

on Oscillating Steady-State Imaging (OSSI), a recent fMRI acquisition approach that

provides higher SNR signals than standard gradient-echo (GRE) imaging [16].

The SNR advantage of OSSI comes at a price of spatial and temporal resolutions.

OSSI acquisition requires a quadratic RF phase cycling with cycle length nc (e.g.,

nc = 10). The corresponding OSSI signal oscillates with a periodicity of nc· TR, and
the frequency-dependent oscillations result in oscillatory patterns in OSSI images.

Therefore, every image in a regular fMRI time course is acquired nc times with dif-

ferent phase increments in OSSI, and combining the nc images eliminates oscillations

for fMRI analysis. Acquiring nc times more images compromises temporal resolu-

tion, and the short TR necessary for OSSI acquisition can limit single-shot spatial

resolution.

To improve the spatial-temporal resolution, we previously used a patch-tensor

low-rank model for the sparsely undersampled reconstruction [52]. While low-rank

regularization fits data to linear subspaces, OSSI images are not very low-rank be-

cause of the nonlinear oscillations [53]. Instead of imposing low-rankness and/or

sparsity that may or may not suit the data, this chapter proposes a nonlinear di-

mension reduction approach for OSSI reconstruction that uses a MR physics-based

manifold as a regularizer, inspired by parameter map reconstruction methods for MR

fingerprinting [99, 100].

As outlined in Fig. 4.1, the manifold model focuses on MR physics for OSSI signal

generation. It represents nc OSSI signal values per voxel by just 3 physical parameters,

via Bloch equations. The nonlinear nature of the Bloch equations enables nonlinear

representations of the data and nonlinear dimension reduction. We further introduce

a near-manifold regularizer that encourages the reconstructed signal values to lie near

the manifold. Compared to quantitative imaging works that enforce the reconstructed
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images to be exactly equal to the physics-based representations [99, 100, 101, 102],

the proposed near-manifold regularizer encourages the images to be near the manifold

while also allowing for potential model mismatch.

Standard T ∗
2 -weighted magnitude images only assess relative signal changes due

to BOLD effects and are not quantitative in terms of the blood oxygenation level, T ∗
2

or T ′
2 [103, 104, 105]. Quantifying T ∗

2 is important because of its sensitivity to iron

concentration for disease monitoring [35]. By constructing a T ′
2 manifold based on

BOLD-induced intravoxel dephasing, our work demonstrates the utility of the OSSI

manifold model for dynamic quantification of T ∗
2 /R

∗
2.

This chapter shows that the proposed T ′
2 manifold and near-manifold regularizer

can jointly optimize OSSI images and quantitative maps. The manifold model enables

high-resolution OSSI fMRI with 12-fold acquisition acceleration, outperforms low-

rank regularization with more functional activation, and provides quantitative and

dynamic assessment of tissueR∗
2 maps and off-resonance f0, with a temporal resolution

of 150 ms.

4.2 OSSI Manifold Model (OSSIMM)

OSSI signal oscillates with a periodicity of ncTR, and the OSSI fMRI time course

contains nc images for every image in a regular fMRI time series. We refer to the fast

acquisition dimension of size nc as “fast time” and the regular fMRI time dimension

as “slow time” as presented in supplemental Fig. 4.10. OSSI fast time signals can

have different shapes and change nonlinearly with respect to MR physics parameters,

as illustrated in Fig. 4.2. To accurately model the nonlinear oscillations, we propose

a MR-physics based manifold model for the undersampled reconstruction.

4.2.1 Physics-Based Manifold

In OSSI, the steady-state transverse magnetization of one isocromat at observation

time t is

m0 ϕ(t;T1, T2, f0),

where m0 ∈ C is the equilibrium magnetization, ϕ(·) ∈ C
nc represents MR physics

calculated by Bloch equations, T1 and T2 are tissue relaxation times, and f0 denotes

central off-resonance frequency from B0 field inhomogeneity.

84



tissue properties

RF, gradients,

Nonlinear

Bloch Eqn

MR Physics

X
magnetization

transverse

A
encoding

y
measurements

k-space

m0Φ(T1, T2, T
′
2, f0)

Figure 4.1: The proposed manifold model uses the MR physics for signal generation
as a regularizer for the undersampled reconstruction.

85



T ′
2-weighted OSSI signal in a voxel with an intra-voxel spreading of off-resonance

frequencies f can be modeled as:

m0Φ(t;T1, T2, T
′
2, f0) =

∫

m0ϕ(t;T1, T2, f0 + f) p(f ;T ′
2) df . (4.1)

The T ′
2 exponential decay corresponds to a Cauchy distribution for f with a probabil-

ity density function (PDF) p(f) = γ/π(γ2 + f 2), and scale parameter γ = 1/(2πT ′
2).

The isocromat signal at time t > 0 presents increased T2 decay and increased

off-resonance dephasing due to field inhomogeneity and BOLD-related field changes,

m0ϕ(t;T1, T2, f0) = m0ϕ(t = 0;T1, T2, f0) e
−t/T2 e−ı2πf0t , (4.2)

where t = 0 denotes the time right after the excitation.

As OSSI TR is relatively short (e.g., TR = 15 ms), we neglect the intravoxel

dephasing during the readout and approximate the signal at 0 ≤ t ≤ TR with the

signal at the echo time TE. The T ′
2-weighted signal becomes

m0Φ(T1, T2, T
′
2, f0) ≈

∫

m0ϕ(TE;T1, T2, f0 + f) e−TE/T2 e−ı2π(f0+f)TE p(f ;T ′
2) df .

(4.3)

Accordingly, T ′
2-weighted OSSI fast time signals lie on the physics-based manifold:

{m0Φ(T1, T2, T
′
2, f0) ∈ C

nc : m0 ∈ C, T1, T2, T
′
2, f0 ∈ R}, (4.4)

The manifold maps a limited number of physics parameters to the nc-dimensional

oscillating signals via MR physics.

4.2.2 Near-Manifold Regularization

The physics-based manifold models the generation of MR signals, enables nonlin-

ear dimension reduction, and can be an accurate prior for the undersampled recon-

struction. Because the physics parameters are location dependent, and because OSSI

signal values change drastically with varying parameters as shown in Fig. 4.2, we

model the fast time signals in a voxel-by-voxel manner. Furthermore, to account for

potential mismatches due to model simplifications and nonidealities in experiments

(e.g., flip angle inhomogeneity), we propose a near-manifold regularizer that encour-
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Figure 4.2: Normalized OSSI fast time signal magnitude for one isocromat with
nonlinear oscillations determined by physics parameters T2 and f0. The change of T1
only scales OSSI signal values.

87



ages the signal values in each voxel to be close to the manifold estimates but not

necessarily exactly the same.

The proposed T ′
2 manifold-based image reconstruction problem uses the following

optimization formulation:

X̂ = arg min
X

1
2
∥A(X)− y∥22 + β

∑N
n=1 R (X[n, :]) ,

R(v) = min
m0,T ′

2
,f0

∥v −m0Φ(T ′
2, f0;T1, T2)∥22,

(4.5)

where X ∈ C
N×nc denotes nc fast time images to be reconstructed. The vectorized

spatial dimension N is Nxy for 2D OSSI fMRI. A(·) is a linear operator consisting of

coil sensitivities and the non-uniform Fourier transform including undersampling, y

represents sparsely sampled k-space measurements. β is the regularization parameter.

v ∈ C
nc is a vector of fast time signal values for each voxel in X, m0Φ(T ′

2, f0;T1, T2) ∈
C

nc denotes the manifold estimates. The regularizer minimizes the Euclidean distance

between v andm0Φ(T ′
2, f0;T1, T2). T1 and T2 are not directly estimated by the model.

T1 has a signal scaling effect that can be absorbed in m0, as illustrated in Fig. 4.2.

Section 4.3 describes the choices of baseline T2 values for T ∗
2 estimation.

The voxel-wise parametric regularizer R(v) not only performs regularization for

the ill-posed reconstruction problem, but also involves parameter estimation and can

provide quantitative maps for T ′
2 and f0.

4.2.3 Optimization Algorithm

To solve (4.5), we alternate between a regularization update and a data fidelity

update for the reconstruction. The minimization of the voxel-wise parametric regu-

larizer is a nonlinear least-square problem that we solve using the variable projection

(VARPRO) method [106, 107]. Let θ = [T ′
2, f0] denote the two nonlinear tissue pa-

rameters; the calculation of θ using VARPRO simplifies to

θ̂ = arg max
θ

∣

∣Φ(θ)′v
∣

∣

2

∥Φ(θ)∥22
, (4.6)

where v = X[:, n] ∈ C
nc . Instead of solving (4.6) for the explicit and sophisticated

Φ(θ), we construct a dictionary consisting of discrete Φ(θ) realizations with varying θ

parameters using Bloch simulations, and then perform grid search to find θ̂ for which
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Φ(θ̂) best matches v.

Updating m0 is a least-squares problem with closed-from solution:

m̂0 =
Φ(θ̂)

′
v

∥Φ(θ̂)∥22
. (4.7)

We parallelize the regularization update across different voxels.

The update step for X involves a quadratic least-squares problem that we solve

using the conjugate gradient method as implemented in the Michigan Image Recon-

struction Toolbox [44]. This data fidelity update is easily parallelized over different

fast time images or different fast time images sets to speed up the fMRI time series

reconstruction.

4.2.4 Comparison Method

We compare the manifold approach to a low-rank reconstruction approach that

models the fast time signals using linear subspaces. The cost function for this low-

rank comparison method is

X̂ = arg min
X

1
2
∥A(X)− y∥22 + α∥X∥∗ (4.8)

where X ∈ C
N×nc represents every nc fast time images, and α is the regularization

parameter. We solve the optimization problem (4.8) using the proximal optimized

gradient method (POGM) with adaptive restart [108, 109, 110].

4.3 Simulation Investigations

We generated OSSI signals via Bloch simulation using pulse-sequence parameters

that matched the actual data acquisition. We used TR = 15 ms, TE = 2.7 ms (spiral-

out trajectory), RF excitation pulse length = 1.6 ms, quadratic RF phase cycling with

Φ(n) = πn2/nc for nth TR, nc = 10, and flip angle = 10◦ [16].

4.3.1 OSSI Signals

The OSSI signal ∈ C
nc for one isocromat is determined by physics parameters

T1, T2, and f0. Fig. 4.2 presents example OSSI isocromat signals (normalized by the
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(a) (b)

(c) (d)

Figure 4.3: Quantification results for a simulated OSSI fMRI voxel using the manifold
model with 4 different choices of the manifold. Because T2 and T ′

2 effects to OSSI
signals are correlated (Fig. 4.3a), and a T2 manifold is not good enough for capturing
BOLD-induced T ′

2 changes (Fig. 4.3b), we use a T ′
2 manifold for quantification. We

can estimate T ∗
2 and T ′

2 with known T2 values (Fig. 4.3c), or use a biased guess of T2
for quantifying T ∗

2 (Fig. 4.3d).
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maximum magnitude) with varying physics parameters selected based on gray matter

relaxation parameters: T1 = 1400 ms, T2 = 92.6 ms [36]. As an approximation of (4.3),

we simulated T ′
2-weighted OSSI signal in a voxel with Riemann sum of numerous OSSI

isocromat signals at different off-resonance frequencies. Specifically, we calculated a

weighted sum of OSSI signals from 4000 isocromats at off-resonance frequency f0+f ,

where f uniformly ranged from -200 Hz to 200 Hz, and the weighting function was

the PDF of the Cauchy distribution.

We further simulated a fMRI time course for one voxel with time-varying T ′
2

values. The T ′
2 waveform is the convolution of the canonical hemodynamic response

function (HRF) [45] and the fMRI task waveform. Because fMRI percent signal

change ∆% ≈ ∆R′
2 · TEeff [46] and OSSI TEeff = 17.5 ms [16], we set ∆T ′

2 = 15.4

ms to produce a typical percent signal change of 2%. The fMRI time course is also

affected by scanner drift and respiration induced f0 changes. We simulated f0 with a

linearly increasing scanner drift of about 1 Hz per minute and a sinusoidal waveform

(magnitude of 0.5 Hz and period of 4.2 s) to model the respiratory changes. We also

added complex Gaussian random noise for a typical temporal SNR (tSNR) value of

38 dB.

4.3.2 Dictionary Selection

We represented OSSI manifold using a signal dictionary, and each dictionary atom

is a point on the manifold. Because T2, T
′
2, and f0 affect OSSI signals in different

ways while T1 has a scaling effect, we constructed a 4D dictionary by varying T2, T
′
2,

f0, for T1 = 1400 ms. The T2 grids were in the 40 to 150 ms range with a 1 ms

spacing. The T ′
2 grids were calculated by uniformly changing R∗

2 from 12 to 38 Hz

[111] with a step size of 0.1 Hz and a fixed T2 of 92.6 ms. We set central off-resonance

frequency f0 to [-33.3,33.3] Hz with a 0.22 Hz spacing as OSSI signals are periodic

with off-resonance frequency period = 1/TR = 66.7 Hz [16].

We reconstructed the functional signal and physics parameters from the simulated

noisy fMRI time courses using the near-manifold regularizer in (4.5) and the 4D

dictionary. The reconstructions were performed by (a) simultaneously estimating T2

and T ′
2 using the 4D dictionary, (b) assuming T ′

2 is fixed and estimating T2 using the

3D subset of the 4D dictionary based on the assumed T ′
2 value, (c) estimating T ′

2 with

the actual T2 value and the corresponding 3D dictionary, (d) assuming T2 is fixed and

estimating T ′
2 with a biased T2 value and the corresponding 3D dictionary.
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As shown in Fig. 4.3, because of the strong coupling between T2 and T ′
2 values,

it is infeasible to simultaneously estimate T2 and T ′
2 (see Fig. 4.3a). Using a biased

T ′
2 value for T2 estimation (Fig. 4.3b) or a biased T2 value for dynamic T ′

2 estimation

(Fig. 4.3d) results in noticeable bias, whereas Fig. 4.3c presents accurate T̂ ′
2 when

the ground truth T2 is provided. However, all the different estimation approaches

lead to relatively good T ∗
2 estimates. Because m0 and T

∗
2 estimates are more accurate

in Figs. 4.3c and 4.3d, we propose to use assumed T2 values or to measure accurate

baseline T2 maps to use for dynamic T ∗
2 quantification. The latter approach also

provides T ′
2 estimates. Notably, the quality of the combined functional signals is

insensitive to the choice of manifold for reconstruction.

4.4 Experiments

We collected resolution phantom data and human fMRI data to evaluate the

potential of the manifold model for joint reconstruction and quantification. All the

data were acquired with a 3T GE MR750 scanner (GE Healthcare, Waukesha, WI)

and a 32-channel head coil (Nova Medical, Wilmington, MA).

4.4.1 Data Acquisition

OSSI acquisition parameters were the same as in Simulation Investigations with

10 s discarded data points to ensure the steady state. We selected a 2D oblique slice

passing through the visual cortex with FOV = 220×220×2.5mm3, matrix size = 168×
168×1, and spatial resolution = 1.3×1.3×2.5mm3. For OSSI, both “mostly sampled”

data (for retrospective undersampling) and prospectively undersampled data were

acquired. The sampling trajectories were undersampled VD spirals with golden-angle

based rotations between time frames as in [52]. The “mostly sampled” data used

number of interleaves ni = 9 VD spirals with approximately a 1.5 undersampling

factor, and temporal resolution = 1.35 s = TR·nc·ni. The retrospective undersampling

used the first interleave out of 9 for each time frame of the “mostly sampled” data.

The prospective undersampling used ni = 1 with temporal resolution = 150 ms =

TR ·nc Both retrospective and prospective undersampling provided 12× acceleration.

For quantification evaluation, we acquired multi-echo GRE images to get standard

estimations of f0 andR
∗
2 values. GRE images were collected with a spin-warp sequence

with TR = 100 ms, Ernst flip angle = 16◦, and different TEs = 5.9, 13, 26, and 40
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ms. R∗
2 maps were estimated based on the exponential decay of T ∗

2 . The field map f0

was estimated using fully sampled GRE images at TE = 30 and 32 ms [112]. For the

phantom data, we additionally acquired spin-echo images with a spin-warp sequence

at TR = 400 ms and different TEs = 20, 40, 60, and 80 ms to get T̂2 maps.

For coil sensitivity map calculation, we collected spin-warp images and generated

ESPIRiT sensitivity [40, 41] after compressing the 32-channel coil images to 16 vir-

tual coils using PCA [88]. The coil images were 2-norm combined for brain region

extraction using the Brain Extraction Tool [39].

For human data, the functional task was a left vs. right reversing-checkerboard

visual stimulus with 10 s rest followed by 5 cycles of left or right stimulus (20 s L/20

s R × 5 cycles). The 10 s resting-state data ensured the oscillating steady state and

were discarded. The number of time frames (both fast time nc and slow time) was

1490 for “mostly sampled” data and was 13340 for prospectively undersampled data.

4.4.2 Performance Evaluation

Every non-overlapping set of nc = 10 fast time images were reconstructed and

2-norm combined for fMRI analysis. To avoid modeling error from the HRF of the

initial rest period, the data for the first 40 s task block were discarded. The data

were detrended using the first 4 discrete cosine transform basis functions to reduce

effects of scanner drift.

We evaluated the functional performance of OSSIMM and comparison approaches

using activation maps and tSNR maps. The backgrounds of activation maps were the

mean of time-series of images. The activated regions of activation maps were deter-

mined by correlation coefficients above a 0.45 threshold. The correlation coefficients

were generated by correlating the reference waveform (task and HRF related) with

the fMRI time course for each voxel. For each voxel, dividing the mean of the time

course by the standard deviation of the time course residual (mean and task removed)

provided the tSNR map. We further calculated numbers of activated voxels at the

bottom third of the brain (where the visual cortex is located) and the average tSNR

values within the brain (after skull stripping).

For quantification, parameter estimations at regions with little or no signal are

masked out. Specifically, we generated a mask with the first-echo GRE image (TE =

5.9 ms and after skull stripping) for signals larger than 10% of the signal magnitude

and GRE R̂∗
2 < 50 Hz. Regions with GRE R̂∗

2 > 50 Hz are concentrated at the
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edge of the brain as shown in Fig. 4.11. The quantitative accuracy of OSSI R̂∗
2 was

evaluated by RMSE with multi-echo GRE R̂∗
2 as the standard. Because OSSI f̂0

estimates are in the range of [-33.3, 33.3] Hz, we mapped the GRE f̂0 to the same

range for comparison.

4.5 Reconstruction, Quantification, and Results

The proposed OSSIMM method jointly reconstructed high-resolution images and

quantitative maps using the near-manifold regularization. For both phantom and hu-

man experiments, we used the T ′
2 manifold with a fixed T2 = 100 ms unless otherwise

specified. After reconstructing fast time images with mostly sampled data (OSSI-

Mostly), or other models such as low-rank (OSSI-LR) and regularized cgSENSE

(OSSI-cgSENSE), we further estimated their corresponding parameter maps using

the same manifold as in OSSIMM.

4.5.1 Implementation Details

We selected the regularization parameters based on the Lipschitz constant σ(A)

calculated with power iteration. We set the regularization parameter β in (4.5) to be

a fraction of σ(A) that the condition number of the cost function was about 10 to 20

and the performance of the functional maps are maximized. α in (4.8) was selected

to enforce that the rank ≈ 4 for the fast time image sets.

In OSSIMM, we used 4 iterations of alternating minimization, and 2 iterations

of conjugate gradient for the data fidelity update. We used 15 iterations of POGM

for the LR reconstruction and 19 iterations of conjugate gradient for cgSENSE re-

construction and the mostly sampled data. We generated data-shared images as the

initialization for the undersampled reconstructions by utilizing the sampling incoher-

ence between fast and slow time [19] and combining k-space data of every 10 slow

time points.

4.5.2 Results

For the phantom study, Fig. 4.4 and Fig. 4.12 present OSSI quantification results

with a fixed T2 of 100 ms and a known T̂2 map, respectively. OSSIMM quantifies

parameters from retrospectively undersampled data, and results in similar maps as
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Figure 4.4: Phantom quantification of m0, f0, and R∗
2 from mostly sampled OSSI

data, retrospectively undersampled OSSI data (reconstructed and quantified using
OSSIMM), and multi-echo GRE. The m̂0 estimates are on arbitrary scales. The
GRE R̂∗

2 map is used as the standard for difference map calculation. The R̂∗
2 maps

and R̂∗
2 difference maps use the same color scale. The 2D histogram (bottom right)

compares OSSIMM and GRE R̂∗
2 within the 12-38 Hz range. OSSI R̂∗

2 and GRE R̂∗
2

demonstrates similar contrasts.
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Table 4.1: Phantom quantification comparison of OSSI R̂∗
2 to GRE with or without

a known T̂2 map

Fixed T2 = 100 ms Known T̂2 map

R̂∗
2 RMSE

(Hz)

Additional

Mask

R̂∗
2 RMSE

(Hz)

Additional

Mask

OSSI-Mostly 4.9 4.3 5.0 4.6

OSSIMM 5.5 4.6 5.3 4.5

mostly sampled reconstruction and multi-echo GRE. The 2D histogram demonstrates

a close to a linear relationship between OSSI and GRE R̂∗
2 values. As summarized in

Table 4.1, OSSIMM with a known T̂2 map produces similar results as OSSIMM with

a fixed T2 value. Demonstrated by RMSE values with additional masking in Table

4.1, OSSI R̂∗
2 RMSE improves by 0.5-1 Hz when a GRE 12 < R̂∗

2 < 38 mask (within

OSSIMM R∗
2 dictionary range) is applied.

Figure 4.5 compares retrospectively undersampled reconstructions to the mostly

sampled reference. OSSIMM reconstruction well preserves high-resolution structures

in oscillatory fast time images and combined images, and leads to less residual in the

difference map than LR and cgSENSE approaches.

Figure 4.6 presents prospectively undersampled reconstructions (temporal resolu-

tion = 150 ms) using OSSIMM, LR, and cgSENSE. OSSIMM demonstrates activation

map with more activated voxels, time course with higher SNR, and sharper tSNR map

than other methods. The functional maps from the mostly sampled reconstruction

(temporal resolution = 1.35 s) are included in supplemental Fig. 4.13 for reference.

Figure 4.7 gives retrospectively undersampled and mostly sampled OSSI quantifi-

cation results with comparison to multi-echo GRE. OSSIMM with 12× undersampling

leads to m̂0, f̂0, and R̂∗
2 estimates that are almost identical to the mostly sampled

case and have finer structures than OSSI-LR. OSSIMM also provides comparable R̂∗
2

maps to GRE and demonstrates a similar distribution of R̂∗
2 values within the brain

as GRE according to the 2D histogram. Because of field drift and respiratory changes

between different scans, the OSSI-Mostly and OSSIMM f̂0 maps are close to GRE f̂0

but not exactly the same.

Figure 4.8 compares prospectively undersampled quantification results to multi-
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Figure 4.5: Manifold, low-rank, and cgSENSE reconstructions for retrospectively un-
dersampled OSSI data are compared to the mostly sampled reconstruction. The
example fast time images present spatial variation in OSSI. OSSIMM outperforms
other approaches with cleaner high-resolution details and less structure in the differ-
ence map.
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Figure 4.6: Functional results for prospectively undersampled data with spatial res-
olution of 1.3 mm and temporal resolution of 150 ms. The proposed OSSIMM re-
construction provides an activation map with high-resolution background image and
larger activated regions, and time course (reference waveform in red) and temporal
SNR map with higher SNR than other methods.
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Figure 4.7: Retrospectively undersampled
quantifications and comparison to multi-
echo GRE estimates. OSSIMM presents
similar results as the mostly sampled data.
R̂∗

2 difference maps (using GRE R̂∗
2 as stan-

dard and of same color scale as R̂∗
2 maps)

and 2D histogram of R̂∗
2 values show that

OSSIMM provides comparable quantita-
tive maps to GRE.

Figure 4.8: Prospectively undersampled
quantifications compared to multi-echo
GRE. OSSIMM results in reasonable pa-
rameter maps with 1.3 mm spatial res-
olution and a 150 ms acquisition time.
OSSIMM also outperforms low-rank and
cgSENSE reconstructions with less resid-
ual in the R̂∗

2 difference map (same color
scale as R̂∗

2 maps).
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Figure 4.9: Activation maps from OSSIMM m̂0 and R̂∗
2 with prospective undersam-

pling demonstrating the dynamic quantification capacity of OSSIMM. Both time
series of m̂0 exp(−R̂∗

2 TEeff) (left) and R̂∗
2 (right) almost fully recover the functional

activation. The R̂∗
2 (middle) is the mean of R̂∗

2 time series after skull stripping (with-
out any other mask) and well preserves the R∗

2 contrast.

echo GRE. OSSIMM enables high-resolution quantification of m0, R
∗
2 and f0 with a

150 ms acquisition, and yields parameter estimates more similar to GRE than LR

and cgSENSE reconstructions.

The parameter maps in Figs. 4.7 and 4.8 are from a single set of nc = 10 fast

time images, while OSSIMM jointly reconstructs undersampled measurements and

quantifies physics parameters for every 10 fast time images of the OSSI fMRI time

course. To demonstrate the dynamic quantification capacity of OSSIMM, Fig. 4.9

shows activation maps for m̂0 exp(−R̂∗
2 TEeff) and R̂

∗
2, where m̂0 and R̂

∗
2 are quantified

using OSSIMM and prospectively undersampled data. OSSI TEeff ≈ 17.5 ms with a

2.6 ms actual TE [16].

The activation maps based on m̂0 exp(−R̂∗
2 TEeff) images well preserves R∗

2 con-

trast of OSSI and has the same activated regions as the activation map from 2-norm

combined OSSI images (in Fig. 4.6). The activation map from R̂∗
2 maps recovers the

activation and reduces false positives (negative activation in the positive activation

region and vice versa). The colors of the activation are the opposite of activation

in Fig. 4.6 due to the negative correlation between m0 exp(−R∗
2 TEeff) and R

∗
2. The

mean R∗
2 map (R∗

2) of the time series, when compared to GRE, leads to a smaller

RMSE value of 4.4 Hz. The RMSE value = 3.7 Hz with a GRE 12 < R̂∗
2 < 38 Hz

mask.

Table 4.2 summarizes quantitative evaluations of different sampling schemes and
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Table 4.2: Human reconstruction and R∗
2 quantification evaluation for different sam-

pling patterns and models

OSSIMM OSSI-LR OSSI-cgSENSE OSSI-Mostly

Retrospectively Undersampled

R̂∗
2 RMSE (Hz) 5.1 6.6 5.4 5.1

Additional Mask 4.5 6.1 4.9 4.5

Prospectively Undersampled

R̂∗
2 RMSE (Hz) 4.9 6.7 5.5 -

Additional Mask 4.3 6.4 5.0 -

# Activated Voxels 181 159 68 -

Average tSNR 26.4 26.5 18.8 -

reconstruction models. OSSI R̂∗
2 RMSE values compared to GRE for retrospectively

(Fig. 4.7) and prospectively (Fig. 4.8) undersampling are presented. As demon-

strated by RMSE values with additional masking, OSSI RMSE decrease by about 0.5

Hz with the GRE 12 < R̂∗
2 < 38 mask. The last two rows of the table correspond to

Fig. 4.6 and are numbers of activated voxels and average tSNR within the brain for

prospectively undersampled reconstructions. The proposed OSSIMM jointly recon-

structs high-resolution images with more functional activation and parameter maps

with smaller R̂∗
2 RMSE than other approaches.

4.6 Discussion

We propose a novel manifold model OSSIMM that uses MR physics for the signal

generation as the regularizer for image reconstruction from undersampled k-space

data. The proposed model simultaneously provides high-resolution fMRI images and

quantitative maps of important MRI physics parameters.

The proposed near-manifold regularizer has the advantage of allowing for poten-

tial imperfections of the manifold model. Instead of requiring the signal values to

lie exactly on the manifold, it provides a balance between fitting the fast-time im-

ages to the noisy k-space data and to the manifold. For reconstruction, OSSIMM
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outperforms low-rank and cgSENSE models by providing more functional activation,

without spatial or temporal smoothing.

For quantification, OSSIMM dynamically tracks m0, R
∗
2, and f0 changes with a

temporal resolution of 150 ms in our experiments. The OSSIMM estimates

m̂0 exp(−R̂∗
2 TEeff) or R̂∗

2 contain most of the functional information of fMRI time

series, and may be well-suited for examining quantitative changes in longitudinal

studies. Moreover, OSSIMM quantification is faster than other quantification meth-

ods such as [35]. The manifold model and the near-manifold regularization can be

generalized to other sparsely undersampled datasets for joint reconstruction and quan-

tification.

There are multiple factors that contribute to slight mismatches between OSSI R̂∗
2

and GRE R̂∗
2. We noticed that OSSI and GRE images were not exactly aligned due

to different gradient delays or the movement of the brain between different scans, es-

pecially around the edge of the brain. It is also possible that through-plane gradients

change signals slightly differently between OSSI and GRE. The OSSIMM implemen-

tation could be improved with a larger dictionary with a larger range of R∗
2 values

and finer spacing of the varying physics parameters. The RF inhomogeneity in the

brain may influence the accuracy of the dictionary fitting due to inaccuracy of the

flip angle.

We have neglected the readout length effect for simplicity and have not performed

field map correction for human data. The field map correction improves quantification

for resolution phantom, but would increase computation for human fMRI time series.

One interesting extension would be to dynamically quantify f0 and correct for field

inhomogeneity using the time-series of OSSI f̂0 maps. Because OSSI f̂0 maps are in

the range of [-33.3, 33.3] Hz, we could use an initial estimate of f̂0 from two-echo

GRE, and dynamically update the initial f̂0 based on OSSI f̂0 changes along time as

in [105].

We believe that the reconstruction performance can be further improved with

spatial-temporal modeling of OSSI fMRI image series. We will combine OSSIMM

with the patch-tensor low-rank model [52] to exploit different aspects of prior infor-

mation (linear and nonlinear), enlarge the capacity of regularization, and enable more

aggressive undersampling. We will also extend the OSSIMM dynamic quantification

to 3D fMRI. Because a known T̂2 map can be helpful for R̂∗
2 estimation, one might

considering modifying the OSSI sequence as in [35] with slowly varying flip angles
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and other changes to simultaneously quantify T2 and T ′
2.

4.7 Conclusion

This chapter proposes OSSIMM, a novel reconstruction and quantification model

for nonlinear MR signals. With a factor of 12 undersampling and without spatial or

temporal smoothing, OSSIMM outperforms other reconstruction models with high-

resolution structures and more functional activation. OSSIMM also provides dynamic

R∗
2 maps that are comparable to GRE R̂∗

2 maps with a 150 ms temporal resolution.
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4.8 Supporting Information

Figure 4.10 illustrates OSSI “fast time” and “slow time”. Figure 4.11 demonstrates

voxel locations with GRE R̂∗
2 > 50 Hz. Figure 4.12 presents phantom quantification

results, and OSSI quantitative maps that were calculated with a known T̂2 map.

Figure 4.13 presents fMRI results for mostly sampled human data.

Figure 4.10: OSSI images with periodic and nonlinear oscillation patterns are struc-
tured along “fast time” and “slow time”. Every nc fast time images can be 2-norm
combined to generate fMRI images that have comparable T ∗

2 -sensitivity as standard
GRE fMRI.

Figure 4.11: Most voxel locations with GRE R̂∗
2 > 50 Hz are around the edges of the

brain.
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Figure 4.12: Phantom quantification of m0, f0, and R∗
2 from mostly sampled OSSI

data, retrospectively undersampled OSSI data (reconstructed and quantified using
OSSIMM with a known T̂2 map), and multi-echo GRE. The m̂0 estimates are on
arbitrary scales. The GRE R̂∗

2 map is used as the standard for difference map cal-
culation. The R̂∗

2 maps and R̂∗
2 difference maps use the same color scale. The 2D

histogram (bottom right) compares OSSIMM and GRE R̂∗
2 within the 12-38 Hz range.

OSSI R̂∗
2 and GRE R̂∗

2 have similar contrasts.
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Figure 4.13: Functional results for mostly sampled data with spatial resolution of 1.3
mm and temporal resolution of 1.35 s. The number of activted voxels is 236, and the
average temporal SNR within the brain is 31.3.
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CHAPTER V

Voxel-wise Temporal Attention Network and

Simulation-Driven Dynamic MRI Sequence

Reconstruction

Deep learning-based approaches have been successful for structural MRI under-

sampled reconstruction [14, 15]. However, there are fewer works on learning-based

dynamic MRI reconstruction [13, 113] with two main open questions: 1) what would

be a good learning-based approach for temporal or spatial-temporal signal modeling,

2) for dynamic MRI sequence of images, how to get enough training data for the

learning schemes that are data hungry? Inspired by these two questions, we propose

a voxel-wise attention network based on the emerging attention mechanism [114, 115]

for temporal modeling, together with a matched transfer learning approach to handle

the problem of limited amounts of training data.

Our work has three novel contributions: 1) incorporate an attention mechanism for

temporal learning and mapping, 2) propose a voxel-wise network architecture based

on attention and Transformers for spatial-temporal undersampled reconstruction, 3)

propose a two-stage learning scheme that pretrains the network with voxel-wise sim-

ulated data, and then fine-tunes with human temporal data for dynamic MRI. 1

5.1 Introduction

Previous models [19, 20] for undersampled OSSI MRI sequence reconstruction

focus on hand-crafted features of the data, whereas learning features using neural

1This chapter is based on [116].
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networks has proven to be very useful and successful for vision tasks [117, 118] and

undersampled MRI reconstruction [14, 15] in recent years. Another advantage of

neural network approaches is fast computation in the testing stage, whereas iterative

methods can be slow for reconstructing high-resolution images.

For dynamic MRI reconstruction, previous works used a cascade of convolutional

neural networks (CNN) with designed data consistency layers [13] and convolutional

recurrent neural network (RNN) for temporal dependence between images [113]. How-

ever, the convolutional operations in CNNs are local and fail to capture long-range

dependencies [119, 120], and the shared weights for the spatial/temporal dimensions

could potentially lead to spatial/temporal smoothness effects. Moreover, 3D CNNs

for video inputs [121] or sequences of images often require large amounts of data for

training due to the increased number of learnable parameters, and would be com-

putationally expensive for long sequences. On the other hand, recurrent inference

for images in a sequence is not ideal for modeling the temporal redundancy between

images because of the causal nature; in particular, when all the input images in a

sequence are undersampled and aliased, the recurrent inference will likely pass on the

aliased features and noise.

We found that none of the existing methods work well for functional MRI with

small BOLD signals [122], whereas the attention mechanism [114, 123] and Trans-

formers [115, 124] that naturally exploit long-range dependence in image sequences

could be a great fit for MRI spatial-temporal modeling.

A Transformer is a new neural network structure first presented in [115]. It con-

sists of self-attention [114], multilayer perceptron, residual connections, and layer

normalization [125]. Transformers have been the building block for important natu-

ral language processing networks such as BERT [126] and GPT-3 [127]. For visual

tasks, recent works have demonstrated great potential of Transformers as they match

or outperform state-of-the-art CNNs for different visual tasks [124, 128, 129]. The

self-attention mechanism and Transformer architecture map a sequence of inputs to

a sequence of outputs where each output in the sequence is a learned combination of

all the inputs. We hypothesize that this attention design is beneficial for modeling

spatial-temporal dependency in dynamic MRI image series and has the potential to

outperform CNN and RNN methods.

Another major issue of the learning-based approach is the need for large amount

of training data. In dynamic MRI, the object is changing as it is being imaged, so

108



WK

WQ

WV

X

K

Q

V

Transpose

Softmax

Output

Input

Attention Map

Figure 5.1: Illustration of the attention mechanism. A sequence of input vectors is
mapped to a sequence of output vectors. Each vector in the output sequence is a
weighted combination of all the vectors in the input sequence, and the weights are
determined by the learned attention map.

it is impossible to collect truly fully sample reference data. All dynamic MRI data

is inherently undersampled. So high quality ”ground truth” training data is never

available. This problem is especially acute for novel acquisition methods that have

not accumulated a large database of human subjects for training.

We aim to tackle two open questions of dynamic MRI reconstruction - the model

and the data - in two steps. We propose a novel voxel-wise attention network for

temporal modeling of the image sequences to be reconstructed. The voxel-wise design

of the network enables voxel-wise training, and we further propose a transfer learning

scheme that pretrains the network with a large amount of voxel-wise simulated data

to alleviate the demand for human fMRI data during training.

5.2 Methods

5.2.1 Attention Mechanism

The self-attention mechanism [114, 115] maps a sequence of input vectors to a

sequence of output vectors by computing a weighted combination of all the input

vectors for each of the output vector. The weights are determined by similarity be-

tween pairs of feature representations. Fig. 5.1 illustrates the attention mechanism.

For an input sequence X ∈ R
t×d of t vectors of dimension d (d can be vectorized
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spatial dimensions or spatial representations for a sequence of 2D MRI images, and

the complex MRI data is formed into real and imaginary channels), the self-attention

mechanism first extracts feature representations by multiplying X with three learn-

able parameter matrices: WQ ∈ R
d×dk , WK ∈ R

d×dk , WV ∈ R
d×dv , where d = dk = dv

in our reconstruction task. The relative size of dk and d depends on the implemen-

tation of the network. The three resultant matrices are called query, key, and value,

and are calculated by

Q = XWQ, K = XWK, V = XWV. (5.1)

The output sequence of the attention mechanism is then formed as

A(Q,K, V ) = softmax

(

QKT

√
d

)

V ∈ R
t×d, (5.2)

where softmax(·) : Rt → (0, 1)t denotes the softmax function

σ(z)i =
ezi

∑t
j=1 e

zj
,

applied row-wise to the input matrix, i = 1, ..., t and z = (z1, ..., zt).

De-aliasing of a dynamic sequence with undersampling artifacts can be viewed as

mapping a temporal sequence with aliasing to a sequence without aliasing. We use the

attention mechanism as a key component for the dynamic sequence reconstruction.

5.2.2 Proposed Voxel-Wise Attention Network

We formulate the cost function of our reconstruction problem with two alternating

minimization steps as

ŵi = arg min
w

∥Φ(w;Xi−1)−Xtrue∥1, (5.3)

X̂i = arg min
X

1

2
∥A(X)− y∥22 + β∥X−Φ(Xi−1;wi)∥22, (5.4)

where X ∈ C
t×H×W denotes the dynamic sequence of images to be reconstructed, and

the index i corresponds to the ith iteration. The attention network is parameterized

as Φ(· ;wi), and wi denotes the network weights for the ith “outer” iteration of the
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Figure 5.2: Our proposed voxel-wise temporal attention network architecture and the
dynamic OSSI MRI images (with temporal dimension = 10) to be reconstructed. The
data fidelity contains 2 iterations of CG-SENSE for multi-coil NUFFT reconstruction.
The main part of the network (encoder-Transformer-decoder) can take voxel-wise
simulations or spatial images/patches from human data as inputs.

alternating minimization process. X0 ∈ C
t×H×W is data-shared initialization, and

Xtrue ∈ C
t×H×W is the ground truth labels for training. A(·) is a linear operator

representing the MR physics, y denotes undersampled k-space measurements, and β

is the regularization parameter.

We propose a voxel-wise attention network Φ(w) with Transformers as building

blocks for the method of Eq. (5.3). The voxel-wise attention network is composed

of three components: 1) an encoder that brings the input time-series to the fea-

ture domain, 2) consecutive Transformer blocks [115, 124] that consist of attention,

feed-forward operations, and residual connections, 3) a decoder that brings the Trans-

formed sequence to the image domain. We use convolutions with 1×1 kernels in both

the encoder and decoder to ensure the voxel-wise operations of the network. Fig. 5.2

presents the overall framework with an attention network and data consistency.

The input complex MRI image sequence is formed with 2 channels of real and

imaginary data, and the dimension is t × C × H × W with C = 2. The encoder

consists of 2 convolutional layers (followed by leakyReLU) and encodes the input to

richer feature representations with an increased channel dimension of 8 and preserves

the same spatial dimensions with 1×1 convolutions. The temporal sequence of feature

maps from the encoder is transformed to another temporal sequence of maps with

three consecutive Transformer blocks. The learnable weights WQ, WK, and WV are
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implemented with 1×1 convolutions as in [130, 131], and the feed-forward operation

in each Transformer block is performed with 2 convolutional layers with 3×3 and

instance normalization [132]. The decoder brings the transformed feature maps back

to the image domain of size t× 2×H ×W with 2 convolutional layers.

The voxel-wise attention network is followed by a data fidelity layer for solving

Eq. (5.4). Equation (5.4) is a quadratic least-squares problem that regularizes X to

be close to the attention network output Φ(Xi−1;wi) by minimizing the Euclidean

distance. We solve Eq. (5.4) using the conjugate gradient (CG) method and form a

data fidelity layer that takes attention network transformed images Φ(Xi−1;wi) as

part of the inputs, and performs 2 iterations of the CG update. The linear operator

A with multi-coil and NUFFT operation is implemented using [133]. The output of

the data fidelity layer becomes new inputs for the voxel-wise attention network, and

we repeat this step 3 times as 3 outer iterations for the alternating minimization of

X and w. We choose the numbers of CG and outer iterations empirically.

5.2.3 Two-Stage Training and Data Simulation

We performed two-stage training to handle the problem with limited human data

for learning. We pretrain the attention network with voxel-wise simulated temporal

sequences (which could be easier to simulate than spatial-temporal sequences). After

pretraining, we fine-tune the attention network together with data consistency using

human data as training data and train the whole framework in an end-to-end fashion.

For simulated data, we generated the ground truth sequence [20] using Bloch

simulation with varying physics parameters. The inputs for the network are com-

plex Gaussian noise corrupted sequences with a standard deviation of 0.2 to very

roughly model the aliasing artifacts. The pretraining of the attention network maps

noisy input sequences to noiseless ground truth sequences, and trains the network to

denoise.

5.2.4 Implementation Details

The human data were acquired with OSSI sequence [16]. We formed a human

data training set with 10 oscillatory temporal images for each 2D slice and 22 distinct

slices in total. We augmented the training data 10 times by circularly shifting every

image set of 10 oscillating images with 10 different shift positions along the dynamic

112



time dimension. Ground truth images were reconstructed from mostly sampled data.

The k-space data were multi-coil and undersampled using variable-density spiral tra-

jectories with an undersampling factor of 12 as in [19]. We preprocessed the data by

normalizing them using the maximum absolute value of data-shared images. We used

data-shared initializations as inputs for the network.

The simulated data contains 8,662,000 voxel-wise time courses of dimension 10×1.

We pretrained the network with simulated data for 60 epochs and fine-tuned the

network with human data patches for 60 epochs. The testing data has 1480 dynamic

images for a 200 s OSSI fMRI scan. In the testing stage, we reconstructed sets of 10

dynamic images of the OSSI fMRI data using the proposed network, and l2-combined

each set of 10 reconstructed images to get a sequence of fMRI images for evaluation.

The functional task was a left/right reversing-checkerboard visual stimulus for 5 cycles

(20 s L/20 s R).

5.3 Comparisons and Results

We compared our proposed approach to a 3D U-Net [134] that takes sets of 10

dynamic images as 3D volumes for processing. The network was trained with human

fMRI data. Because 3D U-Net is a spatio-temporal network, we cannot easily pretrain

the network with simulated data.

Fig. 5.3 presents attention map visualization for simulated temporal sequence

mapping and human temporal sequence mapping, respectively. Each sample of the

output sequence is formed based on a weighted combination of all the samples in the

input sequence, and the weights are given by the rows of the learned attention map.

Specifically, for every row of the attention map, all the values in the row sum to 1,

and each value in the row represents the weight for the corresponding input vector of

the input sequence. For the ith row, a weighted combination of all the input vectors

produces the ith output vector of the output sequence.

For reconstruction, Fig. 5.4 shows that the proposed method leads to less struc-

ture in the difference maps than other reconstruction methods such as 3D U-Net.

Every 10 reconstructed images are combined with l2-norm for fMRI. Fig. 5.5 pro-

vides functional maps for the reconstructions. The proposed model results in fewer

false positives and cleaner time course compared to the fully sampled data. Tab. 5.1

and Fig. 5.6 summarizes quantitative evaluations of the reconstruction and functional
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Figure 5.3: Attention map visualization at the testing stage for voxel-wise simulation
data (left) and human data patch mapping (right). In the attention mechanism, each
output value in a 10×1 sequence is generated with a weighted combination of all the
values in the input sequence, and the learned weights are given by each row of the
10×10 attention maps for each output value. The figure presents absolute values
of the complex input/output for illustration while the proposed network inputs real
and imaginary parts and uses deep representations from the encoder for attention
calculation.
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performance. The proposed model outperforms other methods with lower NRMSE

values, and also provides the largest area under the ROC curve.

5.4 Conclusions

We propose a novel voxel-wise attention network for dynamic MRI temporal mod-

eling. The voxel-wise network design enables pretraining with voxel-wise simulated

data that can be easier to obtain than spatial-temporal data, and resolves the training

data limitation for dynamic imaging. Our proposed model reconstructs dynamic MRI

images with a factor of 12 undersampling, and provides high-quality reconstruction

and functional maps. The proposed learning-based reconstruction approach is at least

4× faster than the manifold model-based reconstruction method in Chapter IV. The

proposed voxel-wise, attention-based model can potentially be used for MR fingering

reconstruction and other dynamic reconstruction applications.

We can observe some horizontal line artifacts in the tSNR map of the proposed

approach in Fig. 5.5 because the network was trained with patches while being tested

with the whole brain images. In future work, we plan to design a hierarchical network

or a multi-stage training scheme to help the network process the whole brain images.

The network might take voxel-wise simulated time courses for the first stage, then

fine-tune with sequences of image patches, finally refine with whole brain images. The

proposed pipeline could potentially be improved with more sophisticated Transformer

network designs for increased representation capacity and a GAN loss for sharpness

of the images.
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Figure 5.4: The proposed voxel-wise model presents less residual in the difference
maps than spatial-temporal reconstruction using 3D U-Net.

Table 5.1: Quantitative evaluation for dynamic undersampled reconstructions

Reconstruction Proposed 3D U-Net Data Shared
NRMSE 0.13 0.15 0.16
AUC 0.94 0.91 0.93
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Figure 5.5: The proposed approach results in fewer false positives in the activation
map, less noisy temporal SNR map, and a time course more similar to the ground
truth.

Figure 5.6: The ROC curves for fMRI demonstrate that the proposed model outper-
forms other reconstructions.
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CHAPTER VI

Future Work

In previous chapters, we have proposed three different models: patch-tensor low-

rank model, physics-based manifold model, and attention network model for under-

sampled MRI sequence reconstruction. All of them preserve the high SNR advantage

of OSSI, and outperform other reconstruction models with higher spatial-temporal

resolution and more functional activation. In future work, we propose an extended

approach that combines the advantages of the tensor model and the manifold model,

and propose new ideas for learning-based reconstruction and directions for other types

of models.

6.1 Linear plus Nonlinear (L+N) Model for 3D OSSI fMRI

Acceleration and Dynamic Quantification

The patch-tensor low-rank approach from Chapter III and physics-based manifold

models from Chapter IV fit the OSSI sequence data to linear subspaces and a non-

linear manifold, respectively. The patch-tensor model exploits local spatial-temporal

similarities with 3D patch tensors of vectorized spatial dimension, and fast and slow

time dimensions. The physics-based manifold model focuses on nonlinear modeling

of voxel-wise fast time signals and enables physics parameter quantification. Because

the two models exploit different properties of the OSSI images, we propose a linear

subspace plus nonlinear manifold (L+N) model that combines the advantages of the

patch-tensor model with the manifold model for 3D OSSI joint reconstruction and

quantification with more aggressive undersampling.

We form patch-tensors as in Chapter III, and impose low-rank constraints on
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the first and third unfoldings of the patch-tensors [19]. For the second unfolding of

the patch-tensor that is not very low-rank along the fast time dimension, instead

of enforcing low-rankness, we fit the fast time signals to the manifold model and

encourage the voxel-wise signal values to lie close to the manifold.

The cost function of the proposed L+N model is:

X̂ = arg min
X

f(X)

f(X) =
∑

i=1, 3

M
∑

m=1

λi∥Pm(X)(i)∥∗ + β

N
∑

n=1

R
(

X(2)[:, n]
)

+
1

2
∥A(X)− y∥22,

R(v) = min
m0,T ′

2
,f0

∥v −m0Φ(T ′
2, f0;T1, T2)∥22, (6.1)

where X ∈ C
x×y×z×t is a complex OSSI fMRI time block to be reconstructed. P(·)

partitions and reshapes the input into M low-rank patch-tensors with Pm(X) ∈
C

sp×nc×ts , m = 1, . . . ,M . Pm(X)(i) is the mode-i unfolding of Pm(X). λi is the

regularization parameter for low-rankness of the mode-i unfolding . N = xyzts for

the near-manifold regularizer, and β is the regularization parameter. v ∈ C
nc is a

vector of fast time signal values for each voxel in X, m0Φ(T ′
2, f0;T1, T2) ∈ C

nc denotes

the manifold estimates. A(·) is a linear operator consisting of coil sensitivities and

the non-uniform Fourier transform including undersampling, y represents sparsely

sampled k-space measurements.

The cost function Eq. (6.1) will be optimized using the alternating direction

method of multipliers algorithm in Chapter III. The main difference would be for

updating the second unfolding that is regularized by the near-manifold model, in-

stead of applying the singular value soft-thresholding operator in Eq. (3.11), we will

use the conjugate gradient method for the quadratic least-squares problem.

The sampling pattern we investigated initially is Poisson-disk undersampling of

stack-of-spirals with a factor of 12 acceleration. Fig. 6.1, Fig. 6.2, and Fig. 6.3 show

the preliminary results for Poisson-disk sampling of kz − t planes, activation maps,

and temporal SNR maps using the proposed reconstruction.
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Figure 6.1: Poisson-disk sampling of kz - t planes that keeps 80% of the variable-
density spirals. White color denotes sampled location, and black color denotes kz
planes that are not acquired.

Figure 6.2: 3D OSSI activation map of the proposed model yields more activation
than the patch-tensor low-rank model in Chapter III.

6.2 Other Ideas and Approaches

Our work presents innovations in high-dimensional modeling, physics constraint

modeling, and MR image sequence modeling. In particular, the physics-based mani-

fold model inspires us to design an unsupervised learning approach that models MR

physics for OSSI signal generation to reconstruct OSSI images directly from physics

parameters. In general, we hope to combine signal processing and physics insights

with deep learning to advance different types of applications.
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Figure 6.3: 3D OSSI temporal SNR map of the proposed model presents higher
temporal SNR than the tensor low-rank model in Chapter III.

6.2.1 Transformers Related

Current Transformers use attention mechanisms that operate on matrices, which

might be insufficiently general for high-dimensional data. To fully exploit high-

dimensional information with attention mechanisms, we propose multi-dimensional

attention. The multi-dimensional attention could model unfoldings of the high-

dimensional tensor data as shown in recent work [135]. Furthermore, prior work

[136] exploits low-rankness in 2D attention maps for efficient Transformers, while no

works have been done for higher dimensional attention maps. Similar to the patch-

tensor low-rank model in Chapter III, we propose to impose tensor low-rankness on

high-dimensional attention maps.

We can also design a multi-dimensional attention mechanism. Instead of im-

plementing it through unfolded matrices and matrix multiplication, we propose to

implement the tensor attention with tensor multiplication. We could further incorpo-

rate sparsity constraints to encourage the high-dimensional attention maps to have

sparse core tensors. Related works [137, 138] present sparse 2D attention maps.

Previous works such as inverting a CNN [139] for visualizing CNN representations
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could potentially be extended to Transformers and would be interesting to investigate.

More importantly, with the deep image prior [140] concept for unsupervised learning,

we propose to use Transformers as the network architecture in deep image prior

regularization for dynamic MRI sequence reconstruction.

For Transformer network design, we propose to use the hierarchical attention

network as in [141] to model multi-scale spatial-temporal dependency of the image

sequences for both self-supervised and unsupervised tasks.

6.2.2 More General Directions

We have considered some other interesting research directions and approaches:

• We can design a union of sparse subspaces model [142] to serve as a regularizer

for for dynamic MRI reconstruction.

• We propose an MRI k-space inpainting model that exploits neighboring sam-

ple similarity using a local/adaptive SIREN network [143] for undersampled

reconstruction.

• Another future research direction is to consider hierarchical and probabilistic

network structures [144, 145, 146, 147, 148] to advance the learning and reason-

ing capacity of neural networks.
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