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ABSTRACT

Signals and systems (S&S) concepts are the theoretical foundation of machine

learning and signal processing, cutting-edge fields with real-world applications in

many domains. This dissertation combines two projects on S&S in the fields of engi-

neering education research and image reconstruction.

Within the field of engineering education research, this dissertation discusses

which S&S concepts students understand and what factors–such as motivation, choice

of upper-level electives, or use of evidence-based instructional practices like active

learning–influence their understanding. This research project involved three phases.

The first phase used quantitative methods to measure CU and investigated factors that

predict CU of students at the end of their S&S course. This phase found that measures

of ability and motivation are significantly predictive of CU. Phase one also served as a

pilot project for the following two phases that concentrate on CU of senior undergradu-

ate students. The second phase used think-aloud interviews and a concept inventory to

measure CU of S&S. The results show that many seniors understand some topics, such

as filtering and time invariance, but struggle with other S&S concepts, such as linearity

and convolution. The third phase used interviews and qualitative data analysis meth-

ods to investigate what factors impact CU over the course of an undergraduate degree.

The results provide recommendations for how instructors and curriculum designers

can improve students’ CU of S&S, such as emphasizing the purpose of concepts, us-

ing contrasting examples in lectures, translating mathematics, and repeating concepts

across multiple courses.
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The second part of this dissertation applies concepts from S&S to image recon-

struction. Image reconstruction is the process of taking input data from one signal

space and producing an interpretable image. In medical image reconstruction, state-

of-the-art methods use advances in machine learning and training datasets to learn

parameters that can be used to reconstruct high-quality images with fewer measure-

ments, thus decreasing radiation exposure for patients while providing doctors with

high-quality images to properly diagnose and treat many diseases. The image recon-

struction project in this dissertation motivates and reviews bilevel methods for learn-

ing image reconstruction parameters. Bilevel methods are task-based, so that learned

parameters are expected to perform best at reconstructing; are explainable and inter-

pretable, thus improving the likelihood that doctors will trust and adopt them; and

allow for different measures of image quality, including traditional mean square error

metrics that are easy to use and metrics that more accurately capture human perception.

The results demonstrate that parameters learned in a common non-bilevel formulation

under-perform handcrafted parameters due to the structure of the learning problem and

that bilevel methods help to address this gap.
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CHAPTER 1

Introduction and Overview

1.1 Opportunities for Advancing Signals and Systems

S&S is the focus of an electrical engineering (EE) science course at most universities. Topics in
S&S, such as filtering and Fourier transforms, are fundamental to rapidly growing fields such as
control theory, signal processing, communications, and machine learning.

This dissertation focuses on two aspects of S&S. Part 1.5 discusses how students learn con-
cepts in S&S, with the ultimate goal of understanding how we can teach S&S better. This part is
anchored in the field of Engineering Education Research (EER); to answer the research questions,
I used theoretical frameworks of how students learn, collected and analyzed qualitative interview
data and quantitative survey data, and related the findings to other research in the EER literature.
Part 6.3 discusses using S&S concepts to improve on state-of-the-art image reconstruction meth-
ods. This part is anchored in the more common EE research tradition; to answer the research
questions, I implemented parameter learning methods with existing data sets, compared the meth-
ods using primarily quantitative metrics, and connected the conclusions to other findings in the EE
literature.

The remainder of this introductory chapter overviews both parts of the dissertation and how
they relate to each other. After the introduction, readers should be able to read Part 1.5 or Part 6.3
stand-alone or in either order.

1.2 Part I: How Students Understand Signals and Systems

Despite the importance educators place on S&S concepts, previous studies have shown that stu-
dents generally understand few of the concepts at the end of a S&S course [1]. Students generally
take the introductory S&S course during their second or third year of an undergraduate degree.
Part 1.5 of this dissertation aims to determine if undergraduate students later come to understand
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S&S concepts, and, if they do, at what point they reach that understanding and what factors help
them reach it. While Part 1.5 considers S&S concepts, I anticipate the study will provide insights
into CU over time in other engineering disciplines.

Few studies report on students’ CU of S&S topics one or more semesters after they completed
a S&S course, even though developing CU can take longer than a single semester [2]. Part 1.5 of
this dissertation helps to fill this gap by examining CU of senior students, who are typically one or
two years removed from their S&S course. Further, this study considers what factors, ranging from
student characteristics (e.g., motivation or ability) to instructional characteristics (e.g., quantity of
instruction or use of active learning), might help students gain CU. My research questions are:

RQ#1 What is students’ CU of S&S concepts at the end of an undergraduate S&S course?
What factors predict how many S&S concepts students learn in a S&S course?

RQ#2 What is the CU of S&S concepts among senior students?

RQ#3 What instructional factors influence CU of S&S for senior students?

Chapter 1.5 provides background for the EER part of this dissertation. Specifically, it defines
and reviews previous works on CU and overviews the concepts in the standard S&S curriculum.
Chapter 3 addresses RQ#1 using a quantitative methodology, and serves as a pilot study to lay
the groundwork for research to address RQ#2 and RQ#3. Chapter 4 mixes additional quantitative
survey data with qualitative interview data to address RQ#2. Chapter 5 focuses on the last research
question, RQ#3, using a qualitative methodology. Finally, Chapter 6 concludes Part 1.5 with a
discussion of the findings and a summary of implications for practice.

The following subsections preview the methods and results of the three studies in Part 1.5,
depicted in Fig. 1.1. This overview of the methodology pulls heavily from an overview of the
methodology published in Crockett, Finelli, and Powell [3]. However, there are many differences
in what is presented in the finalized methodology presented here and the plan laid out in [3]; many
of the differences stem from the impact of COVID-19 on our data collection.

In each study, students were incentivized by a mixture of course credit, free food, gift cards,
raffle prizes, and the gratitude of the research team. All participant interaction was approved by the
University of Virginia (UVA) or University of Michigan (UM) institutional review board (approval
numbers IRB-SBS #3566 and HUM00167323 respectively).

1.2.1 RQ#1: Conceptual Understanding during Signals and Systems

The first study served as a pilot for the second and third research questions; it considers both
measuring CU and investigating factors that may affect CU, but in a simpler, better-studied con-
text. Specifically, unlike the follow-on studies, the pilot study considers CU only within a S&S
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RQ#1:
CU during SS

RQ#2:
Exploring Seniors’ CU

RQ#3:
Factors Influencing CU
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Figure 1.1: Overview of the three studies in Part 1.5 of this dissertation, covered in order in Chapters 3,
4, and 5. The results from the first study informed the design of the two later studies. Likewise, for the
second and third study, the initial data analysis influenced the second data sources (think-aloud interviews
and surveys, respectively), as indicated by the arrows. In both the first and third study, the linear regression
analysis modeled the relationship between CU (the dependent variable) and hypothesized factors (indepen-
dent variables) that were measured using surveys. *=Due to low participation, this dissertation does not
discuss results from the planned linear regression for the third study.

course, for which there are many existing studies in the literature to compare results against, see
Section 2.2.3. These previous studies generally show that many engineering undergraduates lack
CU of S&S.

Study 1 involved undergraduates at UM in the introductory S&S course, EECS 216, which
is aimed at second and third year students. The course emphasizes continuous time analysis and
has an associated lab section that meets roughly five times a semester. Students in this course in
Fall 2019 and Winter 2020 took the SSCI for extra credit near the beginning of the semester (the
pre-test) and at the end of the semester about a week before their final exam (the post-test). The
SSCI is an existing test that has 25 multiple-choice questions on background mathematics, system
properties, convolution, Fourier and Laplace transforms, and filtering concepts; Section 2.2.3 de-
scribes the SSCI. This research uses version 5 of the continuous time SSCI. When students took
the post-test, they were also given a short survey to measure factors that may predict their concep-
tual understanding. Specifically, the pilot study tests how well a subset of factors from the Model
of Educational Productivity (student ability and motivation, instructional quality and quantity, and
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home, peer, and classroom environment) explain the variance in signals and systems conceptual
understanding at the end of an introductory undergraduate course.

Chapter 3 overviews the Model of Educational Productivity, presents statistics from the post-
test SSCI data (n = 158) to measure students’ CU, and then discusses the results from a linear
regression model on the surveys and concept inventories data (n = 124) to investigate factors that
correlate with CU. The results show the hypothesized factors explained 28% of variance in post-
test conceptual understanding. Further, two of the factors were significantly predictive of CU:
ability (p < 0.01) and motivation (p < 0.10). The results in Chapter 3 expand on the results
presented in Crockett and Finelli [4].

The lessons learned in the pilot study informed the approach to the following two studies. For
example, analyzing the SSCI data to measure students’ CU required me to become very familiar
with the SSCI questions, how each measured a different concept, and connections between the
questions. This prepared me to identify questions to use on the interviews as part of answering
RQ#2. Also, based on the linear regression results in the pilot study, I clarified survey items and
added questions about certain factors in interviews to answer RQ#3.

1.2.2 RQ#2: Conceptual Understanding of Senior Undergraduates

The second study moves from measuring CU of students in a S&S course to measuring CU of
senior students. We use the term “senior” throughout to refer to students who are expected to
complete their undergraduate degree within a year, as determined by them reaching a set number
of credits determined by the university. While previous studies across multiple subjects show
engineering students have low CU at the end of courses, little is known about CU semesters after
a course. Does CU increase as seniors have time to digest concepts and perhaps see concepts
repeated in upper-level courses? Or does CU decrease as seniors forget what they learned in S&S?

Study 2 is a mixed methods study and uses quantitative SSCI data (n = 467) and think-aloud
interviews (n = 12) to measure CU. The data come from senior students at two universities:
UM and UVA. To analyze the data, we use an item response theory analysis of the SSCI data; this
analysis orders the SSCI questions from most to least difficult, while accounting for student ability.
We then discuss what the difficulty of each questions suggests about students’ CU of specific S&S
concepts (linearity and time invariance, convolution, Fourier transform, and filtering). The think-
aloud interviews investigate how students approach conceptual problems and test hypothesis from
the SSCI data about students’ CU.

Chapter 4 presents the results of this study. The discussion in Chapter 4 expands on Crockett,
Powell, and Finelli [5]. Briefly, we found that seniors’ scores on the concept inventory are typical
of scores presented at the end of a S&S course. Many struggled with the concept of linearity,
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made a common error when finding the maximum value in graphical convolution, and had low
confidence on relating frequencies in time to a FT representation, but seniors had relatively high
CU of time invariance and filtering. We also observed a large variation in SSCI scores among the
senior students. This naturally leads to RQ#3 on what factors may impact CU and cause differences
in CU between students.

1.2.3 RQ#3: Factors Influencing Conceptual Understanding

The third study, used an exploratory qualitative approach to build on a literature review about what
instructional factors influence CU of S&S for senior undergraduate engineering students. Previous
results show students in S&S courses typically gain little CU, though evidence-based instructional
practices, such as active learning, can increase gains in CU. However, few studies consider factors
on CU of senior students or other instructional practices that increase CU.

To explore possible factors, I interviewed two faculty members, eight undergraduate seniors,
five graduate students, and four practicing engineers. In Fall 2019 at UM, I conducted two focus
groups (one each with undergraduate and with graduate students), conducted an instructor inter-
view, and informally spoke with instructors. In summer 2020, I conducted an undergraduate focus
group and an instructor interview at UVA. I additionally interviewed four engineers working in
industry with a range of industry experience in Summer 2020.

Chapter 5 presents the results of analyzing the transcribed interviews using a constant compar-
ative method along with many participant quotes as evidence for each theme, expanding on the
discussion in Crockett, Powell, and Finelli [6]. Briefly, participants identified lectures presenting
CU along-side mathematical expressions; lectures emphasizing purpose and connections; hands-
on activities where students have control, receive immediate feedback, or where they have to apply
and synthesize concepts; and repetition of concepts across multiple courses as factors that helped
build CU. Grades that emphasize procedural knowledge over CU and heavy workloads were noted
as hindrances to CU.

Unfortunately, due to low participation, Chapter 5 does not present the planned linear regres-
sion results shown in Fig. 1.1. Similar to the linear regression in the pilot study, these results
would have shown how factors measured with a survey (survey 2 in Fig. 6.1) correlate with SSCI
scores. However, Section 5.4.3 presents a preliminary analysis and suggestions for future work in
this direction.
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1.3 Part II: Bilevel Methods for Image Reconstruction

Part 6.3 of this dissertation applies S&S topics in image reconstruction methods. Image recon-
struction is the process of taking input data from one signal space (e.g., the data collected by an
Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) machine) and producing an
image that humans (e.g., doctors) or an image analysis software can interpret. Part 6.3 concentrates
on image denoising and medical image reconstruction, though the methods easily apply to other
image reconstruction problems.

There are many existing image reconstruction methods roughly corresponding to different as-
sumptions about the reconstructed images. Historically, the assumptions are based on characteris-
tics of the desired output image that humans can easily observe, such as a tendency to have smooth
regions with few edges or to have some form of sparsity [7]. Recently, more researchers are using
machine learning techniques to discover image characteristics to use in the image reconstruction
process. Although machine learning, and particularly deep learning, can give state-of-the-art re-
sults, medical professionals are often wary of it because it can be hard to explain compared to
handcrafted features based on observable image characteristics. Further, deep learning techniques
often have few, if any, theoretical guarantees for image reconstruction applications.

Bilevel methods are one way to bridge the gap [8]. Part 6.3 examines a bilevel method that
uses training data to learn sparsifying convolutional filters that yield good reconstructed training
images, while allowing for different measures of what constitutes a good output image. Part 6.3
reviews and motivates bilevel methods for image reconstruction. My research questions are:

RQ#4 Why do handcrafted sparsifying filters sometimes outperform learned filters?

RQ#5 How does the bilevel method compare to handcrafted filters and filters learned in a
non-task-based method?

RQ#6 What are the current trends in the literature on bilevel methods for image reconstruc-
tion?

Chapter 6.3 motivates the image reconstruction problem, defines notation, and introduces the
bilevel problem considered throughout Part 6.3. Chapter 8 provides background on image recon-
struction, loss function design, and hyperparameter optimization strategies. Chapter 9 addresses
RQ#4 using a series of case studies. Chapter 10 begins the literature review for RQ#6 by describ-
ing optimization methods for the bilevel problem. Chapter 11 address RQ#5 by revisiting one of
the case studies from Chapter 9 with the proposed bilevel method. Chapter 12 continues the litera-
ture review of bilevel methods by discussing previous applications of the bilevel method in image
recovery problems and connecting bilevel methods to other machine learning approaches. Finally,

6



RQ #4:
Handcrafted vs. Learned Filters

(Single-level method)
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(2) 2d CT image reconstruction
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Figure 1.2: Overview of the three research questions in Part 6.3 of this dissertation. Chapter 9 discusses
RQ#4 and motivates the next two research questions. Chapter 10 reviews optimization methods for the
bilevel problem as part of addressing RQ#6; these methods are used in Chapter 11 to answer RQ#5. Finally,
Chapter 12 returns to RQ#6 and overviews previous applications of bilevel methods in the literature.

Chapter 13 offers summarizing commentary on the benefits and drawbacks of bilevel methods for
computational imaging and proposes future directions for the field.

The following subsections preview the methods and results for each of the research questions,
depicted in Fig. 1.2.

1.3.1 RQ#4: Handcrafted Versus Learned Filters

RQ#4 stemmed from an observation that, when we learned filters using a specific training method-
ology, the learned filters sometimes yielded noisier (worse) signals than handcrafted filters when
later used in a denoising method. Learning filters from training data requires compute time and
power; thus, it does not make sense to learn filters unless the learned filters are better in some way
than handcrafted filters. The machine learning literature is full of examples of learned hyperpa-
rameters achieving lower test errors than handcrafted parameters. Therefore, RQ#4 does not ask
whether learning is useful, but rather it asks why our specific training methodology yielded filters
that did not perform as well as handcrafted filters.

Chapter 9 includes two experiments that investigate why handcrafted filters sometimes outper-
form learned filters. The first experiment considers learning sparsifying filters for simple, piece-
wise constant 1D signals. By using piece-wise constant signals, we were able to handcraft a sparsi-
fying filter based on finite differences that achieved reasonable denoising performance. The results
show that a common method for learning the sparsifying filters tends to learn overly smoothed
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filters. The exact denoising error of the learned filters varies with a tuning parameter, but Chap-
ter 9 includes an example where the learned filter resulted in denoised signals with 38% more error
than the signals denoised using the handcrafted filter (see Tab. 9.2). In other words, although these
smoother filters minimize the training objective, they do not denoise test signals as well as the
handcrafted, “sharp” finite differencing filter.

The second experiment in Chapter 9 presents the work from Crockett, Hong, Chun, et al.

[9] on learning sparsifying filters for CT image reconstruction. The proposed algorithm, called
convolutional analysis operator learning with handcrafted filters, allowed us to compare learning
a set number of filters to handcrafting a subset of the filters while learning the remaining filters.
As in the simple 1D experiment, CT images are approximately piece-wise constant and finite
differencing filters can yield reconstructed images with relatively small errors, so we examined the
impact of handcrafting a varying number of finite differencing filters. Similar to the results from
the simple 1D experiment, some of the filter banks with handcrafted filters were able to reconstruct
the test images comparably to the learned filters while decreasing the training time.

In both experiments, Chapter 9 considers learning filters based on sparsifying training signals.
The chapter discusses that this training objective does not account for the application of the learned
filters to the denoising or image reconstruction task where they are tested. In answer to RQ#4, we
conclude that both the specific structure of the training objective and the mismatch between the
training objective (sparsifying signals) and the testing criteria (denoising or reconstructing signals)
are what cause the handcrafted filters to perform better than or comparable to the learned filters in
terms of the test criteria. The results from Chapter 9 thus motivate the use of bilevel, task-based
learning methods and drive RQ#5 and RQ#6.

1.3.2 RQ#5: Learning Filters Using Bilevel Methods

The second research question in Part 6.3 is a direct follow-on to the first research question: it asks
whether a bilevel, task-based method for learning sparsifying filters results in learned filters that
match or improve on the denoising performance of handcrafted filters. While previous studies
show the benefit of machine learning, we are unaware of a previous study that includes such a
direct comparison of these two learning methods.

One can view the bilevel problem as formalizing hyperparameter optimization, as bridging
machine learning and cost function based optimization methods, or as a method to learn variables
best suited to a specific task. More formally, bilevel problems attempt to minimize an upper-
level loss function, where variables in the upper-level loss function are themselves minimizers of
a lower-level cost function.

Chapter 11 addresses RQ#5 and expands on the work of Crockett and Fessler [10]. The chapter
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considers the same 1D signals as in Chapter 9, but now with a bilevel method for filter learning.
The results show that, averaged over multiple random initializations, filters learned using a bilevel
method result in the two denoising test signals having less error than when the signals are denoised
using the filters learned in Chapter 9 based on sparsifying training signals. Thus, as predicted,
the results show the benefit of task-based learning. However, the filters learned using the bilevel
method still denoised signals worse than a handcrafted finite differencing filter by 7-24%, with an
average increase of error of 16% (see Tab. 11.1).

Although the bilevel-learned filters for the simple 1D experiment still did not achieve the de-
noising performance of the handcrafted filters, the results in Chapter 11 show the potential of a
bilevel method, especially when compared to non-task-based learning methods. Compared to the
training methods used to investigate RQ#4, bilevel methods require more design decisions. For ex-
ample, Chapter 11 compares using different numbers of iterations to estimate the denoised signal
and investigates the impact of initializing the learnable filters. For many other design decisions,
Chapter 11 considers a relatively simple bilevel method design. More advanced bilevel methods,
especially ones that use a more sophisticated image reconstruction cost function, should further
improve the denoising performance.

1.3.3 RQ#6: A Literature Review of Bilevel Methods

The last research question in this dissertation involved a literature review of bilevel methods, as pre-
sented in Crockett and Fessler [11]. Part 6.3 references the bilevel literature review [11] through-
out, but the two chapters that primarily address RQ#6 are Chapter 10 and 12. The goal of these
two chapters is to make bilevel methods more easily accessible to different audiences.

Chapter 10 discusses different methods for optimizing the bilevel problem and the advantages
and disadvantages of the variety of the methods. The chapter focuses on gradient-based opti-
mization methods. Classic hyperparameter optimization strategies such as grid search or Bayesian
methods consider the testing objective task, e.g., image reconstruction, as a black-box. In contrast,
gradient-based methods use knowledge of the structure of the task to compute a gradient of the
upper-level loss with respect to the hyperparameters of interest. By doing so, gradient-based meth-
ods are able to scale to large numbers of hyperparameters. Chapter 10 is split into two primary
sections. The first discusses how to find this gradient and the second discusses how to use the
gradient to optimize the bilevel problem.

Chapter 12 overviews previous applications of bilevel methods and connects bilevel methods to
other machine learning methods. The first section discusses lower-level cost functions that repre-
sent different image reconstruction tasks and a variety of upper-level loss functions for judging the
quality of the hyperparameters. The second section compares and contrasts bilevel methods with
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popular machine learning methods: unrolled networks, fixed-point networks, and plug-and-play
priors.

1.4 Positionality Statement

Science is often touted as objective–the views of the scientist do not impact the results of a study.
If true, one could use science to uncover truth and it would not matter which researcher does
the work. In contrast to this viewpoint, more people are recognizing that researchers impact their
research. Henrich, Heine, and Norenzayan [12] discuss how a person is, in many ways, inseparable
from their culture–culture can even impact our perception of optical illusions. Given how culture
can greatly change these seemingly objective experiences, it is difficult to imagine that research is
not also impacted by the researcher’s culture and by their personal experiences and beliefs.

In EER, and especially in qualitative methodologies, this trend toward seeing research as more
subjective is evidenced by the prevalence of positionality statements. The purpose of a position-
ality statement is to explain how a researcher’s background and/or identity influenced the study
design and data analysis. Such statements are becoming more common-place, e.g., the Journal
of Women and Minorities in Science and Engineering requires positionality statements in journal
submissions [13]. The motivation behind including positionality statements is that a researcher’s
beliefs influence the research and that, while one may strive to be neutral, one cannot remove one’s
influence entirely. Therefore, it is a methodological best practice to discuss researcher beliefs that
are relevant to the current research project and how they might influence the research, including
research design, analysis, and interpretation.

The first obvious impact of my experiences on the research is in the selection of the research
questions. My research in Part 6.3 is an application of S&S concepts and as a graduate student I
have come to value CU of these concepts. Thus, my research questions for Part 1.5 presume that
CU is important rather than ask if CU is important. As an undergraduate, I came to appreciate
S&S concepts more deeply after my undergraduate S&S course. This experience made me more
interested in the evolution of CU and of measuring CU years after a S&S course. In turn, my
interest in education and becoming an instructor influenced my choice of research questions in
Part 6.3, particularly RQ#6. My interest in reviewing the literature on bilevel methods stems from
my interest in making technical content accessible.

A second way that my identity impacts the research is in what data I collect. For Part 6.3,
this is most obvious in my choice of training and testing data sets. Because I was embedded in a
research lab for medical image reconstruction, I tended to use medical imaging examples. Because
I was interested in understanding and interpreting the image reconstruction system (rather than
achieving state-of-the-art results on a specific application), my other data sets tended to consist of
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very simple signals where we can predict how an ideal system might respond. For Part 1.5, how I
could relate to participants in qualitative interviews is a clear way that my identity impacts the data.
My identity as a graduate student who previously worked in industry helped me transition between
student interviews, faculty interviews, and interviews with practicing engineers by allowing me
to develop rapport with each group by emphasizing our shared experiences. As someone who
majored in and studies EE, most of participants likely considered me an “insider” in terms of the
engineering community. Some benefits of being perceived as an insider were that it was easier
to recruit participants, I could base my questions on my own experience to make the questions
more detailed, I might have been more trusted by participants, I could speak the same language
as participants, and I was not shocked by responses since I was familiar with many aspects of the
culture and participants’ experiences [14]. Corresponding disadvantages of being perceived as an
insider were that I might have been unknowingly biased and I did not bring a fresh perspective on
the subject, participants might not have said things they think should be obvious to me, I could
not ask overly simple questions legitimately, and participants might have been more likely to cater
their responses to what they think I want to hear [14]. As a specific example, I could not ask what
a Fourier transform (FT) is and expect participants to explain it the same way and using the same
language that they would with an interviewer from a different discipline.

Another inevitable influence I have as a researcher is during during data analysis and interpre-
tation, especially for the qualitative data analysis in Part 1.5. Unlike the above influences, which
shape the study but are not a direct concern for the study’s quality, I took specific steps to minimize
my personal influence on data analysis so as to improve the study’s quality. Analyzing qualitative
data requires the researcher to interpret participants’ statements. I have my own perspective on
what helped and hindered my CU and about what concepts are hard and why they are hard. Par-
ticipants’ ideas that align with mine were likely to be more obvious in the data. For example, my
previous research on active learning [15]–[18] means I was more attuned to seeing that as a theme
in the data. To minimize the impact of my experiences and to make sure my data analysis reflected
the data, I followed best practices such as discussing the coding and interpretation of quotes with
other researchers and memoing [19].

Finally, my experiences, particularly those of studying engineering, are generally aligned with
post-positivism. Briefly, post-positivism is associated with the scientific method, rationality, and
quantitative methods [20]. One of its main tenets is that there is a single “truth” and that researchers
should attempt to mitigate and eliminate their biases such that their research is objective and value-
free. Willis [21] discusses how positivism’s history is intertwined with science. In contrast, the
interpretive paradigm (which is frequently associated with qualitative research) focuses on social
meaning and perspective. Interpretive approaches acknowledge that there can be multiple “truths.”
The positivist and interpretive paradigms are only two examples of research paradigms; [22] de-
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scribes many of the more recent post-modernism and critical frameworks. Over the course of my
degree, I have come to value qualitative data and have adopted a more interpretive framework to
research. This is evident in the design trend of the three studies in Part 1.5: this first study is
quantitative, the second study mixes quantitative and qualitative data, and the third study is qual-
itative. This dissertation may appeal to a diverse readership, many of whom are unfamiliar with
qualitative research and the interpretive paradigm (as I was when entering my graduate studies). I
initially found it useful to view the interpretive paradigm as a tool: even if you do not necessarily
agree with its views, adopting it can be helpful. Through application, you may then find yourself
agreeing that there can be more than one “truth.”

1.5 Bridging the Two Parts

This dissertation considers two aspects of SS. First, Part 1.5 investigates how students learn con-
cepts in SS, with the goal of improving the curriculum to prepare graduates to make significant
contributions in the increasing number of SS-related jobs. Part 6.3 uses filtering (a major SS con-
cept) as a basis for an image reconstruction model to advance the field of medical imaging, thus
demonstrating one of the many areas where students who understand SS concepts can chose to
contribute to research and application. The following list notes which chapters present the results
of the primary papers included in this dissertation:

• Chapter 3:
[4] C. Crockett and C. Finelli, “Factors influencing conceptual understanding in a signals
and systems course,” in 2021 ASEE Virtual Annual Conference Content Access, Jul. 2021.
[Online]. Available: https://peer.asee.org/37175

• Chapter 4:
[5] C. Crockett, H. C. Powell, and C. J. Finelli, “Conceptual understanding of signals and
systems in senior undergraduate students,” Submitted to: IEEE Transactions on Education,
2022

• Chapter 5:
[6] C. Crockett, H. C. Powell, and C. J. Finelli, “Factors influencing conceptual understand-
ing of signals and systems of senior engineering students,” Submitted to: European Journal

of Engineering Education, 2022

• Chapter 9:
[9] C. Crockett, D. Hong, I. Y. Chun, and J. A. Fessler, “Incorporating handcrafted filters in
convolutional analysis operator learning for ill-posed inverse problems,” in 2019 IEEE 8th
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International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,
CAMSAP, Dec. 2019, pp. 316–320. DOI: 10.1109/CAMSAP45676.2019.9022669

• Chapter 9 and 11:
[10] C. Crockett and J. A. Fessler, “Motivating bilevel approaches to filter learning: A case
study,” in 2021 IEEE International Conference on Image Processing (ICIP), IEEE, Sep. 19,
2021, pp. 2803–2807, ISBN: 978-1-66544-115-5.
DOI: 10.1109/ICIP42928.2021.9506489

• Chapter 10 and 12:
[11] C. Crockett and J. A. Fessler, “Bilevel methods for image reconstruction,” Foundations

and Trends® in Signal Processing, vol. 15, no. 2-3, pp. 121–289, May 5, 2022, ISSN: 1932-
8346, 1932-8354. DOI: 10.1561/2000000111

The two parts of the dissertation inform each other. My experience researching cutting-edge
SS concepts for the image reconstruction part helped me to relate to students learning SS for the
first time and to reflect on what experiences have helped me understand the concepts. For instance,
learning about primal-dual formulations (see Appendix C) reminded me of learning about the FT
(see Section 2.2.1). Both are tools that allow an engineer to transform a problem into another
representation or domain in a way that makes the problem easier to solve. Once solved in the
transformed representation, both tools provide a way to relate the solution back to the original
variables. This idea of transforming a problem to another representation where the problem is
easier to solve is a threshold concept in EE [2]; learning this can transform the way a student
thinks. Although I previously learned the FT, seeing primal-dual formulations as an instance of
this threshold concept took time and practice. Time and practice are common themes throughout
Part 1.5 for how students develop CU.

My experience researching how students reach understanding for the engineering education
part has in turn influenced my approach to my image reconstruction research. For example, while
participating in a educational workshop on how to bring evidence in the literature to practice in
the classroom (“evidence-to-practice”), I was introduced to the idea of backward design. The
task-based nature of bilevel methods (that learned parameters are those that best perform some
task) aligns with this backward design theory. In backward design, an instructor first identifies the
learning objectives then designs an assessment, e.g., a test, to measure how well students met the
objectives [23, Ch. 1]. In bilevel methods, an engineer similarly must identify the goal, e.g., to
reconstruct a specific class of images, and design an assessment function (called the upper-level
loss function, see Chapter 6.3) that measures how well the parameters perform at the given task.
The next step in both bilevel methods and backward design is figuring out how to achieve the
goal. In a classroom, this involves designing materials for class and teaching. In a bilevel method,
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this involves designing the image reconstruction system (called the lower-level cost function) and
optimizing the resulting problem. Seeing the connection between bilevel methods and backward
design is one reason I was motivated to research bilevel methods rather than other machine learning
methods.

The main connection between Part 1.5 and Part 6.3 is in the recognition of the importance of
S&S concepts. Hopefully the results of the first part on how to improve the S&S curriculum help to
develop talented engineers who can further the work on applications like considered in the second
part and the results of the second part act as motivation to students that these concepts are useful
to solve real-world problems.
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Part I: Conceptual Understanding of
Signals and Systems

CHAPTER 2

Background

This chapter provides a literature review on ideas used throughout Part 1.5. It introduces and
defines many terms used throughout the dissertation.

2.1 Conceptual Understanding

This section reviews previous work on CU, with a focus on how it may apply in undergraduate
engineering classrooms. First, we define and discuss the importance of studying CU. Next, we
discuss theoretical perspectives on CU and how it is reached. The theoretical perspectives inform
the discussion of empirical results in undergraduate classrooms on how to measure CU.

2.1.1 Defining Conceptual Understanding

In [24], diSessa provides a historical overview of conceptual change research and acknowledges
that there is still disagreement on what “conceptual understanding” means. To complicate the
matter, many researchers use the phrase without offering an explicit definition. However, there are
a few common ways of characterizing CU, such as how it is often defined in contrast to Procedural
Knowledge (PK), see, e.g., Hiebert and Lefevre [25] and Streveler, Brown, Herman, et al. [26].

Roughly speaking, PK is how to do something and includes knowing the precise formulas,
steps, and techniques to solve a given problem. CU is knowing relations between pieces of infor-
mation in a way that allows the information to be transferred to new contexts [25]. For example,
Rittle-Johnson [27] defined CU as “understanding principles governing a domain and the interrela-

tions between units of knowledge in a domain” [emphasis added] and Rao, Fan, Brame, et al. [28]
defined CU as relating “mathematical representations and tangible physical interpretations.” Other
definitions of CU emphasize understanding contextual information; Montfort, Brown, and Pollock
[29] defined CU as “an understanding of the phenomena underlying a calculation, including the
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context, purpose, necessary assumptions, and range of reasonable values expected.” The following
section presents a proposed definition for CU specific to engineering informed by these definitions.

Researchers hypothesize there is a positive feedback loop between CU and PK. Theorized
benefits of increasing students’ CU include increasing PK by providing structure to help students
recall and select the correct procedure, more easily transferring procedures to new contexts, and
developing more expert-like knowledge structures [25], [30]. PK can, in turn, increase CU; PK
gives students the tools to solve problems that, especially in the realm of signal processing, are
often mathematically complex. Knowing these mathematical tools can free cognitive resources
to concentrate on understanding [25]. Similarly, PK, and specifically symbolic knowledge, can
improve CU by representing complex concepts in more easily digestible ways. Both PK and CU
are important and it can even be hard to fully separate them. For example, selecting the correct
procedure to apply to a problem may be CU or PK, depending on which mental processes a student
uses to make the selection.

Educators and researchers have discussed PK and CU in the mathematics curriculum spanning
back to the late 1800s [25]. More recent work (starting roughly in the 1980s) has focused on:

• the interplay between CU and PK,
• a theoretical perspective of how students acquire CU, and
• contexts other than the elementary school classroom.

This project focuses on the latter two themes.

2.1.2 Proposed Definition of Conceptual Understanding

This section proposes a definition of CU, which is an expansion of the definition proposed
in Crockett, Powell, and Finelli [5]. The definition is informed by a review of the literature (see
Section 2.1.2) and my experiences working with the SSCI in the pilot study (see Chapter 3).

Recall from the previous section that common definitions of CU emphasize how topics relate
to one another [27], [28], [31] and/or how they relate to contextual information [29]. Perhaps one
reason for the lack of a clear definition of CU in engineering education literature is the historical
dominance of CU research in the natural science field. Another reason may be that engineering is
often thought of as applying science and mathematics concepts. Therefore, engineering specific
“conceptual domains might not be seen necessary” [32]. Although engineers must understand
underlying science concepts, engineering CU should also reflect the practical, applied nature of
the field. Thus, we define engineering CU as being able to reason about, relate, or apply concepts,

where we define three levels of concepts, summarized in Fig. 2.1: (1) why it matters concepts, (2)
what it is concepts, and (3) how it works concepts.

As in most definitions, our proposed definition of engineering CU includes understanding the
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relationships between concepts. However, unlike the definitions of CU in Section 2.1.1 , this def-
inition extends CU to explicitly include the application of and reasoning about concepts. Further,
the proposed definition differentiates concepts into three levels. Tab. 2.1 illustrates some S&S
concepts at each concept level.

(1) Why it matters concepts require knowing why something is important or what purpose
it serves. These concepts thus allow engineers to select the most relevant concepts to apply to
a possibly novel problem. An example concept from Tab. 2.1 is that the FT often yields a more
convenient signal representation for analysis. This concept shows the importance of considering
the full definition of CU because students’ ability to state this concept does not mean they have CU
of it. CU requires that one can reason about, relate, or apply this concept. An application of the
concept would be selecting the FT to analyze an appropriate problem (rather than other possible
tools) because the student recognizes the advantage of the Fourier representation. The “because” in
the preceding sentence demonstrates the difficulty of measuring CU: it is challenging to know why
a student decides to use the FT. Why it matters concepts most closely align with understanding the
purpose of a calculation in the definition of CU from [29].

(2) What it is concepts relate or define ideas. These types of concepts therefore allow engineers
to characterize and differentiate concepts. An example “what it is” concept is the definition of
Linearity and time invariance (LTI). To repeat the point in the previous paragraph, simply stating
the definition would fall under memorized knowledge or PK, while understanding the definition as
a concept is characterized by the ability to reason about, relate, or apply it. For example, question
24 on the SSCI tests CU of LTI by presenting students with three graphical input/output pairs and
asking if the system could be linear and/or time invariant. Standard homework problems in most
S&S textbooks [33]–[35] ask students to determine if systems are LTI based on a mathematical

Why it matters
Why something is important or what purpose it serves.

Allows engineers to select the most relevant
concepts to apply to a problem.

What it is
Relates or defines ideas.

Allows engineers to define and differentiate concepts.

How it works
How a procedure achieves its purpose.

Allows engineers to more easily remember procedures
and extend concepts to new contexts.

Figure 2.1: Types of concepts in the proposed definition of conceptual understanding.
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relation between the input and output, so the graphical presentation of question 24 is atypical for
students. Thus, students have to reason about what LTI means and apply the definition in the
graphical format.

Taken together, knowing “what it is” and “why it matters” helps engineers recognize when
concepts may apply to a problem. We hypothesize that “why it matters” and “what it is” concepts
are both relatively introductory-level concepts and that students can often learn them in either order
with little previous exposure. However, as the previous examples show, even if the initial concept is
easy for students to learn to repeat in words, it can take practice and seeing the concept in different
applications for students to reach deep levels of CU for these concepts.

(3) How it works concepts encapsulate how a procedure achieves its purpose. These concepts
allow engineers to more easily remember procedures and to extend concepts to new contexts. One
example is that the FT performs a change of basis. As with the previous two types of concepts,
students may be able to quickly learn to state the “how it works” concepts in Tab. 2.1, but reaching
CU is more challenging. For this example concept, a student with CU could relate the FT to other
linear transforms and would better understand coordinate systems and how to change coordinate
systems more broadly. This example also shows CU and PK are not disjoint–some information
may fall in both categories.

Table 2.1: Example engineering concepts in signals and systems at the three proposed concept levels. Ex-
amples of PK include the ability to write and compute a FT integral, perform a convolution, and check if a
system is LTI.

“Why it matters” “What it is” concepts “How it works” concepts

• The FT often yields a more
convenient signal representa-
tion for analysis.

• Checking if a system is LTI
determines if the output can
be computed using a convolu-
tion.

• Convolution is the correct op-
eration to find the output of
LTI systems.

• Pole-zero plots are useful to
determine system stability and
causality.

• Verifying a system’s stability
and causality is important for
real-world systems.

• The FT relates time to fre-
quency space.

• A linear system is one which
satisfies the homogeneity
and scaling properties.

• The Fourier transform relates
convolution in one domain to
multiplication in the dual do-
main.

• Convolution is commutative.
• Poles in the right half of the

plane mean a system is unsta-
ble.

• Complex exponentials form
a basis for signals. The FT is
the corresponding change of
basis.

• Why the superposition prin-
ciple applies to LTI systems
and that convolution with the
impulse response performs
this superposition.

• Understanding why the
FT dualities hold, such as
convolution-multiplication.
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While students may learn “what it is” or “why it matters” concepts in any order, we hypothesize
that “how it works” concepts are generally harder to achieve and often require the previous two
levels of CU alongside a high level of PK. Many of these “how it works” concepts may not be the
goal of introductory level (or even upper-level) undergraduate courses.

2.1.3 Models of Conceptual Understanding and Change

Historically, conceptual change research concentrated on identifying common conceptual er-
rors rather than building a unifying theory of CU. The theoretical perspectives presented below
were proposed since the 1980s and build on ideas about cognitivism. In turn, cognitivism was a
response to its predecessor: behaviorism. For context, this section first briefly reviews behavior-
ism and cognitivism. The behaviorist and cognitivist frameworks are two ways of thinking about
how students learn. They have different definitions for what constitutes knowledge and learning
and therefore suggest different best practices for teaching styles, instructor and student roles, and
assessment techniques [36].

The behaviorist framework was originally proposed in 1913 and remained dominant through
the 1960s [36]. This framework considers the learner as a black-box, where the instructor can only
observe the inputs (e.g., lessons) and outputs (e.g., exam responses). The instructor’s goal is to
find which inputs yield the desired outputs, then reinforce that behavior over multiple repetitions.
When designing courses and curricula, behaviorists recommend that instructors:

• first design instructional objectives, then design the course to meet the objectives;
• break large tasks down into sub-tasks and tackle each piece on its own; and
• ensure that each learner reaches mastery of one piece before continuing.

Although behaviorism is commonly associated with lecturing, truly meeting the repetition and
mastery elements requires self-pacing [36].

Cognitivism, introduced in the 1950s, is the current dominant educational theory [36], [37].
Rather than viewing the learner as a black-box, cognitivists try to understand the mechanisms
behind how students learn and understand knowledge. In doing so, cognitivists describe student
knowledge as belonging to a model, and they frequently recommend that instructors activate these
models before teaching so students can focus on either validating or correcting them. Under the
cognitivist framework, “knowing consists of having mental models that have been created and
stored in the learner’s long-term memory as a function of interacting with the environment [and]
. . . learning is the process of creating those models” [emphasis added] [36]. Cognitivism is fre-
quently associated with demonstrations, inquiry learning, and other forms of active learning.

Taking the cognitivist viewpoint that understanding how students learn is important (rather
than viewing them as black-boxes as in the behaviourist tradition), we now turn to discussing the
theories for how conceptual knowledge is structured and how conceptual change occurs [26]. The
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following sections describe two prominent theories: framework theory and knowledge in pieces
theory.

While framework theory and knowledge in pieces theory are two of the most commonly cited
theories on conceptual change, there are additional theories. For example, schema theory and script
theory both consider knowledge that is organized into structures based on context. Rumelhart
[38] suggested that people organize knowledge about objects and relationships at all levels of
specificity into schemata. For example, a schema on the Fourier transform might include general
characteristics of the FT (the FT involves a complex integral, it uses F {·} as a symbol, etc.), how
the FT is commonly used (in filtering problems, to transform a time domain signal to a frequency
domain signal), when one typically sees a FT (a signals and systems class), specific examples of the
FT (perhaps from homework problems or in-class examples), and knowledge of the FT as an option
in the “engineer’s toolkit” (either very valuable or of dubious value). People make predictions in
new situations based on what seems most likely using the information stored in the schema.

Script theory is very similar to schema theory, but with a heavier focus on the sequential nature
of events. Both theories align with the definition of CU in [29]: “an understanding of the phenom-
ena underlying a calculation, including the context, purpose, necessary assumptions, and range
of reasonable values expected.” Salzman and Strobel [32] provide a more thorough overview of
additional theories and further discuss what CU is, how conceptual change occurs, how stable CU
is, and how students react when they learn something that challenges their current CU.

2.1.3.1 Framework Theory

Framework theory [39] posits that students develop their own fairly coherent ideas of the world
through everyday experiences (e.g., blocks move when pushed). These ideas form a “naı̈ve physics”
framework. Students then add information they learn in school (e.g., forces cause motion) into their
naı̈ve framework. Since some new information often contradicts naı̈ve physics (e.g., gravity is act-
ing on the block even if it is not moving), the learning process can cause fragmentation and leave
problematic reasonings. “Synthetic frameworks” are the intermediate frameworks that students
create as they mold naı̈ve physics to match the physics taught in classrooms.

Coherence is a central tenet of framework theory. Vosniadou and Skopeliti [39, p. 1430]
claimed that “categorization is the most fundamental learning mechanism, a mechanism which
most of the time promotes learning but which, in cases where conceptual change is required, can
inhibit it.” Imagine students’ minds like a well-organized folder system, where every topic is nested
within a parent topic. If students already have a folder created for “forces,” adding a sub-folder
for “gravity” may be easy, because it will inherit all the traits of other forces. However, if students
misfiled gravity elsewhere, it could be hard for them to move all concepts related to gravity over
to the correct folder. Framework theory emphasizes coherence, but the framework is still loose,
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with room for fragmentation. In fact, framework theory predicts that synthetic frameworks will
be fragmented, partially because students do not have the mental capacity to realize the incoher-
ence (recall that framework theory was largely developed by studying young elementary school
children).

Applying framework theory, one can predict the slow process of conceptual change as students
move from a coherent-but-naı̈ve framework, through multiple synthetic frameworks, and eventu-
ally (hopefully) to an expert-like, coherent framework. Framework theory further explains that
problematic reasonings often stem from topics that involve abstract concepts or concepts that deny
naı̈ve intuition (e.g., gravity is acting on a block, even if the block is not moving). Instructors
can therefore use framework theory to predict what concepts students will struggle with and how
they might corrupt teachings to match naı̈ve ideas. As another example, [39] describes how many
children, when told the Earth is round, will picture the Earth as a pancake. Their everyday experi-
ence is of a flat world, but they have “learned” that the Earth is actually round. With this in mind,
instructors can plan to elaborate on what they mean by “round.”

Building on framework theory, Chi [40] suggests that “category mistakes” make it difficult
to learn concepts that are incorrectly placed in one category of a framework because the concepts
must be moved to the correct category. Chi concentrates on the example of how emergent processes
are harder for students to understand than sequential processes. The classic diffusion example [41]
provides an illustration: Imagine that you drop a small amount of dye into a glass of water. Over
time, the molecules will move, interact randomly, and the dye will spread out. Children often
explain this in a sequential way: the dye wants to go where it is less crowded, so it moves away
and diffuses. However, the reality is an emergent process, where the micro scale elements of
the system (the molecules) act in such a way to produce what may appear to be a macro scale
phenomenon (diffusion). Other examples of emergent processes that are often misconceived as
sequential processes are heat transfer as “hot particles” leaving and geese’s V-formation as the goal
of the flock [41]. In addition to being useful to predict certain topics that students will struggle with,
Chi’s theory cautions instructors when building on students’ prior knowledge when the ontological
categories do not align between the prior and new knowledge.

2.1.3.2 Knowledge in Pieces

diSessa’s Knowledge in Pieces (KiP) theory [42] is on the opposite side of framework theory in
the coherence versus fragmentation of knowledge debate. KiP proposes that naı̈ve knowledge
is composed of thousands of relatively independent “phenomenological primitives” or “p-prims”
[43]. Here, phenomenological refers to the fact that these naı̈ve ideas, originate from everyday,
real-world experiences, similar to in framework theory. Primitive means that the ideas are usually
evoked as a whole and are “explanatorily primitive;” the only answer a student can give you about
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why the belief holds is “because that’s how things are” [44]. Example p-prims, which are intuitive
based on a child’s experience but untrue, are “increased effort begets greater results” and “multi-
plication makes numbers bigger” [42]. With instruction, these p-prims tend to organize and form
a somewhat coherent framework.

Both framework theory and KiP recognize that students start with a naı̈ve understanding of the
world and that this understanding changes as they learn. The major distinction between the two
is the degree of coherence versus fragmentation. In framework theory, students start out with a
relatively coherent, albeit naı̈ve, framework that often fragments as they learn and incorporate new
knowledge until they reach an expert-like, coherent framework. In KiP, fragmentation is the initial
state since “p-prims are many, loosely organized, and sometimes highly contextual” [44, p. 9].
Then, as students learn, coherence increases since “integration (increase coherence) is virtually the
definition of conceptual advancement” [44, p. 10].

A large focus of KiP is the context-dependent nature of knowledge [43]. A student may apply
a p-prim in one situation but not another, despite the obvious (to the instructor or researcher)
connections between the two. For example, diSessa, Gillespie, and Esterly [43] observed that
young children change their response about whether a block in a diagram experiences a force
depending on the block’s color. Language, students’ moods, time of the day, and many other
contextual variables might impact which p-prims students call upon to respond to questions.

In contrast to framework theory, implications of KiP to instructional practice suggest it is un-
realistic for instructors to try to confront every one of hundreds or thousands of naı̈ve conceptions
that students have or to reliably predict how students will respond to a certain lesson. This posi-
tion is aligned with constructivist theory, since every learner will bring their own background to
a lesson and this background will change how they view and interpret the new material. The KiP
theory also predicts that students will have trouble undergoing conceptual change for certain topics
because they need to first gain enough knowledge to develop the concept [44].

2.1.3.3 Evidence for Conceptual Understanding Models

Framework theory [39] and the KiP theory [42] exist on a continuum; framework theory argues that
knowledge is relatively coherent, while knowledge in pieces argues that knowledge is relatively
fragmented. The authors of each theory do not expect every instance of conceptual change to
follow their theory exactly; age, subject matter, and other contextual factors likely impact how
conceptual change occurs [43]. Further, neither framework theory nor KiP is extreme in their
coherence versus fragmentation stance. For example, KiP allows for some coherence: many p-
prims are connected, some have wide scope, and children can start to form a coherent framework
before schooling. However, there are so many independent elements (p-prims) in a knowledge
system, that one cannot succinctly describe it as a single, coherent framework [43].
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Both theories have supporting empirical evidence [39], [43], so the choice to apply one theory
or the other should be based on context. For example, for SS concepts, [45] found students struggle
with continuous versus discrete categories, similar to Chi’s argument about category mistakes, and
that the p-prim that “time is continuous” may especially challenge students. Ref. [29], [46],
[47] similarly suggest that persistent incorrect student reasonings in circuits, fluid dynamics, and
mechanics courses are due to category mistakes. Other incorrect reasonings, are dependent on the
problem context and not fully explained by category mistakes; Brown, Montfort, Perova-Mello,
et al. [46] interprets such a finding with framework theory, though KiP can similarly explain this
contextually-dependent application of concepts.

The CU theories grounded our understanding of CU, but I did not explicitly adopt a single
theory of CU for two primary reasons. First, it is challenging (if not impossible) to measure the
amount of coherence or fragmentation of students’ mental models [32]. Second, while theories are
based on philosophical arguments and backed by empirical data, they were created to paint broad
strokes; they aim to understand general mechanisms of understanding and how students think. In
their generality, the theories lose context-specific information that may impact exactly how CU is
developed in particular sub-fields of engineering.

2.1.4 Measuring Conceptual Understanding

Section 2.1.1 presented varying perspectives on how to define CU; Section 2.1.2 builds on those
definitions from the literature and proposes a definition of CU specific to engineering. After defin-
ing CU, the next challenge for an empirical study is deciding how to measure it. This section
discusses two common methods: (1) think-aloud interviews and (2) concept inventories. Tab. 2.2
summarizes the main points for both methods.

2.1.4.1 Think-aloud Interviews

Think-aloud interviews involve asking participants to solve a problem while saying what they
are thinking. These interviews are one type of concurrent verbal reporting, which means that
participants talk as they are doing the task, rather than providing a retrospective report of their
reasoning after completing the task. Much of the literature on think-aloud interviews comes from
usability interviews aimed at assessing how participants interface with a new product. Charters
[48] discusses how the methodology can be used in qualitative research in an education setting and
many previous engineering education studies use think-aloud interviews, e.g., [29], [49]–[51].

The label “think-aloud interview” and “clinical interview” are sometimes used interchangeably,
with the exact methodology varying considerably between studies. Typically, in comparison to
think-aloud interviews, clinical interviews involve more interaction between the interviewer and
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Table 2.2: Summary of the two primary ways to measure conceptual understanding.

Think-aloud interviews Concept inventories
What Participants talk through their

thought process as they solve
problems

Participants take a multiple-choice
test

Typical analysis Qualitative: Speech communica-
tion theories, quantizing qualitative
data

Quantitative: Item response theory,
statistical tests

Disadvantages
• Do not fully reflect participant

knowledge
• Do not only reflect participant

knowledge
• Small sample size

• Possibility of guessing can skew
results

• Shallow view on participant un-
derstanding

Advantages Deeper view on participant under-
standing

Repeatable and easy to scale

participant, and interviewers often ask for clarification, elaboration, and confirmation throughout
the interview [52]. The goal of a clinical interview is for the interviewer and interviewee to work
together to understand the interviewee’s reasoning and clinical interviews may be “formative and
exploratory,” [52] unlike think-aloud interviews where interviewers are typically testing a set of
preformed hypotheses. Researchers may also choose to follow a think-aloud interview with a
clinical exit interview as a method of data triangulation; see Charters [48] for further discussion of
this point.

Ericsson and Simon [53] pioneered the theoretical framework behind think-aloud interviews in
the early 1980s [48]. They argue that asking participants to think-aloud does not alter participants’
task performance or the structure or sequence of mental processes, and it slows them down “only
moderately.” (The slow-down in task completion is typically negligible. However, it does mean
certain time-sensitive tasks, like juggling, are not suitable to the think-aloud method.) Further,
the authors contend that think-aloud data is reliable if it is collected and analyzed according to
their methodology [54]. The think-aloud methodology proposed by [53] is very strict in requiring
interviewers to avoid social interaction. For example, [54] recommends that the interviewer sit
behind the participant to emphasize that the interviewer does not expect any social interaction and
to use the reminder “keep talking” rather than “tell me what you’re thinking” when necessary to
avoid making a social request.

Boren and Ramey [55] suggest that most think-aloud practice is incompatible with the the-
ory from [53]. Instead of blaming bad practice, [55] argues the strict methodology may be too
limiting for many research questions and that, even when an interviewer can and does avoid so-
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cial interaction, interviewees cannot completely ignore the presence of interviewers. Boren and
Ramey [55] propose a new theoretical backing for analyzing verbal report data based on speech
communication theories to better align think-aloud theory with practice. Although [55] considers
usability interviews, the proposed methodology is similar to think-aloud interviews in previous
engineering education research studies, e.g., [29], [49]–[51]. The authors suggest making the par-
ticipant the expert, defining roles at the start of the interview, making the recording as unobtrusive
as possible, and interrupting the participant as little as possible. Rather than a potentially brusque
“keep talking” command, interviewers should use gentle reminders to think-aloud when needed.
Although diSessa [52] does not cite [55], he recommends similar interviewer practices for clinical
interviews, and this section weaves in suggestions from both works despite the note above about
technical differences between think-aloud and clinical interviews.

Regardless of the theoretical framework, interviews should be carefully designed to minimize
the impact of methodological disadvantages. In particular, there are two, related common criti-
cisms of think-aloud interviews:

1. Think-aloud interviews do not fully reflect participant knowledge

2. Think-aloud interviews do not only reflect participant knowledge.

Both concerns apply similarly for clinical interviews, with the first being less of a concern and
the second being more of a concern due to increased interaction between interviewer and intervie-
wee. We summarize recommendations from numerous articles below on how to minimize these
concerns.

The first concern, that think-aloud interviews do not fully reflect participant knowledge,
is that participants do not reveal all of their knowledge during an interview and that the data are
thus incomplete. In other words, the researcher can only analyze what people say–not their actual
understanding.

There are many reasons participants might not reveal all their knowledge. First, if participants
do not understand the purpose of the study, they may assume the goal is to “display only norma-
tively correct knowledge, as is commonplace in schools,” in which case the “interviewer fails”
because participants do not talk through their full thought processes [43]. Second, the specific,
and perhaps unusual, setting of an interview means participants may use different knowledge than
what they would use in practice; diSessa [52] calls this “ecological validity.” For educational con-
texts where the interview objective is to understand what concepts students use to solve problems,
as in [49], the interview context and context of interest are very similar. The artificiality of the
interview can also be beneficial because it allows interviewers to present problems that are rare in
the real-world [52].

Interview data depend on other contextual variables, e.g., environmental factors such as time
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of day, what the interviewee was previously working on or thinking about [26], or even on con-
textual factors that are relevant to the student but not obvious to the researcher as discussed in
Section 2.1.3.2. Thus, participants might not use thought patterns in an interview that they might
have in another context and the qualitative data reflects “revealed knowledge” rather than directly
measuring CU [51].

To lessen the impact of interviews not fully capturing participant knowledge, interviewers can:

1. pilot their protocol and pick questions that elicit good verbal data;

2. if an interview protocol allows for social interaction, ask students for clarification on their
thought processes as needed;

3. to help participants engage more fully in the interview, reiterate that the purpose of the
interview is to see how the participant thinks, not to judge them or get a correct answer;

4. follow standard courtesies and interview methods to ensure the participant is comfortable
during the interview; and

5. create a setting that is as close to possible to the setting of interest.

Finally, as Ericsson and Simon [54] notes, although it may be a “naı̈ve hope that the full detail of
cognitive processes could be made overt,” interview data can still be useful, especially when used
to test or create a hypothesis or in conjunction with other data.

The second concern, that think-aloud interviews do not only reflect participant knowledge,
is related to the point above that other contextual variables influence participants’ responses. Of
particular concern is that the data can capture the impact of interactions between the interviewer
and interviewee. Changes in facial expression, tone, repeating a question, or other signs of interest
can all be interpreted by the interviewee and change the results, even when unintended by the
interviewer. This is why Ericsson and Simon [54] requires such a strict methodology with minimal
social interaction. However, as mentioned above, this is infeasible for many research designs.

To lessen the undesired impact of interviewers themselves on the data, interviewers can:

1. avoid expressing judgement about ways of thinking;

2. minimize interruptions during the interview;

3. set expectations about the role of the interviewer/interviewee at the start of the conversation;
and

4. be careful during data analysis to not impose their own viewpoints/ideas.

Good evidence of the success of these strategies is if the interviewee responds “with a range of
reactions to questions and offered alternatives,” i.e., interviewees sometimes change their positions,
sometimes defend, and are sometimes uncertain in response to questions posed to them [52].
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Another characteristic not yet mentioned of think-aloud interviews is common to most qual-
itative methods: because of the labor-intensive methodology, think-aloud interviews typically
involve a relatively small number of participants. Researchers thus must sample strategically to
get high quality data. For example, for a think-aloud interview investigating CU, a strategic sample
might include students with a range of levels of understanding. Because of the level of coopera-
tion needed from participants in think-aloud interviews, interviewers need to prioritize working
with participants who are interested in and willing to participate in the interview over sampling to
achieve diversity across a wide range of variables [48].

Finally, because think-aloud interviews are typically only done with a small number of partic-
ipants, researchers should only use this methodology when it matches their research question. In
engineering education, think-aloud interviews are typically used to more deeply understand how
students think or to identify problematic reasonings, e.g., as is [29], [56]. Other methodologies,
such as concept inventories, are better suited to testing large populations of students and general-
izing results.

After the interview, think-aloud data are typically transcribed then analyzed using any qualita-
tive analysis method. For example, [29] used the constant comparative method and pattern coding.
If the questions asked during a think-aloud interview are structured to have a small number of com-
mon approaches or expected errors, then the think-aloud data also lends itself to quantization. To
analyze their think-aloud data, Wage, Buck, and Hjalmarson [49] tabluated characteristics of each
participants’ response to each question. Specifically, they listed the participants’ final answers,
their overall understanding of the concept for that question (right, partial, muddled, or wrong), the
type of language used in their responses (technical, non-technical, or both), the overall problem
solving strategy (guess, inspection, process, or elimination), and their overall confidence of their
answer (high, medium, or low).

2.1.4.2 Concept Inventories

A quantitative approach to measuring CU is to use a Concept Inventory (CI). CIs are collections
of validated, standardized conceptual questions. Writing a good CI often starts with think-aloud
interviews for content and construct validity. After the initial validation, the questions can be
given to a larger group of students, without the need to interview each student individually. With
undergraduate students, CIs are a common way to: quantify how much students learned during
the semester (e.g., using a pre- and post- test format for test administration), determine which
concepts are most difficult for students, analyze common errors (based on frequently chosen wrong
answers), and investigate how performance on the test correlates with other variables (e.g., grades
or demographics) [26].

Although they can take many formats, CIs are typically timed, multiple choice question tests.
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The questions often require no or very little use of formulas or mathematics, and can be answered
by reasoning about concepts only. Most questions typically test one concept, while a few test
combining concepts. Concepts are often tested in multiple questions and incorrect options can
represent common errors.

CIs derive their their name from the Force Concept Inventory (FCI, [57]) [30], which was
introduced in 1992. Fig. 2.2 shows two example questions from the FCI [57]. Since the FCI,
researchers have developed many inventories to test understanding of other subjects. However, CIs
are still more prevalent in physics and mechanical engineering than in EE.

Two metal balls are about the same size, but one weighs twice as much as the
other. The balls are dropped from the top of a two story building at the same
instant of time. The time it takes the balls to reach the ground below will be:

A about half as long for the heavier ball.
B about half as long for the lighter ball.
C about the same time for both balls.
D considerably less for the heavier ball, but not necessarily half

as long.
E considerably less for the lighter ball, but not necessarily half as

long.

Two people, a large man and a boy, are pulling as hard as they can on
two ropes attached to a crate as illustrated in the diagram to the right.
Which of the indicated paths (A-E) would most likely correspond to
the path of the crate as they pull it along?

Figure 2.2: Two example questions from the FCI. The correct answers are C and B respectively.

Below is a list of a few EE CIs with the number of citations according to Google Scholar as of
January 2022 as a simple proxy for the popularity of the CIs. This is not meant to be a statement
about the test quality, as some subject matters are simply studied more often than others.

• DIRECT (Determining and Interpreting Resistive Electric Circuits Concept Test) [58] (cited
680 times). Engelhardt and Beichner [58] developed two versions of the test: one similar to
the format described above and one with open-ended questions. The paper discusses validity
testing using both high school and undergraduate students.

• SECDT (Simple Electric Circuits Diagnostic Test) [59] (cited 390 times). Although SECDT
was developed with high-schoolers, some researchers may find it useful for a beginning
undergraduate course. To help with data analysis, SECDT uses a three-tier format: (tier 1)
the student’s answer to a question, (tier 2) reason why the student chose that answer, and
(tier 3) a certainty of response index.
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• SSCI (Signals and Systems Concept Inventory) [1] (cited 179 times). Section 2.2.3 describes
the SSCI.

• EMCI (Electromagnetics Concept Inventory) [60] (cited 65 times).

There are also CIs that are closely related to EE in physics and mechanics, e.g., electricity and
magnetism [61] and controls [62]. However, these CIs tend to focus on examples from physics and
mechanics and would likely require modifications before use in an EE setting.

CIs are relatively easy to use, repeatable, and often have already been validated. However,
there are limitations to the CI format. As seen in the second example FCI question above, CI ques-
tions can require assumptions or outside knowledge. Although the exact mechanism is unknown,
conceptual questions can also unfairly advantage different student populations, e.g., [63] shows
certain FCI questions advantage men while others advantage women. Another limitation of CIs is
that the questions are typically designed to measure single concepts. Thus, CIs do not test concept
synthesis (or they only test synthesis of a select few concepts), students’ use of scientific practices,
or overall problem solving ability [64], [65].

A major limitation of CIs is that students can use process of elimination to answer correctly
even when they do not have a full understanding of the concept tested by that question [66]. By
analyzing interview data and open-ended final exam problems, researchers concluded that students
who have good CU tend to get the corresponding SSCI question correct, but students can still get
the SSCI question correct when they do not have full CU [56], [67]. We view this limitation as a
known bias: students’ scores on the SSCI may over-inflate their CU but are unlikely to underesti-
mate understanding.

One way to combat the problem of students guessing would be to require students to explain
their answers. Analyzing the resulting textual data is challenging in large classes and results in data
that is less comparable across contexts. New natural language processing algorithms are making
it easier to semi-automatically grade student explanations [66], [68]. These systems may allow
for combining the main benefit of think-aloud interviews (a detailed picture of students’ CU) with
the main benefit of CIs (scalability/repeatability). However, such text analysis systems would still
be limited in how well they can assess students CU. For example, Goris and Dyrenfurth [47]
hypothesized that “misconceptions [in seniors] became more difficult to detect and were possibly
hidden under scientific terminology and well developed scientific vocabulary.” Montfort, Brown,
and Pollock [29] similarly found that students (especially seniors and graduate students) were more
confident in their ability and were able to hide a lack of CU behind mathematical skills and PK.

The quantitative data from CIs can be analyzed using many statistical methods. Following the
analysis of Hake [69], concepts inventories are often given in a pre/post-test format and researchers
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typically report normalized gain statistics,

〈g〉 =
∑

i

posti − prei

max-scorei − prei
, (2.1)

where the sum over i averages the gain of all students in the sample. Normalized gain is an average
measure of how many concepts students learned as a fraction of how many that they did not know
at the time of the pre-test. Because 〈g〉 is normalized, it can be used across course contexts “as a
rough measure of the effectiveness of a course in promoting conceptual understanding” [69]. One
can also use tools from psychometrics such as classical test theory and item response theory to
examine individual questions, e.g., as used in [63], [70].

2.2 The Signals and Systems Curriculum

This dissertation concentrates on S&S, which is a standard electrical engineering (EE) undergrad-
uate course covering LTI system properties, impulse and system responses, Fourier transforms
(FT), Laplace transforms, and filtering. S&S provides core concepts that are “of fundamental im-
portance in all engineering disciplines” [34, p. xvii]. Although this work concentrates on S&S, the
discussion and results likely transfer to many other disciplines with the same challenges.

Despite the importance educators place on concepts in S&S, studies show that many students
learn less than half of new concepts in a S&S course [1], and that students can derive the correct
answer on procedural questions without being able to explain the underlying concepts [66], [71].
For example, students may be able to use convolution to derive the output of a LTI system given
an input and impulse response, without understanding how the math is fundamentally relying on
the properties of LTI systems, which is one of the first major concepts in S&S courses.

This section first overviews the S&S concepts that are the main focus of this dissertation:
convolution, LTI, FT, and filtering, to provide background to readers who are unfamiliar with
S&S concepts. It then reasons why S&S concepts may be especially challenging to students.
Finally, this section describes the SSCI–the concept inventory to measure CU in S&S which we
use throughout Part 1.5.

2.2.1 The Concepts in Signals and Systems

The introductory undergraduate S&S course typically involves three hours of lecture per week,
and is sometimes accompanied by an additional discussion or lab time. The course covers a lot
of material, including signal representations, continuous-time systems and system properties, fre-
quency domain concepts, Fourier series, Fourier transforms, and Laplace transforms. This section
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provides a brief background on some of the main concepts from SS and presents previous findings
about conceptual understanding that are specific to each concept. We specifically concentrate on
LTI, convolution, FT, and filtering concepts; these concepts are covered in detail by standard S&S
textbooks [33]–[35].

This section uses the following common notation:
• The radian frequency variable is ω.
• Time functions are always lowercase, i.e., x(t), and Fourier/Laplace transforms are always

uppercase, i.e., X(ω), X(s).
• Input functions are denoted by x(t), impulse responses by h(t), and outputs by y(t).
• A generic system is represented as y(t) = S {x(t)}.
• Transform pairs are always indicated by the same letter, i.e., X(ω) is the Fourier transform

of x(t).

All signals are continuous time signals.

2.2.1.1 Linear and Time Invariant

A system is time invariant if any time shift in any input signal yields a corresponding time shift
in the output signal but does not otherwise change the output signal, i.e., if S {x(t)} = y(t) then
S {x(t − τ)} = y(t−τ) for all signals x and y and for any time shift τ. A system is linear if it satisfies
the additivity and homogeneity properties for all possible input-output pairs:

Additivity : S {x1(t) + x2(t)} = y1(t) + y2(t)

Homogeneity : S {αx(t)} = αy(t) ∀α.

Taken together, the additivity and homogeneity properties yield the superposition property:

S {αx1(t) + βx2(t)} = αy1(t) + βy2(t). (2.2)

Systems that are both linear and time invariant are LTI; S&S courses focus (almost exclusively) on
LTI systems.

In addition to understanding the above definition of the linear and time invariant properties,
S&S courses often emphasize other concepts related to LTI systems, including:

• What types of systems are LTI and how to verify whether a system is LTI.

• Few physical systems are truly LTI. However, LTI systems provide a good approximation
for many physical systems.
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• LTI systems are analytically convenient because the output is completely determined by the
input and impulse response. Further, there are many tools, such as the FT, that make LTI
analysis easier than analysis of non-linear or time varying systems.

The next section on convolution expands on the last point.
Students rate the difficulty of understanding system properties lower than instructors do [72],

perhaps because students associate LTI concepts with relatively easy procedures. Nasr, Hall, and
Garik [71] found that students are likely to predict the correct output to an LTI system given an
input/output pair and a new input (they can perform the procedure), but they describe their response
as self-evident and show no understanding of how the answer is grounded in LTI properties [71].
Students similarly could find the correct step response given the output from a finite duration
pulse, but they used intuitive claims of symmetry and extrapolation without demonstrating any
understanding of superposition. Although experts likely use the same “tricks” as students, [71]
argues that instructors check their assumptions while students rely on them without verification.

2.2.1.2 Convolution

Convolution is the mathematical operation that calculates the output of an LTI system y(t) based
on the input signal x(t) and the impulse response h(t). Specifically, the convolution integral is

y(t) = x(t) ~ h(t) =

∫ ∞

-∞
x(τ)h(t − τ)dτ. (2.3)

The mathematical notation in (2.3) is confusing on its own; the way convolution is typically written
as y(t) = x(t)~h(t) suggests convolution is a point-wise operation. A recognized, but less prevalent,
notation is y(t) = (x ~ h)(t), which emphasizes that the output at time t can depend on the signal
and impulse response values for all time. (Section 2.2.2 discusses how language may be similarly
misleading or confusing.)

To solve a graphical convolution problem, students are typically taught to use the “reflect-and-
shift” method. For a single time value t, the output is the integral of the input x(τ) point-wise
scaled by the reflected impulse response function shifted by t. The canonical convolution example
in S&S is two rectangular signals, which results in a triangle if the rectangles are the same width
or a trapezoid otherwise. If students have CU of the convolution procedure, then they should
understand what properties of the rectangular signals determine the maximum height and start/end
times of the output. The SSCI tests these abilities in Q13 and Q15.

Some example concepts from S&S are:
• Convolution is distributive, i.e., x(t) ~ (h1(t) + h2(t)) = x(t) ~ h1(t) + x(t) ~ h2(t). Therefore,

the output of a parallel connection of LTI systems is the sum of their individual outputs.
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• Convolution is associative, i.e., (x(t) ~ h1(t)) ~ h2(t) = x(t) ~ (h1(t) ~ h2(t)). Therefore, the
impulse response of the equivalent system to a series of LTI systems is the convolution of
the impulse responses for the individual systems.

• Convolution is commutative, i.e., x(t) ~ h(t) = h(t) ~ x(t). Therefore, a series of LTI opera-
tions has the equivalent effect when applied in any order.

• Convolution with a time-shifted impulse shifts the signal by the same time-shift.
Some connections between system properties and the impulse response can also be understood
when considering how convolution works. For example, with a full understanding of the con-
volution integral (2.3), one can show that a LTI system is memoryless if its impulse response is
a scaled impulse at t = 0 and that a LTI system is bounded input, bounded output stable if the
impulse response is absolutely integrable.

Convolution is often ranked high in difficulty among S&S topics because it is a multi-step
process that students often do not connect to a concept or application [72]. Students struggle to
determine the limits of integration and the time domain over which the output occurs, and they
often incorrectly assume no contribution to the integral when one signal is negative because there
is no graphical overlap [71]. Even when students performed part of the procedure correctly, for
example adding the start and end times of the inputs to get the extent of the output, [56] found they
had memorized “tricks” and did not justify their approach.

Without CU backing the tricks, students tend to overgeneralize examples seen in class [56],
[71]. For example, if in-class problems always have the same limits of integration (often 0 to t)
or have a unit-amplitude, students may not be able to convolve more general signals. As evidence
that students can recognize patterns without underlying CU, [56] found students know the output
of the convolution of two rectangles should be a trapezoid, but they did not show understanding
of what determines the maximum amplitude nor the slope of the trapezoid. Ref. [71] similarly
found that students struggled when a system was non-causal or when a signal differed from typical
in-class example problems, e.g., if it did not start at t = 0, was defined differently over multiple
intervals, or had negative values.

2.2.1.3 Fourier Transform

The FT is a major focus of S&S courses; the overview here is necessarily just a small piece of the
very important topic. The mathematical definition of a FT and an inverse FT is

F {x(t)} = X(ω) =

∫ ∞

-∞
x(t)e- jωtdt (2.4)

F -1 {X(ω)} =
1

2π

∫ ∞

-∞
X(ω)e jωtdω. (2.5)
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Different writers use different notation for the FT of a signal, typically either X(ω) [35] or X( jω)
[33], [34], without changing the equations above (one can also use a hat or tilde rather than a
capital letter for the FT of a signal, but the main distinction here is what argument the FT takes).
Again, the mathematical notation itself can be a source of confusion as the latter notation, X( jω),
does not align with standard functional notation!

Some example FT concepts are
• When does the FT of a signal exist?
• All physically realizable signals have a FT.
• Properties of the FT including linearity, time shift, time scaling, etc. All these operations in

time have a dual operation on the FT, e.g., for time shift F {x(t − t0)} = X(ω)e- jωt0 . The time-
convolution property, x(t) ~ h(t) = X(ω)H(ω), is one of the most important such properties.

• The FT is a change of basis from a time domain to a frequency domain representation.
The FT is directly connected to many of the other concepts in S&S, for example, the FT of a
system’s impulse response, h(t)↔ H(ω), relates the FT to filtering concepts.

Students commonly identify the FT as one of the harder topics in S&S (along with convolution)
[51]. Students perceive the FT as hard because: challenging and abstract mathematics are required,
students struggled translating the graphical understanding to the symbolic mathematical represen-
tation, students did not understand its application/purpose, the topic was not used elsewhere in the
class or previous classes, and students struggled to understand the FT units [2], [51], [72], [73]. In
contrast to the perceived difficulty of the FT, students see the FT properties as an easier topic [51].
One possible explanation is that, similar to the LTI concepts, students see these properties only at
the level of procedural knowledge.

FT concepts readily demonstrate how it is difficult to separate PK from CU by simple def-
initions or when designing problems for a concept inventory. For example, Fayyaz [51] asked
students to find the FT of a signal written as the sum of sinusoids and cosines of varying frequen-
cies and amplitudes. One could attempt to use the FT definition (2.4) and PK to solve the problem.
Alternatively, one can recognize that sinusoids are the basis elements of the FT and correspond-
ingly identify the coefficients by inspection. Using qualitative methods, [51] found that students
were not able to use CU to recognize the convenient signal representation, but a correct response
on a concept inventory would not clarify which methods students used.

2.2.1.4 Filtering

Although there are many reasons and ways to filter a signal, many of the example problems in S&S
consider filters that remove certain frequency components of a signal and allow other frequency
components to pass through unaltered or with some gain/attenuation. More generally, one can
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interpret the effects of any LTI system as a filter where the output of the system y(t) is

y(t) = F -1 {X(ω)H(ω)} ,

where H(ω) = F {h(t)} is the FT of the impulse response and is called the frequency response.
Because of the convolution-multiplication duality of the FT, filtering concepts are usually taught in
the FT domain and the FT representation is typically more convenient for analysis. Thus, filtering
is a very important application of the LTI, convolution, and FT concepts.

Some filter concepts include:
• What does the cutoff frequency mean?
• When is it important for a filter to be causal?
• What are the advantages and disadvantages of different filter design methods?
• There is generally a trade-off between the filter’s roll-off steepness and design complexity.
• What is bandwidth?

S&S courses are often taught after a circuits course and textbooks generally relate many of these
filtering concepts to RC (resistor-capacitor) circuits.

It is easy to think of many real-world applications of filtering, and the concept of filtering does
not add much mathematical complexity beyond the FT. Thus, it is unsurprising that students rate
filters as one of the easier S&S topics [72]. However, [49] found students had many problem-
atic reasonings about frequency responses, which are a major concept in filtering. Wage, Buck,
and Hjalmarson [49] coined the term “Aitchofjayomegaphobia” (H-of-j-omega-phobia) based on
students’ fear of frequency responses.

One problematic reasoning about filtering likely stems from how filtering is often introduced
by defining ideal low-pass, high-pass, bandpass, and bandstop filters in the Fourier domain. Wage,
Buck, Nelson, et al. [56] found students over-generalized these simple, example filters; students
did not check the gain of the filter nor that the frequency of an input signal was less than the cutoff
frequency of a low-pass filter before stating the signal passed through. Some students further took
the idea of a filter as a “mask” to mean anything in X(ω) above H(ω) would be cut-off (thus if
X(ω0) = 2 and H(ω0) = 1, a student might say Y(ω0) = 1) [56].

2.2.2 Why Signals and Systems is Difficult

This section presents an overview of reasons behind common errors in S&S, primarily grouped by
the theoretical discussion in Section 2.1.3 and the findings from [50]. Montfort, Herman, Brown,
et al. [50] analyzed over 250 interviews from four engineering disciplines (material science, trans-
portation engineering, fluid mechanics, and digital logic) to search for patterns in which concepts
students find difficult. The authors use a qualitative, emergent analysis approach, followed by
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thematic analysis to synthesize information across the four engineering areas [50].
One of the most often cited reasons that students struggle with S&S is the highly theoretical,

abstract, or mathematical nature of the material, e.g., [51], [73]–[75]. The mathematical nature
of many S&S procedures means students easily “get lost in the complexity of the calculations with-
out understanding the effects of the process and the concepts involved” [76]. The abstract nature
may be especially challenging for students who prefer visualizing concepts. In the EE context,
Fayyaz [51] likewise concludes that S&S is hard for students largely because of the inability to
directly observe many of the phenomena and the disconnect from daily life.

A second reason S&S might be difficult comes from framework theory and the idea that stu-
dents struggle to correct miscategorized concepts. Montfort, Herman, Brown, et al. [50] found
that “students often inappropriately group dissimilar phenomena, processes or features.” For ex-
ample, because multiplexers and decoders have mirrored circuit diagrams, students think one is the
opposite of the other. This incorrect grouping leads to problematic reasonings and difficulty solv-
ing problems. This finding could be consistent with the synthetic framework stage of framework
theory or students trying to form a coherent framework through instruction in the KiP theory.

Fayyaz [51] similarly found students incorrectly categorized topics in S&S. Category mistakes
in S&S include confusing the differences between the continuous and discrete domain, periodic
and aperiodic signals, and finite and infinite duration signals. For example, [51] found that some
interviewees mistakenly equated signals in the time and frequency domains: they said that since
a constant in frequency has no ω in the expression, it has no frequency and thus the time domain
signal is also a constant (the correct response is a time domain impulse). In addition to the frame-
work theory perspective, p-prims, discussed in Section 2.1.3.2 as part of the KiP theory of CU,
could also explain the categorization errors. For example, [51] suggests the p-prim that time is
continuous makes it challenging for students to understand discrete time.

Another possible source of difficulty with S&S material is that students may use overly simpli-
fied reasoning. Ref. [50] also found that students reason “using simplified causal relationships.”
For example, students understood the if-A-then-B in Boolean logic as a cause and effect relation-
ship, without understanding that the statement says nothing about whether B can be true in the
absence of A. This finding expands on Chi’s theory about emergent processes since it claims that
students use causal reasoning in situations beyond just emergent processes. Along with the ex-
ample of grouping electronic components according to their circuit diagram symbol, this finding
suggest that students use overly simplistic reasoning. Therefore, [50] suggests instructors provide
more help to students digesting complex systems. This is echoed by [51], who suggests that in-
structors spend more time telling students how each piece of S&S knowledge fits into the larger
system. Specifically, the authors recommend making an analogy between the material and a (re-
latable) complex system, like an assembly line.
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A related explanation for why S&S is difficult is that it involves many threshold concepts,
which are concepts that transform the way students think (possibly in a way that transforms them
as engineers) [2], [77]. For example, one frequently cited threshold concept in signal processing
is how one can look at a problem in different domains, e.g., the Fourier or time domain [2], [73].
Because of the transformative nature of the concepts, it can be difficult for instructors to understand
students’ confusion as they grapple with threshold concepts. Many instructors think of the Fourier-
time domain duality as a (simple) change of basis or one of many analytic tools on their tool belt
and correspondingly use whichever domain is most convenient. In contrast, students struggle with
“mapping from the mathematical abstraction (where negative frequencies, complex exponentials
and non-causal systems reside) to the physical reality (where systems have to be causal, frequencies
are positive, and signals are real)” [73].

Another common theme in the literature is that S&S terminology is misleading and confus-
ing. For example, [78] observed that students attempted to visualize the area between the curve and
minus infinity as a literal interpretation of “area under the curve” when asked to do an unfamiliar
integral. Students also confuse the technical and literal meaning of time invariant, thus mistakenly
believing that a system that shifts the input left/right is time-varying since it is impacting the time
of the signal [51]. Further, students may only look at spatial “overlap” when performing graphical
convolution (note there is no physical overlap if one signal is positive and the other is negative),
rather than the integral of the product, because of the word choice in the explanation of the pro-
cedure [75]. Wage, Buck, Nelson, et al. [56] further cautions instructors about using informal
language when defining procedures in class because doing so may lead students to think of the
procedures and concepts as magical tricks that they should memorize rather than understand.

Finally, some instructors cite students’ lack of prerequisite knowledge as a barrier to gain-
ing CU. For example, [73] claims that students enter with “insufficient mastery of pre-requisite
knowledge (esp. complex number algebra).” In a related argument, Fayyaz [51] suggests that the
main difficulty with S&S is not math background but rather being able to process information at
high levels on Bloom’s taxonomy. The need to combine math and S&S concepts and translate
between representations and domains may thus explain why even students who do well in math
prerequisites often struggle with S&S [51].

Regardless of the reason, many students come to fear S&S, and it is considered a weed-out
course at many universities [49]. Instructors have tried including more hands-on activities or using
research-based instructional practices to help students learn and decrease the fear surrounding
S&S, but conceptual understanding remains low [49], [79].
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2.2.3 Signals and Systems Concept Inventory

The Signals and Systems Concept Inventory (SSCI) is an instrument designed to measure con-
ceptual understanding of common S&S concepts and to analyze common reasoning errors [1].
Because of the extensive initial study (involving 7 schools and over 900 students), the SSCI offers
a benchmark for comparison across institutional contexts. This study uses version 5 of the con-
tinuous time SSCI, which we simply refer to as the SSCI [1]. The SSCI has 25 multiple-choice
questions on background mathematics, LTI, convolution, Fourier and Laplace transform represen-
tations, and filtering (see Section 2.2.1 for an overview of most of these concepts). The Discrete
Time (DT) version additionally covers sampling. The SSCI website1 provides an overview of the
development of the SSCI, links to many publications, and contact information for researchers and
instructors who would like to use the inventory.

The SSCI takes no more than an hour to complete, emphasizes CU over PK, and presents more
problems using figures than equations. There are only a few questions that require synthesizing
multiple concepts or that require reverse-reasoning (defined as thinking about a problem in a man-
ner that is not how the material is typically covered in-class). Fig. 2.3 shows two sample questions
from a previous version of the SSCI.

CIs became popular with the introduction of the Force Concept Inventory (FCI) [57]. Using
the FCI, [69] found 〈g〉 = 0.23± 0.04 in traditional, lecture-based physics classrooms (N = 2, 084)
and 〈g〉 = 0.48 ± 0.14 in classrooms that used active learning (N = 4, 458). The low fraction
(0.23 or 0.48) of new concepts learned during students’ physics course is discouraging. However,
the results are encouraging for proponents of active learning, as the introduction of active learning
pedagogy led to learning gains two standard deviations above the learning seen in lecture-based
classrooms.

The discussion surrounding the surprising FCI results spurred the development of the SSCI,
with Wage, Buck, Wright, et al. [1] developing the SSCI partially to see if low CU gains were also
a problem in S&S courses. The SSCI authors found very similar results: across 2,389 students in
69 courses, the average SSCI gain was 〈g〉 = 0.23±0.11 in lecture-based classrooms and 0.39±0.08
in active learning classrooms [56], suggesting that students learn an average of 23-39% of the new
concepts in their S&S course.

Ref. [67], [80] examined the content and construct validity of the SSCI by comparing student
responses on the SSCI to their free-response answers on final exam questions. The authors found
a statistically significant correlation between overall SSCI scores and final exam scores. They
also found a statistically significant correlation between scores on specific SSCI questions and
exam questions on the same concept. Buck, Wage, Hjalmarson, et al. [80] also compared student

1http://signals-and-systems.org/
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Figure 2.3: Two example questions on the SSCI. The first question is in the background math sub-test and is
the easiest on the exam. The seventh question is in the Fourier transform sub-test. These questions illustrate
the generally plot-heavy, equation-light nature of the SSCI.

responses on the SSCI to interview data and found that CU was well-measured by the relevant
SSCI questions. However, [67] also found insignificant correlations between other SSCI questions
and related exam questions (specifically on the question about Bode plots and some convolution
questions).

2.3 Conceptual Understanding in Signals and Systems

As mentioned in the previous section, Wage, Buck, Wright, et al. [1] found similar gains in
CU as Hake [69]: students learned an average of 22±7% new concepts in lecture-bases courses
and 39±6% of new concepts in courses with active learning. Other studies report similar gains in
S&S courses in a variety of institutional contexts, e.g., [74], [81], [82]. Across these studies, the
mean pre-test scores were 35-50% and the mean post-test scores were 50-70%. Taken together,
the previous studies of CU using CIs show that students do not learn many of the concepts in core
engineering and science courses [1], [47], [58], [69].
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There are fewer studies that study the evolution of CU over the course of an undergraduate
degree. Such studies have mixed results with different studies showing that (1) students gain CU,
(2) students maintain similar levels of CU, (3) students forget or lose CU, or (4) that the evolution
of students’ CU varies by the type of concept. This section emphasizes EE results, but also includes
results from closely related fields, e.g., physics, mechanical engineering, and mathematics.

(1) Some studies found that advanced students retained or gained conceptual understanding
relative to less experienced students. For example, [47] found senior students had fewer problem-
atic reasonings about circuits than freshmen and sophomores. Multiple other studies found active
learning helped students retain physics CU years after their introductory physics course [83]–[85].

(2) Montfort, Brown, and Pollock [29] found similar CU for senior students and introductory
students. The authors differentiated between PK and CU: senior students were better able to solve
problems because they were more successful at completing the correctly identified procedures,
but those senior students did not demonstrate more CU. Using qualitative methods, [29] hypothe-
sized the finding was due to students’ inability to “reconcile that knowledge with their intuition.”
Fayyaz [51] similarly proposed that upper-level students may come to question the concepts they
previously “learned” and whether they understand them.

(3) Multiple studies found that students forgot or lost CU after a relevant course. In a qualita-
tive study, [51] found that many students declined in their understanding of the Fourier representa-
tion of a signal one year after S&S. Using the SSCI, [81] similarly observed a “tendency for scores
to drop over time,” but that scores increased when students took related upper-level electives. How-
ever, these S&S studies involve small sample sizes and/or only students in S&S-related courses,
making it difficult to generalize the results. In physics, [86] similarly found students tended to
forget concepts over time and that repeated exposure helped. The results in [86] are more discour-
aging since [86] found that repeated exposure decreased the amount students forgot but it did not
improve CU above the level of freshman physics students.

(4) Some results suggest that the evolution of students’ CU varies by the type of concept.
For example, [29], [47] generally found that senior or graduate students tended to have persis-
tent incorrect reasonings for certain concepts. Specifically, using the DIRECT and think-aloud
interviews, Goris and Dyrenfurth [47] found seniors had significantly fewer problematic reason-
ings than novices, but similar errors as novices on some topics (the physical aspects of circuits,
lending credence to Chi’s emergent processes theory) [47]. Fayyaz [51] found that students who
took follow-on S&S-related courses had trouble mostly with translating representations, e.g., they
tended to think the product of a function and an impulse was a constant rather than a scaled im-
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pulse.

2.4 Conclusions

This chapter reviewed the literature on CU and S&S. These ideas are central to the remaining
chapters in Part 1.5.

Despite the theorized benefits of and the research on CU, there is still disagreement on, e.g.,
how students obtain conceptual knowledge [24], the relative importance of CU and procedural
knowledge [87], and how CU evolves over time [30]. Further, empirical studies support that there
is still much work to be done if we want to help students achieve CU in undergraduate engineering
classrooms, e.g., [1], [29], [47], [58].

While the remainder of Part 1.5 emphasizes CU, we do not argue that it should come at the
expense of PK. Both types of learning are important, in addition to many other goals of the
engineering curriculum such as learning how to learn, gaining laboratory experience, and learning
skills such as teamwork and clear writing. However, the focus on CU is supported by multiple
large research studies that have shown that students generally do not learn core concepts in their
courses [1], [69] and that students lack CU even as they gain PK [29].

Studies show low CU after a specific course, typically taken in a student’s early undergraduate
career. But there are fewer results on CU near the end of undergraduate engineering degree. It is
possible that students do in fact learn the concepts, but not until after a course in the subject when
most studies measure CU. Understanding the CU of students years after a course is a main goal of
this study, with our case study being S&S concepts.
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CHAPTER 3

RQ#1: Conceptual Understanding During the
Signals and Systems Course

The first study in Part 1.5 of this dissertation addresses our first research question, RQ#1: “What
is students’ CU of S&S concepts at the end of an undergraduate S&S course? What factors
predict how many S&S concepts students learn in a S&S course?” This study served as a
pilot study for the following two chapters, which similarly consider measuring CU and factors that
impact CU, but which concentrate on senior undergraduate students. This chapter solely considers
students in an undergraduate S&S course, who are typically in their second or third year.

The methodology and results on factors influencing CU in this chapter are presented in [4]:

C. Crockett and C. Finelli, “Factors influencing conceptual understanding in a signals
and systems course,” in 2021 ASEE Virtual Annual Conference Content Access, Jul.
2021. [Online]. Available: https://peer.asee.org/37175

This chapter expands on that publication, notably by including additional results on measuring CU.
Fig. 3.1 depicts the high-level methodology for this chapter. The remainder of this chapter is

organized as follows: The background section overviews the Model of Educational Productivity
as an initial framework for predictive factors. The methods section describes the participants, the
survey to measure factors, and the analysis techniques. The results section presents the statistics
from the SSCIs and the results of a linear regression analysis. Finally, the chapter concludes with
a discussion of main findings and how this work leads into Chapter 4 and 5.

3.1 Background: Model of Educational Productivity

There are many theories about what factors influence learning and why some students learn more
than others. One such empirically validated model is the Model of Educational Productivity
(MoEP) [88]. Based on a synthesis of national science achievement test and a survey given to
3,049 17-year-olds as part of the National Assessment of Educational Progress, [88] found nine
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Figure 3.1: High-level view of the methodology for the pilot study to answer RQ#1.

significant factors on test scores (summarized in Tab. 3.1). The original model is

Learning = α
∏

i

( fi)βi , (3.1)

where the nine factors, fi for i ∈ [1, 9], are commonly described in three groups: three student
variables, two instructional variables, and four environmental variables. The nine MoEP factors
are summarized in Tab. 3.1 The outcome variable in the MoEP is typically learning, as measured
by a standardized test. Other studies have also used the MoEP to investigate student attitudinal
outcomes [89] and career aspiration [90].

Table 3.1: Summary of MoEP factors that predict learning [88].

Category Factors

Student factors (1) Age, (2) ability, and (3) motivation
Instructional variables (4) Quality and (5) quantity of instruction
Environmental variables Social psychological environment of the (6) class and

(7) home, (8) peer group environment, and (9) expo-
sure to mass media

The three independent student variables are development, ability, and motivation. Briefly, each
of these has been defined as:

1. Student development is typically measured by student age, though it can be defined as the
stage of maturation for students where age may not be a good measure of their development.
This variable is commonly omitted in studies with students that are all of roughly the same
age [88], [90], [91].

2. Student ability measures prior achievement or knowledge. Example measures of student
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ability are grades in prerequisite courses or prior Grade point average (GPA) [92], [93].
Because many of the initial tests of the MoEP used existing datasets, researchers had to
use non-optimal operationalizations of the factors based on what variables the existing data
included, e.g., some of the original studies [88], [94] used socioeconomic status (SES) as a
“poor surrogate for IQ or prior achievement tests” [94, p. 288]. Despite this poor measure,
the authors still demonstrated the usefulness of the MoEP.

3. In the original MoEP studies, student motivation was defined as a willingness to persevere.
Example survey items asked students how often they do various activities related to learning
when not required [88], [89], [95] and if they try to do their best in class [91]. However,
other authors measure student motivation as whether a student thinks it is okay to miss or be
late to class (reverse-coded) [90], if students say they work hard in school [91], or using an
expectancy-value theory [92].

Expectancy-value theory proposes that motivation is influenced by the expectation of suc-
cess and the value of the task [96]. Task value is further divided into attainment value or
importance of doing well on the task, intrinsic value or enjoyment of the task, utility value or
the task’s usefulness for achieving future goals, and the opportunity cost of pursuing the task
[96]. The version of expectancy-value theory considered in [92] comes from [97] which con-
siders the expectancy component (can I do the task?), a value component (which combines
the intrinsic and utility value), and an affective component (related to the intrinsic value).
Bruinsma and Jansen [92] do not consider the attainment value or cost component in the full
expectancy-value theory.

The two instructional variables in the MoEP are instructional quality and instructional quantity:

4. Instructional quantity is the amount of time a student spends learning, and can include in-
class and out-of-class time. For schools with a fixed amount of class time, this factor is
often measured by self- or parent-reported number of hours students spent doing homework
[88]–[91]. For schools with a varying amount of classes in a subject area, quantity can be
measured as credit hours in the subject of interest [89], [92]. The rate of skipping classes can
also measure quantity of instruction [90] (alternatively it can measure students’ willingness
to miss a class and thus their motivation [91]).

5. Instructional quality can be measured at the student or class level. At the student level, [88]
measured didactic quality of instruction and use of student-centered instruction methods
with 16 items on a student survey, [90] included survey items on if the teaching is “good” at
school and if teachers listen to students, and [92] included survey items on the quality of the
presentation, structure/organization, assessment, and pace of the course. At the class level,
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[91] used teacher reports of how often the class did activities like experiments and writing
reports. Fraser, Walberg, Welch, et al. [89] used an existing dataset, and included both
student and class level information to operationalize the quality of instruction; the authors
used average science teaching budget per student and a five item student survey on student
attitude toward their teacher.

Finally, the third category of independent variables in the MoEP consists of environmental vari-
ables and includes exposure to mass media, home environment, classroom environment, and peer
environment:

6. Exposure to mass media is usually measured as the number of hours a student spends watch-
ing television, sometimes split into weekend and weekday hours [88]–[90]. Under this def-
inition, researchers assume that students are generally not watching educational programs
and thus expect (and find) a negative relationship between the mass media factor and learn-
ing outcomes. In a more recent study of university students, Brouwer, Jansen, Hofman, et

al. [98] updated the definition of mass media from hours watching television to time spent
on social media. Unlike the earlier studies, the authors found a positive connection between
mass media and amount of time spent studying. They hypothesized that students are using
social media to motivate each other and to ask questions as part of their studying. The other
recent study of the MoEP in a university setting did not include a variable for mass media
[92].

7. Ideally, the home environment factor would measure the amount of intellectual stimulation
a student receives while at home. In practice, this factor typically measures various home
characteristics such as the presence of an encyclopedia [88], the highest level of parental
education [89]–[91], or socioeconomic status [90]. In research with university students, the
home environment factor may additionally, or alternatively, be operationalized to account for
most students no longer living with their parents. For example, [92] expanded the definition
of home environment to include undergraduate students’ living environment: in addition to
asking about parental educational status, they asked whether students were employed while
attending classes. Bruinsma and Jansen [92] found little effect of home environment in their
study.

8. The classroom environment refers to the social psychological environment of the classroom.
Measures of classroom environment vary widely. Studies typically use student survey ques-
tions to measure this factor, with questions ranging from asking about morale, such as
whether classes are interesting, [88], [90]; how students feel during class (uncomfortable,
curious, student, confident, successful, and unhappy) [89], [93]; student attitudes toward
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their teachers (e.g., if teachers were able to explain difficult subjects) [92]; or if students
feel put-down by teachers or students during class [90]. Reynolds and Walberg [91] takes a
different approach and used the number of students that get a college degree and how many
students take science as an elective to measure classroom environment. This last definition
overlaps with the typical definition of the peer environment variable.

9. Peers can improve learning outcomes directly, by peer instruction, or indirectly, by creating
an environment that encourages learning [89]. The peer environment factor in the MoEP
studies measures the latter: the social psychological influence of peers. Example survey
items ask if schooling and good grades are important to friends [90], [91] and how much peer
support a students receives [92]. The peer environment variable may be harder to measure
in existing datasets; [88] had to use the primary parent’s occupation as a poor operalization
and [89] was not able to include the peer-group environment variable.

The basis of the MoEP is in economics. One interpretation of (3.1) is that increasing any one
variable (other than mass media, which is predicted and shown to have a negative coefficient) will
improve learning, but with diminishing returns. Increasing the factor that is currently the smallest
will yield the largest increase in learning per unit increase in the factor.

The goal of the MoEP is to model learning in a way that is parsimonious (using only a few
factors to explain learning), generalizabe to different student populations/contexts, and repeatable
by other researchers [89]. Therefore, the model does not take into account factors that are further
removed from learning, such as political characteristics of a school. The model similarly does
not include gender or race, as Walberg, Pascarella, Haertel, et al. [88] believed that the effect of
these demographic variables should only be through the variables in the model. Studies using
the MoEP still commonly include gender and race as control variables to help compensate for
poor measurement of the independent factors, or due to other theoretical backings that suggest
the variables are significant. Another variation on the MoEP is to include mediating terms to
the standard direct-effects MoEP (3.1). Reynolds and Walberg [91] proposed one such model
with mediating terms, the Reynolds-Walberg MoEP, with the mediating terms motivated by other
theories on learning and previous results. The authors tested the proposed model using longitudinal
data from 3,116 seventh and eight grade students. The Reynolds-Walberg MoEP explained only
2% more variance in learning outcomes than the direct-effects model (from 52% to 54%), but the
fit statistics for the Reynolds-Walberg model were better and the new model aligned well with
existing theories [91].

While the MoEP only predicts correlations, not causal links, the nine factors are grounded in
many other theories that predict causal connections. Fraser, Walberg, Welch, et al. [89] provides
a thorough overview of the theoretical frameworks that align with the MoEP, discusses previous
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studies that look at a subset of the factors, and performs a meta-analysis on 134 research studies
that looked at factors that influence achievement outcomes.

Because of factor definition issues due to working with an existing dataset, [88] presented only
preliminary results in support of the MoEP. Similarly, [89, Chapter 5] used existing survey data
as a test of the model; the authors used the National Assessment in Science survey with roughly
2,000 each of 17, 13, and 9-year-olds. Both studies found that the MoEP explained a surprising
percentage of the variation in learning considering the operalization issues, and hypothesized that
a better operalization would lead to more explanatory power.

Although a number of studies have confirmed the usefulness of the MoEP, only a handful have
used it in the higher education setting. Ref. [95] tested the model at a community college and [92]
found that the Reynolds-Walberg MoEP (removing the mass media variable, as they hypothesized
it would not matter as much for college students) transferred well to the higher education setting,
explaining 23% of variance in grades among 62 first-year students in a mathematics and natural
sciences department in The Netherlands. Because of the community college context and small
sample size of these studies, the research offers preliminary, but not definitive, evidence that the
MoEP extends to a university setting.

Chapter 5 discusses other models and studies of factors that may influence CU. Briefly, in ad-
dition to the factors predicted by [88], studies in engineering and physics have hypothesized (with
varying amounts of evidence) that longitudinal CU is influenced by: which courses students take
as part of their major or as electives [81], [86], whether the course uses a graphical representa-
tion of systems (e.g., in S&S, LabView’s graphical interface might help student learn better than
Matlab’s text-based interface [99]), whether students view the concepts as important [72], and the
instruction style [83]–[85].

3.2 Methods

We measured students’ CU using the SSCI and the MoEP factors using a short research survey.
We then used regression models to test for significant predictors of CU at the end of a S&S course
and to determine how much variance in CU the MoEP factors explain.

3.2.1 Data Sample

This study includes undergraduates at the University of Michigan (UM) who took the main under-
graduate S&S course (EECS 216) in Fall 2019 or Winter 2020. Most of the students were in their
second or third year of undergraduate studies, but were classified as third or forth years in terms
of the number of credits they have taken. The course emphasized continuous time signal analysis
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and was taught using the free online textbook by Ulaby and Yagle [100]. In addition to the topics
covered by the SSCI, the course briefly discussed sampling theory and the relationship between
continuous and discrete time representations.

The S&S course was lecture-based and accompanied by a required lab section that met five
times for labs on impulse response, envelope detector, frequency modulation discriminator, ampli-
tude modulation radio, and feedback control. Due to the COVID-19 pandemic, the Winter 2020
section moved to remote instruction half-way through the semester and students’ grades defaulted
to pass/fail for all courses (students could elect to show a letter grade for the course, but we do not
have data on how many of them chose to do so).

Students took the pre-test SSCI in-person during their assigned lab section in the second week
of classes (in previous offerings, there was no scheduled lab meeting this week). Students took
the post-test SSCI and an additional survey during their last class before finals as part of a review
session in Fall 2019. In Winter 2020, students took the SSCI in the last week of classes before finals
preparation. Due to the move to online instruction, the Winter 2020 post-test was online and had
the answer options randomized. Students received a small amount of course credit for completing
the SSCI; they were not graded based on their score. There was no incentive for students to take the
research survey in Fall 2019. Due to the grading changes, students who participated in the research
in Winter 2020 had a chance to win a small gift card. All student interaction was reviewed by the
UM institution review board.

Tab. 3.2 summarizes the number of students who completed the pre-test, post-test and the
research survey in Fall 2019 and Winter 2020 out of the 134 students enrolled at the start of both
semesters. The numbers exclude students who did not finish the post-test (defined as not answering
the last five SSCI questions or more) and students who skipped questions on the survey. Only two
students, both from Winter 2020, did not complete the post-test. For analyzing gains in CU during
the S&S course, our sample includes the n = 180 students who completed the pre-test and post-test
and signed the consent form. For the second part of RQ#1 on factors that impact CU, this study

Pre-test Post-test Pre- and Post-test Pre- and post-test and survey

Fall 2019 118 91 91 78
Winter 2020 114 90 89 46

Total 232 183 180 124
Table 3.2: Summary of the number of students who signed the consent form and completed the pre-test
SSCI, post-test SSCI, and/or the research survey during the S&S class at UM in Fall 2019 and Winter 2020.
The n = 180 students who signed the consent form and took the pre-test and post-test make up the data
sample for measuring CU and the n = 124 students from that group who additionally completed the survey
make up the sample for the linear regression analysis of factors the predict CU.
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considers only the sub-sample of the participants who also completed the survey. This decreases
the total number of included participants to n = 124.

3.2.2 Survey for Predictive Variables

This study uses the MoEP as a framework for factors that may influence CU. The outcome (or
dependent) variable was CU at the end of the S&S course, as measured by students’ raw post-test
SSCI scores. We measured the MoEP factors using a survey that students took immediately after
finishing the SSCI post-test. The survey was in the same format as the SSCI (paper in Fall 2019
and online in Winter 2020). For the online survey, we used Qualtrics.

Following the framework of the MoEP, we include student, instructional, and environmental
independent variables. All questions are coded such that we predict a positive correlation coeffi-
cient between the factors and our outcome variables. All Likert style questions had 5-options and
followed the design principles suggested by [101]. Tab. 3.3 summarizes the measures used. The
full text of our final survey questions are in Appendix A.2.

In the MoEP, the three independent student variables are age (or level of maturity), ability, and
motivation. We do not include the age variable, as all students are roughly the same age. This
is fairly common in studies that use the MoEP, e.g., [88], [90], [93]. We use students’ scores on
the pre-test to measure ability. The pre-test captures information about a students background and
whether they have previously seen S&S concepts, though we recognize that it does not capture a
broader view on students’ mathematical or even more general academic prior abilities. For student
motivation, we designed seven Likert style survey questions to capture the intrinsic value and
utility value components of motivation as defined in expectancy-value theory [96]. The questions
asked how likely students are to major in EE, if learning S&S in interesting, and if students think
learning the individual S&S topics (LTI, convolution, FT, Laplace transform, and filtering) will
benefit their career. We did not include the background mathematics topic in this question due
to its broad definition. Before testing the regression models, we first tested if the seven survey
questions may be grouped into a single factor that measures the underlying motivation construct.

The two instructional variables are instructional quality and instructional quantity. For both, we
use subjective, individual student opinions rather than a more objective measure of the instructors
teaching style or amount of homework assigned. Thus, our commentary on instructional quality
and quantity is not meant to reflect on the given instructor. For the instructional quality variable, we
use responses to a Likert style question that asked students to rate the overall quality of instruction
in S&S. Again, our definition most closely follows [92], though we only included a single survey
item due to space limitations. For instructional quantity, we asked students to self-report the
average numbers of hours they spent on homework each week and what percentage of lectures they
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attended. These are very typical measures. However, in Fall 2019, our research instrument was
ambiguous, and some students may have counted time spent on pre-/post-labs toward homework
time while others did not. Likewise, students who watched lectures online may or may not have
included that in their attendance responses. We clarified the language for these questions in Winter
2020 to specifically ask students to include time spent on pre-/post-labs toward their homework
time and online lectures toward their attendance.

The four environmental variables in the MoEP are exposure to mass media, home environment,
classroom environment, and peer environment. Following [92], we do not include the mass media

Table 3.3: Example previous measures of the MoEP factors and summary of measures for this study. Surveys
additionally asked students for their gender identity and which racial and ethnic group(s) they identify with.

Factors Previous definitions/measures Our measures

St
ud

en
t

Age Often excluded when participants
are similar ages [88], [90], [93]

Not included

Ability Grades in prerequisite courses or
prior GPA [92], [93]

SSCI pre-test score

Motivation Participation in optional, course-
related activities [88], [93]

Expectancy-value theory (measures
self-efficacy, interest, and posi-
tive feelings) [92]

The average score of 7 questions
asking:
if students want to graduate in EE,
if S&S is interesting, and
if understanding convolution, LTI,

FT, Laplace transform (LT), and
filtering will benefit their career

In
st

ru
ct

io
na

l Quality Use of didactic or student-centered
instruction methods [88], [94]

Quality of presentation, organiza-
tion, assessment, and pace [92]

Students rate overall quality of in-
struction of S&S

Quantity Hours students spent on homework
in a typical week (self-reported)

Avg. hours spent on S&S home-
work

Percentage of lectures attended

E
nv

ir
on

m
en

ta
l

Classroom Class morale [88], [90]
How students feel in class (curious,

uncomfortable, stupid, confident,
successful, unhappy) [93]

If the learning environment was
comfortable

Home Highest educational status of par-
ents/guardians [90], [93]

If they had an encyclopedia or a
newspaper in the home [88], [94]

Highest education status of stu-
dents’ parent(s)/guardian(s)

Peer-group If schooling and grades are impor-
tant to friends [90], [91]

How often peers helped their under-
standing of S&S

Mass media Hours watching television [88] Not included
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variable. We use the highest educational status of students’ parents/guardians to measure home

environment, as in [90], [93]. As seen in the full survey in Section A, the categories for home
environment were did not finish high school, high school degree, Associates degree, Bachelor’s
degree, Master’s degree, and Doctoral or Professional degree. Like our measure of instructional
quality, we took a direct approach and designed a question asking students if the S&S course
learning environment was comfortable1. This allows each student to individually interpret learning
environment; which is both an advantage and disadvantage of our approach. Finally, we designed a
Likert style question that asked if peers helped students’ understanding of S&S material to measure
peer environment. A more typical measure of peer environment is whether schooling and grades
are important to friends [90], [91].

We followed best survey practices discussed by Fernandez, Godwin, Doyle, et al. [102] to order
and phrase the questions. In terms of ordering the questions, we placed the demographic questions
at the end of study to decrease issue of stereotype threat. We also adopted the language from [102]
on how to ask about gender, race/ethnicity, and parents’ education. We used standard labels for the
Likert questions, following the suggestions from Qualtrics and [103].

3.2.3 Model Testing

The main contribution of this study is testing the MoEP as a model for students’ S&S CU. We
test the direct regression model, with no moderating or mediating variables, as in the original
MoEP publications [88]. Our outcome variable is CU at the end of S&S and our key independent
variables are student ability, student motivation, instructional quality, instructional quantity, home
environment, classroom environment, and peer-group environment.

For all Likert style questions, we assume that responses are discretized measures of a latent
variable. A latent variable is any variable that cannot be measured directly. CU of S&S is one
latent variable of interest in this study. In contrast, blood pressure and heart rate are examples of
observable variables. Although we do not know the thresholds for each Likert response, we assume
a monotonic relationship between the responses and the latent factor. This allows us to treat the
Likert data as if it were a continuous variable in our regression model.

To further test our models, we compare the results against models that include race/ethnicity,
gender, and S&S semester as control variables. Walberg, Pascarella, Haertel, et al. [88] found
that adding race/ethnicity and gender increased the amount of learning variance explained from
25% to 34-36% (in the calibration and validation datasets). The authors hypothesize that the the
increased explanatory power of the model comes from the race and gender variables serve as a

1We chose the phrase “learning environment” instead of “classroom environment” to encourage students to think
about the social-psychological environment, rather than the temperature settings and how much they liked the seats
and chairs.
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proxy for poorly measured factors. (Due to data limitations, [88] measured student ability using
SES, so there were definitely measurement errors in the factors.) Further, they hypothesize that,
if the factors are more accurately measured, then adding the race/ethnicity and gender variables
will not greatly increase the explanatory power. The semester variable in our study could similarly
capture differences in instruction, study population, or class environment that our survey does not
fully measure.

For all the models tested, we report which of the independent variables are significant, R2, and
adjusted R2 values. R2 measures the proportion of variance in the predicted variable (CU of S&S as
measured by the post-test score) that is explained by the independent variables (the MoEP factors
measured by the survey and pre-test score). The R2 statistic is thus a commonly reported measure
of how well a regression model fits the data. However, R2 can be a misleading statistic because it
will always2 increase as the number of independent variables increases. Further, a regression model
can perfectly fit any data (including random noise) when the number of independent variables is
equal to the number of samples.

Adjusted R2 similarly captures how well the independent variables fit the data in a linear re-
gression model, but it adjusts for the number of independent variables. The adjusted R2 value takes
into account that adding more variables will always increase the amount of variance explained; this
measure increases only if the added variables explain more variance than is expected by chance,
i.e., if the independent variable is useful in explaining differences in the outcome. Adjusted R2 is
upper-bounded by R2. Given R2, the adjusted R2 is

R2
adj = 1 − (1 − R2)

(
n − 1
n − k

)
, (3.2)

where n is the number of samples (n = 124) and k is the number of independent variables. For the
regression model without any control terms, k = 12 because there are

• (5) five factors in the MoEP captured by a single independent variable (student ability, stu-
dent motivation, instructional quality, classroom environment, and peer group environment),

• (2) a factor measured by two independent variables (instructional quantity),
• (4) a categorical factor with a base category and four alternative categories (home environ-

ment), and
• (1) the constant offset term in the linear regression model.

For the home environment variable, the base category corresponded to a student’s parent/guardian
having a high school degree as their highest degree. The four alternate categories were for an
Associates degree, Bachelor’s degree, Master’s degree, and Doctoral or Professional degree (no

2It can technically remain the same if the additional independent variable is an identical copy of an independent
variable already incorporated in the model.
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students in our sample responded that their guardian did not complete high school). Modeling the
home environment using four categorical variables allows for non-linear and/or non-monotonic
relations between the levels of a guardian’s education and the outcome variable of interest in the
linear regression.

3.2.4 Data Limitations

We face a number of data limitations in this study. First and foremost is that our data set is
relatively small and homogeneous; all of the participants took one of two S&S classes. The small
sample size means our statistical tests have low power, so we can expect few of the coefficients in
our regressions models to reach statistical significance. The homogeneity of our sample population
means there is little variance in some of the independent variables, further decreasing the likelihood
that they will be significant.

Second, some variables are defined differently than what is common in the literature, e.g., peer
environment. Further, we only had a short survey, so the quality of instruction, peer environment,
home environment, and class environment variables are measured by a single question rather than
a multiple-question Likert scale. In our regression, we treat home environment as a categorical
(discrete) variable, but we treat the other variables as continuous measures. The underlying as-
sumption is that student responses capture a discretized measure of the underlying construct and
that the spacing between items is roughly equal.

Ideally, we would have followed more rigorous survey design methods, included more ques-
tions to measure each variable, and considered the scale’s validity and reliability, i.e., following the
practices described in [104]. At the time of designing the survey for this pilot study, I was unaware
of the importance of this survey design literature. Section A shows the survey planned for senior
students as part of addressing RQ#3; in many ways, the senior survey improves on the survey in
this pilot study. For instance, the senior survey more clearly defines instructional quality as the use
of student-centered instruction and thus measures instructional quality by asking students to rate
how often they were engaged in their courses and how often their courses included active learn-
ing. This definition and question structure follows [94]. Due to low participation during semesters
with online instruction, this dissertation does not analyze the data from the senior survey, which
was originally intended to address RQ#3. Future work should consider using previously validated
survey scales to measure each of the variables.

Another limitation is that not all students in the course chose to take the SSCI and to sign
the consent form, so it is possible there is an overall bias in our results based on which students
participated. This is especially true for the students who took S&S in Winter 2020, when our
participation rate was noticeably lower on the research survey.
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Finally, the pre-test and post-test SSCI are not perfect measures of ability or CU. As men-
tioned in Section 2.1.4.2, limitations of concept inventories include that students can guess the
correct answer without full CU and the inventory could include questions that unfairly advantage
a particular group of students [63]. Further, because students were given credit for completing the
SSCI regardless of their score, students were not incentivized to try hard when taking the SSCI. It
is possible that students will not take the pre-/post-test seriously, and, therefore, that their scores
will not accurately reflect their ability or their problematic reasonings. However, [105] suggests
that low-stakes assessments at UM are a valid measure of student CU, so we believe the impact of
this limitation is likely small for the students in S&S in Fall 2019. Students in Winter 2020 may
not have been incentivized to learn the S&S material as well due to the option to take the course
pass/fail. The impact of COVID-19, and particularly the unexpected shift to online instruction and
pass/fail grading, likely impacts the Winter 2020 data. We discuss how this limitation seems to
have an impact by describing how the semester students took S&S is correlated with many other
variables further in the results section.

3.3 Results

3.3.1 Measuring Conceptual Understanding

We first briefly present the raw SSCI statistics. For the S&S classes at the UM in Fall 2019 and
Winter 2020, the average and standard deviation of the SSCI was 12.2 ± 2.9 (48.8% ± 11.7%) on
the pre-test and 17.9 ± 3.8 (71.6% ± 15.3) on the post-test. Fig. 3.2 shows a histogram of student
pre- and post-test scores out of a maximum possible score of 25 and Tab. 3.4 presents the raw data.
Average student scores improved when averaging the questions in each of the six SSCI topics.
Fig. 3.3 shows the percentage of students who got each question correct on the pre- and post-test
organized by the concept categories.

The following list discusses the results for the six concept categories, including the SSCI ques-
tions that had common incorrect answers (defined as answers selected by more than 50% of the
students who get a question wrong). A summary of the SSCI questions and the fraction of students
responding to each correctly is presented in Tab. 3.4.

1. Background math

• Excluding question 3, students scored 88-99% on the background math questions on
the pre-test, suggesting that they enter S&S with the prerequisite information.

• Students answered question 3 in the background math category correctly only 52% of
the time on the post-test, while they scored 96-99% on the remaining three background
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Figure 3.2: Histogram of SSCI scores in S&S on the pre-test (top) and post-test (bottom) for the n = 180
students in Fall 2019 and Winter 2020 who completed both tests. The pre-test average and standard deviation
was 12.2 ± 2.9 and the post-test average and standard deviation was 17.9 ± 3.8 (both out of a maximum of
25 points).
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Figure 3.3: Percent of students who got each SSCI question correct on the pre- and post-test. Questions are
grouped by sub-test. The raw data for this figure is given in Tab. 3.4.
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math questions. Question #3 involved both flipping and shifting a signal. Forty-three
percent of students correctly reversed the signal but shifted it the wrong direction.

2. Convolution

• The convolution question with the highest pre-test score (question 14) tested if students
know convolution is commutative. Students may have seen this concept in previous
courses, such as differential equations. The other convolution questions require stu-
dents know what an impulse response or a FT is, which they are less likely to have
previously seen.

• The only convolution question with a common incorrect answer on the post-test is
question #15, which asks for the output signal given a rectangular impulse response and
input signal. The incorrect answer, selected by 53% of students, has the correct ramp-
up and ramp-down times but the incorrect maximum output amplitude. Section 4.3.2
discusses the incorrect answer in more depth as this error is persistent in the population
of senior students.

3. LTI

• Question 5 was the only SSCI question that students did worse on for the post-test (a
decrease from 91% to 89%). This questions asks for the output of an LTI system when
the input is delayed; the answer may be intuitive for students who have not formally
been introduced to the definition of time invariance.

• The only LTI question with a common incorrect answer is question 24. This questions
asks students to determine if a system could be linear and/or time invariant based on
three input-output pairs. Based on their responses, 73% of students responded correctly
regarding the time invariance but only 51% responded correctly regarding the linearity
of the system. Section 4.3.1 investigates question 24 further with senior students.

4. FT

• Three of the FT questions have incorrect answers. Question 7 asks students to identify
the Fourier series given a plot of a periodic signal x(t); the common incorrect answer
(22% of students) had the correct non-zero coefficients but with an incorrect magni-
tude relation. Anecdotally, multiple students asked about this question during review
sessions. On question 9, 16% of students selected the FT for a signal with doubled am-
plitude instead of the requested FT of a signal with twice the frequency. On question
10, 38% of students convolved the Fourier transform instead of multiplying it when
asked for the plot of R(ω) when r(t) = p(t) ~ p(t).
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5. Laplace transform

• The LT questions had the lowest average of the SSCI topics on the pre-test, likely since
few students have seen pole-zero plots before a S&S course. None of the LT questions
had common incorrect answers.

6. Filtering

• The only filtering question with a common incorrect answer was question 20. This
questions required Bode plot concepts, which students were not tested on in S&S.

The common errors on questions 3, 10, 15, 20, and 24 are also common errors in that population of
senior students (questions 7 and 9 no longer have common incorrect answers in the senior sample).
Chapter 4 goes into further detail on the likely errors that students make on many of the concept
inventory questions (with emphasis on questions 9, 12, 13, 15, 24, and 25) and how these questions
reflect students’ CU.

Fig. 3.4 shows a histogram of the individual student gains. Using the SSCI in a pre/post-
test format, we observed an average gain of 45.1% ± 28.6% among the n = 180 students who
completed both tests in EECS 216 at UM. Eleven students had a negative gain, indicating that
they scored worse on the post-test than the pre-test. These students had an average pre-test score
of 14.3/25 (an additional two questions correct on average than the full sample) and an average
post-test score of 12.3 (an additional 5.6 questions incorrect on average than the full sample).
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Figure 3.4: Histogram of the gain (2.1) on the SSCI given as a pre-test and post-test in S&S at UM.
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Table 3.4: Summary of SSCI questions, including the relevant concept, the main topic of the question, and
the fraction of students in S&S that answered the question correctly on the pre-test and post-test (n = 180).

Question Topic Concept Pre Post

Q1 Math The definition of frequency. 0.99 0.99
Q2 Math Time-reversal in the signal domain. 0.92 0.96
Q3 Math Recognize a time-reversed and shifted signal. 0.41 0.52
Q4 Math How to find the difference of a signal and its time-shifted

version.
0.88 0.98

Q5 LTI The definition of time invariance. 0.91 0.89

Q6 Filt The interpretation of a magnitude and phase diagram for a
filter.

0.67 0.89

Q7 FT The definition of the Fourier series. 0.46 0.58
Q8 LTI Sinusoids are eigenfunctions of LTI systems. 0.50 0.79
Q9 FT Increasing the frequency of a signal in the time domain cor-

respondingly increases the frequency in the FT domain.
0.39 0.73

Q10 FT Convolution-multiplication duality of the FT. 0.30 0.57

Q11 FT The FT is homogeneous. 0.83 0.92
Q12 FT Convolution-multiplication duality and the FT of a cosine.

Or, how multiplication with a carrier wave impacts the FT.
0.60 0.93

Q13 Conv Convolution computes the output for an LTI system. Graph-
ical convolution of rectangular pulses.

0.32 0.80

Q14 Conv Convolution is commutative. 0.67 0.91
Q15 Conv Convolution computes the output for an LTI system. Graph-

ical convolution of rectangular pulses.
0.34 0.34

Q16 LTI How to determine if a system is causal based on its impulse
response.

0.27 0.78

Q17 LT How to interpret a pole-zero plot to determine a system’s
causality and stability.

0.22 0.74

Q18 LT The relation between a system’s pole-zero plot and its im-
pulse response.

0.31 0.67

Q19 LT The relation between a system’s pole-zero plot and its fre-
quency response.

0.18 0.46

Q20 Filt How adding a pole to a frequency response impacts the cor-
responding Bode plot.

0.48 0.63

Q21 Conv Convolution-multiplication duality. 0.12 0.52
Q22 Filt Time-phase shift duality. 0.19 0.64
Q23 LTI The relation between the impulse response of a system and

whether the system is causal. Parallel and cascade connec-
tions of systems.

0.40 0.52

Q24 LTI Graphical interpretation of linearity and time invariance. 0.32 0.43
Q25 Filt Low pass filtering of windowed signals. 0.51 0.72
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3.3.2 Model of Educational Productivity Factors

Before presenting the linear regression results, this section discusses descriptive statistics for the
independent variables, results from combining the seven motivation questions to for a single moti-
vation variable, and correlations between the independent variables.

Considering only the n = 124 students who completed the research survey, the average class
SSCI pre-test scores was 49.5% ± 12.0%, the post-test score average was 73.4% ± 14.4%, and
the class gain was 47.3%. The SSCI scores are significantly higher (p < 0.05) than the scores
presented in Section 3.3.1, which considered students regardless of if they completed the survey
on MoEP factors. Thus, there may be some sample bias as students who completed the research
survey on average scored better on the SSCI than those who did not.

3.3.2.1 Student Motivation Variable

Tab. 3.6 summarizes the responses to each of the seven survey questions relating to motivation.
There was one question on intent to get an EE degree (EE), one on their interest in S&S, and one
question each on how much students thought understanding convolution (conv), LTI, FT, Laplace
transforms (LT), and filtering (filt) would benefit them in their careers. Looking at the distribution
of the responses in Tab. 3.6, we note that most students were interested in learning S&S, even
though many did not expect to graduate with a EE degree (many computer engineering majors
at UM elect to take S&S from a list of possible core elective requirements). Students thought
convolution was the topic least likely to benefit them in their careers, followed by LTI, while they
thought filtering was the most likely to be beneficial (only one person disagreed that it would
benefit them). Finally, students responded very similarly to the question about LT and FT, rating
them in between filtering and LTI on perceived future usefulness.

Table 3.6: Summary of responses to Likert questions measuring student motivation. The questions asked if
students planed to graduate in EE, if students thought S&S is interesting, and if students thought understand-
ing each of the S&S topics will be beneficial in their career. Likert response options are strongly disagree
(SD), disagree (D), neither agree nor disagree (N), agree (A), and strong agree (SA). The most common
response on each question is bolded. The reported mean is calculated by numbering the responses from 1 to
5.

SD D N A SA Mean
Plan to graduate in EE 19 26 10 15 54 3.48

SS is interesting 2 9 14 63 36 3.98
Beneficial to career: Convolution 7 23 34 42 18 3.33

Beneficial to career: LTI 3 12 25 61 23 3.71
Beneficial to career: FT 2 8 16 54 44 4.05
Beneficial to career: LT 2 5 15 59 43 4.10

Beneficial to career: Filtering 0 1 7 41 75 4.53
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We first considered if these seven survey questions could be combined to form a composite
variable. To do so, we used the principal component factor analysis method [106]. The Kaiser-
Meyer-Olkin (KMO) measure indicates if a factor analysis is warranted. A KMO close to 1 sug-
gests the variables are linearly dependent and all measure the same underlying construct, while a
value below 0.5 or 0.6 is usually considered unacceptable [107]. The KMO for the seven motiva-
tion survey questions was 0.84, suggesting that the items merited a factor analysis. There was only
a single eigenvalue greater than one, suggesting a single variable, which we call student motiva-
tion. Every question loaded heavily onto the variable, with loadings between 0.59 (plan to graduate
in EE) and 0.87 (understanding FT is beneficial to career). Cohen’s alpha was 0.84 (there was a
0.47 average covariance with seven items in the scale).

We formed the student motivation variable as the average of the seven survey items. This
approach to forming the variable had a 0.99 correlation coefficient with the variable generated
using the loadings as weights for the items, suggesting that our results are unlikely to differ between
the two methods. The final student motivation variable has a mean of 3.9, a standard deviation of
0.75, and a range of 1.4-5.0.

3.3.2.2 Independent Variables: Descriptive statistics

This section summarizes the independent variables in the MoEP and our control variables.
The two student independent variables were student ability and student motivation. We used

the pre-test score to measure student ability and the average of seven Likert survey questions to
measure student motivation. Tab. 3.7 presents high-level statistics for both variables.

The responses to the two instructional quantity questions were diverse (see Tab. 3.7). Students
reported spending 1.5 to 48 hours on homework in an average week (average 8.4 hours, standard
deviation 5.7 hours) and attendance ranged the full scale from 0 to 100% (average 70%, standard
deviation 33.8%). As mentioned in the limitations section, the two survey questions regarding
quantity of instruction are more prone to measurement error due to inexact question wording.

Table 3.7: Summary of the student ability, student motivation, and instructional quantity independent vari-
ables. The ability score is the SSCI pre-test score, out of a maximum possible 25 points. The motivation
variable is the average of seven Likert questions, as described in Section 3.3.2.1 and has a scale of 1-5.

Student Ability: Instructional Quantity: Student
Pre-test HW hours Attendance (%) Motivation

Mean 12.4 8.4 70.8 3.9
Standard deviation 3.0 5.7 33.4 0.75

Minimum value 6 1.5 0 1.4
Maximum value 21 48 100 5.0
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For instructional quality (Tab. 3.8), 85% of students thought that the instruction was either
good or excellent; no students thought it was poor. Likewise, most (69%) students agreed that
the classroom environment made them feel comfortable, with 11% disagreeing and the remaining
20% responding neutrally. The responses to how much peers helped their understanding were
more spread out; 29% of students responding neutrally, 32% thought peers helped only a little or
not at all, and 39% thought peers helped a lot or a great deal. Finally, for the home environment
variable, roughly an equal number of students (26-33%) said the highest education status of their
parent(s)/guardian(s) was a bachelor’s degree, a master’s degree, or a professional degree. The
remaining 10% of students were divided between their parents having an associate degree and a
high school degree.

For the demographic variables, 100 students were male and 24 were female. Most students
were either white or Asian. To protect student anonymity, we defined a categorical race variable
that divided students into white (n = 71), Asian (n = 34), and other (n = 19) as the possible races.
The other category included all students that responded that they were another race or biracial.

Table 3.8: Summary of responses to Likert questions measuring instructional quality, peer environment, and
classroom environment. Likert response options are strongly disagree (SD), disagree (D), neither agree nor
disagree (N), agree (A), and strong agree (SA). The most common response on each question is bolded. The
reported mean is calculated by numbering the responses from 1 to 5.

SD D N A SA Mean
Instructional quality 0 2 17 53 52 4.25

Peer environment 12 28 36 33 15 3.09
Classroom environment 0 14 25 58 27 3.79

3.3.2.3 Simple Correlations

Having considered descriptive statistics for all the variables separately, this section now presents
correlations between the independent variables. Ideally, the independent variables would be un-
correlated, suggesting that they measure different underlying constructs.

Tab. 3.9 shows the significant (p<0.10) pair-wise correlations between the independent vari-
ables. The two highest correlations are (1) between instructional quality and classroom environ-
ment (0.50) and (2) between student motivation and instructional quality (0.45). (1) The relation
between instructional quality and classroom environment is easy to imagine: the quality of the
lecture can easily impact how students feel in the classroom, and students who feel comfortable or
uncomfortable with the learning environment are be likely to attribute art of that to the instructor.
(2) The relation between student motivation and instructional quality can be similarly explained
by the instructors impact on students, e.g., a good instructor may help students see the value in the
class material. Conversely, students who are dissatisfied with their instructor may be more likely
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Table 3.9: Significant (p<0.10) pair-wise correlations between independent variables in the MoEP (non-
significant correlations are not listed). Bold numbers denote variables that are significantly correlated with
p<0.01. For correlations between two continuous variables (ability and instructional quantity), we report
standard correlation coefficients. For correlations involving one or two discrete variables (instructional
quality and the three environmental variables), we report Spearman correlations.

Factor (1) (2) (3) (4a) (4b) (5) (6) (7) (8)
(1) Student ability 1 -0.26 0.20 -0.17

(2) Motivation . 1 0.45 0.26 0.28 0.26 0.23
(3) Instructional quality . . 1 -0.20 0.18 0.50 0.27 -0.27

(4a) Instructional quantity: homework . . . 1 0.21 -0.20 0.42
(4b) Instructional quantity: attendance . . . . 1 0.18 0.28

(5) Home environment . . . . . 1 0.20
(6) Classroom environment . . . . . . 1 0.28 -0.31

(7) Peer group . . . . . . . 1
(8) Semester . . . . . . . . 1

to consider dropping out of EE or the signal processing track in EE. It is also possible that students
who are more interested in learning the material seek out additional instruction either by asking
questions in class or attending office hours, and then rate instructional quality higher because they
received targeted attention.

Tab. 3.9 shows that the semester variable is significantly correlated with most of the other
variables. Semester is positively correlated with student motivation, both measures of instructional
quantity, and home environment, suggesting students in Winter 2020 were more motivated, worked
on S&S more per week, and had parent(s)/guardian(s) with higher education levels. The negative
correlations suggest students in Winter 2020 perceived the instructional quality and classroom
environment as poorer than their Fall 2019 peers.

We hypothesize that the students in the Fall 2019 and Winter 2020 were very similar coming
into S&S (supported by the statistically insignificant correlation between semester and the pre-
test student ability measure). However, because of the interruption in instruction and switch to
pass/fail grading due to COVID-19, the population of students who chose to take the survey in
Winter 2020 is likely different. COVID-19 likely also explains the lower ratings of instructional
quality and classroom environment for Winter 2020. Although there was a different instructor,
both instructors historically have received high ratings and, while there are certainly differences in
their teaching, these differences are likely overshadowed by the impact of the transition to online
learning. As evidence for this argument, three students commented in the survey’s free response
field that the unexpected switch to online instruction negatively impacted their perception of the
class and made it harder to learn.

Tab. 3.10 summarizes the independent variables and presents how each independent variable is
correlated with the post-test SSCI score (the outcome variables). Two of the variables have a nega-
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tive correlation: instructional quantity and peer group. Although many of the other variables have
the expected positive correlation sign, many are only weakly correlated. Rather than discussing
these results in depth, we turn to considering regression models, which allow us to control for the
effect of the other variables.

Table 3.10: Correlation between factors in the MoEP and the SSCI post-test score. The third column is the
mean value for the student ability, student motivation, and the two instructional quantity variables. The third
and fourth column are the mode value and Spearman correlation for the remaining variables, which are all
categorical or measured using a single Likert question.

Factor Measurement Mean/Mode Correlation

Student ability Score on the pre-test (out of 25) 12.4 0.47
Student motivation Average of 7 Likert questions 3.9 0.22

Instructional quality Rate overall quality of instruction 4 0.15
Instructional quantity Avg. weekly homework hours 8.4 -0.13

Self-reported attendance 70.8% 0.02

Home environment Highest education of parent(s)/gaurdian(s) Masters 0.10
Classroom environment Comfort of learning environment 4 0.14
Peer group Frequency peers helped with their understanding 3 -0.13

Semester Fall 2019 or Winter 2020 Fall 2019 0.05

3.3.3 Regression Models

We now present our main results from the linear regression to test which factors from the MoEP
predict CU. Our first regression model included the seven independent variables from the MoEP.
All of the independent variables, except home environment, were continuous regressors. The
second model additionally included the categorical race/ethnicity, gender, and semester control
variables. Both models used robust statistics to correct standard errors for possible heteroskedastic
noise. Tab. 3.11 summarizes the models.

The model without any control variables (see the middle column of Tab. 3.11) explains 28.3%
of the variance in post-test SSCI score and is significant at the α=0.01 level. Student ability
(β=0.53, t(df=112)=5.04, p<0.01) and student motivation (β=0.86, t(df=112)=1.90, p=0.06) are
the only two statistically significant predictors, both with the expected positive coefficients. The
coefficients of the several other independent variables are negative, but none are significant. None
of the control variables are significant (p>0.20).

When we include the control variables (see the rightmost column of Tab. 3.11), the expanded
model explains 30.4% of the variance. However, R2 will always increase when we add variables to
a linear regression model, so R2 is not an ideal measure. The adjusted R2 value actually decreases
slightly when we add the control variables as seen in the last row of Tab. 3.11: R2 for the model
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Table 3.11: Coefficients (with p-values) and R2 values for the regression models. Insignificant coefficients
(p > 0.10) are shown in gray text. The home environment variable is not included in the table it was not
significant. The coefficient β represents the predicted student score on the SSCI if all of the independent
variables were zero. Although the result is statistically insignificant, consider the coefficient for the semester
variable in the third column as an example of how to interpret the control variable results. The 0.45 coef-
ficient suggests that, if all other variables in the model were equal, a student in S&S in winter 2020 would
be expected to score 0.45 points higher on the SSCI than a student in S&S in fall 2019. All of the models
shown are for the raw post-test score as the output (on a scale of 0-25) and are significant at the α < 0.01
level.

Variable Without control variables With control variables Two variable

Student ability 0.53 (0.01) 0.51 (0.01) 0.55 (0.01)
Student motivation 0.86 (0.06) 0.87 (0.08) 0.89 (0.03)
Instructional quality 0.06 (0.91) 0.09 (0.85) ·

Instructional quantity
(homework) 0.02 (0.66) 0.02 (0.70) ·

Instructional quantity
(attendance) 0.00 (0.84) 0.00 (0.85) ·

Peer environment −0.39 (0.20) −0.35 (0.26) ·

Classroom environment 0.45 (0.22) 0.55 (0.16) ·

Constant offset term (β) 6.99 (0.01) 7.36 (0.01) 8.14 (0.01)

Semester: Winter 2020 · 0.45 (0.60) ·

Gender: Female · 0.14 (0.85) ·

Race/ethnicity: Asian · -0.49 (0.49) ·

Race/ethnicity: Other · -1.44 (0.10) ·

R2 28.3% 30.4% 25.7%
Adjusted R2 21.3% 20.8% 24.5%

without control factors is 21.3%, and this decreases to 20.8% when including control factors. This
suggests that these variables are not worth including.

After finding that student ability and motivation were significant predictors, we tested if either
was moderated by any of the control variables, or if either student ability or motivation had a
quadratic effect. We found no evidence of the control variables moderating the impact of student
ability or motivation nor of a quadratic effect.

For comparison, we ran a final regression model with only the two significant independent
variables, student ability and student motivation, as the independent variables. The model (at p <

0.01) and both variables (at p < 0.01 and p < 0.05 respectively) were all statistically significant.
This model explained 25.7% of the variance in post-test SSCI scores and had an adjusted R2 value
of 24.5%.
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3.4 Discussion

This study addressed the first research question: “What is students’ CU of S&S concepts at the end
of an undergraduate S&S course? What factors predict how many S&S concepts students learn in a
S&S course?” In addition to considering significant factors in our regression results, the following
sections discusses the overall explanatory power of the linear regression model and the descriptive
statistics on the SSCI scores.

3.4.1 Conceptual Understanding

By collecting pre-post SSCI data, we were able to compare CU gain to other studies. Both the pre-
test scores (mean 49%) and post-test scores (mean 72%) are higher than those reported in [1] (40%
and 53% respectively). The only other research paper we found with a similar pre-test average in
a S&S course was [74], who reported a 49% pre-test score, a 68% post-test score, and an average
gain of 38% among 19 students in an interactive third-year course. Note that many other papers
present similar, or higher, pre-test scores, but they are in upper-level electives such as digital signal
processing, e.g., [81].

Our observed gain of 45± 29% is also higher than the average gain reported for lectured-based
or interactive S&S courses (22 ± 7% and 39 ± 6% respectively) [49]. Other studies report similar
[99] or much larger [81] gains (70% or more), but these are in upper-level digital signal processing
courses. One possible explanation for the higher scores and gains is that the later versions of the
SSCI removed some of the more challenging questions [67], [70].

Another hypothesised reason for the high pre-test scores and gain is the effect of prerequisites,
and specifically differential equations at UM. Like at many institutions, differential equations
can be either a prerequisite or a corequisite with S&S, but 67% of UM students take it as a pre-
requisite. The qualitative data presented in Chapter 5 suggests that this mathematical background,
particularly being introduced to convolution, helped students in S&S. As a specific example of
how a prerequisite could increase both the pre-test score and gain, we hypothesize that students
may understand convolution at the beginning of the semester, thus raising their pre-test scores, but
not yet know it is the correct operation to use to compute the output of a LTI system given the input
and impulse response. As evidence that students have some background on convolution, students
scored 74% on question 14 of the pre-test, which tests whether students understand the commu-
tative property of convolution. As corresponding evidence that students do not fully understand
how to apply convolution to LTI systems, students scored 39% on a convolution question (#13)
asking students to recognize the output of an LTI system given plots of the input and the impulse
response. Since students understand much of what is needed to answer questions 13, it is easier
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for them to gain the CU by filling in a small gap in their knowledge. This study did not gather data
to test the proposed hypothesis, so we leave this as a direction for future work.

3.4.2 Factors Influencing Understanding

To understand the dataset, we first considered simple correlations between each independent vari-
able and the post-test score. Tab. 3.10 shows that all the correlations were positive except the
average homework hours and peer group. The negative correlation with homework hours may be
capturing that students who struggle in S&S need more time to complete their homework, but still
perform worse on the SSCI. Although we cannot test causality with our data-set, this hypothesis
is supported by our finding of a statistically significant negative correlation (p < 0.01) between
student ability and average hours spent on homework.

The simple correlation results are helpful to understand the data, but the regression results
allow us to test the predictive power of each independent variable, while controlling for the other
independent variables. Our regression results (Tab. 3.11) show that only student motivation and
student ability were significant when we controlled for all the variables. Further, when we ran a
regression model with only these two variables, we found they were able to explain 25.7% of the
variance in post-test scores. This suggests one could predict outcomes in S&S CU based only on
measurements of student ability and student motivation almost as well as basing a prediction on
all variables in the MoEP. However, the finding that these variables remain significant in the full
model is arguably more important because it suggests that student ability and student motivation
are significant even when we control for the other variables in the MoEP. We found no evidence
of a quadratic effect of student ability or student motivation nor of a moderating effect of race and
gender with the student ability or student motivation variable.

There are two likely explanations for why only two of the predicted seven independent vari-
ables were significant. First, as discussed in Section 3.2.4, the survey is incomplete and contains
measurement errors due to poorly worded questions and variables measured by a single question.
Second, our sample population is students from UM who had one of two instructors, similar home-
work assignments, and similar lecture material (though students were split into two sections in both
semesters). Although we explicitly measure student perception rather than directly measuring the
environment, there is still very little variance in the instructional setting because both courses are
from the same university and share many resources such as the textbook and homework problems.
These instructional and environmental independent variables might become significant if we were
to survey students across multiple courses at different universities.
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3.4.3 Explanatory Power of Regression Models

I hypothesized that the Model of Educational productivity would have explanatory power. The
regression models with the seven independent variables explained 28-30% of the variance in post-
test score, depending on whether we included the demographics and semester control variables.
This is less than the amount explained in the early studies with high school students [91], but more
than the amount explained in the original tests of the MoEP [88] and in the tests in other university
settings [92]. Thus, we found no evidence to reject our hypothesis.

As the MoEP was originally tested for measuring learning in high school students, we consider
the 28% of variance in CU among undergraduate students to be high. Adding variables specific
to undergraduate students would likely help explain more of the variance. Similar to the claim
in [88], we also expect designing additional survey questions to better measure the seven factors
would increase the explanatory power of the model.

Walberg [88] suggests that race and gender variables should not increase the explanatory power
of the MoEP if the environmental variables are properly measured. We see only a small increase
increase in explanatory power when including gender, race, and semester, and none of these vari-
ables are significant. Further, the R2 value of the model decreased when we added the control
variables, suggesting that including them is not useful. Because our environmental variables are
not significant, it is difficult to say if the changes in the coefficients between models with and
without demographics reflect poorly measured environmental variables.

3.5 Summary and Conclusion

The first part of RQ#1 asked: What is students’ CU of S&S concepts at the end of an un-
dergraduate S&S course? Using the SSCI, we found that students learned almost 50% of new
concepts during the semester they took S&S, which is a larger gain than typically reported during
an introductory S&S course. However, we noted a large standard deviation (29%) in our relatively
small sample size.

This naturally leads to the second part of RQ#1: What factors predict how many S&S con-
cepts students learn in a S&S course? The goal in addressing this question is to discover factors
with a positive influence which instructors, curriculum designers, or students can control. We
used the Model of Educational Productivity as a basis for collecting survey data on seven possible
factors: student motivation, student ability, instructional quality, instructional quantity, home en-
vironment, peer group environment, and classroom environment. We excluded two variables from
the original MoEP, student age and mass media, based on our sample population of undergraduate
students.
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The regressions with the MoEP factors explained 28-30% of variance in CU at the end of S&S.
We conclude that the model is a good starting place for understanding CU in an undergraduate
setting. However, the model could be improved by tailoring factors to undergraduate students.
For example, course selection might have a significant influence for college students since they
generally have some freedom in their curriculum. We recommend future studies test other models
of learning to see if a different model may more successfully explain differences in CU.

We found two of the factors, student ability and student motivation, were significant across
models, even when controlling for all other factors and demographic variables. Future work should
investigate if the relationship is causal (higher levels of student ability and student motivation lead
to more CU) or if it is mediated by another variable. If the relationship is found to be causal,
instructors can use this finding to focus more attention on enforcing prerequisites or providing
materials for students without sufficient background knowledge. Instructors can also motivate
students with real-world applications and examples of how S&S concepts may be useful to students
in their future classes or careers.
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CHAPTER 4

RQ#2: Measuring Conceptual Understanding of
Senior Undergraduates

This chapter considers CU of senior undergraduate engineering students in S&S. Section 2.2.1
provides background on the concepts in S&S and Section 2.2.2 discusses reasons why S&S con-
cepts may be difficult for students. This chapter is primarily drawn from the following publication
[5]:

C. Crockett, H. C. Powell, and C. J. Finelli, “Conceptual understanding of signals
and systems in senior undergraduate students,” Submitted to: IEEE Transactions on
Education, 2022

Students typically enroll in S&S during their second or third year, and little is known about
CU of students years after they complete a S&S course. Does CU increase as students have time
to process ideas and see concepts repeated in upper-level courses? Does CU decrease as students
do not use them on a daily basis and forget what they learned (or crammed) for their S&S final
exam? Is there a more nuanced relation? Motivated by these questions, this chapter considers the
second research question: What is the CU of S&S concepts among senior students? Gaining a
better understanding of seniors’ CU can help instructors and curriculum designers identify specific
concepts that need emphasis.

This study mixes qualitative data from think-aloud interviews and quantitative data from the
SSCI to measure CU. Think-aloud interviews involve asking students to solve a problem while
saying what they are thinking. These interviews help researchers understand students’ thought
processes and identify specific concepts that student struggle to apply correctly. Section 2.1.4.1
discusses the theoretical backing for think-aloud interviews and the three primary limitations of
think-aloud interviews: that participants may not reveal all of their knowledge, that the interview
data may reflect things other than the participant’s knowledge, and that think-aloud interviews
generally involve a small number of participants. The procedural diagram in Fig. 4.1 summarizes
the mixed methodology for this study.
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Data Collection
SSCIs of 4th years

UM (n = 55) and UVA (n = 412)

Data Analysis
Item response theory

Common incorrect responses

Mixing Stage
Use the QUAN data to:

(1) formulate hypotheses
(2) design the QUAL protocol

Data Collection
Think-aloud interviews

UM (n = 7) and UVA (n = 5)

Data Analysis
Evaluate transcripts for

conceptual understanding

Quantitative (QUAN) Strand Qualitative (QUAL) StrandMixing

Merging
Combine results and
draw interpretations

Figure 4.1: Procedural diagram for RQ#2: What is senior students’ conceptual understanding of signals and
systems? The arrows indicate the flow of data.

Unlike think-aloud interviews, CIs are easy to give to a large number of students. However, the
inventories are limited by the multiple choice format [56], [66] as students may be able to guess
the correct answer without having full CU. Further, students do not have to explain concepts in
their own words, making it harder to identify the true level of CU and the source of any incorrect
answers. Section 2.2.3 describes the SSCI used in this study. Because of the extensive initial
studies involving seven schools and over 900 students [1], [49] and follow-on validity studies [67],
[70], the SSCI offers a benchmark for comparison across institutional contexts.

This chapter largely extends from, and compares to, the work of Wage et al. [56] by investigat-
ing how their results generalize to a population of seniors. In [56], the authors of the SSCI collate
results from the original SSCI study, “data of opportunity” from their courses and other studies,
and video homework problems where students are required to explain their reasoning. Similar to
the think-aloud interviews in this study, the video homework problems provided [56] with more
insight into how well students understood the concepts and how students approached problems,
e.g., whether they used concepts, procedures, or “tricks” to answer. This chapter compare to their
findings throughout Section 4.3 and 4.4.
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4.1 Background: Item Response Theory

Psychometrics is “the science of measuring latent1 variables” [108]. Item Response Theory
(IRT) is a psychometric tool to analyze test responses and validate the reliability of the test. IRT
recognizes that an individual’s performance on a test is dependent on both the individual’s ability
(defined here are their CU) and the test questions themselves. van der Linden [108] describes the
history and current trends in IRT.

As part of testing the first wide-spread version of the SSCI (version 3), Buck, Wage, and
Hjalmarson [70] used IRT to analyze 1, 276 pre/post-test continuous-time SSCI exams. To estimate
the difficulty of each question βi and the ability of each student θs, [70] used the single parameter
binary logistic IRT model,

Pi,s = Prob(Xi,s = 1 | θs, βi) =
eθs−βi

1 + eθs−βi
, (4.1)

where Xi,s is a binary variable that indicates whether student s correctly answered question i, θs is
the overall conceptual understanding of student s, and βi is the difficulty of question i. Following
a common random effects IRT model [108], θs is typically assumed to follow a zero-mean normal
distribution with unit variance. When a student’s ability exactly matches the item difficulty (θs =

βi), the model predicts a 50% chance of the student responding correctly. A negative βi (low
difficulty) means that a majority of the student population is expected to answer that question
correctly while a positive βi (high difficulty) suggests less than half will respond correctly. Pi,s

increases, i.e., there is a higher probability that student s will get item i correct, as θs increases or
βi decreases.

An extension to the IRT model (4.1) is to also estimate item discrimination scores, αi. Under
this two parameter model, the probability that student s correctly answered item i is modeled as
the logistic function

Pi,s =
eαi(θs−βi)

1 + eαi(θs−βi)
. (4.2)

The item discrimination score determines how steeply Pi,s increases around θs ≈ βi. Larger dis-
crimination scores imply questions that better differentiate between students who do and do not
understand the tested concept.

To help interpret the item discrimination and difficulty scores, Fig. 4.2 shows two item char-
acteristic curves for question 9 and 15 on the SSCI based on the results presented in Section 4.3.
Item characteristic curves plot student ability versus the estimated probability of answering cor-

1Section 3.2.3 defined a latent variable as any variable that cannot be measured directly.
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Figure 4.2: Example item characteristic curves. The estimated probability of answering correctly is 50%
at the item difficulty βi and the slope at that point is given by the item discrimination αi. For question 9
(dotted, red line), α9 = 1.95 and β9 = -0.66. For question 15 (solid, blue line), α15 = 0.25 and β15 = 0.70.

rectly based on the IRT model (4.2). As student ability increases on the x-axis, the chances they
answer the question correctly increases on the y-axis. Question 9 has a relatively low difficulty
(β9 = -0.66), so it intersects the line Pi,s = 0.5 on the left-hand side of the plot. (The line Pi,s = 0.5
marks where a student is estimated to have a 50% chance of answering correctly.) In contrast,
question 15 has a high difficulty (β15 = 0.70); the curve for question 15 intersects the Pi,s = 0.5
line at a higher ability. The slope of the curve at the item difficulty is determined by the item dis-
crimination; question 9 has a larger item discrimination (α9 = 1.95) than question 15 (α15 = 0.25).
When writing exams, instructors may chose to look for high discrimination scores because such
questions better distinguish between students who do and do not know the material.

The IRT model (4.2) will never exactly match the data; consider that Pi,s in (4.2) is continuous
while the observed data is discrete. Therefore, given a set of responses to a test such as the SSCI,
finding the student abilities, item discrimination scores, and item difficulties is an optimization
problem. The goal is to find a set of parameters, (θs, αi, βi), such that the IRT model (4.2) best
predicts the observed values, i.e., Pi,s should generally be high when a student answers a question
correctly. Weissman [109] and Guo and Zheng [110] discuss approaches to fitting IRT models.

4.2 Methods

This mixed methods study uses SSCI data from senior undergraduate engineering students at UVA
and UM. Undergraduates at both universities are typically full-time, non-transfer students and the
test score data for first-year students indicates that admissions for both universities is selective
[111]. The SSCI data is supported by qualitative data from think-aloud interviews that further
investigate how the SSCI responses reflect CU. Fig. 4.1 depicts the overall mixed methodology.
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Table 4.1: Example SS concepts.
“What it is” concepts “Why it matters” concepts

• The definition of a linear and/or time invariant
system (Section 4.3.1, Q24).

• Convolution requires flipping and shifting a
signal then computing the integral of the prod-
uct of signals (Section 4.3.2, Q13, Q15).

• The FT relates the frequency and time domains
(Section 4.3.3, Q9).

• The convolution-multiplication duality of the
FT operation (Section 4.3.3, Q12).

• The FT of the output of a system is the multi-
plication of the frequency response and FT of
the input signal (Section 4.3.3, Q25).

• The definition of an ideal low pass filter (Sec-
tion 4.3.3, Q25).

• Convolution is the correct operation to
find the output of LTI systems (Sec-
tion 4.3.2, Q13, Q15).

• Multiplying a signal by a cosine cen-
ters the original FT at the frequency
of the cosine and is useful in applica-
tions such as radio broadcasting (Sec-
tion 4.3.3, Q12).

• Low pass filters are useful to remove
high frequency signals (Section 4.3.4,
Q25).

Unlike the participants in [56], who were in a S&S course, the seniors in this study are gen-
erally multiple semesters removed from their S&S course and have thus taken additional courses.
Considering a limited sub-sample2 of the study population for whom course data was available
(n=53 from UM, n=90 from UVA), 75% of UM seniors had taken or were currently taking a S&S
related elective, e.g., digital signal or image processing, communications, or a control course. In
contrast, only 19% of the UVA students had taken a S&S related elective (there are more computer
engineering majors than electrical engineering majors at UVA). Although course data for all par-
ticipants was not available for analysis, the authors expect these percentages are reflective of the
entire study population.

This chapter uses the definition of CU proposed in Section 2.1.2. Tab. 4.1 describes the specific
“what it is” and “why it matters” concepts that this chapter focuses on, the results section that
further discusses each concept, and the corresponding question number (Q#) on the SSCI.

4.2.1 Quantitative: Concept Inventories

Tab. 4.2 lists the main concepts in the 25 SSCI questions along with the IRT results presented in
Section 4.3. Students may use different concepts or PK for a given question, so the listed con-
cepts are non-unique. For example, students may use the formula for convolution and procedural
knowledge to answer question 13, which asks for the output signal given a rectangular input sig-

2These are students who took the SSCI in Fall 2020 or Fall 2021 and completed a survey asking them about which
courses they took.
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nal and impulse response. Or, students may use CU of convolution and the features of the input
and impulse response to determine the start and end time, maximum amplitude, and ramp-up and
ramp-down length of the output signal. Tab. 4.2 and Section 4.3 include short descriptions of the
questions for context, but we avoid details of the questions and answers to preserve the integrity of
the SSCI as a test and research instrument. See [1] for example questions and further description.

The 467 participants who took the SSCI include 412 UVA students and 55 UM students. The
sampling strategy was to target a representative sample of seniors in terms of students’ interests
within EE. Thus, in contrast to many previous studies of the SSCI with senior students [66], [74],
[81], we do not sample in a S&S-related upper-level elective such as digital signal processing.
Giving the SSCI in a course such as digital signal processing is helpful to determine if students
who elect the courses have the pre-requisite material and to test how the course improves CU.
However, we sought to examine CU of S&S across the senior population, including students who
did not continue to take S&S-related electives.

UVA students learned S&S as part of a series of three Fundamentals courses that intermix the
curriculum typical in Linear Circuits, Electronics, and S&S courses. Students took the Funda-
mental courses during their second and third years. The classes emphasized connections between
subjects and mixed lectures and labs in a studio-based format. For more information on the course
design at UVA, see [112]. Seniors took the SSCI roughly halfway through the fall semester of
their senior year for a small completion grade as part of a required capstone course at UVA be-
tween 2016-2021.

At UM, students took a single continuous-time S&S class in their second or third year, though
most students were classified as third or fourth years based on number of credits. The course was
lecture-based, used the free online textbook by Ulaby and Yagle [100], and was accompanied by a
required lab section that met five times per semester. At UM, the SSCI was not tied to any class,
but the research project was advertised to students in a required senior-level course between 2020-
2021. To decrease self-selected sampling bias, UM students were not told the tested concepts were
from S&S. Students were given $10 gift cards for completing the SSCI.

Tab. 4.2 shows the percentage of students answering each SSCI question correctly µi and the
results of an IRT analysis of the SSCI data. We report µi over only UVA students as the UM sample
is likely biased because a small percentage of students participated so their scores are unlikely to
generalize to the average student population. In contrast, the IRT model accounts for differences in
student ability, so we are able to include both UVA and UM students and still expect a reasonable
estimate of the difficulties of each SSCI question for senior students. We used Stata to estimate the
two-parameter logistic model (4.2) with robust standard errors [113].

Preliminary IRT results also informed the sub-sample of SSCI questions included in the think-
aloud interviews, which are highlighted in Tab. 4.2. These preliminary results came from SSCI
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exams given before 2021 and exams given during the S&S course at UM from the pilot study
described in Chapter 3, for a total of n = 406 SSCI exams. The next section describes how we
selected the final think-aloud questions.

4.2.2 Qualitative: Think-aloud Interviews

This section describes the think-aloud methodology for this study; see Section 2.1.4.1 for a
discussion of the theory behind think-aloud interviews.

Think-aloud interviews in EER generally follow the structure of presenting problems to stu-
dents, asking them to solve them while explaining their approach, and recording the interview for
later analysis. Further, the interviews generally follow most of basic recommendations in [114,
Ch. 4]. For example, [114] explains that it is important to make sure the participant feels at ease
by explaining the purpose of the interview and that there are no hidden motives. This explanation
can help to create an atmosphere of confidence and easiness, which is important in think-aloud in-
terviews because participants may be embarrassed by the way they approach problems or because
they do not not have the knowledge they think they should have.

However, think-aloud interviews differ in the amount of interaction between the interviewer
and interviewee. Rı́os, Pollard, Dounas-Frazer, et al. [115] used interviews with relatively little in-
teraction: the interviewer initially read a prepared prompt, reminded the student to think aloud, and
then the student worked on the given problems. The interviewer asked follow-up questions only
after the interviewee completed the tasks. Wage, Buck, and Hjalmarson [49] used semi-structured
interviews, allowing for ad hoc probes during the interview. Fayyaz [51, Ch. 3] also used a semi-
structured interview; the author asked students to think-aloud to collect concurrent data then asked
probes after each question (as needed) to collect retrospective data. Montfort, Brown, and Pollock
[29] took yet another approach with more interviewer-interviewee interaction. The interviewer
from [29] initially made participants more comfortable by starting with introductions and gen-
eral discussion and explicitly addressing the possibility of participants feeling uncomfortable. For
every question, the interviewer described the diagrams verbally, asked if the question was clear,
encouraged the student to ask questions and take their time answering, and attempted to encourage
and relax the student in between questions. The interviewer occasionally asked broader questions
to test a specific hypothesis during the interview.

The differences in level of interaction can be attributed to differences in research question
and theoretical framework for think-aloud data. Interviews with less interaction are better aligned
with the theories of Ericsson and Simon [53], while the theories of Boren and Ramey [55] allow
for increased interaction; see Section 2.1.4.1. For this study, we did not want probes from the
interviewer to change how students approached the later questions on the protocol. Therefore, to
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Table 4.2: Summary of SSCI questions, including the relevant concept, the IRT discrimination (αi) and
difficulty (βi) estimates and corresponding standard errors, and the fraction of students answering correctly
(µi). Highlighted questions are used in the think-aloud interviews, starred questions were used in [56], and
questions with RR require reverse reasoning.

Question Concept Discrimination αi Difficulty βi µi

Q1 The definition of frequency. 1.20 ± 0.48 -3.69±1.14 0.98
Q2 Time-reversal in the signal domain. 1.01 ± 0.20 -1.39±0.24 0.78
Q3 Recognize a time-reversed and shifted signal. 0.36 ± 0.17 0.48 ± 0.30 0.45
Q4 How to find the difference of a signal and its time-shifted

version.
1.70 ± 0.28 -1.21±0.14 0.79

Q5 The definition of time invariance. N/A N/A 0.93

Q6* The interpretation of a magnitude and phase diagram for a
filter.

0.85 ± 0.15 -1.39±0.24 0.73

Q7 The definition of the Fourier series. 1.49 ± 0.22 -0.69±0.10 0.67
Q8 Sinusoids are eigenfunctions of LTI systems. 1.33 ± 0.20 -0.60±0.10 0.64
Q9* Increasing the frequency of a signal in the time domain cor-

respondingly increases the frequency in the FT domain.
1.95 ± 0.29 -0.66±0.09 0.67

Q10-RR Convolution-multiplication duality of the FT. 0.72 ± 0.15 1.43 ± 0.29 0.25

Q11 The FT is homogeneous. 0.72 ± 0.19 -2.42±0.56 0.83
Q12 Convolution-multiplication duality and the FT of a cosine.

Or, how multiplication with a carrier wave impacts the FT.
0.90 ± 0.16 -0.82±0.16 0.63

Q13* Convolution computes the output for an LTI system. Graph-
ical convolution of rectangular pulses.

0.93 ± 0.16 -1.03±0.18 0.69

Q14-RR Convolution is commutative. 0.74 ± 0.17 -2.01±0.65 0.82
Q15* Convolution computes the output for an LTI system. Graph-

ical convolution of rectangular pulses.
0.28 ± 0.11 0.70 ± 0.43 0.47

Q16 How to determine if a system is causal based on its impulse
response.

1.12 ± 0.16 -0.04±0.10 0.47

Q17 How to interpret a pole-zero plot to determine a system’s
causality and stability.

0.71 ± 0.15 -0.29±0.15 0.54

Q18 The relation between a system’s pole-zero plot and its im-
pulse response.

0.94 ± 0.16 0.45 ± 0.14 0.40

Q19 The relation between a system’s pole-zero plot and its fre-
quency response.

0.86 ± 0.16 0.99 ± 0.20 0.31

Q20 How adding a pole to a frequency response impacts the cor-
responding Bode plot.

0.40 ± 0.13 -2.01±0.65 0.70

Q21-RR Convolution-multiplication duality. 0.88 ± 0.14 0.51 ± 0.14 0.39
Q22-RR Time-phase shift duality. 0.71 ± 0.14 0.51 ± 0.17 0.40
Q23 The relation between the impulse response of a system and

whether the system is causal. Parallel and cascade connec-
tions of systems.

0.26 ± 0.12 1.83 ± 0.87 0.38

Q24 Graphical interpretation of linearity and time invariance. 0.31 ± 0.12 1.28 ± 0.56 0.40
Q25* Low pass filtering of windowed signals. 1.25 ± 0.19 -0.87±0.13 0.70
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avoid altering the participants’ thought processes during their first pass on the concept questions,
I saved any follow-up questions until the participant completed all six questions. However, I did
not attempt to minimize all social interaction. For example, for one of the participants who was
more nervous, I reminded them to think-aloud by saying, “If you just say whatever it is you’re
thinking about. Again, I’m not here to judge if your though process is correct. [Just say] whatever
it is.” Phrasing this reminder as a social request follows the suggestions of Boren and Ramey [55]
rather than Ericsson and Simon [53] and can help to make the conversation feel more natural to
participants.

When I conducted the think-aloud interviews, I followed standard best practices for interview-
ing [55], [116], [117]. To help put students at ease, I introduced myself, reviewed the consent
form, and explained that the purpose of the research was to understand different approaches to the
problems. I emphasized that we were more interested in their thought process rather than whether
they ended up selecting the correct answer and that I was not there to judge or test them. The first
interviewee asked if I had written the problems; in the following interviews, I explained that other
researchers wrote the problems. Participants were told they, not the interviewer, were the expert
on how they thought and that they need not ask for verification of anything during the interview.
Finally, I explained how to use the tablet computer and shared the plan for the interview session:
that students would be asked to think aloud while solving the six problems and that we might return
to some of the problems after they are done to ask follow-up questions.

The think-aloud interviews included six questions from the SSCI. One question tested LTI
concepts (Q24), two tested convolution (Q13 and Q15), two tested FT (Q9 and Q12), and one tested
filtering (Q25). Tab. 4.4 summarizes the concepts. Based on the IRT results and the results from
[56], we made hypotheses about CU specific to each concept to test in the think-aloud interviews;
these hypotheses are introduced in Section 4.3.

We selected the think-aloud questions based on multiple criteria. First, we decided to use many
of the same questions analyzed in [56] to see how their results transferred to our setting. The only
question from [56] that we did not use was question 6, which had a very low difficulty score on
the initial IRT; we anticipated it may be difficult to recruit students for the think-aloud interview
who responded incorrectly to question 6 and there may be too little variation in the data. We then
added two additional questions: 12 and 24. By adding question 12 to the think-aloud, we hoped
to see if students were more likely to use a “why it matters” concept or a “what it is” concept
approach. Most other SSCI questions seem to favor a specific approach, while we were unsure
which approach students would use on question 12; Section 4.3.2 discusses this question further.

When selecting the think-aloud questions, we were also analyzing the qualitative data for phase
3 of the overall EER study (see Fig. 1.1). Chapter 5 discusses this data further, but the conversations
regarding LTI were intriguing and made us want to include a LTI question in the think-aloud
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interviews. Of the LTI SSCI questions, 24 was the most difficult according to the preliminary
IRT results. The other questions may have been too simple to produce quality think-aloud data;
Charters [48] explains that think-aloud questions should be neither too simple nor too complex.

Think-aloud participants worked on the six SSCI questions on the tablet computer (an iPad pro
with pencil), which recorded the audio and screen annotations for later transcription and analysis.
Students were encouraged to work at their own pace and were allowed to skip and revisit questions
if desired. If the student asked for verification about a step or question, I instructed them to make
their best guess. Some participants initially asked for verification (either explicitly or by pausing
and looking up) after completing the first question. Once reassured that they were helping with the
research as long as they continued to talk aloud, most participants completed the questions with
no other significant interaction. The think-alouds lasted 30 minutes; all students finished the six
problems and most finished in time to allow for follow-up questions.

All students who completed the SSCI were asked if they were interested and available to par-
ticipate in the think-aloud interviews. If too many students had been interested, our plan was to
select interviewees based on specific SSCI answers to achieve a purposeful sample from among
the participants who indicated interest and availability. However, we were able to invite all inter-
ested students. Participants were incentivized by a small gift card. In total, seven UVA students
and five UM students participated. Half of the think-aloud participants had taken or were taking a
S&S related elective course. For every think-aloud question, at least six participants had answered
correctly when taking the full SSCI and at least two had answered incorrectly. The range of overall
SSCI scores among think-aloud participants was 11-24 out of 25.

After transcribing the data, the research team analyzed the think-aloud data across questions
and across students for themes on which concepts students used and whether they used each con-
cept correctly. Qualitative analysis involves “coding”, which is the iterative process of attaching a
label to a segment of the interview. The labels, or codes, can come from the data itself, from a prior
hypothesis, or from a theoretical framework [118]. It was relatively easy to create codes for each
question because the SSCI questions often have a single or a few common approaches students can
use, the incorrect answers often capture particular errors, and we entered the think-aloud interviews
with specific hypothesis for each question. For example, for question 12, one code distinguished
whether students used the “why it matters” or “what it is” approach, using the definitions for these
concepts presented in Fig. 2.1. For question 25 on filtering, we coded if students described the filter
as a low-pass filter. Other example codes captured if students were guessing, if they said they were
unsure of their answer, and if they tried to use a formula. When analyzing each question, we also
open coded the responses to allow for new codes, e.g., we created a code for if students mentioned
the convolution of two rectangles is a trapezoid. Section 4.3 discusses the common codes for the
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think-aloud questions based on the specific hypothesis tested by each question.

4.2.3 Limitations

As in Chapter 3, students were not incentivized to try hard when taking the SSCI; they were given
course credit at UVA and a gift card at UM for completion. Thus, it is possible that students
did not take the pre/post-test seriously and that their scores do not accurately reflect their CU.
Chapter 3 argued that the results from [105] apply to the S&S setting, suggesting that the low-
stakes assessment in the S&S course is likely a valid measure of student CU. Whether the same
argument applies in this case for the population of senior students is less certain because the SSCI
is not directly relevant to a required senior course. Tab. 6.1 shows the fraction of students in S&S
and of seniors answering each SSCI question correctly. Some of the decreases in accuracy suggest
seniors may not have been trying as hard as the S&S students. For example, 79% of seniors
correctly answered the background mathematics question 4 (on finding the difference of a signal
and its time-shifted version) while 98% of students in S&S answered correctly. Although it is
possible that senior students lose that background knowledge due to non-use, it seems more likely
that seniors made careless errors by answering quickly than that they no longer recall how to shift
and subtract signals. A counter-point to this argument is that the S&S students may have solved
or verified their solution to problems like question 4 more using PK (perhaps to test their own
knowledge before the S&S final exam). If true, the SSCI from seniors may be a better measure
of CU without mixing effects from PK. How accurately the SSCI reflects CU of students when
administered outside of the S&S course and when students are not graded on their answers would
be a good area for future work.

As shown in Fig. 4.1, this research is a mixed methods study. Each component carries its own
methodological limitations. As noted in the background, SSCI scores may not accurately reflect
CU even when students put forth their best effort. The think-aloud interviews help verify which
concepts students use for a small number of SSCI questions, but these interviews involved a small
sample of both questions and students.

Due to a data collection error, SSCI responses for Q5 are not included for the students from
UVA before 2021. When reporting score percentages throughout this chapter, we divide the num-
ber of correct responses by 24 instead of 25 for the impacted participants.

The COVID-19 pandemic was unprecedented and it is hard to estimate its impact on CU. Both
universities adopted pass/fail grading during the Spring 2020 semester, and anecdotal evidence
suggests students did not learn as much in their courses that semester. The results section looks at
historical SSCI data from UVA to estimate the impact of this limitation.
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4.3 Results

SSCI scores for senior students at both UM and UVA ranged from 5 to 25, with a mean score
and standard deviation of 59.3 ± 16.9%. Fig. 4.3 shows a histogram of the scores and Fig. 4.5
shows the fraction of UVA students who answered each question correctly. Tables 4.2 and 4.4
include the fraction of UVA students (n = 412) who answered each question correctly µi. As
briefly mentioned in Section 4.2.1, we do not include UM students when reporting µi because
these students are likely a biased sample of the overall EE student population. Tables 4.2 and 4.4
also present the results of the IRT analysis: the difficulty βi and discrimination αi for each question.
The difficulty and discrimination scores use the SSCI responses from all n = 467 UVA and UM
seniors who participated in the study because, unlike reporting µi, the IRT model (4.2) accounts
for student ability. (Tab. 4.2 is sorted by question number while Tab. 4.4 is sorted by question
difficulty.) Question 5 had only 98 non-missing observations due to the data collection error and
thus did not have a good IRT fit. One pattern across concepts is that students struggle with three
of the four reverse-reasoning (RR) questions (Q10, Q21, and Q22), with only 25%, 40%, and 39%
responding correctly.

To examine the impact of COVID-19, we performed a t-test to determine if the SSCI scores
differed significantly between the group of UVA students who took online classes during COVID-
19 (2020 and 2021 cohort, n=119) and those who did not (the cohorts before 2020, n=293). We
do not have scores from UM students pre-2020 to do a similar comparison. The group impacted
by COVID-19 scored significantly worse (p < 0.01), with an average of one additional incorrect
answer. Fig. 4.4 shows how the SSCI scores vary over time.

The following subsections use the IRT results alongside the think-aloud data to examine CU
of convolution, LTI, and FT and filtering. Each sub-section summarizes the difficulty of the SSCI
questions and the most common incorrectly chosen answers (defined as answers selected by more
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Figure 4.5: Percentage of senior UVA students who answered each SSCI question correctly.

than 50% of the students who get a question wrong), presents a hypothesis entering the think-aloud
interviews, and discusses how the think-aloud data aligned with the hypothesis.

4.3.1 Linearity and Time Invariance

SSCI questions 5, 8 and 24 focus on LTI concepts. Most students answer Q5 and Q8 correctly (93%
and 64% respectively) suggesting they can apply LTI concepts to relatively simple questions. Q5
asks students to recognize the output of an LTI system when the input is delayed; this question
is easy in that it likely mimics the format of common homework problems. Q8 asks students to
recognize a possible output of an LTI system when the input is a sinusoid; this format is likely less
familiar to students, but a majority of students still select the correct answer. Neither Q5 nor Q8
has commonly selected incorrect answers.

In contrast, only 40% of students correctly answered Q24 and Q24 is the third most difficult
SSCI question according to the IRT results. This question requires students to infer if a sys-
tem could be linear and/or time invariant based on three input/output pairs. Looking at the four
multiple-choice answers, 72% of students chose a response that is correct on the time invariance
(TI) of the system while only 49% answered correctly regarding the linearity. Based on these data,
our hypothesis entering the think-aloud interviews was:

(H-LTI) Students have lower CU of linearity than TI and thus struggle to apply the lin-

earity concept to a graphical problem with a novel format.

This hypothesis was tested by Q24 on the interviews.
All think-aloud participants who did not use test-taking strategies (such as process of elimi-

nation) or explicitly say they were guessing used “what it is” concepts to answer Q24. Of the 12
think-aloud participants, ten checked for TI with correct reasoning. One participant guessed the
answer, one confused TI for memoryless, and one (who later corrected their work) confused TI for
causality.
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In contrast, only half the participants reasoned correctly about linearity. The most common
error (three participants) was thinking linearity meant the input/output pairs had to be proportional.
Two participants recognized the system was not LTI, and used that to justify it being non-linear,
suggesting they did not remember how to separately test linearity and TI. A couple of participants
initially tried to reverse-engineer the system based on the input-output pairs, e.g., one attempted to
find the impulse response and then use that to determine if the system is LTI. This circular logic
(assuming the system is LTI to understand what it does to then determine if it is LTI) suggests how
accustomed students are to assuming LTI.

Overall, the think-aloud results support (H-LTI) that participants better understand TI in graph-
ical form than linearity. A follow-up question for a future research project would be to determine
whether students who do not properly check linearity from graphical input/output pairs recall the
mathematical definition of linearity.

4.3.2 Convolution

Questions 13, 14, 15, 21, and 23 test convolution. However, Q21 requires reverse reasoning and
Q23 requires synthesizing convolution and causality concepts, so neither provides a clear picture
of convolution CU. Of the remaining three questions, Q14, which tests if students remember
that convolution is commutative by reversing the roles of the input and impulse response, is the
easiest according to the IRT results. The common incorrect answer (12% of participants) correctly
identifies the shape of the requested signal, but incorrectly adds a time shift.

The other two convolution questions, Q13 and Q15, ask for the output of an LTI system given
rectangular pulses as the input and impulse response, thus testing if students know convolution
is the correct operation and if they can recognize a common graphical convolution. Looking at
the problem statement, instructors likely see the questions as redundant3, but the correct answer
to Q13 only requires that students know the output is a trapezoid (none of the distractors are
trapezoids) whereas all possible answers to Q15 are trapezoids or triangles with the same start and
end times. To answer Q15 correctly, Q15 requires determining the maximum height and ramp-up
slope/length of the output. The IRT results reflect that Q15 is more challenging: β15=0.70 while
β13=-1.03. Fig. 4.6 demonstrates the key difference between the two questions.

The common incorrect answer to Q15 (33% of students) suggests that students do not recognize
that a unit-height, wide rectangle has a maximum overlap of more than one units when convolved
with a longer unit-height rectangle. Wage et al. [56] found the same common incorrect response.

3One instructor asked why both questions were included given that they (appeared to) test the same concepts. At
the time, I did not have a good answer! In hindsight, I would have responded that Q15 is more challenging because of
the answer choices and that Q15 tests if students know how to convolve two pulses both with width greater than one
time unit.
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Table 4.4: Summary of SSCI questions, the IRT estimates and corresponding standard errors, and the frac-
tion of students answering correctly (µi). Highlighted questions are used in the think-aloud interviews and
starred questions were used in [56].

Question Concept Discrimination αi Difficulty βi µi

Q5 The definition of time invariance. N/A N/A 0.93
Q1 The definition of frequency. 1.20 ± 0.48 -3.69±1.14 0.98
Q11 The FT is homogeneous. 0.72 ± 0.19 -2.42±0.56 0.83
Q14-RR Convolution is commutative. 0.74 ± 0.17 -2.01±0.65 0.82
Q20 How adding a pole to a frequency response impacts the cor-

responding Bode plot.
0.40 ± 0.13 -2.01±0.65 0.70

Q2 Time-reversal in the signal domain. 1.01 ± 0.20 -1.39±0.24 0.78
Q6* The interpretation of a magnitude and phase diagram for a

filter.
0.85 ± 0.15 -1.39±0.24 0.73

Q4 How to find the difference of a signal and its time-shifted
version.

1.70 ± 0.28 -1.21±0.14 0.79

Q13* Convolution computes the output for an LTI system. Graph-
ical convolution of rectangular pulses.

0.93 ± 0.16 -1.03±0.18 0.69

Q25* Low pass filtering of windowed signals. 1.25 ± 0.19 -0.87±0.13 0.70

Q12 Convolution-multiplication duality and the FT of a cosine.
Or, how multiplication with a carrier wave impacts the FT.

0.90 ± 0.16 -0.82±0.16 0.63

Q7 The definition of the Fourier series. 1.49 ± 0.22 -0.69±0.10 0.67
Q9* Increasing the frequency of a signal in the time domain cor-

respondingly increases the frequency in the FT domain.
1.95 ± 0.29 -0.66±0.09 0.67

Q8 Sinusoids are eigenfunctions of LTI systems. 1.33 ± 0.20 -0.60±0.10 0.64
Q17 How to interpret a pole-zero plot to determine a system’s

causality and stability.
0.71 ± 0.15 -0.29±0.15 0.54

Q16 How to determine if a system is causal based on its impulse
response.

1.12 ± 0.16 -0.04±0.10 0.47

Q18 The relation between a system’s pole-zero plot and its im-
pulse response.

0.94 ± 0.16 0.45 ± 0.14 0.40

Q3 Recognize a time-reversed and shifted signal. 0.36 ± 0.17 0.48 ± 0.30 0.45
Q21-RR Convolution-multiplication duality. 0.88 ± 0.14 0.51 ± 0.14 0.39
Q22-RR Time-phase shift duality. 0.71 ± 0.14 0.51 ± 0.17 0.40

Q15* Convolution computes the output for an LTI system. Graph-
ical convolution of rectangular pulses.

0.28 ± 0.11 0.70 ± 0.43 0.47

Q19 The relation between a system’s pole-zero plot and its fre-
quency response.

0.86 ± 0.16 0.99 ± 0.20 0.31

Q24 Graphical interpretation of linearity and time invariance. 0.31 ± 0.12 1.28 ± 0.56 0.40
Q10-RR Convolution-multiplication duality of the FT. 0.72 ± 0.15 1.43 ± 0.29 0.25
Q23 The relation between the impulse response of a system and

whether the system is causal. Parallel and cascade connec-
tions of systems.

0.26 ± 0.12 1.83 ± 0.87 0.38
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Figure 4.6: Example problems illustrating the main difference between question #13 (top) and #15 (bottom)
on the SSCI. In both questions, students are given the input signal and impulse response (the two signals on
the left side of the equality) and asked to select the plot of the output signal. The dotted line in the second
row shows the common amplitude error made by students. These example problems do not use the exact
input and impulse response from SSCI questions #13 and #15; the SSCI questions include a written prompt
and the signals have different lengths and non-zero offsets.

They further observed that students used a memorized “trick” of adding start and end times to
answer Q13, rather than using CU. Ref. [56] hypothesized that students over-generalize in-class
examples, which primarily involve unit-width pulses. Our hypothesis entering the think-aloud
interviews was:

(H-Conv) Students have low CU of what input and impulse response features determine

the output signal features,

i.e., that the findings from [56] would generalize to our study population of seniors. This was tested
with Q13 and Q15 on the think-aloud interviews.

On Q13 and Q15 of the think-aloud interviews, most (but not all) students recognized they
needed to convolve the input and impulse response (the “why it matters” concept part of the ques-
tion). Three did not mention convolution but recalled some of the procedure. One had forgotten
convolution and guessed.

Next, students had to use CU or procedural knowledge to find the output of the graphical
convolution. Two students attempted to use PK, with one of them successfully computing the
convolutions for both Q13 and Q15. Ten students noted that they picked the only trapezoid on
Q13; most of these used a “what it is” concept of convolution to recognize that the output needs
to ramp up and down. Only one added start and end times to find the output duration; they said
they discovered this “trick” on their own when previously solving a convolution problem and they
demonstrated CU during a follow-up probe.

As in [56], the most common reasoning error in Q15 was in computing the maximum area of
overlap: only four students correctly reasoned about this using “what it is” convolution concepts
out of the seven students who considered the maximum value when answering. The other students
either guessed or reasoned based on ramp-up length/slope. Three students explicitly recalled con-
volution involving multiplication and incorrectly said the maximum signal value was one since
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both inputs had unit amplitudes. In contrast, all eight students who reasoned about the ramp-up
length or slope did so correctly. The way students talked suggested that they had CU of how the
width of the input impacted these points. Thus, there is only partial support for (H-Conv)–students
often did not understand what controlled the maximum value for the output signal, but they largely
demonstrated CU of the start/end times and breakpoints and did not use memorized “tricks” as in
[56].

4.3.3 Fourier Transform

Questions 7, 9, 10, 11, 12, and 22 on the SSCI emphasize FT concepts, with Q10 and Q22 requiring
reverse reasoning. The common distractor on Q10 (56% of participants) corresponds to convolving
the frequency response with itself (rather than multiplying it) when asked to convolve the time
domain signal with itself. Considering the four remaining questions (Q7, Q9, Q11, and Q12),
students responded correctly 67-83% of the time, suggesting a relatively high level of CU. Of
these, Q12, which asks for the FT of p(t)cos(2wot) given a plot of P( jω), was the only forward-
reasoning FT question question with a common incorrect answer. The common incorrect answer
(20% of participants) corresponds to convolving P( jω) with itself.

Despite the high percentages, in interviews, [56] found students relied on tricks rather than CU
to answer Q9. Q9 gives plots of a windowed sinusoid and its Fourier transform, then asks students
to recognize the transform corresponding to the plot of a higher-frequency windowed sinusoid.
This question thus tests if students understand the representational connection between time and
frequency – one of the most critical “what it is” concepts in S&S.

Q9 and Q12 on the think-aloud tested the following hypotheses, respectively:
(H-FT1) Students answer Q9 correctly without full CU.

(H-FT2) Students who answer Q12 correctly are more likely to recall why carrier waves

are useful, rather than using the multiplication-convolution duality of the FT.

Hypothesis (H-FT1) follows from [56] while (H-FT2) is based on my experiences.
For Q9, only six think-aloud students answered confidently with the correct reasoning. Five

more answered correctly, but said they were unsure of their answer or used test taking strategies
(three of whom selected different answers during the full SSCI). The one student who answered
incorrectly was “thinking too fast” and confused high and low frequency; they otherwise had the
correct reasoning and answered Q9 correctly on the full SSCI. Q9 was the first question on the
think-aloud interview, so some of the lack of confidence might stem from students getting used
to the think-aloud process. However, the fact that three students selected different answers when
taking the full SSCI suggests that at least some participants were genuinely not sure of their answer.
Although the seniors used “what it is” CU of the FT to answer Q9 rather than relying on memorized
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tricks as in [56], the data overall supports (H-FT1) as almost half of participants were unsure of
their (correct) answer and many reasoned based on incomplete CU of the FT.

For Q12, there were an equal number of students (five) who used process of elimination as
their primary strategy and who recalled, some only vaguely, that multiplying by a cosine acted
as a carrier and centered the P( jω) around ±2ωo. Four students tried to use the multiplication-
convolution duality approach to answer Q12, but only one student recalled the FT of a cosine to
answer that way (another student noted they would typically look it up in a table). Only one student
picked the common distractor answer for Q12; they used test-taking strategies. Other students
who used test-taking strategies often quickly eliminated other answers, suggesting this distractor
may be common due to test taking strategies and not because students default to convolution.
Whether students pick that answer because it is P( jω) convolved with itself would be an interesting
hypothesis for a future study.

The Q12 think-aloud results support (H-FT2) since students better recalled the “why it matters”
concept of carriers, even if they no longer had full CU, than the multiplication-convolution duality
and the FT of cosine. However, as with Q9, many students were able to answer Q12 correctly
by process of elimination using partial knowledge. Also, almost the same number of students at-
tempted the duality approach, but not knowing the FT of cosine made this approach less successful
than the students who used the “why it matters” approach.

4.3.4 Filtering

Questions 6 and 25 on the SSCI focus on filtering. These questions were among the 10 easiest
questions on the SSCI according to the IRT results and had some of the highest percentage of
students responding correctly, 73% and 70% respectively of students responded correctly. There
were no common incorrect answers. Using these questions, [56] found many students who re-
sponded correctly did not check if the signal was in a filter’s passband and students assumed that
at least one signal should pass through a filter, likely over-generalizing from examples in class that
rarely (if ever) involve filtering a signal without a component in the passband. Similarly, many
students did not check if the filter influenced the magnitude of the signal; they treated the filter as
a “mask” that either fully passed or fully rejected the signal components. Based on these results,
we hypothesized:

(H-Filt1) Students do not check the passband for filters.

(H-Filt2) Students think of filters as a mask and do not check the filter magnitude.

Q25 on the think-aloud interviews tested both hypothesis. Time permitting, after the student fin-
ished answering, I asked whether students’ answers to Q25 would change if the frequency of the
input signal were increased (by a factor that pushed it outside the pass band) or if the amplitude of
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the filter were doubled.
Tab. 2.1 indicates that there are multiple approaches to Q25 based on different concepts. Most

of the participants recognized the question as a standard filtering problem, with two students ex-
plicitly noting that the frequency response corresponded to a low pass filter. These students were
able to quickly identify that the output would consist of only the low frequency pulse using either
the “why it matters” concept behind low pass filters or by applying the definition of a low pass filter
(a “what it is” concept). Two students reasoned through the problem by multiplying the FT of the
input signal with the system’s frequency response to find the FT of the output then connecting the
resulting FT to the low frequency pulse in the time domain. These students used the “what it is”
concept for a frequency response rather than CU of filtering to arrive at the correct answer. Overall,
most students demonstrated CU in some form on the think-aloud for Q25. Only two students had
significant conceptual errors: one related zero frequency to zero time and the other thought the
symmetry of the filter’s frequency response implied the output time signal should be symmetric.

Unlike the results presented in [56], nine participants in this study checked the passband when
initially answering (often graphically), an additional student checked the passband when asked a
follow-on question about how the answer would change if the frequency of the input pulses was
increased, and one never checked the passband but did recognize that a higher frequency input
would result in zero output. Only two students checked the magnitude of the filter on their first
pass, but, of the five students that we asked a follow-up question, all correctly accounted for the
impact of a non-unit magnitude filter. Considering how many students used process of elimination
for the other think-aloud questions, students were thorough when answering Q25 and the think-
aloud data does not support (H-Filt1) nor (H-Filt2).

4.4 Discussion

This study was largely an extension of the CU of S&S work by Wage, Buck, Nelson, et al. [56] to
a population of electrical and computer engineering senior students at UVA and UM. Unlike the
participants in [56], the senior students in this study are generally one or more semesters removed
from their primary S&S course. Seniors may forget concepts over time, or they may gain CU
as they have time to process concepts and they see concepts reinforced in upper-level courses.
Tab. 4.6 summarizes the main findings from this study and the literature.
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Table 4.6: Summary of the hypotheses, main findings, how they compare with findings from the literature, and questions for future work.

Hypotheses Findings Connection to the literature Questions for future work

LT
I

(H-LTI): Students have lower
CU of linearity than TI and thus
struggle to apply the linearity
concept to a graphical problem
with a novel format.

Students correctly predicted the output of LTI
systems.
Supporting (H-LTI): Students better under-
stood TI than linearity, and confused linearity
with proportionality.

Ref. [71]: Students can answer
LTI questions without full CU.
Students tend to assume LTI.

Do students who struggle with
the graphical representation of
linearity recall the formal defi-
nition? If yes, can they apply
the definition?

C
on

vo
lu

tio
n

(H-Conv): Students have low
CU of what input and impulse
response features determine the
output signal features.

SSCI scores show mixed CU.
Students recall that convolving two rectangles
yields a trapezoid.
Mixed support for (H-Conv): Students under-
stood how to find breakpoints in the output sig-
nal but fewer understood what determines the
maximum amplitude.
Some students confused convolution and mul-
tiplication.

Ref. [56]: students struggled to
determine both breakpoints and
the maximum amplitude when
both input signals had an ampli-
tude of one.

Does demonstrating CU on the
SSCI questions transfer to novel
convolution questions that in-
volve shapes other than rectan-
gles?

FT

(H-FT1): Students answer Q9
correctly without full CU.
(H-FT2): Students who answer
Q12 correctly recall why car-
rier waves are useful, rather
than using the multiplication-
convolution duality of the FT.

SSCI scores suggest relatively high CU of FT.
Supporting (H-FT1): Students are not confi-
dent about relating time domain and frequency
domain representations in Q9.
Students do not recall the FT of a cosine.
Tentative support for (H-FT2): An equal num-
ber of students attempted the “what it is” and
“why it matters” approach to Q12. The stu-
dents using the “why it matters” approach an-
swered correctly more often.

Ref. [56] found students an-
swered Q9 correctly without
full CU.
Ref. [51] found students strug-
gled to write the FT of a sig-
nal comprised of a sum of sinu-
soids.

Is the observed lack of confi-
dence due to Q9 being the first
think-aloud question? Would
students recognize the FT of a
cosine if it were a stand-alone
question?

Fi
lte

ri
ng

(H-Filt1): Students do not check
the passband for filters.
(H-Filt2): Students think of fil-
ters as a mask and do not check
the filter magnitude.

SSCI scores suggest high CU of filtering and
no common errors.
Opposing (H-Filt1): Students mostly checked
the passband of a low-pass filter.
Opposing (H-Filt2): Most students did not ex-
plicitly check the filter magnitude during their
first response, but did when asked a follow-up
question.

Ref. [56]: Students did not
check the passband or filter
magnitude.
Ref. [49]: Students think of a
filter as either completely pass-
ing or blocking a signal compo-
nent.

How do the results compare
if using an initial think-aloud
question that requires students
check the filter passband and
magnitude?
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Seniors averaged 59% on the SSCI, which is in the middle of the 50-70% range of post-test
scores reported in previous literature for students at the end of a S&S course [74], [81], [82]. The
fraction of students answering each SSCI question correctly varied considerably, from 25% to
98%. Tab. 4.4 describes the SSCI questions in order of difficulty for our population of students.
For comparison, [72] ranked list of topics that students think are hard, with FT and convolution
ranking highest. Interestingly, [72] found that system properties (such as LTI) are more frequently
described as hard by instructors, not students.

Overall, our results agree with [56] in that we found “many students arrived at correct answers
despite incorrect and incomplete understanding.” For example, not all of the seniors recalled con-
volution as the correct operation to find the output of an LTI system given the impulse response
and input in Q13 and Q15. Nor were they all able to confidently connect high and low frequency
pulses to their FT representations in Q9; supporting hypothesis (H-FT1). For convolution con-
cepts, our results are also similar to [56], in that students struggled to determine the maximum area
of overlap and mistakenly thought that the unit amplitude of the input determined the maximum
output without considering the width of the pulse, partially supporting hypothesis (H-Conv).

However, our data differs in many ways from [56]. First, participants remembered and showed
CU for how to find the breakpoints in a convolution problem, thus partially opposing (H-Conv).
Students also almost always checked the passband of the filter in Q25 and did not think of the
filter as a mask, arguing against hypotheses (H-Filt1) and (H-Filt2). Further, the think-aloud data
does not suggest many errors stemmed from over-generalizing in-class examples as in [56]. For
Q15, errors tended to come from students whose memory of convolution had faded (or never
fully formed) and who reasoned that one times one is one because they recalled that convolution
involved multiplication. Students used similar reasonings and test taking strategies on many other
think-aloud questions. This difference between our results and those in [56] makes sense for the
two different study populations as seniors are more removed from specific in-class examples.

The fact that many students correctly answered questions despite incomplete CU highlights
the inherent limit of multiple-choice CIs. However, we noted for think-aloud participants that
higher SSCI scores tended to mean higher CU–guessing and test taking strategies are limited.
Thus, one should not conclude that students understand a concept based on a SSCI answer, but
the performance of a large group of students can still paint a picture. Recent progress in machine
learning for analyzing textual data [66] is promising for analyzing CU with more detail for large
student populations.

Using think-aloud interviews, this study also investigated which levels of concepts, according
to the framework in Fig. 2.1, students used. Most SSCI questions lend themselves toward “what it
is” concepts. For most of the think-aloud questions, students who used CU (instead of test-taking
strategies or guessing) used “what it is” concepts. Very few students used PK in the interviews.
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Q12, which tested FT concepts, was particularly interesting as it allows for a “what it is” or a
“why it matters” approach, thus allowing us to test (H-FT2). Most think-aloud participants who
answered Q12 correctly used the “why it matters” approach, though some only partially recalled
the concept. Students who tried to use a PK-based approach on Q12 got stuck because they did not
recall the FT of cosine, which the students talked about as a memorized piece of information. The
FT of a cosine is itself something students could figure out with CU of FTs, as tested in Q9.

The proposed definition of CU in Section 2.1.2 also requires that students can reason about,
relate, or apply concepts. Students not thinking through the FT of a cosine in Q12 and their
overall poor performance on reverse-reasoning questions suggests general difficulty in reasoning
about and applying concepts, as was observed in previous studies [56], [75], [78]. As a counter-
example to this finding, many think-aloud participants reasoned through Q24, though some used
an incorrect concept in the process and thus selected the wrong answer. One student (who had
high CU) was even excited about the novel format and said they “actually really like this problem.”
As another example of students showing the ability to reason, a different think-aloud participant
correctly reasoned through the output start time on Q13 based on their CU of what an impulse
response represents, showing a high level of reasoning and CU of impulse responses (although a
low CU of convolution).

Finally, [56] did not separately consider LTI concepts, but our LTI results connect with other
results from the literature. The IRT and think-aloud results suggest students can generally answer
questions regarding LTI systems, but may not truly understand what LTI, and especially linearity,
means, supporting hypothesis (H-LTI). These findings agree with those of Nasr, Hall, and Garik
[71], who found that students predicted the correct output to an LTI system given an input/output
pair and a new input without understanding how the answer is grounded in LTI properties. Further,
for a simple, theoretical problem, students automatically assumed the system was LTI to determine
the output [71]. One possible explanation is that students see so many examples of LTI systems
in their classes that they can manipulate LTI systems without having full CU. This explanation is
supported by some students using LTI assumptions to analyze a system to determine if that system
is LTI.

Another possible explanation for students’ struggle with linearity from the think-aloud data is
that some students were confused by the term “linear.” Colloquially, a linear system would be one
such that that only scales inputs. Previous studies [75], [78] found students had similar confusions
with aspects of convolution when words did not match how they are used in engineering or were
used imprecisely. Wage, Buck, and Hjalmarson [49] also found some students were confused by
the term “filter” because common uses of the word “filter,” e.g., an air filter, tend to evoke the
meaning of completely passing or blocking certain components.
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4.4.1 Future work

This chapter concentrates on measuring CU so instructors can see which concepts students under-
stand and which they do not. However, the large standard deviation of 17% suggests students vary
quite a bit in their CU. A natural next question is thus what factors, such as student motivation
or choice of upper-level elective courses, influence CU and how can instructors and curriculum
designers help increase CU. Chapter 5 addresses this question.

This study measures CU at a single point in time in two universities. Future work should
investigate CU over time by sampling the same population (preferably using paired samples) at
multiple points in the curriculum across a variety of institutional contexts. Such a study would
be able to investigate important questions, such as if SSCI scores tend to increase or decrease for
some sub-population(s).

Another avenue for future work is to develop a new instrument that measures CU according to
the proposed definition and according to what concepts are most important for students to under-
stand. Questions that ask students to select the correct tool to analyze a certain problem may better
target “why it matters” concepts than current SSCI questions. Future studies should also expand
the think-aloud interviews to better understand how seniors approach questions testing the Laplace
transform and causality concepts.

Finally, Tab. 4.6 identifies questions for future work for each of the concepts included in this
study. Other questions arising from the SSCI results that we did not get to examine in the think-
aloud interviews were what was the reasoning was behind the common incorrect answer on Q12,
why do students struggle with the reverse reasoning questions, and how students approach the
background mathematics and LT questions.

4.5 Conclusion

Even if students forget mathematical details over time, CU provides mental scaffolding for decid-
ing a method to approach a problem and for filling in forgotten procedural steps. Many previous
studies consider CU during a S&S course, but few investigate students’ CU of S&S concepts years
after a S&S course. This study found an average SSCI score of 59% for seniors, which is in the
middle of the range of previously reported SSCI scores of students after a S&S course. Chapter 6
compares the results of measuring CU from this study of senior students to the results of studying
students in S&S from Chapter 3.

The approach seniors took in think-aloud interviews was similar to the S&S students from
[56] in many ways: students made the same common error when finding the maximum overlap
in a graphical convolution problem and students were not confident in their answers on basic FT
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concept questions. However, unlike [56], we found seniors checked the passband for filters and did
not describe filters as masks. Further, the seniors did not use memorized tricks. Instead, many used
test taking strategies and partial recollections if they did not have full CU. Some even mentioned
that taking the SSCI helped them recall certain concepts.

This study also considered the proposed definition for engineering CU from Section 2.1.1 with
three levels of concepts, “what it is,” “why it matters,” and “how it works” concepts, and looked at
how the SSCI questions related to this definition. Most SSCI questions lend themselves to “what
it is” approaches, but students tended to use the “why it matters” approach on the one think-aloud
question that could be approached two primary ways, suggesting they might better remember this
type of concept.

For think-aloud participants who demonstrated a high CU on the two convolution questions,
we asked them to predict the most common incorrect answer. Half said the answer corresponding
to the wrong maximum amplitude. Half said the answer with the wrong ramp-up length/slope.
This sample is small and anecdotal, but aligns with the my experiences talking with colleagues:
once you reach CU, it is difficult to recall conceptual challenges and to predict what others might
struggle with. The results of this study will hopefully help instructors better understand seniors’
CU of specific concepts in SS and in turn address the most challenging S&S concepts.

92



CHAPTER 5

RQ#3: What Factors Influence Conceptual
Understanding?

Chapter 4 measured CU of senior students in electrical and computer engineering. One additional
line of research identified in that chapter is investigating why senior students might differ in their
CU. This chapter addresses that suggestion using a qualitative approach

The aim of CU studies is to increase students’ CU and improve engineering education [26]. For
example, Hake [69] and Wage et al. [1] show how active learning techniques correlate with larger
gains in students’ CU. These previous CU studies tend to assess students’ CU, categorize concepts
based on difficulty, and suggest or analyze strategies for making the challenging concepts more at-
tainable, typically in the context of a specific course. Our chapter takes a different, complementary
approach: we ask what instructional practices, over the course of an undergraduate degree, help
the CU of senior students.

Our research question is: What instructional factors influence CU of S&S for senior stu-
dents? The following section provides more background on factors that influence learning. Sec-
tion 5.2 then describes the methodology for the study, which includes qualitative interviews with
students, practicing engineers, and EE faculty who had previous taught S&S to explore what factors
may influence CU. Section 5.3 presents the qualitative results, organized by instructional strategy.
We conclude with a discussion in Section 5.4 and 5.5 of how the identified factors compare to
theories in the literature and a list of concrete strategies for instructors.

The study in this chapter is presented in the following paper [6]:

C. Crockett, H. C. Powell, and C. J. Finelli, “Factors influencing conceptual under-
standing of signals and systems of senior engineering students,” Submitted to: Euro-
pean Journal of Engineering Education, 2022
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5.1 Background: Factors Influencing Understanding

There are many theories on factors that influence learning. One empirically validated model
for learning is the Model of Educational Productivity (MoEP) [88], which Chapter 3 used as a
basis for studying variables that predict CU at the end of a S&S course. Building on a synthesis of
national science achievement test and a survey given to 3,049 17-year-olds as part of the National
Assessment of Educational Progress, [88] found nine significant factors on test scores. The nine
factors are commonly described in three groups: the first three, age/development, ability, and
motivation, relate to the student; the next two, quantity and quality of instruction, are dependent
on instruction; and the final four factors, exposure to mass media and home, classroom, and peer
environment, are environmental variables. Section 3.1 provides further background on the MoEP.

Many prominent theories on learning focus on instructional strategies that could be used to
foster student learning; these would generally fall under the instructional quality factor of the
MoEP. For example, previous results show that active learning improves student learning [119]
and improves CU specifically [1], [69]. Bloom [120] found that the individualized, high-quality
instruction students receive from a tutor leads to tutored students learning two standard deviations
more material than the average student taught using traditional lecture-based instruction. Many of
the instructional strategies to close this “two sigma” gap fall under the category of active learning
strategies [120]. Considering instructional strategies that are more targeted for S&S courses, [99]
suggests the graphical interface of LabView helps students gain CU more than the textual interface
of Matlab and [51, p. 204] recommends that instructors spend more time telling students where
each piece fits into the larger picture, make the lab complement the lecture and use consistent ter-
minology, lead group discussions for robust problematic reasonings, and teach concepts in multiple
stages to cover them from different angles.

Considering specifically CU, the Cognitive Reconstruction of Knowledge Model (CRKM)
[121] proposes that the depth of cognitive engagement determines how much conceptual change
a student will undergo. The degree of cognitive engagement is in turn influenced by the student
characteristics and message (or lesson) characteristics. The influential student characteristics are:
students’ motivation and students’ strength, coherence, and level of commitment to prior knowl-
edge. Motivation is defined by students’ dissatisfaction with their current understanding, personal
relevance of the new message, and social context (similar to the peer environment factor in the
MoEP). The influential message characteristics measure how comprehensible, coherent, plausible,
and rhetorically compelling the message is. The CRKM was created by combining elements from
the cognitive psychology, science education, and social psychology literatures [121]. The CRKM
recognizes that conceptual change is an iterative process and the dynamic between the student and
message characteristics change over time. For example, the model does not consider motivation to
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be an inherent, unchangeable student characteristic but rather a trait that is defined by the interac-
tion between the student and the message which can change as the students learns more about the
message.

Taasoobshirazi, Heddy, Bailey, et al. [122] tested the CRKM as a model for conceptual change
in physics. The authors used the FCI to measure CU and items from the following five validated
survey instruments to measure the student variables:

1. The physics motivation questionnaire [123]. This measures intrinsic motivation, extrinsic
motivation, relevant of learning to personal goals, self-determination, and self-efficacy. All
questions are specific to motivation for learning physics.

2. The approaches to learning instrument [124]. This measures deep cognitive engagement.

3. The achievement goal questionnaire [125]. This measures how much students tend toward
mastery-goal orientation (the goal of learning to reach understanding) versus performance-
goal orientation (the goal of learning to reach a milestone such as a good grade).

4. The need for cognition scale [126]. This scale measures a student’s tendency to seek out
and enjoy cognitively challenging problems. One example item is “I find satisfaction in
deliberating hard and for long hours” [126].

5. The achievement emotions questionnaire [127]. This measured enjoyment, boredom, and
anxiety.

Using structural equation modeling to analyze the data (n = 117), [122] found that, related to
variable five, enjoyment was the only emotion that played a significant role in the model (anxiety
and boredom did not). The motivation and goal orientation variables, items one and three in the list
above, also played significant roles in the overall model, while need for cognition and engagement,
variables two and four, did not. However, many of the variables that played a significant role were
only indirectly linked to conceptual change through course grade. Further, the authors note that
their findings, especially that engagement was not significant, may be due to the definition and
measurement of the variables. The recommendations in [122] are that instructors should focus their
efforts on increasing student enjoyment, increasing student motivation, and fostering a combination
of a mastery and performance goal orientation.

In an engineering context, Felder and Brent [128] offer eight strategies for encouraging a deep
learning approach, which the authors define very similarly to CU or a mastery goal orientation:
deep learning requires students to “not simply rely on memorization of course material but focus
instead on understanding it.” The strategies are:

(FB1) make sure students are interested in and prepared for the material,
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(FB2) state expectations and provide clear feedback,

(FB3) structure grades to encourage deep learning over procedural knowledge,

(FB4) encourage students to be actively engaged in learning over the long-term,

(FB5) provide students with opportunities to influence the course content and learning meth-
ods,

(FB6) show care for the students learning,

(FB7) keep the workload reasonable, and

(FB8) encouraging a deep learning approach in one course will encourage a similar approach
in future courses.

These points generally align with the focus on student motivation in the CRKM [121].
There are fewer results that consider CU over a longer period of time than a single course.

Greene [82] and McKell and Danowitz [129] offer initial, largely anecdotal, evidence that active
learning and standards-based grading may help with long-term retention in S&S. Based on in-
terviews with students, postgraduate students, and academics, [2] suggests that time, along with
self-regulated learning, is critical for processing concepts. Male and Baillie [77] concentrates on
“threshold concepts,” which are ideas that transform a way a student thinks. These concepts are of-
ten gateway concepts because students cannot understand later concepts without first understand-
ing the given threshold concept. Male and Baillie [77] identifies time-frequency transformation
and discretization as two threshold concepts in S&S. In addition to self-study and time, the inter-
viewees in [77] cited using a concept for their work or in their teaching as what forced them to
overcome a threshold.

Similar to self-studying a concept over time or applying a concept at work, previous results
suggest that students who take related upper-level electives are more likely to develop CU in S&S.
Although the small sample sizes make it hard to draw strong conclusions, the SSCI data in [81]
shows a trend of scores dropping over time, suggesting students forget concepts after a S&S course.
However, scores increased if students saw the same material multiple times, suggesting that the
concepts are reinforced and solidified in upper-level courses. Likewise, [51] found that students
who continued to take SS-related courses better understood the relation between convolution and
multiplication and the definition of time-invariance than their counterparts who only took an intro-
ductory S&S course. Although both studies show a general increase in CU, upper-level students
may continue to struggle with certain topics (per the discussion in Section 2.3).

Section 5.4 discusses how our results compare to the presented theories on factors that influence
CU.
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5.2 Methods

To get a variety of perspectives on what helped/hindered students from gaining CU, we inter-
viewed faculty (F), practicing engineers (PE), undergraduate (UG), and graduate (G) students.
Participants were purposefully selected to include EE and non-EE students, international and do-
mestic students, students who focused on SS-related tracks and those who focused on other areas
of EE, and a range of technical focus for practicing engineers. Tab. 5.1 provides basic information
about the participants. To maintain participant confidentiality, we include limited demographic
and degree information. All discussions in Fall 2019 (F ’19) took place in-person while those in
Spring/Summer 2020 (S ’20) took place online with video conferencing due to COVID-19 restric-
tions.

Table 5.1: Summary of interview and focus group participants.

Category N (time) Description

(F) EE
faculty

1 at UM (F ’19) Both taught S&S and related courses.
1 at UVA (S ’20)

(UG) Undergrad.
students

4 at UM (F ’19) 2 male, 2 female. 3 EE majors, 1 computer science major.
4 at UVA (S ’20) 1 male, 3 female. All EE or computer engineering majors.

(G) Graduate
students

5 at UM (F ’19) All male. 3 in signal processing related research, 1 in controls, 1
in biomedical imaging research. 3 with international undergrad-
uate degrees.

(PE) Practicing
engineers

4 (S ’20) 2 male, 2 female. 1 early career, 1 mid-career (5-8 years), and 2
in middle to upper management positions.

We used group interviews for undergraduate and graduate students because we expected the ex-
isting camaraderie to help students compare, contrast, and relate to each other’s experiences [117,
Ch. 21]. All interviews were one hour long and students were either given free food (for in-person
interviews) or $10 Amazon gift cards (for remote interviews) to thank them for participating. The
undergraduate students provided the most immediate feedback on the undergraduate experience
while the doctoral students were more removed from their initial S&S class, meaning that they
likely forgot details of how they felt the first time the tried to learn certain topics. However, they
had the benefit of hindsight; they could reflect on how well they thought they understood topics as
undergraduates compared to their current understanding.

For faculty and practicing engineers, we used interviews since these participants had very dif-
ferent experiences from each other and to decrease the time commitment for each participant. Both
faculty and practicing engineers provided a longer-term perspective. They were able to reflect on
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the undergraduate education, what they thought they knew then, and what they have since realized
they knew. The faculty members also talked about what concepts their students struggled with or
learned easily, and how they thought any teaching changes impacted students’ CU. The faculty
interviews were an hour, with 15 minutes at the end reserved for the participant to ask questions
about the study. The practicing engineer interviews were 30 minutes, with five minutes reserved for
participants to ask questions at the end. We did not provide any incentive for interview participants,
so reserving time to answer their questions was a small gesture of gratitude1.

All interviews were semi-structured: we developed a protocol to guide the overall session but
allowed for different follow-up questions based on participants’ responses. I followed best prac-
tices for interviews as summarized in [116], [117], [130] such as mixing descriptive and structural
questions [131], crediting participants who brought up ideas when asking probing/follow-up ques-
tions [132], and measured use of humor and silence to make participants comfortable and allow
them to expand on ideas [116]. The full protocols are included in Appendix A.

The general structure for all protocols was:

1. Explain the interview plan and review the consent form. The first step follows good human
research practices and helps participants feel comfortable.

2. Ask everyone to introduce themselves. This promoted interaction and allowed everyone
to talk at least once early on in the discussion [132]. I introduced myself first to set an
expectation for how much everyone will talk and to build rapport with the participants by
acknowledging that there are concepts in S&S that I did not learn during my course [132].

3. Describe CU and provide a list of example concepts.

4. Ask what factors helped/hindered learning concepts during participants’ S&S course. Do
not mention any example factors initially to allow participants to use their own words. After
participants have a chance to answer, probe for hypothesized factors if not mentioned.

5. Ask the second focus question on impacting factors after S&S. Start by leaving the question
open to interpretation but then probe for specific possible factors.

6. Ask a question to allow participants to reflect on the conversation and speak one more time.
Ask students to summarize one thing that most helped and most hindered their CU and ask
practicing engineers and faculty members what they would change about their undergraduate
S&S education.

1Most participants took the entire time to ask questions and some requested to continue this conversation past our
scheduled time. They were largely interested in what engineering education research is, how it fits into an EE graduate
degree, and the current CU findings.
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7. Thank the participants, reiterate that they were free to reach out, and ask for any last thoughts.
For the practicing engineers and faculty members, reserve time at the end for them to ask
about the study.

For the main questions (4 and 5), I allowed participants to interpret and answer the question in
their own words before asking follow-up probes based on previous responses, factors from the
MoEP, and preliminary analysis of previous interviews. For example, the graphical depiction of
convolution as two overlapping, sliding rectangles came up in our initial student interviews, and I
specifically asked the faculty members for their viewpoints on that method of teaching convolution
in the interviews.

After transcribing the interviews, we coded the transcripts using the constant comparative
method. This involves iterating between coding transcripts (attaching a label to a segment of the
interview), memoing and reflection, and refining the codebook until the data and code align [117,
Ch. 33]. After each of three major iterations, the research team met to discuss code definitions,
agree on the coding of sampled quotes, and reflect on emerging themes. The first round of qualita-
tive codes (completed between the Fall 2019 and Spring/Summer 2020 data interviews) included
in vivo codes (from the data) and hypothesis codes (generated before analysis based on the MoEP);
these codes types are described further in [118]. Another researcher coded two of the transcripts
and helped refine code definitions for the first round. Later iterations refined these codes and added
new in vivo codes based on additional interview data.

The final codebook was organized into the following five categories, each containing three
to seven codes: concepts (Fourier transform, Laplace transform, convolution, linear and time
invariant, filtering, discrete time, math), class components (class environment, grades, home-
work, lab, visuals), instructional quality and quantity (quantity, repetition, pace, and style), in-
terest/motivation (purpose, motivate, abstract), outcomes and reactions (ability, easy, false confi-
dence, familiarity, hate, importance, procedural), and outside influences (peers, work, workload).
Tab. 5.3 defines example codes and provides an example quote, selected to help clarify the code
definition and to represent a diverse sample of participants. Tab. B.1 in Appendix B shows the full
codebook with example quotes.

5.3 Results

Engineers’ views of CU is not a research question of this study, but participants’ views of CU shape
our results. At the start of each interview, I briefly contrasted CU with procedural knowledge. In
one interview, I said that “a concept might be that the Fourier transform goes between signal
space and frequency space. So, [I am] more interested in, ‘do students understand that’ and less
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Table 5.3: Sample codes for analyzing the interviews.

Code Description Example quote

Concepts:
FT

Fourier Transform, Fourier
Series, and the frequency do-
main.

“The FT is pretty intuitive in that, at least for me, when
there’s things like music visualizers, that is exactly show-
ing the spectrum of your sound.” (G)

Class
components:
hw

Homework problems. “[If] the questions are designed in such a way that they
test your understanding, maybe that helps more. But then
our homeworks are also similar, it’s very, very procedu-
ral.” (G)

Instructional
Quantity:
pace

The pace of a SS course and
constraints on how much ma-
terial must be covered.

“I’m afraid in the labs, they’re so time-pressured, that
they’re going through the, you know, the steps, but they
don’t really have enough time to really sit down and fig-
ure out why they’re doing it all.” (F)

Interest:
purpose

Seeing or wanting to see the
big picture. Asking why
something is the way it is.

“I loved it because it really connected. It was an engi-
neering course.. It was, it was the whole system. Like
you had to think big picture.” (PE)

Outcomes:
familiarity

Knowing a concept exists and
how to find out more about it
if needed.

“I understand it worse now but I think, I think it would
come back, it wouldn’t be too hard for it to come back to
me if I like reviewed the material” (UG)

interested in ‘can they do the mathematics to take the Fourier integral.”’ Other than this short
example, participants were allowed to construct their own meanings of CU.

Most participants discussed CU as seeing “the bigger picture” (all types of participants used
this phrasing) or why something was important. The “big picture” refers to intuition behind what
a procedure does; some participants called this “translating” the mathematical formulas and pro-
cedures. Many participants continued to contrast CU with procedural knowledge and agreed with
the literature’s claim that procedures dominates CU in undergraduate engineering courses. As one
graduate student said, “I was just like plugging in formulas you know. And I feel like it’s very easy
to do that. Um, yeah. And to like actually miss like the bigger, more salient points” (G).

Another commonality in participants’ view of CU was being sufficiently familiar with a concept
to know when they needed to use it and being able to re-learn the details on their own. For example,
participants would say “I can pick it up pretty quickly” (UG) or “if I looked it up, I could do it”
(G) or they would talk about something as being an “easy Google search” (PE). These comments
were all in the context of participants recognizing they do not have a full understanding, but they
have enough experience to know how to find the information that they need.

These views of CU align most closely with the “what it is” and “why it matters” aspects of
the proposed CU definition in Section 2.1.1. Taken together, “what it is” and “why it matters”
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concepts help participants to select a concept for a problem. A few participants discussed the “how
it works” aspect of CU. For example, a graduate student pushed back on the intuition-based view
that the other students were using:

people want to find the shortcut of intuition... [there’s] a tendency for me that ‘oh,
I want to skip like three years of training to understand what it is’ and then I think
that’s when there’s actually like really conceptual breakdown because I just think for
certain things there’s just not really that easy of shortcut... certain things, like music,
maybe give you a sense of it. But I don’t think that that’s necessarily like what Fourier
transform and other things like, if you want to understand it, I don’t think there’s
necessarily [a] short cut. (G)

This graduate student argued that there is no “shortcut” to CU–a student needs to fully understand
the mathematics before reaching an expert-level of CU.

The following sections discuss the themes around influential instructional variables related
to lectures, hands-on activities, coursework, and repetition and upper-level courses that emerged
during the constant comparative data analysis. After presenting the evidence, Tab. 5.5 summarizes
these themes.

5.3.1 Lectures

Many participants credited lectures with providing an initial level of CU. The following subsections
describe two primary mechanisms.

5.3.1.1 Presenting CU Along-side Math

A reoccurring point in the interviews was the benefit of instructors providing intuition for math-
ematical concepts. A graduate student summarized the point succinctly: “a lot of those things,
I guess, have intuitive explanations and as long as they’re provided to you at the time, you can
at least understand it intuitively” (G). For many, this intuition came in the form of analogies to
every-day experiences with music.

Other participants had the opposite experience: they remembered topics being presented only
as formulas. As a specific example, a graduate students recalls that the “Fourier Transform itself
was like a big, scary thing. It was presented as a formula. Which made no sense” (G). But the
student later took an online course and

that professor actually gives a very quick and nice insight into [the] Fourier Transform
if you read his book. That’s when I started understanding FT and it started making
sense. But before that it was presented as a formula. (G)
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Other participants (including multiple students, a practicing engineer, and a faculty member) had
similar experiences of seeing topics, especially convolution or the Fourier transform, in S&S only
as formulas and procedures.

Participants had a range of mathematical abilities entering their S&S courses. Some had taken
multiple math courses and were confident in their ability to perform calculations while others
admitted struggling in earlier math courses and with the math in SS. Seeing these formulas was
not sufficient for students to gain intuition, even when a student understood the heavy mathematics
in SS. For example, one of the practicing engineers said he was “fine with math and with my
background” (PE) but that he did not understand the purpose behind the math procedures:

I think for me, um, I mean, like the FFTs2, just like [the] integral, none of that was too
tricky. I think for me it was mostly like, when do I apply these concepts... As far as
the signals and systems, I think that I was fine with math and with my background.

(PE)

The student group interviews similarly questioned the “why” behind convolution and LTI concepts
even when they understood the procedures. A graduate student captured the tone of multiple
comments regarding convolution in saying

I had people like draw things on like pieces of transparent paper and like rub them
across each other and I was like ‘okay, I mean I guess I see what you’re doing, but
that’s not a very good explanation.’ And I knew how to do it but, yeah, I’d say that’s
it. (G)

If they were not provided with a bigger picture view, students did not form any intuition from
mathematical expression on their own during their undergraduate courses.

For students who did not feel mathematically prepared for SS, the mathematical emphasis was
even more challenging. Students noted that the “intuition is completely lost in the steps of how to
do it” (G) and that they tended to “get lost in the [convolution] integral” (UG).

This is not an argument against a mathematically rigorous presentation of S&S material; many
students talked favorably about math-heavy courses (especially upper-level courses; see Section 5.3.4)
when the material was presented alongside CU. Participants of varying math abilities noted a few
examples of how instructors presented CU along-side procedures. In contrast to the graduate stu-
dent above, many students appreciated specific visuals that helped them understand concepts like
convolution. One student wished instructors would talk at a higher-level about the impact of signal
features on a procedure, such as how the areas of signals impacted the result of a convolution.
Another undergraduate explained that an instructor would

2Fast Fourier Transform.
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translate the math in a way to actually understand and read the math and what the
mathematical definition of the things were really trying to say... I actually understood
things ridiculously well and I just hadn’t thought to actually consider it from that
perspective before. (UG)

Math is a foreign language and one in which students are less fluent than instructors [133] so
students may need more frequent translations than instructors expect; one undergraduate student
appreciated when the instructor made a list of “all the big picture concepts” at the end of ev-
ery lecture. By changing the student’s perspectives through visuals, higher-level discussions of
procedures, and (repeated) translation, these instructors helped students gain intuition from math
expressions that were previously perceived only as procedures.

5.3.1.2 Emphasizing Purpose and Connections

Both faculty members mentioned they aimed to promote CU by explaining the importance of con-
cepts and connecting concepts to one another, e.g., they built-up the convolution formula through
LTI principles in SS, following the progression of major S&S textbooks, e.g., [34], [35]. This
progression is a key reason why LTI concepts are so important – they allow engineers to model
systems with (relatively) easy input-output relations. However, students consistently failed to see
the importance of LTI concepts:

it really just seemed like a checkmark thing of like, oh, ‘Can you do this?’ Like, ‘it’s
a thing. Make sure it’s a thing.’ . . . Rather than why and how. But, like, what’s its
use? (UG)

A strategy suggested by multiple participants for emphasizing the importance of concepts is
through contrasting examples. The students who later came to appreciate the importance of LTI
concepts did so through exposure to non-LTI systems in elective courses (typically control systems
courses) or working in industry. For example, a practicing engineer noted that during classes, “all
we dealt with was linear time invariant systems, [so] I didn’t really understand what the significance
of that was” (PE) until working with nonlinear systems at work. Similarly, an undergraduate with
research experience noted

nonlinear circuits is a big part of EE that are never, like, we weren’t exposed to at
all. So not being exposed to it makes it hard to like really appreciate linear circuits
and what they can do for you. And then that idea extends kind of throughout the
entire curriculum, even in diff-EQ3 and whatnot, it’s all linear systems of differential
equations. But when you get out into the real world or you start doing research at like

3A common abbreviation for differential equations.
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the Masters or PhD level, you quickly realize that, no, life isn’t linear. And then you’re
suddenly like ill-prepared for the differential equations and the circuits that come.

(UG)

Instructors have this larger perspective from “the real world” and are aware that non-LTI systems
are common and generally much more difficult to work with. Despite instructors stating this com-
parison, without their own experience, students are unlikely to appreciate the idea that LTI systems
are easier to work with, especially when presented with the challenging convolution formula.

A similar strategy that helped some students (and that others requested) was connecting mate-
rial. Students appreciated when instructors explained the relation between different chapters in the
course, such as the Fourier series and Fourier transform, as part of a story. Students likewise ap-
preciated connection to real-life, which could be as simple as using “physically possible” example
problems (PE) or using realistic units to “make things a little more practical” (F).

5.3.2 Hands-on Activities

Lecture alone is not enough for students to gain full CU. As a faculty member said, students can
“hear stuff in lecture, maybe some of it sticks, but ’til you have to solve something, and as you
know, until you teach something, you really don’t know it” (F). This section turns to hands-on
methods of learning that complement lecture strategies and allow students to construct their own
knowledge. The subsections are roughly ordered by level of student involvement.

5.3.2.1 Interactive Simulations

Many participants mentioned a virtual platform where they could “play around with” (UG) a sim-
ulated system. For example, participants said they liked being able to “change parameters and
see what happened” (PE) or “do something to an object on the computer and then like it changes
and you see, like, see or hear, how it changed” (G). Specific examples of interactive simulations
included multiple graphical user interfaces (GUIs) in MATLAB, the Fourier series animation tool
from Desmos4, and MultiSim simulations.

Interactive simulations are a relatively low barrier to entry among hands-on activities, yet they
had a large influence on students’ CU. Participants credited how the simulations offered them
control and provided quick feedback. The quotes emphasized that students controlled some aspect
of the simulation software that made it easy to quickly try many different options such as resistor or
capacitor values or a slider for the number of frequency components. Then the simulation provided

4https://www.desmos.com/calculator/lab9nylxsi
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immediate feedback on the impact of the change. For example, one of the graduate students said
there was a program5 where

[I] can literally say ‘this is my frequency, I want to hear this... I’m going to add this
and this frequency and hear this one.’ And then you can scroll through and see, ‘oh,
these are actually Fourier components that we are doing all the math for. It’s not all
random.’ Which makes it very intuitive. (G)

Other students similarly describe how simulations changed “based on what you did” (G) or how
“you would slide the slider and then you would see the [Fourier] representation” (UG). By giving
control to students, simulations made the material feel “tangible” and “less abstract” (PE).

5.3.2.2 Design Problems

This theme captures that the participants are engineers; they gained CU by applying concepts
to solve real-world problems. One of the practicing engineers contrasted the classic textbook
problems in S&S with application-focused problems in an upper-level elective course:

I loved it because it really connected, it was, it was an engineering course, you know, it
wasn’t just like this little, like, ‘Okay, here’s how to like write a low pass filter in DSP.’
It was the whole system. Like you had to think big picture. And it was great. (PE)

There were many similar examples of students getting this real-world engineering experience in
internships or early in their industry career. As an example, one practicing engineer commented
that seeing how a concept “impacts our deliverable was a big part of solidifying the concepts” (PE).

Participants’ explanations for how design problems improved CU fell into two main categories.
First, real-world applications connect concepts to a purpose to make them less abstract, thus forcing
students to consider the “why it matters” portion of CU. For example, at an internship working with
audio signals, an undergraduate appreciated how the work involved

actually apply[ing] a filter and then hear[ing] the changes. But for [SS] it kind of felt,
it felt really imaginary. We were applying like a high-pass filter or a low-pass filter
and I wasn’t really sure exactly what was happening. Like I was looking at the graphs
and I was like, ‘I guess?’ But, I wasn’t 100% sure what was happening. (UG)

A graduate student similarly experienced that concepts connected to something tangible were eas-
ier to understand: “Pole-zero plots were pretty easy for me because I was an analog guy, I un-
derstood what-what poles and zeros were. That wasn’t a big deal, that-that’s all translatable” (G).

5Although he did not mention a specific program name, the description is similar to the program at https:
//www.codebymath.com/index.php/welcome/lesson/sound-sines.
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Conversely, when concepts were not connected to applications, participants thought “the concepts
were so abstract that I couldn’t understand why I should care about them” (PE). Students mostly
cited design problems (from homework problems, labs, industry, or extracurricular activities) for
this real-world perspective, though instructors also provided example applications in lecture. As
illustration, one faculty member mentioned how S&S has “applications in modeling of medical
systems or human physiology or space dynamics or chemical processing plant or whatever” and
that talking about these applications can help show students “why is this material useful, where is
it useful” (F).

Secondly, open-ended design problems forced students to grapple with concepts more deeply
than is required by standard homework or lab problems, thus helping students to gain the “what it
is” part of CU. Undergraduate students said that, for the concept of sampling, they “didn’t under-
stand it in [SS] but we had to understand it for [an upper-level course] because we were actually
building something” (UG), that “because we had more guidance over the design aspect, we had
more meaningful discussions about what every concept really meant” (UG), and that they un-
derstood concepts better in upper-level courses because they “got to do everything on our own
basically” (UG). One of the graduate students similarly discussed how an experience in industry
forced a deeper understanding because “you understand a concept only when you use it for – when
you really need it you go back and look at it” (G). He continues,

There’s never a point at the end of every course you remember everything perfectly.
So, when you go back and actually use some of it for some-maybe to be maybe as
your research work or as part of your job or whatever. There’s when I had to design
some called sort of notch filter and was like ‘oh, this is what some of those frequencies
were.’ I think that helped me more than actually taking a course and stuff. (G)

5.3.2.3 Lab

Because the undergraduate students were from two universities and the graduate students com-
pleted their undergraduate education at five different universities, the participant pool included
a wide variety of lab experiences. (Few practicing engineers recalled specific lab experiences.)
There is a clear divide in the data between students who gained CU from lab and those who did
not. In short, students who found labs helpful were those who engaged with the lab beyond simply
following a set of procedures.

Students who had a lab that felt like “completing steps, just getting to the end” (UG) said the
lab did not help CU. They admit the labs showed how concepts can be applied in hardware (which
interested a few participants), but they did not learn about concepts or understand the applications.
As stated by one of the graduate students,
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I don’t think those circuits, like set up capacitors [and] inductors in the right way... I
don’t think that necessarily helped me. Like in terms of if the goal is to really help me
conceptualize it. As opposed to actually just ‘oh, it actually works’ kind of thing...

(G)

An undergraduate similarly stated that the labs “felt like you built a black box, you’ve applied
things to it, but that doesn’t mean you know what’s going on inside of it” (UG).

One way to encourage students to engage more deeply with lab material is through lab reports.
Lab reports had a mixed impact in our data, again depending on how students approached them.
Some students had lab reports that required little processing or connecting of information. They
could complete the lab report without gaining and CU, like this undergraduate student:

the lab and like lab questions were like ‘what results did you see.’ ... If it was like
‘explain,’ [then] it’s like ‘I don’t know what I was supposed to be looking at, so, I saw
this and that’s what happened.’ (UG)

Students who mentioned labs helping their CU talked positively about the lab report or lab
structure. Some lab reports required synthesizing information such as mentioned by another un-
dergraduate:

while you’re writing the lab report, a lot of things actually come together because it’s
like you do learn a lot during the lab. But what you learn might not necessarily like
come across at the point of like doing it. (UG)

Other students with similarly helpful lab writing assignments said the reports required students to
test concepts and “think about what you just observed” (G).

Although structuring a lab to encourage student evaluation and synthesis of concepts helps,
there was also variation within students at the same university as to how much labs helped their
CU. Students who spent more time discussing lab results with peers or instructors (generally due
to group dynamics) felt labs were more helpful. The faculty members also noted the interplay of
time demands and CU with lab work:

the labs have it [a design component]. But I’m afraid in the labs, they’re so time-
pressured, that they’re going through the, you know, the steps, but they don’t really
have enough time to really sit down and figure out why they’re doing it all. (F)

In other words, students who were required to “figure out why” from a lab report assignment
benefited, but those without such a requirement moved on to other work without spending the time
to interpret lab results. The following section explores the impact of workload in courses more
generally.
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5.3.3 Coursework

The previous lecture and hands-on activities factors concentrated mostly on positive student expe-
riences or suggestions. In contrast, the subsections below describe factors that students typically
identified as hindrances to their CU.

5.3.3.1 Grades that Emphasize Procedural Knowledge

Students need motivation to process ideas and form mental models of concepts. Motivation may be
extrinsic, coming from graded assignments like design projects. Motivation may also be intrinsic
or driven by students’ work goals. For example, a graduate student explained that he does

not just sit in class and [let the] professor teach and I don’t really think too much about
it. But more like in my spare time ask myself like ‘oh, why is this important?’ Like
ask myself this question and try to find an answer myself. (G)

As opposed to his procedural-focused approach to undergraduate courses, he is more curious and
intrinsically motivated as a graduate student.

Even when students mentioned being curious or intrinsically motivated, they prioritized com-
pleting graded assignments. By way of example, students said “I was just trying to get the home-
work done all the time” (UG) and that they were forced to adopt a “it’s-a-requirement-so-just-
get-it-over kind of mindset” (G). Some students talked about the concentration on procedures as a
strategy, e.g.,

if the goal is just pass the class, actually it’s more effective to treat it as procedure,
(G)

while others talked about it as a necessity, e.g.,

the timeline and just the density of what we had to do in a single lab didn’t allow for
us to like introspect or think about what we were exactly collecting. (UG)

In both cases, participants noted that assignments were often focused on procedures, so focusing
on graded assignments negatively impacted CU more than procedural knowledge.

Participants recognized the difficulty of designing assignments focused on CU. Even on ques-
tions designed to test concepts, students can sometimes earn full credit by copying procedures. On
an exam problem on aliasing, a graduate “got full points for that problem and I still don’t know
what it means” (G). Previous results also suggest students can correctly answer concept questions
by generalizing in-class procedures without understanding them [56].
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5.3.3.2 Heavy Workloads

Students felt they gained more CU when they reflected and processed information. However,
students often did not have time to process information. One of the graduate students said,

A huge factor in my undergrad as to like whether or not I actually learned something
or enjoyed it, was like how much I had going on. (G)

Similarly, an undergraduate said, “I felt like before I had the time to just process everything we
were moving on” (UG). Conversely, when given more time for a design project in an upper-level
elective, multiple undergraduate students mentioned using the time to talk with group members and
to understand important design decisions. The time pressure is not only limited to coursework; as
an undergraduate, you are also “taking a lot of courses, you’re trying to find time to go party, you’re
trying, you know, you’re trying to do all this stuff right” (PE), which both faculty members also
acknowledged.

A large workload can negate the positive impact of other strategies to help students gain CU.
For example, one group of undergraduate students recalled a real-world homework problem that
was designed to be motivating and make concepts concrete. However, students described it as
being “like a whole four pages worth of like concept stuff for like history” (UG). Other quotes
from the group suggest that they did want more of those connections to real-world applications
and design problems, but the “shared trauma” (UG) of completing homeworks outweighed the
motivational aspect of the problem.

Another concern with large workloads is that students may skip assignments. If tasks to build
CU appear longer than procedure-focused problems (such as the four page homework problem),
students are likely to skip them in favor of seemingly shorter problems and miss out on any ben-
efits. Despite the complaints about workload, one of the students reluctantly admitted that the
homeworks were helpful:

it’s terrible and it’s long. But it’s the thing that causes you to be like ‘yeah, okay, I
know where it is and I kinda understand’ or ‘I don’t understand at all.’ And I feel that
was probably like the thing that was most helpful with grasping concepts. (UG)

By skipping many homework problems, the other students missed this benefit. Deciding on work-
load requires careful balancing as students also learn by repetition – the next section explores this
point further.

5.3.4 Repetition and Upper-level Courses

As they were still taking courses, the undergraduate students comments about gaining CU after
S&S concentrated on upper-level courses, internships, or extracurricular activities. One said, “I’d
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say I also remember Laplace and Fourier the most ‘cause we use it in other classes also, so, it’s hard
to forget” (UG) and another said that after seeing a concept repeated in many classes, it seemed like
“common sense” (UG). Others experienced forgetting specific concepts that were not reinforced,
as stated by one undergraduate student:

I would say that my knowledge grew after taking other classes as well. Um, but also
very specific to what areas I ended up taking more classes in, because I would advance
in those areas but not advance at all in other EE areas and maybe forget some stuff
too. (UG)

A very common experience among the practicing engineers and graduate students is that they
gained CU between S&S and graduating. Then they forgot details about topics that they did not
use in their work/research while they maintained or gained CU in areas that they used. A fairly
representative quote from one of the practicing engineers was: “most of what I remember is what
I use on more or less a day-to-day now that I’m at work” (PE). Participants maintained some
familiarity with concepts and were largely satisfied with understanding a concept sufficiently that
they could recognize when they needed to use it (a type of “why is matters” CU) and then re-learn
it. For example, one practicing engineer describes the timeline of her CU:

Third year for signals and systems, I kind of grasped the knowledge. And then fourth
year doing some more of it in a programming style, I think conceptually, I just get
that better. And so it’s probably like kind of understanding it, really understanding it,
and then like a really very consistent drop off after that. Because I just did not use
it. (PE)

This participant points to the “programming style” of upper-level courses as helping her CU; the
sections below describe other ways repetition and upper-level courses increased CU.

5.3.4.1 New Perspectives

Upper-level courses commonly helped many participants gain CU by presenting material differ-
ently than their S&S course, though the specific differences in presentation varied. For example, a
programming focus helped the practicing engineer quoted above and emphasis on translating math
helped one undergraduate (see Section 5.3.1.2).

A commonly cited new perspective was seeing more concrete applications in upper-level courses
(or internships or extracurricular activities). An example of a concrete application came from stu-
dents who took a course in image processing; one undergraduate expanded on a point made by
another:
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I also took that class and just the idea of like preserving edges versus like smoothing
and all of that stuff low-pass, high-pass filters just was taught to me in that class. I was
like, ‘oh, of course. Like that makes so much sense. Why, like, why didn’t I know that
as concisely before?’ (UG)

The group agreed that the use of visuals in the image processing course made the effect of fil-
ters tangible. A communications course had a similar impact for concepts like the FT and noise
properties for one of the practicing engineers:

it was just presented in a way that was tangible in reality for me and-and I could think
about it, and in a way that made more sense to me is more of an analog guy. What is a
noise floor mean? What is noise spectral density mean? How to apply that to a model.
It just was way less abstract, but ironically the mathematics were actually heavier. But
it but it just, it just really connected for me. (PE)

As mentioned in Section 5.3.1, the students did not mind that these upper-level courses were heav-
ily mathematical.

While courses like image processing helped students understand FT and filtering, other partic-
ipants discussed how controls courses solidified their understanding of LTI and LT concepts. Par-
ticipants credited controls courses with exposing them to non-LTI systems, which in turn helped
them understand why LTI assumptions are important. One graduate student gave the following
example of how controls courses require students to think in terms of an application:

You’re always thinking in s domain. Frequency domain. Always. So, okay, at this
frequency, this is my frequency of interest, this is my bandwidth. So you’re always
doing ‘okay, I want to increase the bandwidth of my controller.’ Before that, it’s
bandwidth did not make any sense: ‘Okay, bandwidth is like speed. It is speed, but
what does it mean and why-why is it so important?’ (G)

This quote highlights both the application and the repetition aspect of upper-level courses.
Offering multiple perspectives and example applications is possible within a S&S course. As

a specific example, an undergraduate and a practicing engineer recalled their group members and
teaching assistants helping them to think about ideas from different perspectives:

if one team member has a really, really solid understanding of something, they might
take lead in writing that part of the lab because that then helps others kind of fully
see things and like I know, for me at least, I ended up writing the conclusion quite a
few times and I would always look to what my teammates had written in the previous
sections to, like, make sure that what I was writing was in line with what they’d really
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like gotten from each of the experiments and everything and just, like, make sure that
all blended together, and especially if I like was missing a certain component of things
in my understanding, at least. (UG)

However, presenting more applications and perspectives in S&S takes time. One possible com-
promise suggested by an undergraduate student was for instructors to pique student interest by
advertising relevant upper-level courses when covering topics in SS.

5.3.4.2 Student Ability

Another explanation for the benefit of repetition in upper-level courses is that students are better
prepared to understand S&S material after taking other courses. For example, a graduate student
explained how complex numbers were a threshold concept for him:

it took me probably until like my third year of graduate school to understand that
complex numbers were interpreted as rotations in a plane. And then that’s the critical
link that had me actually understand what the formula meant. (G)

Once he understood complex numbers, he was able to more fully understand the ‘how it works’
concept behind the FT.

Students can and do benefit from previous exposure even without reaching full understanding.
Multiple participants noted that seeing convolution before taking S&S (typically in a differential
equations course), helped them in SS. Others said not having prior exposure to convolution made
S&S more challenging. The combination of exposure and time to process the convolution process
may be key, as suggested by this undergraduate:

It was like you need the time to be able to like finally like catch on to something and
be like ‘okay now I see I can apply it.’ And by taking [differential equations] first, you
get the math, and in that semester worth of time, you have the amount of time for your
brain to like ‘okay, I got this’ or ‘I don’t like this at all.’ And then go into [SS] like ‘I
still hate this, but I know what’s going on’ or like ‘I know now this is where I’m gonna
be going’ and stuff like that. (UG)

A member from industry similarly noted that she focused better on topics the second time because
she could “focus less on the ‘why are we doing this’ and more on the, like, ‘this is how we do
this”’ (PE).
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5.4 Discussion

Tab. 5.5 summarizes the main instructional factors that participants identified as aiding or hindering
their CU of SS. Each factor directly corresponds to an instructional strategy.

The lecturing techniques, such as relating math expressions back to concepts and emphasizing
the purpose of ideas and how ideas connect, are easy ways for instructors to help students gain the
‘what it is’ and ‘why it matters’ part of CU. Students recognized these strategies as helping them
gain a basic intuition for the concepts. Further, participants tended to retain this intuition, which
often came in the form of being familiar with when a concept is relevant to an application, even if
they forgot many details. The lecturing techniques do not directly match any of the eight strategies
from Felder and Brent [128] (summarized in Section 5.1). However, they compliment the sugges-

Table 5.5: Summary of themes that emerged while analyzing the interviews.

Aids Notes

Lectures Presenting CU along-side
math

Use analogies to relatable experiences. Relate math expres-
sions back to CU through visuals, higher-level discussions of
procedures, or (repeatedly) translating math equations.

Emphasizing purpose and
connections

Provide experience with contrasting examples. Connect ma-
terial within the course and to real-life applications.

Hands-on
activities

Interactive simulations Select a simulation where students have control over some
setting and they get immediate feedback.

Design problems Help students to see the purpose of concepts by applying
them to real-world problems and give students practice ma-
nipulating concepts.

Labwork Ensure students engage, reflect, and think about the lab
work rather than only following a set of procedures, such as
through a lab report that requires synthesizing concepts or
explaining results.

Repetition
and
upper-level
courses

New perspectives Use visuals, concrete applications, and repetition to help stu-
dents gain a new perspective.

Student ability Students may process ideas between semesters or learn new
concepts in other courses that allow them to reach deeper CU
when presented with SS concepts again in upper-level course.

Hindrances Notes

Coursework Grades that emphasize
procedures

Students prioritized graded assignments, which often focused
on procedural knowledge more so than CU.

Heavy workloads Students did not have time to process information and form
CU. Students may skip assignments, including motivating
ones aimed at increasing CU.
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tion to (FB1) make students interested in and prepared for the material, since providing intuition
for topics helps students connect to and be interested in the material. The lecturing techniques do
align with the CRKM model [121] in that they encourage making the message characteristics more
comprehensible and compelling.

Lecturing is not sufficient for full CU. Aligned with much recent research on active learning,
participants identified hands-on activities as where they truly started to understand concepts. Even
simple activities, like interactive simulations on a computer, were helpful because students had an
element of control and received immediate feedback. Design problems, either on homework or as
part of a larger course project, allowed students to engage with concepts more and help them see
where the concepts are useful. For S&S courses with lab sections, the lab is an obvious place for
students to get hands-on experience. A clear divide in the data was between students who found
lab helpful and those who did not. Those who did not described lab as blindly following a set of
procedures and writing up results. In contrast, participants who gained CU from lab decided to or
were forced to reflect on the lab results, often in a lab report. This result aligns with the CRKM
[121] in that only labs that forced a high level of cognitive engagement led to conceptual change.
A few of the students who reported the lab helping them gain CU cited conversations with their
peers, similar to the recommendations in [77] for students to form a learning community.

The common hindrances to CU were related to workload and grades. A large workload meant
students had to prioritize effort and spent their time completing graded assignments, which often
emphasized procedural knowledge. Having a lot of work did not leave students time to process in-
formation and build CU. Students credited having more time as one way long-term design projects
(typically in upper-level courses or internships) helped them gain CU. These hindrances match
the recommendations from [128] that instructors should (FB3) structure grades to encourage deep
learning over procedural knowledge and (FB7) keep the workload reasonable. The recognition that
CU requires time also aligns with the findings and recommendations in [77].

This study asked participants about their CU over time. Although many of the strategies in
Tab. 5.5 could be implemented in a S&S course, many students identified upper-level courses,
internships, extracurricular, or industry work as where they started to really understand concepts.
Participants identified the new perspectives and their higher starting ability as helping them gain
more CU in experiences after their introductory S&S course. These results suggest the importance
of the suggestion to (FB4) encourage students to be actively engaged in learning over the long-
term. Further, if (FB8) encouraging a deep learning approach in one course will encourage a
similar approach in future courses, S&S instructors can help students (eventually) gain CU, even
if it takes students more time than they have in one semester.

Even without the other strategies, and without reaching CU the first time they saw a concept,
participants thought repetition benefited CU (within or across courses). Although most students

114



identified repetition, not just the passing of time, this observation raises the question of if their
experience could be related to the impact of diffuse learning, or allowing students time between
seeing a topic without explicitly trying to form CU [134]. Some data from [81] shows an increase in
scores on a conceptual test after summer break – the authors propose lower stress as an explanation,
but diffuse learning would also explain this finding. Untangling the impact of time and repetition
on CU would be an interesting avenue for future work.

In Tab. 5.5, there is a clear tension between keeping a reasonable workload and providing stu-
dents with new perspectives, repetition, and hands-on activities. Instructors generally cannot cover
everything they want to in a course and must decide what material makes the cut. As one illus-
tration of this trade-off, our results suggest it is preferable to decrease the number of assignments
or labs with more time for each for students to gain CU. However, courses have other goals, e.g.,
procedural knowledge or learning how to use lab equipment, that are often better achieved with
more frequent, repetitive practice. This is something every instructor must balance. For topics
that are (necessarily) covered briefly in a course, students preferred the topic to emphasize CU.
They enjoyed being introduced to concepts in introductory courses at a high-level, especially if
motivated by explaining their purpose and if the instructor told the class which courses would go
into more detail. In contrast, participants in one student focus group described a more procedure-
focused introduction to a topic; the students did not get to understand the full procedure and they
were left more confused and had to un-learn the material in a later course.

The remaining suggestions from [128] are to (FB2) state expectations and provide clear feed-
back, (FB5) provide students with opportunities to influence the course content and learning meth-
ods, and (FB6) show care for the students learning. These did not explicitly appear in our data
analysis. However, the general take-away from our results, that instructional quality and quantity
can impact CU, suggest showing care for students learning is important. The results also generally
support the idea of including these instructional factors in models for CU, such as ones based on
the MoEP.

Finally, one point that was only briefly mentioned in the interviews, but which aligns with
the threshold concept theory from [77], is that it can be challenging for instructors to recall how
confusing concepts are and how they came to learn a concept. One of the graduate students noted
that

there’s like sometimes use of these examples or conventions that are ubiquitous in the
field but when you see it for the first time, it’s like, the person presenting it or explain-
ing it is so familiar and is so, like, they think that that’s just the way it’s presented and
they fail to challenge it or explain why. (G)

Once learned, threshold concepts transform the way one thinks; this transformation can make
concepts appear obvious that were once confusing.
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5.4.1 Connections to Theory

Two prominent theories for CU are framework theory [39] and knowledge in pieces (KiP) [43].
These theories exist on a continuum: framework theory argues that knowledge is relatively co-
herent, while KiP argues that knowledge is relatively fragmented. Age, subject matter, and other
contextual factors likely impact how conceptual change occurs and which theory is more applica-
ble [43]. Section 2.1.3 describes these and other theories of CU in further detail. In agreement with
the results in Tab. 5.5, both theories predict that students learn better when they see a concept mul-
tiple times from different perspectives, either as they move through progressively more expert-like
synthetic frameworks (framework theory) or as they encounter new situations and confront more
of their p-prims (KiP).

Participants’ request for contrasting examples is particularly interesting to view in relation to
Chi’s “category mistakes” theory [40]. Participants noted that when they saw LTI systems in SS,
they perceived LTI as a procedural check-list. They typically only understood the importance of
LTI concepts when they later encountered non-LTI systems. One plausible explanation is that,
rather than mis-categorizing LTI concepts as in Chi’s theory, without contrast, participants were
unable to categorize the concepts at all. This observation may be a direction for future research.

The interview protocol did not include asking if students understood the S&S concepts, though
most participants talked briefly about their CU. Thus, we comment only briefly on students’ mental
models. We found KiP to be a helpful framework for interpreting these results. One undergraduate
student noted he knew the definition of linearity in one context, but could not remember how it
applied to systems. This reveals the contextual (and perhaps fragmented) nature of his knowledge.
We can similarly use KiP to interpret some of the think-aloud results from Chapter 4. For example,
students were able to select the FT of a windowed sinusoid on the first think-aloud question (Q9
on the SSCI) but did not recall the FT of a cosine to use on a later question (Q12).

No participants mentioned struggling to overcome naive concepts. In contrast, students men-
tioned analogies or examples from areas like music helping them to gain CU. One possible expla-
nation is that students do not form a naive framework (as is common for physics concepts) because
S&S concepts are not as obvious in everyday life. This observation agrees with the claim from
Salzman and Strobel [32] that “the general lack of strongly grounded alternative conceptions or
misconceptions about engineering and its processes limit the applicability of revolutionary models
of conceptual change.”

Even if students do not have initial naive conceptions for SS, the confusing terms used in S&S
may present challenges. Although none of the student participants named this as a hindering factor,
one faculty member talked at length about confusing terms, e.g.,

the very use of the term signal is a little ambiguous, I suspect, to students. We tend to
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think of it as an alert or stop sign or something like that is a signal. But the context in
which we use it is just a representation of a time series. . . It’s a mathematical abstrac-
tion of some physical quantity. (F)

The faculty member also noted that students think of linearity as meaning “if you increase the
amplitude, does the output grow proportionally?” A few students described linearity in this way,
following the more common-place meaning of the word, which is incomplete in the S&S context.
Others studies have also found that the language of SS (e.g., the “overlap” step for computing
convolution integrals and filters as “masks”) can confuse students [56], [71] . If naive conceptions
are less applicable in engineering [32], students’ misapplying a familiar definition may be a more
common equivalent of a naive p-prim or framework.

A future study investigating students’ level of CU and how they formed their mental mod-
els of concepts over time could further discuss if either KiP or framework theory explained the
development of students’ CU in SS.

5.4.2 Limitations and Future Work

This research study involved a small number of participants, most of whom completed an under-
graduate degree at a small number of universities in the United States. There was a single inter-
viewer, whose identity, especially that of a graduate student in a SS-related field, likely impacted
interactions with participants; see the discussion in Section 1.4 Finally, the interviews can only
capture what participants perceived as influencing their CU – participants may not have realized or
remembered the impact of various factors.

One limitation to the generalizability of our findings is that this study concentrates on S&S
concepts. Future work should consider a similar research question in other engineering disciplines
to look for themes and commonalities. Such qualitative studies could further theory on what in-
structional factors influence long-term CU. Once a more solid theory is established across multiple
studies, a research team could design a survey to measure the factors that this and other studies
hypothesize influence CU and relate those factors to a measure of CU such as the S&S concept
inventory [1]. Such a quantitative design would allow for including a larger number of participants
and testing the statistical significance of each variable. As briefly mentioned in Chapter 1, we
planned this study to have a quantitative component, with students taking a survey to measure fac-
tors that we hypothesized would influence CU, similar to the survey and analysis from Chapter 3.
However, we did not have enough student participation in 2021 and 2022 to do a full analysis of
survey responses. Section 5.4.3 presents a preliminary, cursory analysis of the survey data.

Finally, participants’ association of CU with a concept’s purpose influenced the results of this
study; many of the strategies in Tab. 5.5 emphasize demonstrating where a concept is used or the
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importance of the concept. Studies that introduce CU with different definitions are likely to find
different factors.

5.4.3 Factors that Correlate with Conceptual Understandings

One obvious possible factor related to students’ SSCI score is how many SS-related electives
seniors took. Of the participants who completed the SSCI in 2020 and 2021 as part of the study
in Chapter 4, n = 143 (90 from UVA, 53 from UM) took an additional survey that collected
information about upper-level electives and grades. The full survey is given in Appendix A.2. UM
participants took the survey and SSCI as part of the research (the SSCI was not part of a class for
them), while UVA students were incentivized to take the additional survey with a raffle for $15 gift
cards in fall 2020 and 2021.

Although we did not have sufficient participation to do a full analysis of factors impacting SSCI
scores, as a brief, initial analysis, we performed two t-tests to see if the amount of exposure students
had to S&S concepts after SS was correlated with their SSCI score. First, we tested if scores on the
LTI and Laplace transform questions (Q8, Q17-19, and Q24) differed for students who did and did
not take a controls course. LTI and Laplace transforms concepts are integral to controls courses,
so we predicted that students who took a controls course would reach better CU of these concepts.
Second, we tested if scores on the convolution and FT questions (Q6, Q7, Q9-12, Q22, and Q25)
differed for students who did and did not take a signal processing and/or communications course.
Similar to how controls courses tend to emphasize LTI and Laplace concepts, signal processing and
communications courses emphasize convolution and the FT, so we expect students who complete
these courses to have better CU. In both cases, students with a relevant course scored significantly
higher (p<0.01) on the related concept questions, with an average score improvement of 21% and
16% respectively. Bartlett’s test of equal variances came back insignificant, suggesting that the
assumption of the t-test that the two groups have equal variances is reasonable.

We further used a linear regression to see if the impact of taking a SS-related course remained
significant if we accounted for differences in student grades. The two independent variables were
(1) the number of SS-related electives a student took and (2) their self-reported typical grades in
engineering courses, with “mostly As” coded as 4.0, “mostly A and B” coded as 3.5, etc, and the
dependent variable was their SSCI score. The linear regression model was significant (p<0.01)
and explained 27% of variance in scores. The regression coefficients suggest that scores increased
by 6% with every additional SS-related elective course and 13% with every increase in average
letter grade. However, the results do not control for many other possible confounding variables nor
do they suggest causality–students may choose courses in areas in which they already have higher
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CU.

5.5 Conclusion

To address the third research question (RQ#3: What instructional factors influence CU of S&S
for senior students?), we interviewed two faculty members, 8 undergraduate students, 5 graduate
students, and 4 practicing engineers and used a constant comparative analysis on the transcript
data. Participants noted multiple experiences that helped them gain CU: instructors presenting
CU in parallel with mathematical expression in lectures, instructors emphasizing the purpose of
ideas and how ideas connect in the course, interactive simulations where they had control and
received immediate feedback, design problems, lab-work that forced them to reflect on ideas, new
perspectives from upper-level courses, and repetition of concepts across the curriculum. They also
noted that emphasizing procedures in graded assignments and heavy workloads made it harder
for them to gain CU. Although this study focused on S&S concepts, we expect these findings to
generalize to other engineering areas, particularly those with heavy mathematical content.

Few studies have investigated students’ CU of S&S concepts multiple semesters after a S&S
course. We hope this chapter provides concrete ideas for instructors on how to increase CU and
encourages curriculum designers to consider how repetition across multiple courses can help stu-
dents gain more advanced CU that they often do not have time to develop in a single S&S course.
We end with a quote for thought: an undergraduate stated that S&S

is nice for giving you kind of like the introduction for, ‘hey, this is stuff that is in
electrical engineering.’ And then your upper level would be like, ‘this is why this is in
electrical engineering.’ (UG)

Perhaps, if students gain CU in upper-level electives (or other experiences), the commonly reported
low CU at the end of a S&S course [56] is less discouraging for S&S instructors.
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CHAPTER 6

Part I: Summary, Contributions, and Conclusions

Part 1.5 of this dissertation looked at conceptual understanding of signals and systems in three
phases. The three research questions were:

RQ#1 What is students’ CU of S&S concepts at the end of an undergraduate S&S course?
What factors predict how many S&S concepts students learn in a S&S course?

RQ#2 What is the CU of S&S concepts among senior students?

RQ#3 What instructional factors influence CU of S&S for senior students?

Chapter 3, 4, and 5 addressed each of these questions in turn. This conclusion reviews the main
findings from each study and how the themes that emerge across the studies. Fig. 6.1 shows a
timeline for collecting data for Part 1.5 and how each data source related to the three research
questions.
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Figure 6.1: Summary of the data collection for Part 1.5 of this dissertation. The top half of the diagram is
for UM and the bottom half is for UVA. The data from the SSCI and the survey given in S&S courses at UM
answered RQ#1. The data from the SSCI given to seniors and the think-aloud interviews answered RQ#2
(the SSCI given to seniors at UVA from Fall 2016-2018 is not depicted). Finally, the exploratory interviews
and focus groups influenced the design of the surveys and answered RQ#3.
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6.1 Concepts in Signals and Systems

This section discusses results specific to each S&S concept that I studied and includes data from the
interviews from Chapter 5 where participants talked about their understanding of each concept. For
background, Section 2.2.1 introduced the concepts. Section 6.1.3 combines the discussion of FT
and filtering as many interview participants talked about these almost interchangeably. Measuring
CU was not a main focus of these interviews, so I did not do a formal qualitative analysis of
the quotes where participants talked about their CU. However, I include some of the themes that
emerged from those conversations where the interviews overlapped with our main results.

This section also briefly discusses how concepts are presented in common S&S textbooks [33]–
[35]. In general, textbooks present many S&S concepts as “what it is” concepts initially and in-
clude real-world motivating applications either in the introduction chapter, the introduction section
of each chapter, the homework problems, or as pointers in the bibliography. In the edits for the
second version of the textbook, Oppenheim, Willsky, and Nawab [34, p. xvii] explained that
they wanted to increase the emphasis on applications. For example, they moved the discussion
of frequency-domain filtering earlier “to provide both motivation and insight.” Textbooks are not
generally designed for self-study; they are meant to be used in conjunction with other materials
as part of a course. Therefore, what textbooks present is not necessarily indicative of how con-
cepts are presented in a course. However, textbooks reflect community values and are minimally
indicative of how we expect students to use textbooks to learn. I briefly comment on textbooks as
supporting evidence and context for the other results; analyzing textbooks thoroughly is outside
the scope of this discussion and would be an interesting avenue for future work.

6.1.1 Linearity and Time Invariance

Textbooks generally start with the concept of time invariance (TI) before linearity. For example,
Phillips, Parr, and Riskin [35] give the definition of TI in words and in mathematical notation,
discuss how to test it, provide mathematical examples, and give an example of a time-varying real-
world system (the booster stage of the NASA shuttle) before doing the same for linearity. When
introducing linearity, all three of the common textbooks I reviewed emphasize the importance of
the superposition principle. The full explanation of why superposition is an important concept is
typically saved for later in the book, after introducing other concepts like convolution.

Students generally rate LTI as easier than instructors rate it [72], and our results show that
students generally score well on most of the LTI concept questions on the SSCI. For example,
even on the pre-test in S&S, over 90% of students correctly answered question 5 on the concept
of TI (note the pre-test was two weeks into the semester, and some students had seen TI in lecture
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although they had not yet turned in a homework on the concept). In interviews with the participants
from Chapter 5, participants also typically described LTI as easy or intuitive.

Although students thought of LTI as an easy concept and they were able to apply it to problems,
our data supports the finding from Nasr, Hall, and Garik [71] that students did not fully understand
the concept. In contrast to the high scores on the other LTI questions, in Chapter 4, we observed
students struggling to answer question 24 about LTI concepts on the SSCI. Most were able to
correct reason about TI, but only about half showed CU of linearity. The SSCI results from the
post-test in S&S suggest many students have a similar gap in their CU at the end of the S&S
course. The interview data from Chapter 5 also support that students think LTI is easy, but that
they do not have full understanding. One undergraduate student participant confused linearity for
continuity and another recalled the mathematical definition but wasn’t sure how it would apply to
systems: “I think of the meaning as it being closed under scalar multiplication and addition but I
don’t remember how to, like, meld that definition to systems. Like, something like that. It’s gotta
be related to that though.”

One conversation about LTI in a focus groups with undergraduates was particularly interesting.
One student talked at length about how they felt LTI was not covered well in the undergraduate
curriculum and that they only came to see the fundamental importance of the concept from physics
and mathematics courses and being exposed to systems that were non-linear. In response, one of
the other participants nicely summed up the theme of the conversation:

I think on a surface level LTI concepts are like the easiest thing - on a surface level -
the easiest thing I’ve ever learned, because in every single almost every single EE class
I’ve been in, the first homework is LTI. And they have you memorize like the four rules
to tell if it’s LTI, and you do-like you go through like six equations of systems, and
you write is this system LTI, and then we’d never touch it again. And so, on a surface
level, it’s a very easy concept because you’re like, “I just need to follow these rules,
it’s just simple math.” But, listening to [other participant], I realized, I never learned
why it’s good for a system to be linear or LTI or-or time invariant. Why would you
- why is it more desirable to design a system like that? What benefits does that give
you? So I guess I had like a sense of false confidence that I really understood this stuff
because our first unit every class was LTI, but I truly did not understand on a more
deeper level why that’s kind of a big deal.

When saying LTI is easy, the participants talked about the procedural part because that is how they
saw LTI. Only the participants who mentioned having experience with non-LTI systems (either
in an upper-level elective, in industry, or in extra-curricular activities) talked about deeper CU of,
or appreciation for, LTI concepts. This contrast also held for the four practicing engineers we
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interviewed: two recalled LTI concepts well and two did not at all (one said that they recalled that
LTI was “a thing” and the other asked themselves if it was “linear versus time invariance” before
stating that they did not remember it at all).

A related finding from the think-aloud interviews from Chapter 4 was that some students strug-
gled to separate linearity from TI. A few tried to assume the system was LTI in the process of
testing if it was LTI. Although the data is limited, this observation suggests that students are so
accustomed to working with LTI systems that they do not know how to approach a non-LTI sys-
tem. During the same conversation from the undergraduate focus group on LTI mentioned above,
one of the students described being asked to analyze a non-LTI system as going to the “forbidden
zone.” Nasr, Hall, and Garik [71] also found that students tended to automatically assume that a
theoretical system presented in mathematical form was LTI to determine the output, even if that
was not specified or not true. In contrast, when aerospace engineering undergraduates were given
a real-world aerospace system that they knew was non-linear, they more often (correctly) said the
output could not be determined from the given information [71].

From Section 2.2.2, a possible reason that students struggle with S&S concepts is that the ter-
minology is misleading and confusing. For LTI, the think-aloud interviews showed a few students
confused linearity and proportionality. One of the instructors in the interviews from Chapter 5
noted exactly this difficulty:

people tend to think of linear is like an audio amplifier is linear, if you increase the
amplitude does the output grow proportionally. And it’s more than that.

Jia, Bennett, Nguyen, et al. [78] discusses other examples of confusing terminology such as the
“area under the curve” and students thinking that a system that shifts an input in time is time
varying.

6.1.2 Convolution

Convolution is generally ranked as one of the most difficult concepts in S&S [72], likely due to its
mathematical nature. The interviewees from Chapter 5 agreed with this. Many participants said
that they did not understand convolution and cited the heavy mathematics as part of the problem.
But even participants who felt they understood the math thought the concept was difficult or lost
in the procedural steps during their S&S course.

The concepts in Section 2.2.1 are from standard S&S textbooks [33], [35]. Most of the concepts
are at the “what it is” level. For example, one of the convolution concepts was:

Convolution is associative, i.e., (x(t) ~ h1(t)) ~ h2(t) = x(t) ~ (h1(t) ~ h2(t)). There-
fore, the impulse response of the equivalent system to a series of LTI systems is the
convolution of the impulse responses for the individual systems.
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Although some might consider the second sentence a “why is matters” concept, it is translating the
“what it is” concept from mathematical representation to words. The three common textbooks I
reviewed [33]–[35] all present the concept that convolution is associative in block diagram form.
The “what it is” concepts are generally presented with the corresponding proof or mathematical
explanation behind the concept.

One of the more important “how it works” concepts relating convolution and LTI is understand-
ing how convolution calculates the output of LTI systems due to the principle of superposition: it
sums up copies of the input signal delayed and scaled according to the impulse response. This
concept is mentioned but not emphasized in the introductory sections on convolution in [33], [35].
Ref. [34], [35] uses the goal of finding the output of an LTI system and the superposition property
to build-up the convolution integral and emphasizes the importance of the result.

None of the convolution concepts in Section 2.2.1 emphasize the “why it matters” level. Fur-
ther, the example problems in [33, Ch. 2] do not demonstrate why the properties are useful beyond
solving standard homework problems. Ref. [35] similarly includes typical mathematical examples,
such as finding the impulse response of a integrator, and the authors motivate the example systems
as being useful in signal processing applications and control systems. Continuing the above as-
sociative concept example, a full “why it matters” should explain the practical significance of the
associative property of convolution (not just of convolution or LTI systems in general), preferably
with a specific, real-world application.

Perhaps the most basic “why it matters” concept behind convolution is why convolution is im-
portant. First, convolution is important because it is used to calculate the output of LTI systems and
many real-world systems are well-modeled by LTI systems. This concept is presented and empha-
sized with numerous examples in textbooks and students generally remember this purpose [56].
However, the convolution procedure is mathematically challenging, so students are unlikely to ap-
preciate this as a boon and therefore miss the motivational aspect of this “why it matters” concept.
As mentioned in the previous section, the benefit of convolution and LTI is more apparent when
one considers non-linear or non-time-invariant systems, which are considerably more challenging.
However, second or third year students rarely see such systems in undergraduate courses.

A second viewpoint on why convolution is important is to consider specific applications. Such
examples are typically presented in later chapters in textbooks due to incorporating other course
material, such as Fourier transforms. One way to show “why it matters” concepts to students is
with example convolutions. For example, convolving with a rectangular (low-pass) function takes
a moving average and smooths the input signal; this is helpful in applications such as weather
reporting or reading measurements from a sensor where any one measure may be noisy, but the
time-average is more reliable. Another example is convolving with a differencing (high-pass) filter;
this is helpful for edge detection. Both examples connect to FT concepts but are easily seen directly
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from the convolution integral.
Despite convolution being the building block for the FT and filtering, students may not see

convolution as important. Convolution was rated the least likely concept to benefit students in
their future careers on the survey in Chapter 3. In contrast, Nelson, Hjalmarson, Wage, et al.

[72] found that students thought convolution was one of the more important concepts in S&S.
The difference in findings is likely attributable to the definition of importance. The survey from
Chapter 3 asked about importance of understanding the concept for their future career while [72]
noted that students who said convolution was important did so because convolution appeared in
other courses.

The SSCI results in Tab. 6.1 show that a large percentage of students correctly answered the
question testing if they understand that convolution is commutative and the question that requires
students recall that the convolution of two rectangles is a trapezoid (questions 14 and 13 respec-
tively). In contrast, the results for question 15 suggest low CU. As discussed in Section 4.3.2, the
think-aloud data for questions 15 suggest is similar to the findings in [56], [71] that students did
not know how to handle novel convolution problems. Wage, Buck, Nelson, et al. [56] and Nasr,
Hall, and Garik [71] found students struggled with convolution problems when the input signal
did not start at time 0, the input signal had a magnitudes other than one, and when the input signal
with not unit width. Both students in S&S and seniors had the same common incorrect answer on
question 15, likely stemming from not accounting for the input signal having a width greater than
one unit when determining the maximum amplitude of the output signal.

The interviews from Chapter 5 brought up two additional points on convolution for reflection
and discussion. First, there was disagreement between students and instructors on whether the
graphical representation of convolution is: (1) a way to provide intuition for the superposition
integral and a tool for finding the break-points in a convolution problem (instructor viewpoint) or
(2) an important procedure that students should know (student impression). The two viewpoints
are not incompatible, but they reveal different emphases. I do not argue that one viewpoint is
correct or better than the other, but instructors should clearly define what they want students to
learn and make sure these goals align with homework problems and exam questions.

Second, when thinking about convolution from the student perspective of the graphical con-
volution procedure being important on its own (not in service of findings the bounds for more
complex convolution problems), students questioned the importance of teaching the concept. Stu-
dents were roughly split on whether the graphical convolution examples helped their CU of the
superposition integral, and many participants made comments similar to this graduate student:
“the focus was definitely on just being able to calculate something. Which may or may not be use-
ful at all. I mean, it’s probably not because who’s ever going to do convolution by hand? Nobody!”
Even if one thinks graphical convolution is not important beyond its use in finding breakpoints and
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understanding the superposition integral, graphical convolution questions can reveal problematic
reasonings. For example, the common error on question 15 (which required students to recognize
the answer for a graphical convolution problem) revealed that many students did not understand
how the width of the input signal impacts the maximum amplitude of the output signal (see Sec-
tion 4.3.2). If the procedure can reveal this type of error, it may also help instructors identify ways
to help students to learn the associated concepts.

6.1.3 Fourier Transform and Filtering

Many of the results on the FT echo the results on convolution, while the results on filtering are often
quite different. Similar to convolution, students generally think of the FT as a difficult concept,
likely because of the mathematical nature [72]. As with convolution, some interview participants
from Chapter 5 said they did not understand the FT in S&S even if they understood the mathematics
and could compute the integral. In contrast, students perceive filtering as one of the easier topics
in S&S [72].

FT properties are presented in textbooks [33]–[35] as equations and symbols with proofs or
mathematical examples; there were generally few physical examples or explanations relevant to
specific applications such as visualizing audio frequencies. Immediately after introducing the FT,
[34] explains the mathematics behind and the goal of filtering and removing certain frequencies.
Phillips, Parr, and Riskin [35] introduces filtering by presenting ideal high-, low-, and band-pass
filters. The authors present filters with varying amplitudes in the pass band, but start with filters
with unit magnitude. They then note that such ideal filters are not physically possible and discuss
RC (resistor capacitor) low-pass filters.

Looking at the SSCI results in Tab. 6.1, a majority of students in S&S and seniors correctly
answered FT questions (questions 7, 9, 11, and 12; excluding the FT questions that require reverse
reasoning). Even though most students answered correctly, the think-aloud results for question 9
suggested that seniors were not confident in their answer; see Section 4.3.3. Question 9 tests one of
the most fundamental concepts in S&S: it asks students to identify how the FT of a signal changes
when the frequency of the signal changes. Further, the results for question 12 on the think-aloud
interviews showed that multiple students were unable to recall the FT of a cosine. One student
mentioned that they would normally look this fact up on a FT table. Interestingly, the students in
S&S did much better on question 12 than the seniors (93% answered correctly as opposed to 63%
of seniors). Recall from Section 4.3.3 that we included question 12 on the think-aloud interviews
to see if students used a “what it is” approach (this approach required knowing the FT of a cosine)
or a “why it matters” approach (recalling the purpose of carrier waves). An interesting avenue for
future work is to do think-aloud interviews with students in S&S to see if they are better at recalling
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Table 6.1: Summary of SSCI questions, including the relevant concept, the fraction of students in S&S
that answered the question correctly on the pre-test and post-test (n = 180), and the fraction of senior
students answering correctly (n = 412). Highlighted questions are used in the think-aloud interviews,
starred questions were used in [56], and questions with RR require reverse reasoning.

Question Concept SS:
Pre

SS:
Post

Senior

Q1 The definition of frequency. 0.99 0.99 0.98
Q2 Time-reversal in the signal domain. 0.92 0.96 0.78
Q3 Recognize a time-reversed and shifted signal. 0.41 0.52 0.45
Q4 Convolution is commutative. 0.88 0.98 0.79
Q5 Convolution computes the output for an LTI system. Graphical convolu-

tion of rectangular pulses.
0.91 0.89 0.93

Q6* How to determine if a system is causal based on its impulse response. 0.67 0.89 0.73
Q7 The definition of the Fourier series. 0.46 0.58 0.67
Q8 Sinusoids are eigenfunctions of LTI systems. 0.50 0.79 0.64
Q9* Increasing the frequency of a signal in the time domain correspondingly

increases the frequency in the FT domain.
0.39 0.73 0.67

Q10-RR Convolution-multiplication duality of the FT. 0.30 0.57 0.25

Q11 The FT is homogeneous. 0.83 0.92 0.83
Q12 Convolution-multiplication duality and the FT of a cosine. Or, how mul-

tiplication with a carrier wave impacts the FT.
0.60 0.93 0.63

Q13* Convolution computes the output for an LTI system. Graphical convolu-
tion of rectangular pulses.

0.32 0.80 0.69

Q14-RR Convolution is commutative. 0.67 0.91 0.82
Q15* Convolution computes the output for an LTI system. Graphical convolu-

tion of rectangular pulses.
0.34 0.34 0.47

Q16 How to determine if a system is causal based on its impulse response. 0.27 0.78 0.47
Q17 How to interpret a pole-zero plot to determine a system’s causality and

stability.
0.22 0.74 0.54

Q18 The relation between a system’s pole-zero plot and its impulse response. 0.31 0.67 0.40
Q19 The relation between a system’s pole-zero plot and its frequency re-

sponse.
0.18 0.46 0.31

Q20 How adding a pole to a frequency response impacts the corresponding
Bode plot.

0.48 0.63 0.70

Q21-RR Convolution-multiplication duality. 0.12 0.52 0.39
Q22-RR Time-phase shift duality. 0.19 0.64 0.40
Q23 The relation between the impulse response of a system and whether the

system is causal. Parallel and cascade connections of systems.
0.40 0.52 0.38

Q24 Graphical interpretation of linearity and time invariance. 0.32 0.43 0.40
Q25* Low pass filtering of windowed signals. 0.51 0.72 0.70
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(possibly from memorization) the FT of cosine, if they are able to deduce the FT of a cosine, or if
they are more likely to use the “why it matters” approach.

Students similarly tend to correctly answer the SSCI questions on filtering (questions 6 and
25). Unlike with the FT questions, the filtering question on the think-aloud interviews suggested
that most students understood that the filtering concepts being tested. Our results, presented in
Section 4.3.4, are in contrast to the think-aloud results from [56], who found that students were
not thorough in answering the filtering question. Specifically, [56] found that students tended not
to check the passband of the filter nor the filter magnitude.

The comments from the interview participants from Chapter 5 appear contrary to the SSCI
results on FT but seem to support the results on filtering. Most participants felt they understood
the concept of frequency content of time signals by the time they were undergraduate seniors.
While many participants talked about how the math was challenging and they may not have gained
intuition for the FT during the S&S course, many also talked about how they eventually saw the
frequency-time relation as intuitive. Using natural language processing tools such as those in [68]
to examine how a large group of students explain their answers to–and rate their confidence on–
problems similar to question 9 on the SSCI would be an interesting area for future work.

6.2 Implications for Practice

Section 5.4.1 discusses the implications for theory for many of the findings from Part 1.5. This
section concentrates on implications for practice, i.e., how the findings from Part 1.5 might impact
teaching. These implications are summarized in Tab. 6.3.

First, measuring students’ CU is a first step to improving students’ CU. By knowing which
concepts students struggle with and their common errors, instructors can more effectively target
those specific concepts. For example, the results in Tab. 6.1 show that most students were able to
interpret a magnitude and phase diagram for a filter (question 6) but that they struggled to determine
if a system of series and parallel connections of systems is causal given in the input responses of
the individual systems in the connection diagram (question 23).

Second, Chapter 5 identifies many instructor strategies that may help improve CU. These
are summarized in Tab. 5.5. The strategies included presenting CU along-side math equations in
lectures, repeating the interpretation of mathematical expressions multiple times, emphasizing the
purpose of concepts and connections between course material, and incorporating active learning.
When incorporating active learning, participants noted that quick interactive simulations, which
have a lower barrier to entry than full lab experiments, can help students develop CU. The key
features for these simulations are that they give students a sense of control and provide immediate
feedback. Lab experiments were very helpful for some students but not for others. To help develop
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Table 6.3: Summary of implications for practice from Part 1.5.

Implication Details See also

Anticipate student diffi-
culty with certain con-
cepts.

Students at the end of S&S and senior undergraduate engineers both strug-
gled with SSCI questions on flipping and shifting a time signal (Q3), how
to the width of the input signal impacts the maximum amplitude of the out-
put signal in a graphical convolution problem (Q15), and the definition of a
linear system separate from a linear and time invariant system (Q24). Stu-
dents also tended to score lower on concept questions that required reverse
reasoning or synthesizing concepts, e.g., Q10, Q21, Q22, and Q23.

Sec. 3.3.1
Chap. 4
Tab. 6.1

Contrast LTI with non-
linear systems.

To help students appreciate the importance of LTI systems and see that such
systems are easier to analyze, contrast the analysis of LTI systems with non-
linear systems.

Sec. 4.3.1
Sec. 5.3.1

Explain the purpose of
graphical convolution
problems.

Instructors should clearly define what they want students to learn from do-
ing graphical convolution problems and make sure these goals align with
homework problems and exam questions.

Sec. 4.3.2
Sec. 6.1.2

Improved learning in
pre-requisite courses
aids in gaining CU in
S&S.

Pre-test SSCI scores was a significant predictor of post-test SSCI scores and
interviewees felt being exposed to convolution before S&S helped them to
better learn the signal processing concepts by allowing them to concentrate
on the application of convolution rather than being overwhelmed with the
procedural steps.

Sec. 3.4
Sec. 5.3.4.2

Provide motivation for
students to care about
concepts.

Motivation was a significant predictor of post-test SSCI scores and Chap. 5
discusses how interviewees appreciated when their instructor motivated
concepts by presenting the “bigger picture” or purpose behind them.

Sec. 3.4
Sec. 5.3.1

Use lectures to provide
students with an initial
level of CU.

Students especially appreciated instructors presenting “why it matters” con-
cepts and connections between concepts. Instructors can use techniques
such as analogies, translating math expressions, and contrasting examples
to help students develop initial CU during lecture.

Sec. 5.3.1

Integrate hands-on ac-
tivities to help students
construct their own
deeper level of CU.

These activities could come from a laboratory section or in a project-based
course; the interviewees suggested that labs and projects should require stu-
dents to engage with material and avoid having students follow a set of
procedures. Students also appreciated quick activities such as interactive
computer simulations where they control some element of the simulation
and receive immediate feedback.

Sec. 5.3.2

Repeat concepts within a
course and across a cur-
riculum.

Repetition helps students gain CU by providing them with new perspec-
tives and by re-introducing them to concepts when they have higher ability.
Sec. 5.4.3 also shows preliminary evidence that upper-level electives sig-
nificantly increase CU of certain emphasized concepts, while CU of other
concepts is left unchanged.

Sec. 5.3.4
Sec. 5.4.3

Allow students time to
develop CU.

Students may develop less CU if the assignments with the most weight
emphasize procedural knowledge, especially if their workloads are high
enough that they do not have any time to spend on courses beyond time
spent to complete these assignments.

Sec. 5.3.3
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CU, lab experiments should encourage students to synthesize and reflect on concepts; following
a set of procedures and making calculations was insufficient for participants to identify labs as
helpful for CU. Chapter 5 also warns against a heavy workload and notes that too much work can
negate the positive impact of other activities such as application-focused homework problems.

Finally, a major focus of this dissertation was on the CU of senior students. The second and
third phases both focused on this population of students, motivated by the lack of data in the
literature about CU multiple semesters after students take a S&S course. Chapter 4 showed that
seniors scored similarly to the scores reported in the literature for students taking a post-test in
S&S and Chapter 5 found that many participants credited time as aiding their CU. Time to process
ideas can aid students in developing CU [134], but many students specifically credited applying
S&S concepts in follow-on classes, extracurricular activities, or at work as helping them to gain
a new perspective on S&S concepts and thus improving their CU. An implication of this result is
that designing the curriculum such that students see concepts repeated in multiple courses could
improve CU of upper-level students. Section 5.4.3 presents preliminary results that suggest that
specific upper-level courses improve CU of specific S&S concepts.

6.3 Future Work

Ultimately, the goal of this research is to shed light on how instructors and curriculum designers
can help students reach long-term conceptual understanding. The results suggest multiple avenues
for future research, such as:

• What caused the large observed conceptual gain in the S&S course in Chapter 3? One
hypothesis stemming from the interview data from Chapter 5 is that the large gain is partly
due to students taking differential equations as a prerequisite rather than a co-requisite and
thus being better prepared for the concepts in S&S.

• How does CU of S&S evolve over time? Chapter 4 measured CU of senior students, but a
future study could survey the same participants over multiple years in a longitudinal study
to collect paired data and better see the impact of individual student experiences.

• What factors predict CU of senior undergraduate students? Chapter 5 presents exploratory
qualitative data as a step toward answering this question and Section 5.4.3 showed that upper-
level courses and grades were correlated with CU for senior students. A future study could
build on these results and investigate how well a model such as the Cognitive Reconstruction
of Knowledge Model (CRKM) [121] explains CU of senior students.

In addition to these directions, Tab. 5.5 suggests future work questions for individual S&S con-
cepts.
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Another area for future work is to develop new questions to test CU based on the findings from
the existing questions. For example, a question on filtering that reveals if students verify the pass-
band of the filter and the filter’s magnitude would help determine if the results from Section 4.3.4
generalize to a larger student population. New concept questions could also use the definition
of CU proposed in Section 2.1.2 to target different concept levels. For example, if there were two
paired questions with one testing a “why it matters” concept and the second testing the correspond-
ing “what it is” concept, a future study could see if one concept had more “staying power” with
students, i.e., if students were more likely to recall one of the concepts multiple semesters or years
after taking a relevant course.

Finally, this dissertation considered concepts from signals and systems (SS) because it is per-
vasive across electrical engineering program and because of the expansive literature showing that
students struggle with many of the concepts [1], [45], [56]. S&S is a core class for many sub-
disciplines in electrical engineering, including signal and image processing and machine learning.
We anticipate the results will provide insight for other engineering disciplines, especially those
with similarly heavy mathematical content. Hopefully others will conduct similar studies in other
engineering areas so that the research community can identify common factors, similar to how [50]
identified common conceptual challenges across engineering disciplines.
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Part II: Image Reconstruction

CHAPTER 7

Introduction

This chapter motivates the image reconstruction problem, provides an introduction to the nota-
tion in Part 6.3, and introduces a running example bilevel problem used throughout Part 6.3. This
chapter is presented in Ch. 1 of [11]:

C. Crockett and J. A. Fessler, “Bilevel methods for image reconstruction,” Foundations
and Trends® in Signal Processing, vol. 15, no. 2-3, pp. 121–289, May 5, 2022, ISSN:
1932-8346, 1932-8354. DOI: 10.1561/2000000111

7.1 Motivation: Image Reconstruction

Methods for image recovery aim to estimate a good-quality image from noisy, incomplete, or
indirect measurements. Such methods are also known as computational imaging. For example,
image denoising and image deconvolution attempt to recover a clean image from a noisy and/or
blurry input image, and image inpainting tries to complete missing measurements from an image.
Medical image reconstruction aims to recover images that humans can interpret from the indirect
measurements recorded by a system like a Magnetic Resonance Imaging (MRI) or Computed
Tomography (CT) scanner. Such image reconstruction applications are a type of inverse problem
[135].

New methods for image reconstruction attempt to lower complexity, decrease data require-
ments, or improve image quality for a given input data quality. For example, in CT, one goal is
to provide doctors with information to help their patients while reducing radiation exposure [136].
To achieve these lower radiation doses, the CT system must collect data with lower beam intensity
or fewer views. Similarly, in MRI, collecting fewer k-space samples can reduce scan times. Such
“undersampling” leads to an under-determined problem, with fewer knowns (measurements from
a scanner) than unknowns (pixels in the reconstructed image), requiring advanced image recon-
struction methods.

Existing reconstruction methods make different assumptions about the characteristics of the
images being recovered. Historically, the assumptions are based on easily observed (or assumed)
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characteristics of the desired output image, such as a tendency to have smooth regions with few
edges or to have some form of sparsity [7]. More recent machine learning approaches use training
data to discover image characteristics. These learning-based methods often outperform traditional
methods, and are gaining popularity in part because of increased availability of training data and
computational resources [137], [138].

There are many design decisions in learning-based reconstruction methods. How many param-
eters should be learned? What makes a set of parameters “good?” How can one learn these good
parameters? Using a bilevel methodology is one systematic way to address these questions.

Bilevel methods are so named because they involve two “levels” of optimization: an upper-level
loss function that defines a goal or measure of goodness (equivalently, badness) for the learnable
parameters and a lower-level cost function that uses the learnable parameters, typically as part
of a regularizer. The main benefits of bilevel methods are learning task-based hyperparameters
in a principled approach and connecting machine learning techniques with image reconstruction
methods that are defined in terms of optimizing a cost function, often called model-based image
reconstruction methods. Conversely, the main challenge with bilevel methods is the computational
complexity. However, like with neural networks, that complexity is highest during the training
process, whereas deployment has lower complexity because it uses only the lower-level problem.

Part 6.3 focuses on formulations and applications where the lower-level problem is an image
reconstruction cost function that uses regularization based on analysis sparsity. The application
of bilevel methods to image reconstruction problems is relatively new, but there are a growing
number of promising research efforts in this direction. We hope the review of bilevel methods
serves as a primer and unifying treatment for readers who may already be familiar with image
reconstruction problems and traditional regularization approaches but who have not yet delved
into bilevel methods.

For overviews of machine learning in image reconstruction, see [138], [139]. For an overview
of image reconstruction methods, including classical, variational, and learning-based methods, see
[140]. Finally, for historical overviews of bilevel optimization and perspectives on its use in a wide
variety of fields, see [8], [141]. Within the image recovery field, bilevel methods have also been
used, e.g., in learning synthesis dictionaries [142].

7.2 Notation

Part 6.3 focuses on continuous-valued, discrete space signals. Some papers, e.g., [143], [144],
analyze signals in function space, arguing that the goal of high resolution imagery is to approxi-
mate a continuous space reality and that analysis in the continuous domain can yield insights and
optimization algorithms that are resolution independent. However, the majority of bilevel methods
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are motivated and described in discrete space. Problems in discrete-valued settings, such as image
segmentation, often require different techniques to optimize the lower-level cost function, although
some recent work uses dual formulations to bridge this gap [145], [146].

The literature is inconsistent in how it refers to variables in machine learning problems. For
consistency within this document, we define the following terms:

• Hyperparameters: Any adjustable parameters that are part of a model. Tuning parameters
and model parameters are both sub-types of hyperparameters. This document uses γ to
denote a vector of hyperparameters.

• Tuning parameters: Scalar parameters that weight terms in a cost function to determine the
relative importance of each term. We use β to denote individual tuning parameters.

• Model parameters: Parameters, generally in vector or matrix form, that are used in the
structure of a cost or loss function, typically as part of the regularization term. In the running
example in the next section, the model parameters are typically filter coefficients, denoted c.

We write vectors as column vectors and use bold to denote matrices (uppercase letters) and
vectors (lowercase letters). Subscripts index vector elements, so xi is the ith element in x. For
functions that are applied element-wise to vectors, we use notation following the Julia program-
ming language [147], where f .(x) denotes the function f applied element wise to its argument:

x ∈ FN =⇒ f .(x) =



f (x1)
...

f (xN)


∈ FN .

We will often use this notation in combination with a transposed vector of ones to sum the result
of a function applied element-wise to a vector, i.e.,

1′ f .(x) =

N∑

i=1

f (xi). (7.1)

For example, the standard Euclidean norm is equivalent to 1′ f .(x) when f (x) = |x|2 and and the
vector 1-norm can be similarly written when f (x) = |x|. This notation is helpful for regularizers
that do not correspond to norms. The field F can be either R or C, depending on the application.

Convolution between a vector, x, and a filter, c, is denoted as c~x. We assume all convolutions
use circular boundary conditions. Thus, convolution is equivalent to multiplication with a square,
circulant matrix:

c ~ x = Cx.

The conjugate mirror reversal of c is denoted as c̃ and its application is equivalent to multiplying
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with the adjoint of C:
c̃ ~ x = C′x,

where the prime indicates the Hermitian transpose operation.
Finally, for partial derivatives, we use the notation that

∇x f (x, y) =
∂ f (x, y)
∂x

∈ FN ,

∇xy f (x, y) =

[
∂2 f (x, y)
∂xi∂y j

]
∈ FN×M, and (7.2)

∇xy f (x̂, ŷ) = ∇xy f (x, y)
∣∣∣∣∣
x=x̂,y=ŷ

∈ F,

where f : FN × FM → F.
Tables 7.2 and 7.4 summarize our frequently used notation for variables and functions.

7.3 Defining a Bilevel Problem

This section introduces a generic bilevel problem; the next presents a specific bilevel problem
that serves as a running example throughout Part 6.3. Later chapters discuss many of the ideas
presented here more thoroughly. Our hope is that an early introduction to the formal problem
motivates readers and that this section acts as a quick-reference guide to our notation.

Part 6.3 considers the image reconstruction problem where the goal is to form an estimate x̂ ∈
FN of a (vectorized) latent image, given a set of measurements y ∈ FM. For denoising problems,
N = M, but the two dimensions may differ significantly in more general image reconstruction
problems. The forward operator, A ∈ FM×N models the physics of the system such that one would
expect y = Ax in an ideal (noiseless) system. We focus on linear imaging systems here, but the
concepts generalize readily to nonlinear forward models. When known (in a supervised training
setting), we denote the true, underlying signal as xtrue ∈ FN . Most bilevel methods are supervised,
but Section 12.1.2 presents a few examples of unsupervised bilevel methods.

We focus on model-based image reconstruction methods where the goal is to estimate x from
y by solving an optimization problem of the form

x̂ = x̂(γ) = argmin
x∈FN

Φ(x ;γ, y). (7.3)

To simplify notation, we drop y from the list of Φ arguments except where needed for clarity. The
quality of the estimate x̂ can depend greatly on the choice of the hyperparameters γ. Historically
there have been numerous approaches pursued for choosing γ, such as cross validation [148],
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Variable Dim Description
xtrue

j N One of J clean, noiseless training signals. Often used in a supervised train-
ing set-up.

A M × N Forward operator for the system of interest.
y j M During the bilevel learning process, y j refers to simulated measurements,

where y j = Axtrue
j + nj. Once γ is learned, y refers to collected measure-

ments.
nj N A noise realization.
x̂ j N A reconstructed image.
γ R The vector of parameters to learn using bilevel methods. This often includes

ck and/or βk.
ck S One of K convolutional filters. A 2D filter might be

√
S ×
√

S .
c̃k S Conjugate mirror reversal of filter ck.
Ck N × N The convolution matrix such that Ckx = ck ~ x and C′kx = c̃k ~ x.
βk R The tuning parameter associated with ck.
β0 R An overall regularization (tuning) parameter, appearing as eβ0 in (Ex).
Ω F × N A matrix with filters in each row. For the stacked convolution matrices in

(8.7) F = KN.
z Varies A sparse vector, often from Ckx.
ε R+ Parameter used to define φ. Typically determines the amount of corner-

rounding.
t 0, . . . ,T Iteration counter for the lower-level optimization iterates, e.g., x(t) is the

estimate of the lower-level optimization variable x at the tth iteration.
u 0, . . . ,U Iteration counter for the upper-level optimization iterates, e.g., γ(u).

Table 7.2: Overview of frequently used symbols.

Function Description
`(γ) 7→ R or
`(γ, x) 7→ R

Upper-level loss function used as a fitness measure of γ. Although ` is a
function of γ, it is often helpful to write it with two inputs, where typically
x = x̂.

Φ(x ;γ) 7→ R Lower-level cost function used for reconstructing an image.
R(x) 7→ R Regularization function. Incorporates prior information about likely image

characteristics.
d(x, y) 7→ R Data-fit term.
φ(z) 7→ R Sparsity promoting function, e.g., 0-norm, 1-norm, or corner-rounded 1-norm.

Typically used in R.

Table 7.4: Overview of frequently used functions.

136



generalized cross validation [149], the discrepancy principle [150], and Bayesian methods [151],
among others.

Bilevel methods provide a framework for choosing hyperparameters. A bilevel problem for
learning hyperparameters γ has the following “double minimization” form:

γ̂ = argmin
γ∈FR

`(γ ; x̂(γ))︸ ︷︷ ︸
`(γ)

where (UL)

x̂(γ) = argmin
x∈FN

Φ(x ;γ). (LL)

Fig. 7.1 depicts a generic bilevel problem for image reconstruction. The upper-level (UL) loss
function, ` : RR × FN 7→ R, quantifies how (not) good is a vector γ of learnable parameters. The
upper-level depends on the solution to the lower-level (LL) cost function, Φ, which depends on
γ. The upper-level can also be called the outer optimization, with the lower-level being the inner
optimization. Another terminology is leader-follower, as the minimizer of the lower-level follows
where the upper-level loss leads. We will also write the upper-level loss function with a single
parameter as `(γ)··= `(γ ; x̂(γ)).

Loss
Function

Model-based
Reconstruction

γ

Model-based
Reconstruction

γ̂

Test data:

{x̂ j}
J
j=1

x̂(γ̂)y

{y j}
J
j=1

Forward Model

{
xtrue

j

}J

j=1

y j = Ax j + nj

Figure 7.1: Depiction of a typical bilevel problem for image reconstruction, illustrated using XCAT phantom
from [152]. The upper box represents the training process, with the upper-level loss and lower-level cost
function. During training, one minimizes the upper-level loss with respect to a vector of parameters, γ,
that are used in the image reconstruction task. Once learned, γ̂ is typically deployed in the same image
reconstruction task, shown in the lower box.

We write the lower-level cost as an optimization problem with “argmin” and thus implicitly
assume that Φ has unique minimizer, x̂. The lower-level is guaranteed to have a unique minimizer
when Φ is a strictly convex function of x. (See Section 10.1 for more discussion of this point).
More generally, there may be a set of lower-level minimizers, each having some possibly dis-
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tinct upper-level loss function value. For more discussion, [8] defines optimistic and pessimistic
versions of the bilevel problem for the case of multiple lower-level solutions.

Bilevel methods typically use training data. Specifically, one often assumes that a given set of
J good quality images xtrue

1 , . . . , xtrue
J ∈ FN are representative of the images of interest in a given

application. (For simplicity of notation we assume the training images have the same size, but they
can have different sizes in practice.) We typically generate corresponding simulated measurements
for each training image using the imaging system model:

y j = Axtrue
j + nj, j = 1, . . . , J, (7.4)

where nj ∈ FM denotes an appropriate random noise realization1. In (7.4), we add one noise
realization to each of the J images; in practice one could add multiple noise realizations to each
xtrue

j to augment the training data. We then use the training pairs (xtrue
j , y j) to learn a good value of

γ. After those parameters are learned, we reconstruct subsequent test images using (7.3) with the
learned hyperparameters γ̂.

An alternative to the upper-level formulation (UL) is the following stochastic formulation of
bilevel learning:

γ̂ = argmin
γ∈FR

E [`(γ)]︸ ︷︷ ︸
≈ 1

J
∑J

j=1 `(γ ; x̂ j(γ))

(7.5)

where x̂ j(γ) = argmin
x∈FN

Φ(x ;γ, y j). (7.6)

The expectation, taken with respect to the training data and noise distributions, is typically approx-
imated as a sample mean over J training examples.

The definition of bilevel methods used in (UL) is not universal in the literature. In some works,
bilevel methods refer to nested optimization problems with two levels, even when the two levels
result from reformulating a single-level problem, e.g., [153]. That definition is much more en-
compassing, and includes primal-dual reformulations, Lagrangian reformulations of constrained
optimization problems, and alternating methods that introduce then minimize over an auxiliary
variable.

Another term in the literature, sometimes used interchangeably with a bilevel problem, is a
mathematical program with equilibrium constraints (MPEC). As shown in Section 10.1, many
bilevel optimization methods start by transforming the two-level problem into an equivalent single-
level problem by replacing the lower-level optimization with a set of constraints based on optimally

1A more general system model allows the noise to depend on the data and system model, i.e., nj(A, x j). This
generality is needed for applications with certain noise distributions such as Poisson noise.
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conditions. Bilevel problems are thus a subset of MPECs. MPECs are generally challenging due
to their non-convex nature; even when the lower-level cost function is convex, the upper-level
loss function is rarely convex. Importantly, `(·, ·) is often convex with respect to both arguments.
However, `(γ) = `(γ ; x̂(γ)) is generally non-convex in γ due to how the lower-level minimizer
depends on γ. There is a large literature on MPEC problems, e.g., [8], [154], [155], and on non-
convex optimization more generally [156]. Bilevel methods are one sub-field in this large literature.

7.4 Running Example

To offer a concrete example, Part 6.3 will frequently refer to the following running example (Ex),
a filter learning bilevel problem:

γ̂ = argmin
γ∈FR

1
2
‖x̂(γ) − xtrue‖22, where

x̂(γ) = argmin
x∈FN

1
2
‖Ax − y‖22 + eβ0

K∑

k=1

eβk1′φ.(ck ~ x; ε), (Ex)

where γ ∈ FR contains all variables that we wish to learn: the filter coefficients ck ∈ FS and tuning
parameters βk ∈ R for all k ∈ [1,K]. We include an auxiliary tuning parameter, β0 ∈ R, for easier
comparison to other models. Fig. 7.2 depicts the running example and Fig. 7.3 shows example
learned filters for a toy training image. Ref. [157] demonstrates how a spectral analysis of learned
filters and penalty functions can be interpreted to provide insight into real-world problems.

x̂y

xtrue

argmin
γ

J∑

j=1

∥∥∥xtrue
j − x̂j

∥∥∥
2

2

Forward Model
y = Ax + n

argmin
x

1
2‖Ax− y‖2

2 + eβ0





eβ1 1′φ.(x~ )+
eβ2 1′φ.(x~ )+

...
eβK 1′φ.(x~ )

γ

Figure 7.2: Bilevel problem in (Ex). The vector of learnable hyperparameters, γ, includes the tuning param-
eters, βk, and the filter coefficients, ck, shown as example filters. Although we only consider learning filters
of a single size, the figure depicts how the framework easily extends to 2d filters of different sizes.
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Figure 7.3: Example learned filters for a simple training image, normalized for easier visualization. The true
image is zero-mean and repeats three columns of signal value -0.25 and one column of signal value 0.75. (a)
Noisy image. The lower plot shows a profile of one row of the image (marked by a dotted line). The signal-
to-noise ratio, as defined in (8.14), is given in parenthesis. (b) The denoised image using learned filters as in
(Ex). (c) Randomly initialized filters for the bilevel method (K = 4 and S = 4 ·2). (d) Corresponding learned
filters. As expected based on the training image, the learned filters primarily involve vertical differences.
Appendix F provides further details including the regularization strength of each learned filter.

The learnable hyperparameters can also include the sparsifying function φ, its corner rounding
parameter ε, the forward model A, or some aspect of the data-fit term. For example, [157], [158]
learn the regularization functional and [159], [160] learn part of the forward model. Such examples
are relatively rare in the bilevel methods literature to date.

Unlike many learning problems (see examples in Section 9.1), the running example (Ex) does
not include any constraints on γ. Learned filters should be those that are best at the given task,
where “best” is defined by the upper-level loss function. Therefore, a zero mean or norm constraint
is not generally required, though some authors have found such constraints helpful, e.g., [161],
[162]. Following previous literature, e.g., [163], the tuning parameters in (Ex) are written in terms
of an exponential function to ensure positivity. One could re-write (Ex) without this exponentiation
“trick” and then add a non-negativity constraint to the upper-level problem; most of the methods
reviewed in Chapter 10 generalize to this common variation by substituting gradient methods for
projected gradient methods. The exponential function means that the effective tuning parameter,
eβk , cannot exactly reach zero. However, one can introduce a pruning strategy to remove or re-
initialize filters that have an effective tuning parameter below a given threshold.

In (Ex), we drop the sum over J training images for simplicity; the methods easily extend to
multiple training signals. For ease of notation, we further simplify by considering ck to be of length
S for all k, e.g., a 2D filter might be

√
S ×
√

S . In practice, the filters may be of different lengths
with minimal impact on the bilevel methods.

The function φ in (Ex) is a sparsity-promoting function. If we were to choose φ(z) = |z|, then the
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regularizer would involve 1-norm terms of the type common in compressed sensing formulations:

1′φ.(ck ~ x) = ‖ck ~ x‖1 .

However, to satisfy differentiability assumptions (see Section 10.1), we will often consider φ to
denote the following “corner rounded” 1-norm having the shape of a hyperbola with the corre-
sponding first and second derivative:

φ(z) =
√

z2 + ε2 (CR1N)

φ̇(z) =
z

√
z2 + ε2

∈ [0, 1)

φ̈(z) =
ε2

(
z2 + ε2)3/2 ∈ (0,

1
ε

],

where ε is a small, relative to the expected range of z, parameter that controls the amount of corner
rounding. (Here, we use a dot over the function rather than ∇ to indicate a derivative because φ has
a scalar argument.)

7.5 Conclusion

Bilevel methods for selecting hyperparameters offer many benefits. Previous papers motivate them
as a principled way to approach hyperparameter optimization [141], [164], as a task-based ap-
proach to learning [144], [158], [165], and/or as a way to combine the data-driven improvements
from learning methods with the theoretical guarantees and explainability provided by cost function-
based approaches [143], [161], [166]. A corresponding drawback of bilevel methods are their
computational cost; see Chapter 10 for further discussion.

The task-based nature of bilevel methods is a particularly important advantage; Chapter 9
and 11 exemplify why by comparing the bilevel problem to single-level, non-task-based approaches
for learning sparsifying filters. Task-based refers to the hyperparameters being learned based on
how well they work in the lower-level cost function–the image reconstruction task in our running
example. The learned hyperparameters can also adapt to the training dataset and noise characteris-
tics. The task-based nature yields other benefits, such as making constraints or regularizers on the
hyperparameters generally unnecessary; Section 12.1.2 presents some exceptions and [141] further
discusses bilevel methods for applications with constraints.

There are three main elements to a bilevel approach. First, the lower-level cost function in a
bilevel problem defines a goal, such as image reconstruction, including what hyperparameters can
be learned, such as filters for a sparsifying regularizer. Section 8.1 provides background on this
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element specifically for image reconstruction tasks, such as the one in (Ex). Section 12.1.1 reviews
example cost functions used in bilevel methods.

Second, the upper-level loss function determines how the hyperparameters should be evaluated.
While the squared error loss function in the running example is a common choice, Section 8.2
discusses other loss functions based on supervised and unsupervised image quality metrics. Sec-
tion 12.1.2 then reviews example loss functions used in bilevel methods.

While less apparent in the written optimization problem, the third main element for a bilevel
problem is the optimization approach, especially for the upper-level problem. Section 8.4 briefly
discusses various hyperparameter optimization strategies, then Chapter 10 present multiple gradient-
based bilevel optimization strategies. Throughout Part 6.3, we refer to the running example to show
how the bilevel optimization strategies apply.
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CHAPTER 8

Background on Image Reconstruction and
Hyperparameter Optimization

This chapter provides background for the three main elements of the bilevel method: the lower-
level cost function, the upper-level loss function, and the optimization method. This chapter is
presented in Ch. 2 and 3 of [11]:

C. Crockett and J. A. Fessler, “Bilevel methods for image reconstruction,” Foundations
and Trends® in Signal Processing, vol. 15, no. 2-3, pp. 121–289, May 5, 2022, ISSN:
1932-8346, 1932-8354. DOI: 10.1561/2000000111

8.1 Cost Functions and Image Reconstruction

This dissertation focuses on bilevel problems having image reconstruction as the lower-level prob-
lem. Image reconstruction involves undoing any transformations inherent in an imaging system,
e.g., a camera or CT scanner, and removing measurement noise, e.g., thermal and shot noise, to
realize an image that captures an underlying object of interest, e.g., a patient’s anatomy. Fig. 8.1
shows an example image reconstruction pipeline for CT data. The following sections formally
define image reconstruction, discuss why regularization is important, and overview common ap-
proaches to regularization.

8.1.1 Image Reconstruction

Although the true object is in continuous space, image reconstruction is almost always performed
on sampled, discretized signals [167]. Without going into detail of the discretization process, we
define xtrue ∈ FN as the “true,” discrete signal. The goal of image reconstruction is to recover
an estimate x̂ ≈ xtrue given corrupted measurements y ∈ FM. Although we define the signal
as a one-dimensional vector for notational convenience, the mathematics generalize to arbitrary
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dimensions.

CT Machine

A: System
model

Data
acquisition

y = A(x) + n

Sinogram

y: Observed
data

Image
reconstruction
x̂ = f (y; A,γ)

Output image

x̂: Recon-
structed

image
Figure 8.1: Example image reconstruction pipe-line, illustrated using XCAT phantom from [152]. Here A
denotes the actual physical mapping of the imaging system and A denotes the numerical system matrix used
for reconstruction.

To find x̂, image reconstruction involves minimizing a cost function, Φ(x ;γ), with two terms:

x̂ = argmin
x∈FN

Data-fit︷︸︸︷
d(x ; y) + β

Regularizer︷ ︸︸ ︷
R(x ;γ)︸ ︷︷ ︸

Φ(x ;γ)

(8.1)

The first term, d(x ; y), is a data-fit term that captures the physics of the ideal (noiseless) system
using the matrix A ∈ FM×N; that matrix models the physical system such that we expect an obser-
vation, y, to be y ≈ Ax.

The most common data-fit term penalizes the square Euclidean norm of the “measurement
error,” d(x ; y) = ‖Ax − y‖22. This intuitive data-fit term can be derived from a maximum likelihood
perspective, assuming a white Gaussian noise distribution [168]. Using the system model (7.4)
and assuming the noise is normally distributed with zero-mean and variance σ2, the maximum
likelihood estimate x̂MLE is the image that is most likely given the observation y, i.e.,

x̂MLE = argmax
x∈FN

Prob(x ; y, σ2).

Substituting the assumed Gaussian distribution (and ignoring constants independent of x),

x̂MLE = argmax
x∈FN

e
-1

2σ2 ‖Ax−y‖2
= argmin

x∈FN

1
2
‖Ax − y‖2 = A+y,

where A+ is the pseudo-inverse of A.
The regularization term in (8.1) can be motivated by maximum a posteriori probability (MAP)

estimation [168]. Rather than maximizing the likelihood of x, the MAP estimate x̂MAP maximizes
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the conditional probability of x given the observation y

x̂MAP = argmax
x∈FN

Prob(x|y)

= argmax
x∈FN

Prob(y|x)Prob(x)

by Bayes theorem. A MAP estimator requires assuming a prior distribution on x. Taking the
logarithm and substituting the assumed Gaussian distribution for Prob(y | x ; σ2) yields

x̂MAP = argmin
x∈FN

1
2σ2 ‖Ax − y‖2 − log (Prob(x)) ,

where the regularization term in (8.1) comes from the log probability of x, i.e., the two are equiva-
lent when one assumes the probability model Prob(x) = 1

Z(γ) exp{−R(x ; γ)}, where Z(γ) is a scalar
such that the probability integrates to one. The MLE estimate is equivalent to the MAP estimate
when the prior on x is an (unbounded) “uniform” distribution.

While MAP estimation provides a useful perspective, common regularizers do not correspond
to proper probability models. Further, the connection between the regularization perspective and
the Bayesian perspective is simplest when the parameters γ are given. To learn γ, Bayesian for-
mulations must consider the partition function Z(γ); that complication is avoided for bilevel for-
mulations using a regularized lower-level problem.

Many image reconstruction problems have linear system models. In image denoising problems,
one takes A = I. For image inpainting, A is a diagonal matrix of 1’s and 0’s, where the 0’s corre-
spond to sample indices of missing data [169]. In MRI, the system matrix is often approximated
as a diagonal matrix times a discrete Fourier transform matrix, though more accurate models are
often needed [170]. In some settings, one can learn A [171], or at least parts of A [172], as part
of the estimation process. Although the bilevel method generalizes to learning A, the majority of
papers in the field assume A is known; Chapter 12.1 discusses a few exceptions.

Using the system model (7.4), if n were known and A were invertible, we could simply com-
pute x̂ = xtrue = A-1(y − n). However, n is random and, while we may be able to model its
characteristics, we never know it exactly. Further, the system matrix, A, is often not invertible
because the reconstruction problem is frequently under-determined, with fewer knowns than un-
knowns (M < N). Therefore, we must include prior assumptions about xtrue to make the problem
feasible. These assumptions about xtrue are captured in the second, regularization term in (8.1),
which depends on γ. The following section further discusses regularizers.

In sum, image reconstruction involves finding x̂ that matches the collected data and satisfies a
set of prior assumptions. The data-fit term encourages x̂ to be a good match for the data; without
this term, there would be no need to collect data. The regularization term encourages x̂ to match
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the prior assumptions. Finally, the tuning parameter, β, controls the relative importance of the two
terms. The cost function can be minimized using different optimization techniques depending on
the form of each term.

This section is a very short overview of image reconstruction methods. See [140] for a more
thorough review of biomedical image reconstruction.

8.1.2 Sparsity-Based Regularizers

The regularization, or prior assumption, term in (8.1) often involves assumptions about sparsity [7],
[173]. The basic idea behind sparsity-based regularization is that the true signal is sparse in some
representation, while the noise or corruption is not. Thus, one can use the representation to separate
the noise and signal, and then keep only the sparse signal component. In fact, a known sparsifying
representation for a signal can help to “reconstruct a signal from far fewer measurements than
required by the Shannon-Nyquist sampling theorem” [173].

The regularization design problem therefore requires determining what representation best
sparsifies the signal. There are two main types of sparsity-based regularizers corresponding to two
representational assumptions: synthesis and analysis [139], [168]; Fig. 8.2 depicts both. While
both are popular, we concentrate on analysis regularizers, which are more widely represented in
the bilevel image reconstruction literature. This section briefly compares the analysis and synthesis
formulations. Here we simplify the formulas by considering A = I; the discussion generalizes to
reconstruction by including A. For more thorough discussions of analysis and synthesis regulariz-
ers, see [139], [168], [174].

8.1.2.1 Synthesis Regularizers

Synthesis regularizers model a signal being composed of building blocks, or “atoms.” Small sub-
sets of the atoms span a low dimensional subspace and the sparsity assumption is that the signal

Analysis:Synthesis: x = D α Ω x z
=

= 1 + .3 + .2

=





0

=

Figure 8.2: Depiction of synthesis and analysis sparsity. Under the synthesis model of sparsity (left), x
is a linear combination of a few dictionary atoms. The dictionary, D, is typically wide, with more atoms
(columns) than elements in x. Under the analysis model of sparsity (right), x is orthogonal to many filters.
The filter matrix, Ω, is typically tall, with more filters (rows) than elements in x.
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requires using only a few of the atoms. More formally, the synthesis model is y = x + n, where the
signal x = Dz and z is a sparse vector. The columns of D ∈ FN×K contain contain the K dictionary
atoms and form a low dimensional subspace for the signal. If D is a wide matrix (N < K), the dic-
tionary is over-complete and it is easier to represent a wide range of signals with a given number of
dictionary atoms. The dictionary is complete when D is square (and full rank) and under-complete
if D is tall (an uncommon choice).

Assuming one knows or has already learned D, one can use the sparsity synthesis assumption
to denoise a noisy signal y by optimizing

x̂ = D · (argmin
z∈FK

1
2
‖Dz − y‖2 + 1′φ.(z)

︸ ︷︷ ︸
ẑ

). (8.2)

The estimation procedure involves finding the sparse codes, ẑ, from which the image is synthesized
via x̂ = Dẑ. Common sparsity-inducing functions, φ, are the absolute value or a non-zero indicator
function, equivalent to the 1-norm and 0-norm respectively. The 2-norm is occasionally used in
the regularizer, but it does not yield true sparse codes and it over-penalizes large values [175].

As written in (8.2), the synthesis formulation constrains the signal, x, to be in the range of
D. This “strict synthesis” model can be undesirable in some applications, e.g., when one is not
confident in the quality of the dictionary. An alternative formulation is

x̂ = argmin
x∈FN

1
2
‖x − y‖2 + βR(x),

R(x) = min
z∈FK

1
2
‖x − Dz‖2 + 1′φ.(z), (8.3)

which no longer constrains x to be exactly in the range of D. One can also learn D while solving
(8.3) [176].

Both synthesis denoising forms have equivalent sparsity constrained versions; one can replace
1′φ.(z) with a characteristic function that is 0 within some desired set and infinite outside it, e.g.,

ψ(z) =


0 if ‖z‖0 ≤ κ

∞ else,
(8.4)

for some sparsity constraint given by the hyperparameter κ ∈ N.
See [175], [177] for discussions of when the synthesis model can guarantee accurate recovery

of signals. The minimization problem in (8.3) is called sparse coding and is closely related to the
LASSO problem [178]. One can think of the entire dictionary D as a hyperparameter that can be
learned with a bilevel method [179].
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8.1.2.2 Analysis Regularizers

Analysis regularizers model a signal as being sparsified when mapped into another vector space
by a linear transformation, often represented by a set of filters. More formally, an analysis model
assumes the signal satisfies Ωx = z for a sparse coefficient vector z. Often the rows of the matrix
Ω ∈ FK×N are thought of as filters and the rows of Ω where [Ωx]k = 0 span a subspace to which x
is orthogonal. The analysis operator is called over-complete if Ω is tall (N < K), complete if Ω is
square (and full rank), and under-complete if Ω is wide.

A particularly common analysis regularizer is based on a discretized version of total variation
(TV) [180], and uses finite difference filters (or, more generally, filters that approximate higher-
order derivatives). The finite difference filters sparsify any piece-wise constant (flat) regions in the
signal, leaving the edges that are often approximately sparse in natural images. Other common
analysis regularizers include the discrete Fourier transform (DFT), curvelets, and wavelet trans-
forms [181].

The literature is less consistent in analysis regularizer vocabulary, and Ω has been called
an analysis dictionary, an analysis operator, a filter matrix, and a cosparse operator. The term
“cosparse” comes from the sparsity holding in the codomain of the transformation T {x} = Ωx.
The cosparsity of x with respect to Ω is the number of zeros in Ωx or K − ‖Ωx‖0 [174]. Cor-
respondingly, “cosupport” describes the indices of the rows where Ωx = 0. We find the phrase
“analysis operator” intuitive for general Ω’s and “filter matrix” more descriptive when referring to
the specific (common) case when the rows of Ω are dictated by a set of convolutional filters.

Assuming one knows, or has already learned, Ω, one can use the analysis sparsity assumption
to denoise a noisy signal, y, by optimizing

x̂ = argmin
x∈FN

1
2
‖x − y‖2 + β1′φ.(Ωx). (8.5)

An alternative version is

x̂ = argmin
x∈FN

1
2
‖x − y‖2 + βR(x) (8.6)

R(x) = min
z∈FK

1
2
‖Ωx − z‖2 + 1′φ.(z).

As in the synthesis case, both analysis formulations have equivalent sparsity-constrained forms
using a characteristic function as in (8.4).

See [181] for an error bound on the estimated signal x̂ when using a 1-norm as the regulariza-
tion function.
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8.1.2.3 Comparing Analysis and Synthesis Approaches

The analysis and synthesis models are equivalent when the dictionary and analysis operator are in-
vertible, with D = Ω-1 [168]. Furthermore, in the denoising scenario where the system matrix A is
identity, the two are almost equivalent in the under-complete case, with the lack of full equivalence
stemming from the analysis form not constraining x to be in the range space D [168].

As shown in [Example 3.1]chambolle:2016:introductioncontinuousoptimization, the analysis
model can more generally be related to a Lasso-like problem using Legendre-Fenchel conjugates
and convex duality. Appendix C briefly reviews duality and the main results from primal-dual
analysis used throughout this dissertation. Considering the analysis operator learning problem
(8.5), when the sparsity promoting function φ is convex and φ(z) < ∞ for some z, the dual problem
corresponding to (8.5) is

d̂ = argmin
d∈FK

1
2
‖Ω′d − y‖2 + φ∗(d),

where d is the dual variable and φ∗ is the conjugate function of φ. (The primal solution x̂ can be
computed from d̂ using (C.11).) This dual problem is similar in form to the inner minimization
in the strict synthesis formulation (8.2). This relation between the analysis model and its dual
formulation is limited to cases where φ is convex.

Whether analysis-based or synthesis-based regularizers are generally preferable is an open
question, and the answer likely depends on the application and the relative importance of recon-
struction accuracy and speed [168]. Synthesis regularization is perhaps easier to interpret because
of its generative nature. In contrast, bilevel analysis filter learning is a discriminative learning
approach: the task-based filters must learn to distinguish “good” and “bad” image features.

The synthesis approach used to be “widely considered to provide superior results” [168, p. 950].
However, [168] goes on to show that an analysis regularizer produced more accurate reconstructed
images in experiments on real images. Later analysis-based results also show competitive, if not
superior, quality results when compared to similar synthesis models [182], [183]. See [184] for
a survey of optimization methods for MRI reconstruction and a comparison of the computational
challenges for cost functions with synthesis and analysis-based regularizers.

The analysis and synthesis regularizers in (8.2) and (8.6) quickly yield infeasibly large op-
erators as the signal size increases. In practice, both approaches are usually implemented with
patch-based formulations. For the synthesis approach, the patches typically overlap and there is
an averaging effect. Analysis regularizers that have rows corresponding to filters, called the con-
volutional analysis model, extend very naturally to a global image regularizer. For example, in the
lower-level cost function of our running filter learning example (Ex), we can define an analysis
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regularizer matrix as follows:

Ω =



C1
...

CK


∈ FKN×N . (8.7)

Imposing this convolutional structure on Ω helps make learning problems feasible as one only has
to learn the S coefficients of each of the K filters rather than learning the full Ω matrix. This
structure also ensures translation invariance of the regularizer. See [162] and [185] for discussion
of the connections between global models and patch-based models for analysis regularizers. The
running example in this survey focuses on bilevel learning of convolutional analysis regularizers.

8.1.3 Brief History of Analysis Regularizer Learning

In 2003, Haber and Tenorio [158] proposed using bilevel methods to learn part of the regularizer in
inverse problems. The authors motivate the use of bilevel methods through the task-based nature,
noting that “the choice of good regularization operators strongly depends on the forward problem.”
They consider learning tuning parameters, space-varying weights, and regularization operators
(comparable to defining φ), all for regularizers based on penalizing the energy in the derivatives of
the reconstructed image. Their framework is general enough to handle learning filters. Ref. [158]
was published a few years earlier than the other bilevel methods we consider in our review of the
bilevel literature and was not cited in most other early works; [186] calls it a “groundbreaking, but
often overlooked publication.”

In 2005, Roth and Black [187] proposed the Field of Experts (FoE) model to learn filters.
Although the FoE is not formulated as a bilevel method, many papers on bilevel methods for
filter learning cite FoE as a starting or comparison point. The FoE model is a translation-invariant
analysis operator model, built on convolutional filters. It is motivated by the local operators and
presented as a Markov random field model, with the order of the field determined by the filter size.

Under the FoE model, the negative log1 of the probability of a full image, x, is proportional to

∑

k

βk φ.(ck ~ x) where φ(z) = log
(
1 +

1
2

z2
)
. (8.8)

This (non-convex) choice of sparsity function φ stems from the Student-t distribution. Ref. [187]
learns the filters and filter-dependent tuning parameters such that the model distribution is as close
as possible (defined using Kullback-Leibler divergence) to the training data distribution.

In 2007, Tappen, Liu, Adelson, et al. [188] proposed a different model based on convolutional

1By taking the log of the probability model in [187], the connection between the FoE and the regularization term
in the lower-level of the running filter learning example (Ex) is more evident.
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filters: the Gaussian Conditional Random Field (GCRF) model. Rather than using a sparsity pro-
moting regularizer, the GCRF uses a quadratic function for φ. The authors introduce space-varying
weights, W, so that the quadratic model does not overly penalize sharp features in the image. The
general idea behind W is to use the given (noisy) image to guess where edges occur, and corre-
spondingly penalize those areas less to avoid blurring edges. The likelihood for GCRF model is
thus (to within a proportionality constant and monotonic function transformations):

∑

k

‖ck ~ x − ek{x}‖2Wk
,

where the term ek{x} captures the estimated value of the filtered image. For example, [188] used
one averaging filter and multiple differencing filters for the ck’s. The corresponding estimated
values are x for the averaging filter and zero for the differencing filters.

The filters, ck, are pre-determined in the GCRF model; the learned element is how to form the
weights as a function of image features. Specifically, each Wk is formed as a linear combination of
the (absolute) responses to a set of edge-detecting filters, with the linear combination coefficients
learned from training data. Rather than maximizing the likelihood of training data as in [187], [188]
learns these coefficients to minimize the (corner-rounded) l1 norm of the error of the predicted
image, which is a form of bilevel learning even though not described with that terminology.

Apparently one of the first papers to explicitly propose using bilevel methods to learn filters
appeared in 2009, where Samuel and Tappen [163] considered a bilevel formulation where the
upper-level loss was the squared Euclidean norm of training data and the lower-level cost was a
denoising task based on filter sparsity equivalent to (Ex). The method builds on the FoE model,
using the same φ as in [187], but now learning the filters using a bilevel formulation rather than by
maximizing a likelihood.

In 2011, Peyré and Fadili [165] proposed a similar bilevel method to learn analysis regularizers.
The authors generalized the denoising task to use an analysis operator matrix and a wider class of
sparsifying functions. Their results concentrate on the convolutional filter case with a corner-
rounded 1-norm for φ.

Both [163] and [165] focus on introducing the bilevel method for analysis regularizer learning,
with denoising or inpainting as illustrations. Chapter 10.1 further discusses the methodology of
both papers. Many bilevel based papers build on one or both of their efforts. Chapter 10 and 12
summarize other bilevel based papers; here, we highlight some of papers in the non-bilevel thread
of the literature for context and comparison.

Ophir, Elad, Bertin, et al. [189] proposed another approach to learning an analysis operator.
The method learns the operator one row at a time by searching for vectors orthogonal to the training
signals. Algorithm parameters were chosen empirically without an upper-level loss function as a
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guide.
Between 2011 [190] and 2013 [191], Yaghoobi, Nam, Gribonval, et al. were among the first

to formally present analysis operator learning as an optimization problem. Their conference paper
[190] considered noiseless training data and proposed learning an analysis operator as

argmin
Ω

‖ΩXtrue‖1 s.t. Ω ∈ S (8.9)

for some constrained set S. Each column of Xtrue ∈ FN×J contains a training sample. The authors
discussed varying options for S, including a row norm, full rank, and tight frame constrained set.

Without any constraint on Ω, the trivial solution to (8.9) would be to learn the zero matrix,
which is not informative for any problem such as image denoising. Section 9.1 discusses in more
detail the need for constraints and the various constraint options proposed for filter learning.

Ref. [191] extends (8.9) to the noisy case where one does not have access to Xtrue. The proposed
cost function is

argmin
Ω, X

‖ΩX‖1 +
β

2
‖X − Y‖2 s.t. Ω ∈ S, (8.10)

where each column of Y contains a noisy data vector. Ref. [191] minimized (8.10) by alternating
updating X, using alternating direction method of multipliers (ADMM), and Ω, using a projected
subgradient method for various constraint sets S , especially Parseval tight frames.

In the same time-frame, Kunisch and Pock [192] started to analyze the theory behind the bilevel
problem, building off the ideas in [163], [165]. Among the theoretical analysis, [192] proves the
existence of upper-level minimizers when the bilevel problem takes the form of (Ex), γ is the
tuning parameters (the βk values), and φ corresponds to the squared 2-norm or the 1-norm. When
φ(z) = z2, there is an analytic solution to the lower-level problem and a corresponding closed-
form solution to the gradient of the upper-level problem; [192] uses this fact to discuss qualitative
properties of the minimizer. Ref. [192] also proposed an efficient semi-smooth Newton algorithm
for finding γ̂ (using corner rounding for the 1-norm case) and used this algorithm to make empirical
comparisons of multiple sparsifying functions (2-norm, 1-norm, and p = 1/2-norm) and different
pre-defined filter banks.

Also in 2013, Ravishankar and Bresler [183] made a distinction between the analysis model,
where one models y = x+ n with z = Ωx being sparse, and the transform model, whereΩy = z+ n
where z is sparse. The analysis version models the measurement as being a cosparse signal plus
noise; the transform version models the measurement as being approximately cosparse. Another
perspective on the distinction is that, if there is no noise, the analysis model constrains y to be in
the range space ofΩ, while there is no such constraint on the transform model. The corresponding
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transform learning problem is

argmin
Ω

min
Z
‖ΩY − Z‖22 +R(Ω) s.t. ‖Zi‖0 ≤ α ∀i, (8.11)

where i indexes the columns of Z. Ref. [183] considers only square matrices Ω. The regularizer,
R, promotes diversity in the rows of Ω to avoid trivial solutions, similar to the set constraint in
(8.10).

A more recent development is directly modeling the convolutional structure during the learning
process. In 2020, [193] proposed Convolutional Analysis Operator Learning (CAOL) to learn
convolutional filters without patches. The CAOL cost function is

argmin
[c1,...,cK ]

K∑

k=1

min
z

1
2
‖ck ~ x − z‖22 + β ‖z‖0 s.t. [c1 . . . cK] ∈ S. (8.12)

Unlike the previous cost functions, which typically require patches, CAOL can easily handle full-
sized training images x due to the nature of the convolutional operator. Section 9.3.1 describes
CAOL in more detail.

At the same time that model-based methods were being developed in the signal processing
literature, Convolutional neural network (CNN) models were being advanced and trained in the
machine learning and computer vision literature [194] [195] [196]. The filters used in CNN models
like U-Nets [197] can be thought of as having analysis roles in the earlier layers, and synthesis roles
in the final layers [198]. See also [199] for further connections between analysis and transform
models within CNN models. CNN training is usually supervised, and the supervised approach
of bilevel learning of filters strengthens the relationships between the two approaches. A key
distinction is that CNN models are generally feed-forward computations, whereas bilevel methods
of the form (LL) have a cost function formulation. See Section 12.2 for further discussion of the
parallels between CNNs and bilevel methods.

8.2 Formulating the Hyperparameter Optimization Problem

Most inverse problems involve at least one hyperparameter. For example, the general reconstruc-
tion cost function (8.1) requires choosing the tuning parameter β that trades-off the influence of
the data-fit and regularization terms. The field of hyperparameter optimization is large and encom-
passes categorical hyperparameters, such as which optimizer to use; conditional hyperparameters,
where certain hyperparameters are relevant only if others take on certain values; and integer or
real-valued hyperparameters [200]. Here, we focus on learning real-valued, continuous hyperpa-
rameters.

153



A hyperparameter’s value can greatly influence the properties of the minimizer and a tuned
hyperparameter typically improves over a default setting [200]. Fig. 8.3 illustrates how changing a
tuning parameter can dramatically impact the visual quality of the reconstructed image. If β is too
low, not enough weight is on the regularization term, and the minimizer is likely to be corrupted by
noise in the measurements. If β is too high, the regularization term dominates, and the minimizer
will not align with the measurements.

Generalizing to an arbitrary learning problem that could have multiple hyperparameters, the
goal of hyperparameter optimization is to find the “best” set of hyperparameters, γ̂, to meet a goal,
described by a loss function `. Specifically, we wish to solve

γ̂ = argmin
γ∈Γ

E [`(γ)] , (8.13)

where Γ is the set of all possible hyperparameters and the expectation is taken with respect to the
distribution of the input data. If evaluating ` uses the output of another optimization problem, e.g.,
x̂, then (8.13) is a bilevel problem as defined in (UL).

There are two key tasks in hyperparameter optimization.

1. The first is to quantify how good a hyperparameter is; this step is equivalent to defining ` in
(8.13). Section 8.3 focuses on a high-level discussion of loss functions in the broader image
quality assessment (IQA) literature. Section 12.1.2 builds on this discussion by reviewing
specific loss functions used in bilevel methods.

0

10

10

0

β = −6 β = −3 β = 1x(0)xtrue

(a) (b) (c) (d) (e)

Figure 8.3: Example reconstructed simulated MRI images that demonstrate the importance of tuning pa-
rameters. (a) The original image, xtrue ∈ RN , is a SheppLogan phantom [201] and N is the number of
pixels. (b) A simplistic reconstruction 1

N A′y of the noisy, undersampled data, y. This image is used as
initialization, x(0), for the following reconstructions. (c-e) Reconstructed images, found by optimizing

argminx
1
2
‖Ax − y‖22 + 10βNφ(Cx), where C is an operator that takes vertical and horizontal finite dif-

ferences. The reconstructed images correspond to (c) β = −6, resulting in an image that contains ringing
artifacts, (d) β = −3, resulting in a visually appealing x̂, and (e) β = 1, resulting in a blurred image. The
demonstration code and more details about the reconstruction set-up are available on github [202].
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2. The second step is finding a good hyperparameter, which is equivalent to designing an op-
timization algorithm to minimize (8.13). Section 8.4 introduces common approaches, all of
which have computational requirements that scale at least linearly with the number of hyper-
parameters. This scaling quickly becomes infeasible for large γ, which motivates the focus
on gradient-based bilevel methods in the remainder of this review.

The next two sections address each of these tasks in turn.

8.3 Image Quality Metrics

This section concentrates on the part of the upper-level loss function that compares the recon-
structed image, x̂(γ), to the true image, xtrue. As mentioned in Chapter 6.3, bilevel methods rarely
require additional regularization for γ, but it is simple to add a regularization term to any of the
loss functions if useful for a specific application. To discuss only the portion of the loss function
that measures image quality, we use the notation `(γ ; x̂(γ)) = l(x̂, xtrue).

Picking a loss function is part of the engineering design process. No single loss function is
likely to work in all scenarios; users must decide on the loss function that best fits their system,
data, and goals. Consequently, there are a wide variety of loss functions proposed in the literature
and some approaches combine multiple loss functions [138], [203].

One important decision criteria when selecting a loss function is the end purpose of the image.
Much of the IQA literature focuses on metrics for images of natural scenes and is often motivated
by applications where human enjoyment is the end-goal [204], [205]. In contrast, in the medical
image reconstruction field, image quality is not the end-goal, but rather a means to achieving a
correct diagnosis. Thus, the perceptual quality is less important than the information content.

There are two major classes of image quality metrics in the IQA literature, called full-reference
and no-reference IQA2. The principles are somewhat analogous to supervised and unsupervised
approaches in the machine learning literature. This section discusses some of the most common
full-reference and no-reference loss functions; see [206] for a comparison of 11 full-reference IQA
metrics and [207] for additional no-reference IQA metrics.

Perhaps surprisingly, the bilevel filter learning literature contains few examples of loss func-
tions other than squared error or slight variants (see Section 12.1.2). While this is likely at least
partially due to the computational requirements of bilevel methods (see Chapter 10), exploring
additional loss functions is an interesting future direction for bilevel research.

2There are also reduced-reference image quality metrics, but we will not consider those here.
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8.3.1 Full-Reference Image Quality Assessment

Full-reference IQA metrics assume that you have a noiseless image, xtrue, for comparison. Some
of the simplest (and most common) full-reference loss functions are:

• Mean squared error (MSE or `2 error):

lMSE(x̂, xtrue) =
1
N

∥∥∥x̂ − xtrue
∥∥∥2

2

• Mean absolute error (or `1 error): lMAE(x̂, xtrue) = 1
N

∥∥∥x̂ − xtrue
∥∥∥

1

• Signal to Noise Ratio (SNR, commonly expressed in dB):

lSNR(x̂, xtrue) = 10log



∥∥∥xtrue
∥∥∥2

2

‖x̂ − xtrue‖
2
2

 (8.14)

• Peak SNR (Peak signal to noise ratio (PSNR), in dB): lPSNR(x̂, xtrue) = 10log
(

N‖xtrue‖∞
‖x̂−xtrue‖22

)
.

The Euclidean norm is also frequently used as the data-fit term for reconstruction.
Mean squared error (MSE) (and the related metrics SNR and PSNR) are common in the signal

processing field; they are intuitive and easy to use because they are differentiable and operate
point-wise. However, these measures do not align well with human perceptions of image quality
[206], [208]. For example, scaling an image by 2 leads to the same visual quality but causes 100%
MSE. Fig. 8.4 shows a clean image and five images with different degradations. All five degraded
images have almost equivalent squared errors, but humans judge their qualities as very different.

10

0
(a) (b) (c) (d) (e)

Figure 8.4: Example distortions that yield images with identical normalized squared error values:∥∥∥xtrue − x
∥∥∥ /

∥∥∥xtrue
∥∥∥ = 0.17. (a) The original image, xtrue, is a SheppLogan phantom [201]. The remain-

ing images are displayed with the same colormap and have the following distortions: (b) blurred with an
averaging filter, (c) additive, white Gaussian noise, (d) salt and pepper noise, and (e) a constant value added
to every pixel.

Tuning parameters using MSE as the loss function tends to lead to images that are overly-
smoothed, sacrificing high frequency information [209], [210]. High frequency details are partic-
ularly important for perceptual quality as they correspond to edges in images. Therefore, some
authors use the MSE on edge-enhanced versions of images to discourage solutions that blur edges.
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For example, [211] used a “high frequency error norm” metric consisting of the MSE of the differ-
ence of x̂ and xtrue after applying a Laplacian of Gaussian (LoG) filter.

Another common full-reference IQA is Structural SIMilarity (Structural Similarity (SSIM))
[204] that attempts to address the issues with MSE discussed above. SSIM is defined in terms of
the local luminance, contrast, and structure in images. A multiscale extension of SSIM, called MS-
SSIM, considers these features at multiple resolutions [212]. The method computes the contrast
and structure measures of SSIM for downsampled versions of the input images and then defines
MS-SSIM as the product of the luminance at the original scale and the contrast and structure
measures at each scale. However, SSIM and MS-SSIM may not correlate well with human observer
performance on radiological tasks [213].

Recent works, e.g., [207], [214], consider using (deep) CNN models for IQA. CNN methods
are increasingly popular and their use as a model for the human visual system [215] makes them an
attractive tool for assessing images. For example, [214] proposed a CNN with convolutional and
pooling layers for feature extraction and fully connected layers for regression. They used VGG
[216], a frequently-cited CNN design with 3 × 3 convolutional kernels, as the basis of the feature
extraction portion of their network. Ref. [214] showed that deeper networks with more learnable
parameters were able to better predict image quality. However, datasets of images with quality
labels remain relatively scarce, making it difficult to train deep networks.

8.3.2 No-reference Image Quality Assessment

No-reference, or unsupervised, IQA metrics attempt to quantify an image’s quality without access
to a noiseless version of the image. These metrics rely on modeling statistical characteristics of
images or noise. Many no-reference IQA metrics assume the noise distribution is known.

The discrepancy principle is a classic example of an IQA metric that uses an assumed noise dis-
tribution to characterize the expected relation between the reconstructed image and the noisy data.
For additive zero-mean white Gaussian noise with known variance σ2, the discrepancy principle
uses the fact that the expected MSE in the data space is the noise variance [150]:

E
[

1
M
‖Ax̂(γ) − y‖22

]
= σ2.

The discrepancy principle can be used as a stopping criteria in machine learning methods or as a
loss function, e.g.,

`(γ ; x̂(γ)) =

(
1
M
‖Ax̂(γ) − y‖22 − σ

2
)2

.

However, images of varying quality can yield the same noise estimate, as seen in Fig. 8.4. Related
methods have been developed for Poisson noise as well [217].
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Paralleling MSE’s popularity among supervised loss metrics, Stein’s Unbiased Risk Estimator
(SURE) [218] is an unbiased estimate of MSE that does not require noiseless images. Let y =

xtrue + n denote a signal plus noise measurement where n is, as above, Gaussian noise with known
variance σ2. The SURE estimate of the MSE of a denoised signal, x̂, is

1
N
‖x̂(y) − y‖22 − σ

2 +
2σ2

N
Tr

(
∇y x̂(y)

)
, (8.15)

where we write x̂ as a function of y to emphasize the dependence and Tr (·) denotes the trace
operation. For large signal dimensions N, such as is common in image reconstruction problems,
the law of large numbers suggests SURE is a fairly accurate approximation of the true MSE.

It is often impractical to evaluate the divergence term in (8.15), due to computational limitations
or not knowing the form of x̂(y). A Monte-Carlo approach to estimating the divergence [219] uses
the following key equation:

Tr
(
∇y x̂(y)

)
= lim

ε→0
E

[
b′ ·

x̂(y + εb) − x̂(y)
ε

]
, (8.16)

where b is a independent and identically distributed (i.i.d.) random vector with zero mean, unit
variance, and bounded higher order moments. Theoretical and empirical arguments show that a
single noise vector can well-approximate the divergence [219], so only two calls to the lower-
level solver x̂(y) are required. This method treats the lower-level problem like a blackbox, thus
allowing one to estimate the divergence of complicated functions, including those that may not be
differentiable.

See [220]–[222] for examples of applying the Monte-Carlo estimation of SURE to train deep
neural networks, and [223], [224] for two examples of learning a tuning parameter using a bilevel
approach with SURE as the upper-level loss function. For extensions to inverse problems (where
A 6= I) and to noise from exponential families, see [225]–[227].

While SURE and the discrepancy principle are popular no-reference metrics in the signal pro-
cessing literature, there are many additional no-reference metrics in the image quality assessment
literature. These metrics typically depend on modeling one (or more) of three things [205]:

• image source characteristics,
• image distortion characteristics, e.g., blocking artifact from JPEG compression, and/or
• human visual system perceptual characteristics.

As an example of a strategy that can capture both image source and human visual system charac-
teristics, natural scene3 statistics characterize the distribution of various features in natural scenes,

3Natural scenes are those captured by optical cameras (not created by computer graphics or other artificial pro-
cesses) and are not limited to outdoor scenes.
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typically using some filters [205], [228]. If a feature reliably follows a specific statistical pattern
in natural images but has a noticeably different distribution in distorted images, one can use that
feature to assign quality scores to images. Some IQA metrics attempt to first identify the type of
distortion and measure features specific to that distortion, while others use the same features for
all images.

In addition to their use in full-reference IQA, CNN models have be trained to perform no-
reference IQA [214], [229]. For example, [229] proposes a CNN model that extracts small (32×32)
patches from images, estimates the quality of each one, and averages the scores over all patches to
get a quality score for the entire image. Briefly, their method involves local contrast normalization
for each patch, applying (learned) convolutional filters to extract features, maximum and minimum
pooling, and fully connected layers with rectified linear units (ReLUs). As with most no-reference
IQAs, [229] trained their CNN on a dataset of human encoded image quality scores (see [230] for a
commonly used collection of publicly available test images with quality scores). Unlike most other
IQA approaches, [229] used backpropagation to learn all the CNN weights rather than learning a
transformation from handcrafted features to quality scores.

Interestingly, some of the no-reference IQA metrics [205], [228], [229] approach the perfor-
mance of the full-reference IQAs in terms of their ability to match human judgements of image
quality. This observation suggests that there is room to improve full-reference IQA metrics and
that assessing image quality is a very challenging problem!

8.4 Parameter Search Strategies

After selecting a metric to measure how good a hyperparameter is, the next task is devising a strat-
egy to find the best hyperparameter according to that metric. Search strategies fall into three main
categories: (i) model-free, `-only; (ii) model-based, `-only; and (iii) gradient-based, using both
` and ∇`. Model-free strategies do not assume any information about about the hyperparameter
landscape, whereas model-based strategies use historical ` evaluations to predict the loss function
at untested hyperparameter values.

The following sections describe common model-free and model-based hyperparameter search
strategies that only use `. See [141, Ch. 13 and Ch. 20.6] for discussion of additional gradient-
free methods for bilevel problems, e.g., population-based evolutionary algorithms, and [231] for a
general discussion of derivative-free optimization methods.

The third class of hyperparameter optimization schemes are approaches based on gradient de-
scent of a bilevel problem. The high-level strategy in bilevel approaches is to calculate the gradient
of the upper-level loss function ` with respect to γ and then use any gradient descent method to
minimize γ. Although this approach can be computationally challenging, it generalizes well to
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a large number of hyperparameters. Chapter 10 discuss this point further and go into depth on
different methods for computing this gradient.

8.4.1 Model-free Hyperparameter Optimization

The most common search strategy is probably an empirical search, where a researcher tries dif-
ferent hyperparameter combinations manually. A punny, but often accurate, term for this manual
search is GSD: grad[uate] student descent [232]. Bergstra and Bengio [233] hypothesizes that
manual search is common because it provides some insight as the user must evaluate each option,
it requires no overhead for implementation, and it can perform reliably in very low dimensional
hyperparameter spaces.

Grid search is a more systematic alternative to manual search. When there are only one or two
continuous hyperparameters, or the possible set of hyperparameters, Γ, is small, a grid search (or
exhaustive search) strategy may suffice to find the optimal value, γ̂, to within the grid spacing.
However, the complexity of grid search grows exponentially with the number of hyperparameters.
Regularizers frequently have many hyperparameters, so one generally requires a more sophisti-
cated search strategy.

One popular approach is random search, which [233] shows is superior to a grid search, espe-
cially when some hyperparameters are more important than others. There are also variations on
random search, such as using Poisson disk sampling theory to explore the hyperparameter space
[234]. The simplicity of random search makes it popular, and, even if one uses a more complicated
search strategy, random search can provide a useful baseline or an initialization strategy. However,
random search, like grid search, suffers from the curse of dimensionality, and is less effective as
the hyperparameter space grows.

Another group of model-free blackbox strategies are population-based methods such as evolu-
tionary algorithms. A popular population-based method is the covariance matrix adaption evolu-
tionary strategy (CMA-ES) [235]. In short, every iteration, CMA-ES involves sampling a multi-
variate normal distribution to create a number of “offspring” samples. Mimicking natural selec-
tion, these offspring are judged according to some fitness function, a parallel to the upper-level loss
function. The fittest offspring determine the update to the normal distribution and thus “pass on”
their good characteristics to the next generation.

8.4.2 Model-based Hyperparameter Optimization

Model-based search strategies assume a model (or prior) for the hyperparameter space and use
only loss function evaluations (no gradients). This section discusses two common model-based
strategies: Bayesian methods and trust region methods.
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8.4.2.1 Bayesian Approaches

Bayesian methods fit previous hyperparameter trials’ results to a model to select the hyperparam-
eters that appear most promising to evaluate next [236]. For example, a common model for the
hyperparameters is the Gaussian Process prior. Given a few hyperparameter and cost function
points, a Bayesian method involves the following steps.

1. Find the mean and covariance functions for the Gaussian Process. The mean function will
generally interpolate the sampled points. The covariance function is generally expressed as
a kernel function, often using squared exponential functions [237].

2. Create an acquisition function. The acquisition function captures how desirable it is to sam-
ple (“acquire”) a hyperparameter setting. Thus, it should be large (desirable) for hyperpa-
rameter values that are predicted to yield small loss function values or that have high enough
uncertainty that they may yield low losses. The design of the acquisition function thus trades-
off between exploring new areas of the hyperparameter landscape with high uncertainty and
a more locally focused exploitation of the current best hyperparameter settings. See [237]
for a discussion of specific acquisition function designs.

3. Maximize the acquisition function (typically designed to be easy to optimize) to determine
which hyperparameter point to sample next.

4. Evaluate the loss function at the new hyperparameter candidate.
These steps repeat for a given amount of time or until convergence.

8.4.2.2 Trust-region Methods

Another derivative-free optimization method that uses only loss function evaluations is a trust-
region method. This section describes the specific trust-region method as presented in [159] (see
references therein for previous, similar methods). An outline for a TRM is

1. Create a quadratic model for the upper-level loss function.

(a) Select a set of upper-level interpolating points and (approximately) evaluate the upper-
level at each one.

(b) Estimate the upper-level gradient by interpolating a set of R samples (recall γ ∈ FR) of
the upper-level loss function.

(c) Model the upper-level by it with its tangent-plane approximation using the estimated
gradient from the previous step.

2. Minimize the model within some trust region to find the next candidate set of upper-level
parameters. By construction, this is a simple convex-constrained quadratic problem.
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3. Accept or reject the updated parameters and update the trust region. If the ratio between the
actual reduction and predicted reduction is low, the model may no longer be a good fit, the
update is rejected, and the trust region shrinks.

The derivative-free, trust-region method (TRM) [238] is similar to Bayesian optimization in
that it involves fitting an easier to optimize function to the loss function of interest, `, and then
minimizing the easier, surrogate function (the “model”). Thus, TRM requires only function eval-
uations, not gradients, to construct and then minimize the model. However, unlike most Bayesian
optimization-based approaches, TRM uses a local (often quadratic) model for ` around the current
iterate, rather than a surrogate that fits all previous points. In taking a step based on this local
information, TRM resembles gradient-based approaches.

The “trust-region” in TRM captures how well the model matches the observed ` values and de-
termines the maximum step at every iteration. The “goodness” of the model is typically quantified
as the ratio of the actual decrease in ` (based on observed function evaluations) to the predicted
decrease (based on the model). If this ratio is relatively large (close to one), then the model is a
good approximation of ` and the trust-region grows for the next iteration. If this ratio is close to
zero, then the observed decrease is much less than predicted and the trust-region shrinks.

Recall that evaluating ` is typically expensive in bilevel problems as each upper-level function
evaluation involves optimizing the lower-level cost. Thus, even constructing the model for a TRM
can be expensive. To mitigate this computational complexity, [159] incorporated a dynamic accu-
racy component, with the accuracy for the lower-level cost initially set relatively loose (leading to
rough estimates of `) but increasing with the upper-level iterations (leading to refined estimates of
` as the algorithm nears a stationary point). One can use any optimization method for the lower-
level cost; [159] used a gradient method for the lower-level optimization method with well-known
convergence results to facilitate establishing convergence and computational complexity results.

The upper-level loss function considered in [159] is additively separable and quadratic:

`(γ) =
1
J

J∑

j=1

`(γ ; x̂ j(γ)) =
1
J

J∑

j=1

(
r(γ ; x̂ j(γ))

)2

︸ ︷︷ ︸
Equivalently, r j(γ)2

,

where r is typically x̂ j(γ) − xtrue
j . (Although we define the sum to be over the number of training

samples, this expression easily generalizes to include a regularization term on γ by defining an
additional rJ+1 term.)

Given a current value for the hyperparameters, γ∗, the TRM models the local upper-level loss
function by creating a linear model such that

r j(γ∗ + δ) ≈ m j(δ) ··= r j(γ∗) + g′jδ,
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where g j ∈ FR approximates ∇r j(γ∗). Then, the overall model for the upper-level problem is
quadratic:

`(γ∗ + δ) ≈
∑

j

m2
j(δ) = `(γ∗) +

1
J

∑

j

2r j(γ∗)g′jδ + (g′jδ)2. (8.17)

One can estimate the gradients, g j, by interpolating a set of R samples (recall γ ∈ FR) of the upper-
level loss function. This process involves choosing a set of interpolating points, {γ∗+δ(1), . . . ,γ∗+

δ(R)
}, (approximately) evaluating r at each one, then solving



r j(γ∗ + δ(1)) − r j(γ∗)
...

r j(γ∗ + δ(R)) − r j(γ∗)


︸ ︷︷ ︸

R

=



(
δ(1)

)′
...(

δ(R)
)′


︸ ︷︷ ︸

R×R

g j

for j ∈ [1 . . . J].
After forming the quadratic model for the upper-level loss, the TRM minimizes the model

(8.17) within some trust region, which is a simple convex-constrained quadratic problem After
computing δ̂, the TRM accepts the step and updates the hyperparameters (γ(i+1) = γ(i) + δ̂) if the
actual reduction (based on the estimated loss function values) to predicted reduction (based on the
quadratic model of the loss function) ratio is large enough. Otherwise, if the ratio is low, the update
step is rejected and the trust region shrinks.

While the TRM appears to involve R upper-level function evaluations every iteration to con-
struct the gradient estimates, after an initialization, one can generally reuse samples, gradually
replacing old samples with the samples at new hyperparameter iterates. Ref. [159] discusses re-
quirements on the interpolation set to guarantee a good geometry and conditions for re-setting the
interpolation sample if the model is not sufficiently accurate.

A main result from [159] is a bound on the number of iterations to reach an ε-optimal point
(defined as minu ‖∇γ`(γ(u))‖ < ε, where u indexes the upper-level iterates). The bound derivation
assumes (i) Φ is differentiable in x, (ii) Φ is µ-strongly convex, i.e., Φ(x) − µ

2 ‖x‖
2 is convex for

µ > 0, (iii) the derivative of Φ is Lipschitz continuous, and (iv) the first and second derivative of
the lower-level cost with respect to x exist and are continuous. These requirements are satisfied
by the example filter learning problem (Ex), when A has full column rank, and more generally
when there are certain constraints on the hyperparameters. The iteration bound is a function of the
following:

• the tolerance ε,
• the trust region parameters (parameters that control the increase and decrease in trust re-
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gion size based on the actual to predicted reduction, the starting trust region size, and the
minimum possible trust region size),

• the initialization for γ, and
• the maximum possible error between the gradient of the upper-level loss function and the

gradient of the model for the upper-level loss within a trust region (when the gradient of ` is
Lipschitz continuous, this bound is the corresponding Lipschitz constant).

The number of iterations required to reach such an ε-optimal point is O
(

1
ε2

)
[159] and the number of

required upper-level loss function evaluations depends more than linearly on N [239]. The growth
with the number of hyperparameters impedes its use in problems with many hyperparameters.
However, new techniques such as [240] may be able to decrease or remove the dependency, making
TRMs promising alternatives to the gradient-based bilevel methods described in the remainder of
this review.

8.5 Summary

The first part of this background chapter focused on the lower-level problem: image reconstruc-
tion with a sparsity-based regularizer. After defining the problem and the need for regularization,
Section 8.1.3 reviewed the history of analysis regularizer learning and included many examples of
methods to learn hyperparameters.

Bilevel methods are just one, task-based way to learn such hyperparameters. Section 9.1 further
expands on this point, but we can already see benefits of the task-based nature of bilevel methods.
Without the bilevel approach, filters are often learned such that they best sparsify training data.
These sparsifying filters can then be used in a regularizer for image reconstruction tasks. However,
they are learned to sparsify, not necessarily to best reconstruct. In contrast, the bilevel approach
aims to learn filters that best reconstruct images (or whatever other task is desired), even if those
filters are not the ones that best sparsify. Although this distinction may seem subtle, [241] shows
that different filters work better for image denoising versus image inpainting.

Turning from the discussion of the lower-level problem in Section 8.1, the second part of this
background chapter concentrated on the other two aspects of bilevel problems: the upper-level loss
function and the optimization strategy.

The loss function defines what a “good” hyperparameter is, typically using a metric of image
quality to compare x̂(γ) to a clean, training image, xtrue. Variations on squared error are the most
common upper-level loss functions. Section 8.3 discussed many other full-reference and no-
reference options, including ones motivated by human judgements of perceptual quality, from the
image quality assessment literature; Section 12.1.2 gives examples of bilevel methods that use
some of these other loss functions.
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Section 8.4 concentrated on model-free and model-based hyperparameter search strategies.
The grid search, CMA-ES, and trust region methods described above all scale at least linearly
with the number of hyperparameters. Similarly, Bayesian optimization is best-suited for small
hyperparameter dimensions; [237] suggests it is typically used for problems with 20 or fewer
hyperparameters.

The remainder of this dissertation considers gradient-based strategies for hyperparameter opti-
mization. The main benefit of gradient-based methods is that they can scale to the large number of
hyperparameters that are commonly used in machine learning applications. Correspondingly, the
main drawbacks of a gradient-based method are the implementation complexity, the per-iteration
computational complexity, and the typical differentiability requirement. Chapter 10 discuss multi-
ple options for gradient-based methods.

165



CHAPTER 9

RQ#4: Motivating Task-Based Learning Approaches

Chapter 6.3 introduced bilevel learning methods and claimed that one of the primary benefits of
bilevel methods is the task-based nature. This chapter considers two case studies to support the
importance of task-based learning, i.e., learning parameters such that they best perform a lower-
level task. Specifically, this chapter demonstrates the sub-optimally of filters learned using non-
bilevel methods. Chapter 11 revisits one of the case studies to examine how the task-based bilevel
method compares to the methods examined in this chapter.

This chapter considers our research question: Why do handcrafted sparsifying filters some-
times outperform learned filters? First, this chapter presents a simple experiment: learning a
single sparsifying filter for piece-wise constant signals. The simplicity of the experiment allows us
to handcraft a filter and then demonstrate how a common learning method makes the learned filter
perform worse than an obvious handcrafted filter. This simple experiment builds on the results
presented in [10]:

C. Crockett and J. A. Fessler, “Motivating bilevel approaches to filter learning: A case
study,” in 2021 IEEE International Conference on Image Processing (ICIP), IEEE,
Sep. 19, 2021, pp. 2803–2807, ISBN: 978-1-66544-115-5.
DOI: 10.1109/ICIP42928.2021.9506489

Next, this chapter introduces the handcrafted Convolutional Analysis Operator Learning (CAOL)
algorithm, which allows for incorporating specific handcrafted filters into the CAOL learning pro-
cess, and is thus suited to examining the trade-off between handcrafting filters and learning filters.
These results are presented in [9]:

C. Crockett, D. Hong, I. Y. Chun, et al., “Incorporating handcrafted filters in convo-
lutional analysis operator learning for ill-posed inverse problems,” in 2019 IEEE 8th
International Workshop on Computational Advances in Multi-Sensor Adaptive Pro-
cessing, CAMSAP, Dec. 2019, pp. 316–320.
DOI: 10.1109/CAMSAP45676.2019.9022669

Throughout this chapter, we refer to “transforms” T and “sparsifying filters” c as different
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mathematical perspectives of the same underlying phenomenon. Typically, the literature uses
“transforms” to refer to matrices that, when left-multiplied, sparsify patches of the signals, i.e.,
to model T(Plx) being sparse for many l, where Pl extracts the lth patch from the signal x. The
phrase “sparsifying filters” commonly refers to a filter that, when convolved with the signals, spar-
sifies the signals, i.e., to model c~ x being sparse. With corresponding boundary conditions on the
convolution operator and patch extraction matrix, the two models are equivalent, and we can view
each row of T as either a row in a transform matrix or as a sparsifying filter that could be applied
using convolution.

9.1 Background: Single-Level Parameter Learning

Section 8.1.3 briefly discussed some approaches to learning analysis operators. This section further
motivates the task-based bilevel set-up by discussing the filter learning constraints imposed in
single-level hyperparameter learning methods.

As summarized in Section 8.1.3, the earliest methods for learning analysis regularizers had no
constraints on the analysis operators. Those approaches learned filters from training data to make
a prior distribution match the observed data distribution. In contrast, more recent approaches to
filter learning minimize a cost function that requires either a penalty function or constraint on the
operators to ensure filter diversity. For reference, the cost functions mentioned in Section 8.1.3
were:

AOL : argmin
Ω, X

‖ΩX‖1 +
β

2
‖Y − X‖2 s.t. Ω ∈ S,

TL : argmin
Ω∈FS×S , X

‖ΩY − X‖22 + R(Ω) s.t.
∥∥∥X:,i

∥∥∥
0
≤ α ∀i,

CAOL : argmin
[c1,...,cK ]

min
z

K∑

k=1

1
2
‖ck ~ x − z‖22 + β ‖zk‖0 s.t. [c1, . . . , cK] ∈ S,

where AOL is analysis operator learning [191], TL is transform learning [183], and CAOL is
convolutional analysis operator learning [193]. In the following discussion of constraint sets, the
equivalent filter matrix for CAOL has the convolutional kernels as rows:

ΩCAOL =



c′1
...

c′K


.

While there are many other proposed cost functions in the literature, using different norms or
including additional variables, these three examples capture the most common structures for filter
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learning.
In all the above cost functions, if one removed the constraint or regularizer, then the trivial

solution would be to learn zero filters for Ω. Furthermore, a simple row norm constraint on Ω
would be insufficient, as then the minimizer would contain a single filter that is repeated many
times. (In contrast, a unit norm constraint typically suffices for dictionary learning.) A row norm
constraint plus a full rank constraint is also insufficient because Ω can have full rank while being
arbitrarily close to the rank-1 case of having a single repeated row.

The choice of constraint set S is important in single-level learning. Many methods constrain
analysis operators to satisfy a tight frame constraint. A matrix A is a tight frame if there is a
positive constant, α, such that

‖A′x‖22 =
∑

i

|〈qi, x〉|
2 = α ‖x‖22 , ∀x

where qi is the ith column of A. This tight frame condition is equivalent to AA′ = αI for some
positive constant α. Most analysis operators are defined with filters in their rows, so a tight frame
requirement on the filters appears as the constraint Ω′Ω = αI.

Under the tight frame constraint for the filters, Ω must be square or tall, so the filters are
complete or over-complete. However, [191] found that the frame constraint was insufficient when
learning over-complete operators, as the “excess” rows past full-rank tended to be all zeros. There-
fore, [191] imposed a uniformly-normalized tight frame constraint: each row of the Ω had to have
unit norm and the filters had to form a tight frame.

Ref. [182] similarly constrained Ω to have unit-norm rows with the filters forming a frame
(though not tight). Such loosening of the tight frame constraint to a frame constraint could lead
to the problem of learning almost identical rows, as discussed above. To prevent this issue, [182]
additionally included a penalty that encourages distinct rows:

−
∑

k

∑

k̃<k

log
(
1 − (ω′k̃ωk)2

)
. (9.1)

One possible concern with a tight frame constraint is that it requires the filters to span all
of FN , so every spatial frequency can pass through at least one filter. However, most images
are not zero-mean and have piece-wise constant regions, so the zero frequency component is not
sparse. Ref. [191] modified the tight-frame constraint to require Ω to span some space (e.g., the
space orthogonal to the zero frequency term). Likewise, [9] extended the CAOL algorithm to
include handcrafted filters, such as a zero frequency term, that can then be used or discarded when
reconstructing images. In the bilevel literature, [162], [163] similarly ensured that learned filters
had no zero frequency component by learning coefficients for a linear combination of filter basis
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vectors, rather than learning the filters directly; see Section 12.1.1.
As an alternative to imposing a strict constraint on the filters, one can penalize Ω to encourage

filter diversity, as in (9.1). Using a penalty has the advantage of being able to learn any size (under-
or over-complete) Ω and not requiring the filters to represent all frequencies. For example, as an
alternative to the tight frame constraint, [193] proposed a version of CAOL using the following
regularizer (to within scaling constants)

R(Ω) = β ‖Ω′Ω − I‖2

and a unit norm constraint on the filters. Ref. [185] included a similar penalty to (9.1), but with
the inner product being divided by the norm of the filters as the filters were not constrained to unit
norm. All such variations on this penalty are to encourage filter diversity.

To ensure a square Ω is full rank, while also encouraging it to be well-conditioned, [183] used
a regularizer that includes a term of the form

R(Ω) = -β1log (|Ω|) .

The log determinant term is known as a log barrier; it forces Ω to have full rank because of the
asymptote of the log function. Ref. [185] includes a similar log barrier regularization term in terms
of the eigenvalues of Ω to ensure it is left-invertible.

As another example of a filter penalty regularizer, both [183] and [185], include the following
regularization term

R(Ω) = β2 ‖Ω‖
2
F ,

rather than constraining the norm of the filters. This Frobenius norm addresses the scale ambiguity
in the analysis and transform formulations and ensures the filter coefficients do not grow too large
in magnitude.

Yet another approach to encouraging filter diversity is to consider the frequency response of
the set of filters. Pfister and Bresler [185] discuss different constraint options for filter banks based
on convolution strides to ensure perfect reconstruction. When the stride is one and one considers
circular boundary conditions, the filters can perfectly reconstruct any signal as long as they pass
the N discrete Fourier transform frequencies. Tight frames satisfy this constraint, but the constraint
is more relaxed than a tight frame constraint.

Section 12.1 discusses some relatively rare bilevel problems with penalties on the learned hy-
perparameters, but, notably, there are no constraints nor penalties on the filters in the bilevel method
(Ex)! Because of its task-based nature, filters learned via the bilevel method should be those that
are best for image reconstruction. Thus, one should not have to worry about redundant filters, zero
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filters, or filters with excessively large coefficients. This property is one of the key benefits of
bilevel methods.

9.2 Transform Learning: A Simple Experiment

The model in co-sparse transform learning is that a transform matrix, when left-multiplied, sparsi-
fies patches of a signal, i.e., Txtrue

j tends to be sparse, where xtrue
j is one of J training patches. The

first step in most transform learning problems is thus to learn a transform that sparsifies training
signals, which are assumed to be noiseless. In other words, we would like to find

T̂ = argmin
T∈T

J∑

j=1

∥∥∥Txtrue
j

∥∥∥
0

= argmin
T∈T

∥∥∥TXtrue
∥∥∥

0
, (9.2)

where T ⊆ FK×D is the user-defined set of allowable transforms, K is the number of transforms
to learn, D is the patch size, and J is the number of training patches. The jth training patch is
xtrue

j ∈ FD and Xtrue ∈ FD×J is a matrix with one training patch per column. To avoid trivial
solutions such as the zero filter or repeated filters, T ⊆ FK×D may be defined, e.g., as the set of
matrices with orthonormal rows [193]. Section 9.1 discussed other options for constraints and the
corresponding penalty forms of the constraints. The co-sparse filter learning model is equivalent to
(9.2) for corresponding boundary conditions on the convolution and patch extraction. Specifically,
the filter perspective views each row of T as a filter, ck, where ck ~ x is assumed sparse.

Although (9.2) models a transform that sparsifies the data, the problem is difficult to solve.
Rather than solve (9.2) directly, engineers often relax the problem by splitting the argument into
two terms [183]:

T̂ = argmin
T∈T

J∑

j=1

min
z j

1
2

∥∥∥Txtrue
j − z j

∥∥∥2

2
+ λ

∥∥∥z j

∥∥∥
0
. (9.3)

Instead of directly modeling that T should sparsify xtrue
j , the split version models that Txtrue

j is close
(in a 2-norm sense) to a sparse code, z j. The tuning parameter λ trades-off enforcing sparsity of z j

(larger λ) and enforcing Txtrue
j ≈ z j (smaller λ).

This section concentrates on the impact of simplifying (9.2) by introducing the sparse code
variables, z j, and tuning parameter, λ, in (9.3). To do so, we consider a very simple problem to
gain an intuitive understanding for how learning approaches work. Specifically, our goal is to learn
a transform that sparsifies 1D piece-wise constant (PWC) signals.

This section does not purport to improve on state-of-the-art results or to offer an especially
novel denoising method. Instead, this section investigates how the structure of a learning problem

impacts the learned solutions by examining a simple class of signals. These insights could apply
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in more complex image reconstruction tasks. In particular, the results motivate the use of bilevel
approaches.

9.2.1 Methods

The split version of transform learning in (9.3) may initially look more difficult to solve because
of the additional variables and terms. However, we can use block coordinate minimization to
alternatively update the expression for both variables. At iteration i, the updates are:

z(i)
j = argmin

z

1
2

∥∥∥T(i−1)xtrue
j − z

∥∥∥2

2
+ λ ‖z‖0 = prox.(T(i−1)xtrue

j ) (9.4)

T(i) = argmin
T∈T

∥∥∥TXtrue − Z(i)
∥∥∥2

2
, (9.5)

where Z ∈ FK×J contains the sparse codes in its columns.
The sparse code update (9.4) is a proximal problem. The proximal operator for the 0-norm in

(9.4) is element-wise hard-thresholding [242]

z(i)
j = τ.

(
T(i−1)xtrue

j ,
√

2λ
)

where τ(y, α) =


y |y| > α

0 else.

Hard thresholding is cheap to compute despite being non-convex. A generalization is to replace
the 0-norm with a generic sparsity-encouraging function φ(z)–often a convex one with a similarly
easy-to-compute proximal operator.

When T describes matrices with orthonormal filters, the transform update (9.5) is almost a
standard Procrustes problem,

Q̂ = argmin
Q:Q′Q=QQ′=I

‖B − QA‖2F, (9.6)

with solution Q̂ = UV′ where U and V are the left and right singular vectors of BA′. However T
is often rectangular, and thus not unitary. When T has orthonormal columns, (9.5) is a generalized
Procrustes problem [243]. However, to compare to TV approaches, we want to consider cases
where T is wide.

Alg. 1 solves (9.5) when T is wide with orthonormal rows (K < D) by learning a unitary, D×D

transform with the last D− K rows containing “dummy” (irrelevant) filters. The T update in line 8
uses the standard Procrustes problem (9.6). Mathematically, this approach defines T̃ ∈ FD×D such
that the first K rows contain the filters from T and the remaining rows contain the dummy filters.
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Algorithm 1 Learning a wide transform matrix with orthonormal rows. Inputs: an initialization
for the transform (T(0) ∈ FK×D where K ≤ D), a matrix of training signal patches (Xtrue ∈ FD×L),
the number of iterations to perform (N), and the proximal operator of φ (prox).

1: procedure PROCRUSTES-WIDE(T(0), Xtrue, N, prox)
2: Q, R = qr

((
T(0)

)′ )
. QR decomposition

3: T̃(0)
= Q′

4: for n = 1 to N do . Perform N iterations
5: Z = T̃(n−1)Xtrue

6: Z1:K,: = prox.(Z1:K,:)
7: U, Σ, V = svd

(
Z

(
Xtrue

)′)

8: T̃(n)
= UV′

9: end for
10: return T̃(N)

1:K,: . Remove dummy rows
11: end procedure

In terms of T̃, the split transform learning optimization problem (9.3) is

̂̃T = argmin
T̃∈T̃

min
z j∈FD

J∑

j=1

1
2

∥∥∥T̃xtrue
j − z j

∥∥∥2
+ λ

∥∥∥W z j

∥∥∥
0
, (9.7)

where W =
[
I 0

]
∈ RK×D selects the first K elements of z j and T̃ is the set of D × D unitary

matrices.
Once the transform is learned, the next step is to use the transform to denoise test signals. In

practice, we would not have the ground truth for these signals. However, to quantify how well
the learned transform performs, we typically generate test data the same way we generate training
data.

After learning the transform T̂, the cost function for denoising a noisy test sample y generally
has a data-fit term and a regularizer that corresponds to the training cost function, e.g.,

x̂(y) = argmin
x

1
2
‖x − y‖2 + βR(x), (9.8)

where R(x) might be, much like in the training stage,
∥∥∥T̂x

∥∥∥
0

or minz
∥∥∥T̂x − z

∥∥∥2
+ αφ(z).

9.2.2 Experiment Set-up

Our training data set is 1,024 PWC 1D signals. Each signal has 32 elements with exactly three
“jumps”, which are indices where the left finite difference is non-zero. The jumps are spaced by
at least three elements, so that there is at most one jump in any given length-4 patch. We assume
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circular boundary conditions, so each signal has exactly two values. The training data is noiseless,
representing the ideal supervised setting for filter learning. The two distinct values in each signal
are uniformly distributed between [-1, 1]. Fig. 9.1 shows some example training signals.
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1.0

0

-1.0
10 20 30

Figure 9.1: Example piece-wise constant training signals used throughout Section 9.2. The signals are in
R32, but are plotted with connecting lines for easier visualization.

Because the signals are circularly symmetric, any circular shift of the columns of T will pro-
duce an equivalent transform. We do not continually state this fact, but we account for it in our
calculations. For example, when we state that we compute the distance between a learned filter
and a handcrafted filter, we find the minimum distance between the learned filter and all possible
circularly shifted versions of the handcrafted filter.

To start, we assume that T is the set of single, length-4 filters with unit norm, i.e., K = 1 and
D = 4. The end of this section briefly discusses expanding the experiment to two orthonormal
filters. We quantify disparities between learned and handcrafted filters using the formula for the
angle between vectors:

θ(z1, z2) = cos−1
(
|〈z1, z2〉|

‖z1‖ ‖z2‖

)
. (9.9)

Our test data is a collection of 128 signals created in the same way as the training data but
with a different random seed. All test signal values are uniformly distributed over [-1, 1]. The
corresponding noisy input signals mean zero Gaussian noise with a standard deviation of 0.1. We
report the average root mean square error (RMSE) normalized by the expected signal strength and
averaged over all testing signals,

1
E{‖xtrue‖}

1
J

J∑

j=1

∥∥∥xtrue
j − x̂(y j)

∥∥∥ . (9.10)
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Given the uniform distribution for the signals, E{‖xtrue‖} =
√

N/3 where N = 32 is the signal
dimension.

9.2.3 Effect of Introducing Sparse Code Variables

For the PWC signals considered here, we expect that the best sparsifying filter corresponds to the
“Total Variation (TV) transform:”

TFD =
1
√

2

[
0 1 -1 0

]
, (9.11)

which is the minimizer of the transform learning problem (9.2). However, we empirically found
that the learned transform is a slightly smoothed version of the TV filter, even when initializing
with TFD. By smoothed, we mean that, in absolute value, the center coefficients are smaller than

1
√

2
and the edge coefficients are larger than 0, which is like using a blurring filter on TFD. This

empirical observation was the initial inspiration for this simple experiment.
Using the training data set described above and TFD as the filter initialization, we learned filters

for different values of λ. The solid lines in Fig. 9.3 show the absolute value of the two larger filter
coefficients versus λ. When λ = 0, the learned filter is exactly TTV (more generally, it is equal
to the initialization1). As λ increases, the learned filter becomes smoother, eventually reaching a
limit. For example, when λ = 0.5, we found T̂ = 1

√
2

[
-0.37 0.92 -0.93 0.39

]
.

Although the minimizer of (9.3) is not exactly TFD, we noticed it tended to take the approximate
form

[
-c d -d c

]
c = ±

√
1 − 2d

2
.

Here, 1
√

2
≥ |d| ≥ c ≥ 0. We call this an approximate form because, as exemplified by the example

T̂ for λ = 0.5 given above, the middle two coefficients (and the edge coefficients) are not exactly

equal in magnitude for filters learned from training data.
In-line with these empirical observations, a grid search over the three2 free variables in T

showed that
T̂ =

[
-
√

1−2d2

2 d -d
√

1−2d2

2

]
(9.12)

for large training sets. This learned transform is a smoothed version of the TFD transform. The
small difference between the T̂ found using a grid search and gradient descent likely stems from
the non-convexity of (9.3). Without loss of generality, we can assume 1

2 ≤ d ≤ 1
√

2
because of the

1Following (9.4), and taking λ = 0, the first zl update is hard.(T(i−1)xl, 0) = T(i−1)xl. Then, using (9.5), the T
update is argminT∈T

∥∥∥TX − Z(i)
∥∥∥2

= argminT∈T
∥∥∥TX − T(i−1)X

∥∥∥2
= T(0), assuming that T(0) ∈ T. The algorithm thus

converges without any change from any initialization that lies in T.
2The fourth filter coefficient is decided by the first three due to the unit norm constraint.
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Tuning parameter λ
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Figure 9.2: The solid lines show T̂2 and |T̂3| versus
λ, where T̂ =

[
T̂1 T̂2 T̂3 T̂4

]
is the transform learned

according to (9.3) on 1,024 PWC training signals.
The points show T̂2 = |T̂3| for the minimizer of the
expected value of (9.3) (the value of d in (9.12)).
As λ increases, the learned and expected minimizing
transform becomes smoother.
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Figure 9.3: Plot of the expected value of the cost
function value in (9.3) versus T2 = d, where
T =

[
-
√

1−2d
2 d -d

√
1−2d

2

]
. Each line corresponds to

a different λ value. The points mark, d̂, which deter-
mines the minimizer of the cost function, for each λ
value, and correspond to the similarly colored points
in Fig. 9.2.

circular shift invariance.
Taking (9.12) as the correct form for the glboal minimizer of (9.3), finding T̂(λ) is a 1-D

problem. Therefore, for a given λ, it is easy to sweep over d, compute the cost function, and find
the global minimizer d̂ (which fully determines T̂) for the class of unit-norm filters. Further, as
shown in the following section, we can write down the expected value of the cost function given
our assumptions about the training data then calculate, plot, and minimize this expected value.

Fig. 9.3 shows the expected value of the cost function, using the derivation in the following
section, and the minimizers, d̂, for various λ values. The points in Fig. 9.2 and Fig. 9.3 show the
same d̂(λ) values with the same color mapping. As in Fig. 9.2, we can see the trend of d̂ decreasing
(the filter getting smoother) as λ increases (goes from red to blue). This behavior corresponds to
the learned filter moving from TFD to 22.5 degrees away from TFD, as seen in Fig. 9.4.

Fig. 9.2 further shows that the analytically derived values of d̂, using the assumed form of the
filter in (9.12), are the average of the empirically observed |T̂2| and |T̂3| elements. Finally, Fig. 9.3
demonstrates that the cost function is very flat in certain regions, especially for small λ values. The
flatness could lead to a slow convergence or stopping before reaching convergence, depending on
the convergence criteria.

Derivation of Smoothed TV Filter

This section derives the expected value of the cost function in (9.3) assuming the minimizer, T̂,
takes the form (9.12). By taking the expected value, we remove the dependence on randomness in
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Figure 9.4: Plot of the angle (in degrees) between the learned transform and TFD versus the tuning parameter
in (9.3).

the training samples. We can then find the expected minimizer, which is completely defined by d̂

due to the unit norm constraint on T, by minimizing the expected value of the cost function. This
section is included for completeness; we used this derivation to find the d̂ values in the previous
section and confirm that they align with our empirically observed filter coefficients.

We start by proving some probability properties; these will be useful for simplifying the ex-
pected value of our cost function. A random variable is denoted by a capital (non-bold) letter, e.g.,
X. The corresponding lower letter, x, represents one possible value of the random variable. The
Probability density function (PDF) is denoted as pX(x) and the Cumulative density function (CDF)
is PX(x) =

∫ x

-∞
pX(x). Recall that we assumed the values in the training signals are uniformly dis-

tributed between -1 and 1. Let a and b be two such values pulled at random from this distribution.
Thus, the PDF for a is pa(t) = 1

2 rect(t/2) and similarly for b. Since a and b are independent,

fa−b(t) = ( fa ~ fb)(t) =
1
2

tri(
t
2

).

Further, if |τ| ≤ 2,

Pr[|a − b| < τ] =

∫ τ

-τ

1
2

tri(
t
2

)dt =

∫ τ

0
(1 −

t
2

)dt = τ −
1
4
τ2. (9.13)

Then, since Pr[|a − b| > τ] = 1 − Pr[|a − b| < τ], we have that

Pr[|a − b| > τ] = (
1
2
τ − 1)2. (9.14)

In addition to the two probabilities above, finding the expected value of the cost function re-
quires the expectation of (a − b)2 given that |a − b| < τ. Substituting the PDF for a − b into the
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expectation definition and simplifying yields:

E[(a − b)2||a − b| < τ] = E[y|y < τ] where y = |a − b| so fy(t) = tri(
t
2

)u(t)

=

∫ τ

0
y2 fY(y)

FY(τ)
dy =

1

τ −
1
4
τ2

∫ τ

0
y2(1 −

y
2

)dy by (9.13)

=
8τ2 − 3τ3

24 − 6τ
(9.15)

With these probabilities defined, we now consider our training data and cost function. Because
we assumed that the jumps in the training signals are spaced by at least three elements, any single
length-4 patch has at most one jump. The filter sparsifies any constant patches because it has mean
0 and does not pass DC3. Tab. 9.1 shows the three possible non-constant patch configurations and
their corresponding regularization values.

xl t = Txtrue
j z j

1
2 ‖Txl − zl‖

2 + λ ‖zl‖
[
a a a b

]
or[

a b b b
] c(b − a)

If |t| ≥
√

2λ: c(a − b) 0 λ

If |t| <
√

2λ: 0 1
2c2(b − a)2 0

[
a a b b

]
(c−d)(b−a)

If |t| ≥
√

2λ: (c−d)(b−a) 0 λ

If |t| <
√

2λ: 0 1
2 (c−d)2(b−a)2 0

Table 9.1: The possible patch configurations and regularization values given the set-up described in Sec-
tion 9.2.2. Here, a and b are any two values pulled from the uniform [-1, 1] distribution.

To find d̂, we find an expression for the expected value of R in (9.3) as a function d, take the
derivative and set it to zero, then solve for d̂. The expectation averages over all possible patches,
so we drop the subscript notation in the derivation. Using the values in Tab. 9.1 and the law of total

3DC stands for Direct Current for historical reasons. However, it has come to refer to 0 frequency or mean value
of a signal.
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probability, the expected value of the regularizer is:

E (R (x)) =
2
3
E

(
R

([
a b b b

]))
+

1
3
E

(
R

([
a a b b

]))

=
2
3

(
Pr

(
|c(b − a)| ≥

√
2λ

)
· λ + Pr

(
|c(b − a)| <

√
2λ

)
· E

(
1
2

c2(b − a)2
∣∣∣∣∣ |c(b − a)| <

√
2λ

))
+

1
3

[
Pr

(
|(c − d)(b − a)| ≥

√
2λ

)
· λ+

Pr
(
|(c − d)(b − a)| <

√
2λ

)
· E

(
1
2

(c − d)2(b − a)2
∣∣∣∣∣ |(c − d)(b − a)| <

√
2λ

) ]

=
2
3

(
Pr

(
|(b − a)| ≥

√
2λ/c

)
· λ + Pr

(
|(b − a)| <

√
2λ/c

)
·

1
2

c2 E
(
(b − a)2

∣∣∣∣ |(b − a)| >
√

2λ/c
))

+

1
3

[
Pr

(
|(b − a)| ≥

√
2λ/(d − c)

)
· λ+

Pr
(
|(b − a)| <

√
2λ/(d − c)

)
·

1
2

(c − d)2 E
(
(b − a)2

∣∣∣∣ |(b − a)| <
√

2λ/(d − c)
) ]
. (9.16)

We can substitute (9.13), (9.14), and (9.15) into the final expression to find the expected value of the regularizer as a
function of only d4.

Impact on Denoising Performance

While it is interesting from a theoretical perspective to consider which filters best sparsify a given set of signals, we
typically learn sparsifying filters for a specific purpose. Here, we consider whether the sharp, handcrafted filters or
smoothed, learned filters denoise a signal better.

We consider the denoising cost function:

x̂(y) = argmin
x

1
2
‖x − y‖22 + β

∑

j

min
z j

∥∥∥TP jx − z j

∥∥∥2
2 + α

∥∥∥z j

∥∥∥
0 , (9.17)

where P j is the matrix that extracts the jth patch from x, with circular boundary conditions. The filter matrix, T, is
either the handcrafted filter TFD defined in (9.11) or the expected best learned filter derived in the previous section,
taking the form given in (9.12). We specifically test the learned filter with d = 0.67 (corresponding to λ = 0.23), so
T̂λ=0.23 =

[
-0.24 0.67 -0.67 0.24

]
.

We use Block coordinate minimization (BCM) to optimize (9.17). The x update is the solution to the least squares
problem

x(i+1) = argmin
x

1
2
‖x − y‖22 + β

∑

j

∥∥∥∥TP jx − z(i)
j

∥∥∥∥
2

2

=

I +
1
β

∑

j

P′jT
′TP j


-1 y + β

∑

j

P′jT
′ z(i)

j

 .

We can further simplify the x update because T′T = I by the orthnormal constraint on the rows of T and
∑

j P′j P j = DI

4The expression is quite messy, so we omit it here.
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since P creates patches in a circular manner:

x(i+1) =
1

1 + βD

y + β
∑

j

P′jT
′ z(i)

j

 .

The z j update is simply hard thresholding applied to TP jx(i+1)
j . We alternate the x and z updates until convergence,

which we defined as when
∥∥∥x(i+1) − x(i)

∥∥∥ < 10−5 E{‖xtrue‖}.
We did a grid search over α and β (the grid search was over α ∈ e−7:0.5:−1 and β ∈ e1:0.5:6) to find the tuning

parameter setting that yields the lowest MSE. In practice, this would require a validation data set, but we use a test
signal to get an optimistic error. For TFD, the best tuning parameters are α∗ = e−4 and β∗ = e3.5. For T̂λ=0.23, they are
α∗ = e−5.5 and β∗ = e5.0. Tab. 9.2 shows the resulting denoising error for the test signals. One could also run a grid
search over λ, creating a bilevel transform learning problem. While this would be feasible in our simple experiment,
it would be impractical for models and tasks such as those in [193].

TFD T̂λ=0.23

RMSE 0.081 ± 0.035 0.131 ± 0.035
Table 9.2: Average and standard deviation of the RMSE as defined in (9.10) for the 128 denoised test signals
using (9.17) with T being TFD or learned according to (9.3) for λ = 0.23. Other values of λ (not shown)
also yield higher RMSE values than TFD. The (smoothed) learned transform yields denoised signals with,
on average, 38% more RMSE than TFD.

Fig. 9.5 shows a segment of the true signal, noisy signal, and the denoised signal using the two different filters.
The handcrafted filter does a better job at reconstructing a constant signal (see in particular the first two constant
segments of the signal). However, both filters struggle to reconstruct the smaller jumps in the middle of the signal.

The learned filter achieves a lower cost function in the training stage than TFD, which should suggest that it is
somehow “better.” However, since the handcrafted filter TFD results in a lower MSE for the denoised signal, we would
rather use it for a denoising task. This seeming contradiction is in part due to the structure of the training cost; the
introduction of sparse code variables leads to the suboptimal smoothness of the learned filters. It is also because the

Figure 9.5: Example of how the handcrafted and learned filters perform for denoising a PWC signal.
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training cost learns filters that minimize some sparsity-based cost function for the training signals, not filters that are
good at denoising signals! This observation naturally leads to the idea of task-based training, where one learns filters
designed for a particular purpose, such as denoising. In Chapter 11, we compare the techniques used in this section to
task-based filter learning approaches.

9.2.4 Expanding to Two Filters
In this section, we consider minimizing (9.3) where now the possible transforms, T, is the set of transform matrices
with two orthonormal rows. With two filters and the orthogonality constraint, it is more difficult to guess the global
minimizer or to prove a specific form the learned filters take. However, we hypothesize the filters will be some
combination of TFD and

TEFD =
[
0.5 0.5 -0.5 -0.5

]
, (9.18)

which we call, Extended Finite Difference (EFD). For example, good handcrafted filter options for sparsifying the
data might be

T1 =


-1
√

2
1
√

2
0 0

0.5 0.5 -0.5 -0.5

 or T2 =
1
√

2


-1 1 0 0
0 0 -1 1

 . (9.19)

The second option is the TV filter repeated twice. Note that even though the first and second filters in T2 are effectively
the same, they are shifted such that they are still orthogonal. Thus, we see an example of how the orthogonality
constraint does not necessarily promote useful filter diversity!

We compare these handcrafted filters to filters learned using the same BCM approach as in the previous section
(see equations (9.5) and (9.4) for the iterative updates). We used the data set described in Section 9.2.2 for learning
filters. For each value of λ that we tested, we created 100 random filter initializations and ran BCM on (9.3) for up to
5,000 iterations or until convergence (defined as when the norm of the change in T is less than 10−4).

We use two metrics to quantify how close the learned filters are to the handcrafted filters, both from Rubinstein,
Peleg, and Elad [244]. The first metric,

1
2

2∑

i=1

min
a
|1 − T̃′iTa|,

finds the angle between each of the learned filters and the closest handcrafted filter in T then averages over the learned
filters. The second metric is the percentage of learned filters that match one of the handcrafted filters. We consider two
filters to match if they are less than 10 degrees apart. Because the problem is invariant to circular shifts of T, we use
all possible shifts of the two filters in TFD and TEFD when calculating the two metrics. We report the average metrics
over all 100 random initializations.

Fig. 9.6 shows the average angle between the learned filters and the two handcrafted filters for various λ values.
Here, lower values suggest smaller angles and therefore more similar filters. The difference between the blue and
orange curves shows that the learned filters are, on average, much closer to TFD than TEFD.

Fig. 9.7 shows the average percentage of learned filters that match the handcrafted filters versus λ. Here, larger
values are better. Again, we more often learn TFD than TEFD, but this figure shows that, for some values of λ, roughly
10% of the learned filters are close to TEFD.

Fig. 9.7, shows that setting λ too low or too high leads to fewer matching filters. Based on our previous results
learning a single filter, we hypothesized that (1) filters learned with small values of λ might be closer to their random
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Figure 9.6: The average angle between the learned
filters and TFD and TEFD versus λ, averaged over
100 random initialization. Smaller values suggest the
learned filters are closer to the handcrafted filters.
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Figure 9.7: The percentage of learned filters that are
within 10 degrees of TFD or TEFD. Higher values
suggest more of the learned filters are similar to the
handcrafted filters.

initializations and (2) filters learned with large values of λ might be more smoothed.
As some evidence of the first hypothesis, Fig. 9.8 shows a clear correlation between log(λ) and the angle between

the learned and initial filters. In short, filters learned with small values of λ did not move as far (measured by degrees)
from their initialization.

To test our second hypothesis, we looked at filters that were within 10 degrees of TFD and extracted the “equivalent
d” value for these filters. This measure takes the average of the magnitude of the two largest magnitude elements after
removing the mean from the filter. We call it “equivalent d” in reference to (9.12). The equivalent d for the TFD filter

is
1
√

2
, and any smaller value represents some amount of smoothing. Fig. 9.9 shows that the equivalent d decreases for

large λ values, supporting our hypothesis.
The other effect of λ is on convergence rate. As seen in Fig. 9.10, smaller values of λ typically require more

iterations to converge.
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Above, we examined how many of the learned filters are close to the handcrafted filters. To test the usefulness
of the filters, we next compared the denoising performance of the learned filters and handcrafted filters introduced in
(9.19) using the same test signal as we did for testing the single filter. We chose an example learned filter with λ = 0.1
to compare to the two handcrafted filters:

Tλ=0.1 =
1
√

2


0.037 0.035 −1.01 0.987121
0.987 −1.011 0.035 0.035

 . (9.20)

To tune α and β in (9.17), we again performed a grid search.

T1 T2 T̂λ=0.1

α∗ e−4.5 e−4 e−4

β∗ e1.5 e2.5 e2

RMSE 0.080 ± 0.033 0.081 ± 0.033 0.087 ± 0.027
Table 9.3: Tuned hyperparameter values and corresponding average and standard deviation of the RMSE
as defined in (9.10) for the 128 denoised signals using (11.2) when learning two sparsifying transforms.
The rows of the sparsifying transform T are the finite differencing filter shifted and repeated (T1), the finite
differencing filter and the extended finite differencing filter (T2) or an example learned transform (T̂). The
handcrafted filters are defined in (9.19) and the learned filter is defined in (9.20).

Tab. 9.3 shows the best tuning parameter values from the grid search and the RMSE of the corresponding denoised
signal. For comparison, recall that the RMSE for the same signal using a single filter was 0.081 for TFD and 0.131
for the learned (smoothed) version of TFD with λ = 0.23. As when learning a single filter, the handcrafted filters
outperform the learned filter on the denoising task. This is further motivation for the task-based learning approach.
Also note that T1, which incorpoates both TFD and TEFD, denoises the signal better than T2, which has two shifted
versions of TFD, even though we rarely learn a transform that includes TEFD as one of the two filters5.

5T1 could denoise even better if we allowed the sparsity tuning parameter, α, to vary between filters.
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9.2.5 Conclusions
We started this investigation to figure out why we did not learn TFD when learning a single sparsifying filter on noiseless
PWC training signals. Assuming that the learned filter takes the general form

[
-
√

1−2d
2 d -d

√
1−2d

2

]
, we were able to

derive the expected value of the cost function versus d and find the filter, fully determined by d̂, that is expected to
minimize the cost. In doing so, we showed that the filter becomes smoother as the tuning parameter in (9.3) increases.
This smoothness is a direct result of approximating our original sparsity problem by one with auxiliary sparse code
variables.

When we learned two filters, we similarly found that larger values of the tuning parameter, λ, tended to yield
smoother filters. Further, the filters tended to both be approximations of TFD, but shifted to be orthonormal. For
denoising, as predicted, having two TFD filters produced no benefit over having a single one. Thus, while we tend to
learn smoothed versions of shifted TFD filters, the best filter we observed for denoising was T1, which had one filter as
TFD and the other as TEFD. Therefore, this experiment is an example of when learning filters is worse (for denoising
performance) than handcrafting filters.

9.3 Handcrafted Convolutional Analyasis Operator Learning
The above section compares learned and handcrafted sparsifying filters in 1D. This section considers 2D filters for
CT image reconstruction. Specifically, this section presents a generalization of the CAOL method that allows system
designers to designate handcrafted filters, thus integrating domain-specific knowledge, while learning the remaining
set of filters and thus adapting to the training data.

Continuing this chapter’s theme of asking “when do learned filters outperform handcrafted filters”, we then inves-
tigate how the number of handcrafted filters impacts training time and CT image reconstruction quality. Our numerical
experiments show how handcrafting general purpose filters can trade-off between training time and CT reconstruction
quality, and how handcrafting a few filters using domain-specific knowledge can lead to shorter training times while
maintaining reconstruction quality. Thus, like the earlier sections of this chapter, we see the benefit of handcrafting.

9.3.1 Background: Convolutional Analysis Operator Learning
Convolutional dictionary learning (CDL) methods are reported to achieve lower redundancy in sparse representation
and therefore to be more memory efficient than synthesis patch-based dictionary learning methods [245], [246]. This
feature allows convolutional methods to to train from larger data-sets. Although benefits of the CDL model on its
own are yet unknown in sparse-view CT model-based image reconstruction (MBIR), a combination of a “blind”
CDL model and total variation (TV) penalty was successfully applied to sparse-view CT MBIR [247]. However, the
model has large computational costs because it optimizes both a convolutional dictionary and corresponding sparse
representations.

An alternative convolutional learning approach to CDL is convolutional analysis operator learning (CAOL).
CAOL is more amenable to large data-sets than CDL, and has theoretical benefits from using more training sam-
ples [248]. In ill-posed inverse problems like sparse-view CT, applying learned convolutional analysis operators to
MBIR has yielded significantly more accurate image reconstruction than existing MBIR with non-trained regularizers,
e.g., edge-preserving regularizers [249], and better generalization (and explainability) than existing non-MBIR deep
neural network approaches [250]. Section 8.1.2.3 discusses the differences between regularizers that model analysis
sparsity and those that model synthesis sparsity more generally.
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As briefly mentioned in Section 8.1.3, CAOL [193] learns K filters, c1, . . . cK ∈ FK from N training samples. Like
the convolutional filters learned using (Ex), CAOL learns filters that sparsify, rather than synthesize, the signals. For
example, in 1D, the finite difference filter c = [1, -1] sparsifies piecewise constant signals. The cost function for
learning these filters is [193]:

Ĥ = argmin
H

min
Z

J∑

j=1

K∑

k=1

1
2

∥∥∥ck ~ x j − zk, j

∥∥∥2
2 + λ

∥∥∥zk, j

∥∥∥
0 s.t. HH′ =

1
K

I, (9.21)

where x j ∈ FN is the jth training sample, H = [c1, . . . , cK] is a matrix of the vectorized filters, zk, j ∈ FN is a sparse
code, and λ is a regularization parameter. Note that the matrix of filters H in CAOL is defined as the transpose of
the filter matrix Ω in (8.7); the columns of H, not the rows, contain the convolutional filters that should sparsify the
training data.

The tight-frame constraint in (9.21) encourages filter diversity. Without any constraint, H = 0 would be a trivial
solution. With a constraint such as ‖ck‖ = 1 ∀k, the same filter could be learned for all k. However, the tight-frame
constraint allows for shifted versions of the same filter, which provide no additional benefit. Section 9.1 describes
other constraint and penalty options for learning sparsifying filters.

Similar to the transform learning cost in Section 9.2.1, the CAOL training cost (9.21) can be optimized using
block coordinate minimization (BCM). BCM alternates between minimizing with respect to zk, j and with respect to
C. The sparse code update is separable, yielding:

z(i+1)
k, j = argmin

zk, j

1
2

∥∥∥c(i)
k ~ x j − zk, j

∥∥∥2

2 + α
∥∥∥zk, j

∥∥∥
0 (9.22)

=τ(c(i)
k ~ x j,

√
2α), (9.23)

where τ is the element-wise hard thresholding operator (9.6).
Letting X j denote the data matrix for which X jck is equivalent to x j ~ ck, the filter update can be written in matrix

form [248]:

argmin
H

∥∥∥XH − Z(i+1)
∥∥∥2

F , s.t. HH′ =
1
K

I, where

X =



X1
...

X j


and Z(i+1) =



z(i+1)
1,1 . . . z(i+1)

K,1
...

z(i+1)
1,J . . . z(i+1)

K,J


. (9.24)

Defining Q =
√

KH′, B =
(
Z(i+1)

)′
, and A = 1

√
K

X′ yields the standard Procrustes problem [251]:

Q̂ = argmin
Q
‖B − QA‖2F , s.t. Q′Q = I (9.25)

= UV′, where UΣV′ = svd
(
BA′

)
.

Therefore, the update equation for the filters is

H(i+1) =
1
√

K
UV′, where UΣV′ = svd

(
X′Z(i+1)

)
. (9.26)

The BCM algorithm for the CAOL problem alternates between the sparse code update (9.22) and the filter update
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(9.26), where memory efficient implementations form X′Z(i+1) incrementally to avoid storing all the sparse codes. See
[193] for details about initialization, stopping criteria, and a generalization to a non-square filter matrix.

9.3.2 Motivation
The tight-frame constraint in (9.21) means that the learned filter bank, H, passes all spatial frequencies. However,
for certain applications, such as CT, we know that the images are non-negative. Therefore, the DC (0-frequency)
component will not be sparse. This causes a model mis-match; CAOL models that the DC component is sparse, but
we know it is not for applications like CT.

This can cause problems when we attempt to use the learned filters for, e.g., image reconstruction. Consider one
possible reconstruction cost function using learned sparsifying filters, ck,

x̂ = argmin
x

1
2
‖y − Ax‖2 + βmin

zk

K∑

k=1

1
2
‖ck ~ x − zk‖

2
2 + αk ‖zk‖0 ,

where A is the system matrix and y is the observed signal. A straightforward solution to the model mis-match problem
would be to set αk = 0 for whichever k value(s) captures the DC component. However, this requires knowing which
filters capture the DC component and, if multiple filters capture varying amounts of the DC component, it could lead
to us discarding other useful information captured by those filters.

The initial impetus for creating a handcrafted filter generalization of CAOL was to guarantee that the first filter
in H fully captured the DC component. Then, for a reconstruction problem set-up like the one above, it is simple to
set α1 = 0 and not enforce any sparsity in the DC component for the reconstruction. The derivation below generalizes
this idea to allow an arbitrary filter (or a collection of orthogonal filters) to be handcrafted.

9.3.3 Derivation
This section defines an efficient approach to CAOL with handcrafted filters (CAOL-HF): a modification to CAOL that
constrains the first P filters to be handcrafted (“predefined”) and learns the remaining L = K − P filters from training
data.

Using the standard Procrustes variables and the same mapping of variables we introduced in Section 9.3.1, we
assume the initialization Q(0) has the scaled handcrafted filters in the first P rows and satisfies the tight frame constraint.
To incorporate handcrafted filters, we include an additional constraint in the filter update:

argmin
QL

‖B − QA‖2F , s.t. Q′Q = I and Q =


QP

QL

 , (9.27)

where QP ∈ FP×K contains the “predefined” filters and QL ∈ FL×K contains learned filters.
The tight-frame constraint in (9.27) forces Q to be a unitary matrix. Thus, IK = Q′Q = QQ′ if and only if

(Condition (i)) QPQ′L = 0 and

(Condition (ii)) QLQ′L = IL.

We now introduce a change of variables:

W = QL

(
Q(0)

)′
⇐⇒ QL = WQ(0).
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We use Q(0) to define W, but any matrix satisfying the tight frame condition and containing the handcrafted filters in
the first P rows works. By condition (i) and the definition of Q(0),

W =
[
WP WL

]
=

[
QLQ′P QL

(
Q(0)

L

)′]

=
[
0L QL

(
Q(0)

L

)′]
.

Furthermore, in terms of W, condition (ii) becomes

IL = QLQ′L =
(
WQ(0)

) (
WQ(0)

)′

= WW′ = WPW′
P + WLW′

L.

Therefore, in terms of our new variable, the two conditions require that WP = 0 and WL ∈ FL×L be unitary.
Applying these two conditions, the minimization in terms of WL is an orthogonal Procrustes problem:

ŴL = argmin
WL

∥∥∥BL −WLQ(0)
L A

∥∥∥2

F , s.t. W′
LWL = IL

= UV′, where UΣV′ = svd
(
BL

(
Q(0)

L A
)′)
,

where BL contains the last L rows of B. Substituting for Q, the final expression for the minimizer to (9.27) is:

Q̂L = WLQ(0)
L = UV′Q(0)

L , where (9.28)

UΣV′ = svd
(
BL A′

(
Q(0)

L

)′)
.

Finally, substituting for the original CAOL variables, the modified filter update equation is:

H(i+1)
L = H(0)

L UV′, where (9.29)

UΣV′ = svd
((

H(0)
L

)′
X′Z(i+1)

L

)
,

where ZL contains the last L columns of Z that correspond to the sparse codes of the learned filters. In this form, one
can verify that the learned filters are constrained to be in the range of H(0)

L , which is the range orthogonal to HP. Alg. 2
summarizes CAOL-HF. We use the SVD to initialize H(0)

L to satisfy the tight-frame condition.

9.3.4 Computational Benefit

One can use an accumulator to store only one sparse code at a time since the lth column of X′Z(i+1)
L is

∑J
j=1 X′j zP+l, j,

for l = 1 . . . , L. Assuming one uses an accumulator in both implementations, CAOL-HF and CAOL have the same
memory complexity: O(min(M,KL)), where L = K for CAOL and typically KL � M.

When K ≤ MJL (which holds for large data sets), the per-iteration computational cost of CAOL-HF is smaller
than the O(MJK2) required by CAOL. CAOL-HF avoids O(MJPK) operations by not calculating zk, j for k ≤ P (Alg. 2
line 6) and again when evaluating X′ZL (Alg. 2 line 8). Thus, the time complexity of each CAOL-HF BCD iteration
is O(MJLK). The following section empirically examines the number of iterations required to reach convergence.
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Algorithm 2 CAOL with handcrafted filters.
1: procedure CAOL-HF(HP, tol, Imax)
2: i = 0
3: H(0)

L = (1/
√

K)null(H′P)

4: while i < Imax and
∥∥∥∥H(i)

L −H(i−1)
L

∥∥∥∥∥∥∥∥H(i−1)
L

∥∥∥∥
> tol do

5: for k = (P + 1) : K, j = 1 : J do
6: z(i+1)

k, j = τ.(c(i)
k ~ x j, α) . From (9.22)

7: end for
8: UΣV′ = svd((H(0)

L )′X′Z(i+1)
L )

9: H(i+1)
L = H(0)

L UV′ . From (9.29)
10: i = i + 1
11: end while
12: return H(i)

L
13: end procedure

9.3.5 Application to Sparse-View CT
This section examines the effect of the number of handcrafted filters on training time and sparse-view CT reconstruc-
tion quality. All CT images are presented in modified Hounsfield units (HU), where air is 0 HU and water is 1000 HU.
Training code is available at [252].

Training Setup and Results

The training process involves learning Ĥ via Alg. 2 from high quality CT images. We used J = 10 XCAT phantom
512× 512 slices [152] spaced by five slices (3.125 mm) and normalized to [0,1] (see Fig. 9.11 for example slices). We
set K = 7 × 7, λ = 5 · 10−4 (selected by visually comparing to the filters presented in [249]), a convergence tolerance
of 10−6, and 2000 maximum iterations.

Figure 9.11: Example training and testing images, arranged by slice order in the phantom (abdominal slices
are toward the left, chest slices are toward the right; display window is [800, 1200] HU). Left images: testing
images 1 and 2 from the abdominal region. Center box: images from the beginning, middle, and end of the
training data set. Right images: testing images 3 and 4 from the chest region.

To examine the effect of handcrafting filters for sparse-view CT image reconstruction, we used two sets of filters.
First, we used the 2D Discrete Cosine Transform (DCT), ordered from low to high frequency. We learned filters for
P ∈ {0, 1, 3, 6, . . . , 43, 46, 49}, which is equivalent to all filters up to the ith anti-diagonal in the usual DCT arrangement.
Second, we used EFD filters (e.g., [1, -1] and [1, 1, -1, -1] in both the horizontal and vertical directions). To initialize
the EFD filter matrix, we replaced the first nine DCT filters with our EFD filters and applied the Gram-Schmidt
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Figure 9.12: Example filters for the DCT (a-b) and EFD (c-d) cases. (a) and (c) show the case of all-learned
filters (P = 0) while (b) and (d) show the case of the maximum number of handcrafted filters (P = 49 for
DCT and P = 9 for EFD). Handcrafted filters are outlined by white borders.

procedure to obtain an orthogonal matrix. We learned filters for P ∈ {0, 1, 5, 9}. Fig. 9.12 shows four example H’s as
a grid of filters arranged in column-major order.

Fig. 9.13 shows the number of iterations and the time per iteration versus P. The time per iteration decreases
linearly with P as discussed previously. The number of iterations to convergence is less predictable, but the overall
trend is that the number of iterations decreases as P increases.

CT Reconstruction Formulation

Reconstruction recovers a linear attenuation coefficient image x̂ ∈ RN from a post-log measurement y ∈ RM [253],
[254] by optimizing [193]:

x̂ = argmin
x≥0

1
2
‖y − Ax‖2W + γmin

Z

K∑

k=1

1
2
‖ck ~ x − zk‖

2
2 + α ‖ψ � zk‖0 . (9.30)

Here, � is the Hadamard product, A ∈ RM×N is the system matrix that captures CT physics [255]; W ∈ RM×M is a
diagonal matrix with Wi,i =

ρ2
i

ρi+σ2 based on a Poisson-Gaussian model for the pre-log measurements ρ with electronic
readout noise variance σ2 [253], [254]; γ and α are regularization parameters; and ψ is a binary mask that is one only
inside the circle inscribing x [254], [256]. To rapidly solve (9.30) while guaranteeing convergence to a critical point,
we applied the block proximal extrapolated gradient method using a majorizer [249].

Reconstruction Setup and Results

To simulate sparse-view CT sinograms, we used 4 XCAT phantom 840×840 slices [152] in 1/mm units with pixel size
0.4883 mm, using 888 detectors and 123 views (out of a possible 984 views, yielding a 87.5% reduction in radiation),
an incident intensity of 1 · 105, and added noise with σ2 = 25. The reconstructed image x̂ is 420 × 420 with a pixel
size of 0.9766 mm. The test images are separated from the training slices by between 18.75 and 53.125 mm.

To minimize (9.30), we used γ = 13 · 106 (suggested in [249]), α = 5 · 10−9 (based on a rough grid search and a
RMSE criteria), a convergence tolerance of 10−6, and 5000 maximum iterations. We initialized with the conventional
filtered back-projection (FBP) image with a Hamming window. We evaluated the quality of reconstructed images
against the true image using RMSE inside a region of interest defined by ψ. Fig. 9.15 plots the RMSE versus P and
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Figure 9.13: Training results for the CAOL-HF algorithm for DCT and EFD filters. (left) Number of
CAOL-HF iterations required to reach convergence versus the number of handcrafted filters. (right) Time
per iteration versus the number of handcrafted filters.

Fig. 9.14 shows example reconstructed images.
For comparison, Fig. 9.15 reports the RMSE of images reconstructed using a total variation (TV) regularizer

with corner rounding. We implemented TV using (9.30) by replacing α with αk, having c1 and c2 take vertical and
horizontal differences and satisfy the tight-frame condition, and setting αk = 0 for k ≥ 3. Based on a rough grid search,
we chose α1 = α2 = 10−7 and β = 108.

The DCT filter results (Fig. 9.15) suggest a trade-off: as P increases, both the iterations to convergence and
reconstruction quality tend to decrease (though neither is monotonic). This trend is more noticeable for test images 3
and 4, where the RMSE increases by an average of 5.01 when comparing P = 0 to P = 49. In comparison, test images
1 and 2 have an average RMSE increase of only 0.85.

The EFD filters had lower RMSEs than the DCT filters and, unlike the DCT filters, the RMSE decreases as P
increases. Unlike the DCT files, the EFD filters were designed based on our domain knowledge, so it is unsurprisingly
that they perform better as handcrafted filters than the DCT filters. The fact that the RMSE is still decreasing suggests
we may have been able to handcraft additional filters. We do not present the results of handcrafting additional filters
because, after viewing the learned filters, it would be “cheating” to return to our initial hypothesis and handcraft
additional filters. To illustrate this point, we could, of course, take the output of CAOL without any handcrafted filters,
use all of those filters as “handcrafted” filters, and converge to a solution that is just as good as the learned solution
with no iterations! However, engineers with more CT domain knowledge could likely construct additional handcrafted
filters that would be worth testing.

Both the DCT (for small P) and EFD filters improve on the TV regularizer for images 3-4 but not for images 1-2.
We hypothesize that learned filters led to lower RMSEs for images 3-4 because those images have more high-contrast
regions, similar to the majority of our training data set. If we learn filters on slices similar to test images 1-2, we may
outperform TV for these low-contrast images.
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Figure 9.14: Reconstruction results for test image 3 (display window is [800, 1200] HU). The first column
shows the full image and the second and third columns zoom in on the highlighted regions for easier visual
comparison between the reconstructed images.
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Figure 9.15: RMSE of the reconstructed CT test images versus the number of handcrafted filters, P. The
finite differencing results are plotted for comparison, but do not vary with P.

191



9.3.6 Discussion
This section examined how incorporating handcrafted filters into CAOL affects training time and CT reconstruction
quality. Our proposed algorithm, CAOL-HF, has lower per iteration time complexity as the number of handcrafted
filters increases, though the overall time complexity is hard to analyze due to the varying number of iterations to con-
vergence. We hypothesize that handcrafting well-designed filters generally leads to fewer iterations, though proving
this remains future work. For reconstruction quality, we observed a decrease in quality when handcrafting DCT filters
but a slight increase in quality when handcrafting EFD filters that are more appropriate for CT. Future work should
consider how to design/learn filters for both high and low contrast CT slices.

Although our experiments are specific to sparse-view CT, the ideas transfer to other signal processing tasks. The
presented modification of the Procrustes problem could be used in more domains to understand the trade-off between
learning and handcrafting as well as to decrease training time while possibly maintaining or improving reconstruction
quality.

9.4 Conclusion
Machine learning, and particularly deep learning, generally outperforms handcrafted approaches to problems [257].
However, there are still situations when a handcrafted approach is preferable. Generally, researchers may wish to
select a handcrafted model when there is limited training data available or if compute power is limited. End-uses,
such as doctors in the case of medical image reconstruction, may also prefer handcrafted approaches for the additional
explainability and possible theoretical guarantees.

This chapter examined learned and handcrafted filters in the common setting of learning a transform that sparsifies
training data. To make the problem tractable, we followed previous work [183] and incorporated sparse code variables
and split the original cost function into two terms. Section 9.2 first looked at a simple 1d denoising experiment
where all the training signals were noiseless and PWC. In this setting, we know the solution to the original, non-split
problem is the finite differencing filter, TFD. However, our experimental results showed that, because of the addition
of the sparse codes, the learned filters tended to be smoothed versions of the finite differencing filter. Further, when
learning two filters, we found that we frequently learned two shifted versions of the finite differencing filter. Learning
this filter twice makes sense since it minimizes the training cost. However, the learned information is redundant and
provides no added benefit when using the filters in a denoising or reconstruction problem.

Section 9.3 then looked at the CT reconstruction with 2D filters based on the CAOL algorithm and found similar
results. We were able to introduce a small number of handcrafted filters and achieve similar (or, in a few cases, better)
reconstruction results.

Learning filters takes training time, and there is no reason to spend the training time to learn filters that perform
worse than handcrafted filters. However, we know that machine learning techniques yield state-of-the-art results in
image denoising and reconstruction. Thus, our question is not “is learning useful?”6, but rather “when is learning
useful?”

In answer, we claim that learning is generally useful. However, there are three cautionary notes that come from
our experiments:

1. If the signals are simple enough that one can handcraft a solution to an exact model, without having to ap-
proximate the model to run an optimization algorithm, then that handcrafted solution may be best. In the case

6To which the answer is a resounding yes!
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for our simple 1D, PWC signals, and, to a lesser extent, the PWC CT images, we could easily see the finite
differencing filter would sparsify the signals. However, we cannot as easily guess what other filters would
best sparsify the CT images. Training signals are often much more complicated than these relatively simple
examples.

2. Model simplifications are typically necessary to solve problems. However, these simplifications, like adding
the sparse code variables, change the minimizers. The new minimizers may be less well-suited for the original
goal.

3. The training task determines what filters are learned. Thus, it is vital to set-up the training task to learn filters
that will be useful in the end application. In our examples, the training task involved filters making the training
data approximately match sparse signals. We then used the learned filters to try to separate noise (which
theoretically should not be sparsified by the filters) from signal (which theoretically is sparse once filtered) in
our test data set and denoise or reconstruct the original signals. However, the training set-up in this chapter did
not specifically encourage the filters to perform best in our denoising and reconstruction models.

The last point motivates task-based bilevel approaches to filter learning. The following chapter describes how to learn
parameters in a bilevel manner. Chapter 11 then revisits the simple experiment from Section 9.2 using the presented
bilevel methods.
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CHAPTER 10

RQ#6: A Review of Bilevel Methods

This chapter addresses one piece of RQ#6: What are the current trends in the literature on bilevel methods for image
reconstruction? Specifically, this chapter consists of a literature review on bilevel optimization methods.

When the lower-level optimization problem (LL) has a closed-form solution, x̂, one can substitute that solution
into the upper-level loss function (UL). In this case, the bilevel problem is equivalent to a single-level problem and
one can use classic single-level optimization methods to minimize the upper-level loss. (See [192] for analysis and
discussion of some simple bilevel problems with closed-form solutions for x̂.) This review focuses on the more typical
bilevel problems that lack a closed-form solution for x̂.

Although there are a wide variety of optimization methods for this challenging category of bilevel problems, many
methods are built on gradient descent of the upper-level loss. The primary challenge with gradient-based methods
is that the gradient of the upper-level function depends on a variable that is itself the solution to an optimization
problem involving the hyperparameters of interest. Section 10.1 describes two common approaches for overcoming
this challenge. The first approach uses the fact that the gradient of the lower-level cost function is zero at the minimizer
to compute an exact gradient at the exact minimizer. The second approach uses knowledge of the update scheme for the
lower-level cost function to calculate the exact gradient for an approximation to the minimizer after a specific number
of lower-level optimization steps. With this (approximation of the) gradient of the lower-level optimization variable
with respect to the hyperparameters, one can compute the gradient of the upper-level loss function with respect to the
hyperparameters, γ.

Section 10.2 uses the building blocks from Section 10.1 to explain various gradient-based bilevel optimization
methods. Bilevel gradient methods fall into two broad categories. Most gradient-based approaches to the bilevel
problem fall under the first category: double-loop algorithms. These methods involve (i) optimizing the lower-level
cost, either to some convergence tolerance if using a minimizer approach or for a certain number of iterations if using
an unrolled approach, (ii) calculating the upper-level gradient, (iii) taking a gradient step in γ, and (iv) iterating. The
first step is itself an optimization algorithm and may involve many inner iterations, thus the categorization as a “double-
loop algorithm.” The second category, “single-loop” algorithms, involve one loop, with each iteration containing one
gradient step for both the lower-level optimization variable, x, and the upper-level optimization variable, γ. Single-
loop algorithms may alternate updates or update the variables simultaneously.

This material in this chapter is presented in chapters 3-4 of [11]:

C. Crockett and J. A. Fessler, “Bilevel methods for image reconstruction,” Foundations and Trends® in
Signal Processing, vol. 15, no. 2-3, pp. 121–289, May 5, 2022, ISSN: 1932-8346, 1932-8354.
DOI: 10.1561/2000000111
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10.1 Gradient-Based Bilevel Methodology: The Groundwork
Recall from Section 7.3 that a generic bilevel problem is

argmin
γ

`(γ ; x̂(γ))︸ ︷︷ ︸
`(γ)

where x̂(γ) = argmin
x

Φ(x ;γ). (10.1)

For simplicity, hereafter we focus on the case F = R. Using the chain rule, the gradient of the upper-level loss function
with respect to the hyperparameters is

∇`(γ) = ∇γ`(γ ; x̂(γ)) +
(
∇γ x̂(γ)

)′
∇x`(γ ; x̂(γ)), (10.2)

where on the right hand side ∇γ and ∇x denote partial derivatives w.r.t. the first and second arguments of `(γ ; x),
respectively. We typically select the loss function such that it is easy to compute these partials. For example, if ` is the
squared error training loss, i.e., `(γ ; x̂(γ)) = 1

2

∥∥∥x̂(γ) − xtrue
∥∥∥2

2, then

∇γ`(γ ; x̂(γ)) = 0 and ∇x`(γ ; x̂(γ)) = x̂(γ) − xtrue.

The following sections survey methods to find the remaining, more challenging piece in (10.2): the Jacobian ∇γ x̂(γ) ∈
FN×R for a given value of γ.

10.1.1 Minimizer Approach
The first approach finds the Jacobian ∇γ x̂(γ) by assuming the gradient of Φ at the minimizer is zero. There are two
ways to arrive at the final expression: the implicit function theorem (Implicit function theorem (IFT)) perspective (as
in [163], [258]) and the Lagrangian/KKT transformation perspective (as in [162], [164]). This section presents both
perspectives in sequence. The end of the section summarizes the required assumptions and discusses computational
complexity and memory requirements.

The first step in both perspectives is to assume we have computed x̂(γ) and that the lower-level problem 10.1 is
unconstrained (e.g., no non-negativity or box constraints). Therefore, the gradient of Φ with respect to x and evaluated
at x̂ must be zero:

∇xΦ(x ;γ)
∣∣∣∣∣
x=x̂(γ)

= ∇xΦ(x̂ ;γ) = 0. (10.3)

After this point, the two perspectives diverge.

10.1.1.1 Implicit Function Theorem Perspective

In the IFT perspective, we apply the IFT (cf . [259]) to define a function h such that x̂(γ) = h(y,γ). If we could write
h explicitly, then the bilevel problem could be converted to an equivalent single-level problem. However, per the IFT,
we do not need to define h, we only state that such an h exists. Combining this definition with (10.3) yields

0 = ∇xΦ(h(y,γ);γ). (10.4)
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Using the chain rule, we differentiate both sides of (10.4) with respect to γ. The I in the equation below follows from
the chain rule because ∇γγ = I. We then rearrange terms to solve for the desired quantity, noting that ∇γ x̂(γ) =

∇γh(y,γ). Thus, evaluating all terms at x̂ leads to the Jacobian expression of interest:

0 =∇xxΦ(h(y,γ);γ)∇γh(y,γ) + I · ∇xγΦ(h(y,γ);γ)

∇γh(y,γ) = − [∇xxΦ(h(y,γ);γ)]−1 · ∇xγΦ(h(y,γ);γ)

∇γ x̂(γ) = − [∇xxΦ(x̂;γ)]−1 · ∇xγΦ(x̂;γ). (10.5)

When Φ is strictly convex, the Hessian of Φ is positive definite and ∇xxΦ(x̂;γ) is invertible.
Substituting (10.5) into (10.2) yields the following expression for the gradient of the upper-level loss function

with respect to γ:

∇`(γ) = ∇γ`(γ ; x̂(γ)) −
(
∇xγΦ(x̂;γ)

)′
(∇xxΦ (x̂ ;γ))-1

∇x`(γ ; x̂).

If there is a closed-form solution to the lower-level problem, one can verify that the IFT gradient agrees with the
analytic gradient; see [258] for examples.

10.1.1.2 KKT Conditions

In the Lagrangian perspective, (10.3) is treated as a constraint on the upper-level problem, creating a single-level
problem with N equality constraints:

argmin
γ

`(γ ; x) subject to ∇xΦ(x ;γ) = 0N . (10.6)

Using the KKT conditions to transform the bilevel problem into a single-level, constrained problem is sometimes called
the “KKT transformation” of the bilevel problem. This transformation relates bilevel optimization to mathematical
programs with equilibrium constraints (MPEC), see [141, Ch. 12], and some authors use approaches from the broader
MPEC literature to approach bilevel problems [260]. The Lagrangian corresponding to (10.6) is

L(x,γ, ν) = `(γ ; x) + νT∇xΦ(x ;γ)

where ν ∈ FN is a vector of Lagrange multipliers associated with the N equality constraints in (10.6).
The Lagrange reformulation is generally well-posed because many bilevel problems, such as (Ex), satisfy the

linear independence constraint qualification (LICQ) [8], [261]. The LICQ requires that the matrix of derivatives of the
constraint has full row rank [261], i.e.,

rank
([
∇xγΦ(x ;γ) ∇xxΦ(x ;γ)

])
= N.

Strict convexity of Φ(x ;γ) is therefore a sufficient condition for LICQ to hold. (Note the similarity to the IFT
perspective, where strict convexity is sufficient for the Hessian to be invertible.) Ref. [262] explores more generally
how bilevel problems relate to MPECs and when the global and local minimizers of the KKT reformulation are
minimizers of the original bilevel problem.

The first Karush–Kuhn–Tucker (KKT) condition states that, at the optimal point, the gradient of the Lagrangian
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with respect to x must be 0. We can use this fact to solve for the vector of optimal Lagrangian multipliers, ν̂:

∇xL(x̂,γ, ν̂) = ∇x`(γ ; x̂) + ∇xxΦ(x̂ ;γ)ν̂ = 0

ν̂ = -(∇xxΦ (x̂ ;γ))-1
∇x`(γ ; x̂).

Substituting the expression for ν̂ into the gradient of the Lagrangian with respect to γ yields

∇γL(x̂,γ, ν̂) = ∇γ`(γ ; x̂) +
(
∇xγΦ(x̂ ;γ)

)′
ν̂

= ∇γ`(γ ; x̂) −
(
∇xγΦ(x̂ ;γ)

)′
(∇xxΦ (x̂ ;γ))-1

∇x`(γ ; x̂),

which is equivalent to the IFT result.
Ref. [164] generalized the Lagrangian approach to the case where the forward model is defined only implicitly,

e.g., as the solution to a differential equation. The authors write the lower-level problem as

x̂ = argmin
x

min
ỹ
‖y − ỹ‖22 + R(x) s.t. e(ỹ, x) = 0, (10.7)

where the constraint function, e, incorporates the implicit system model. For example, when the forward model is
linear (Ax), taking e(ỹ, x) = ‖Ax − ỹ‖22 shows the equivalence of the approach here to the one in [164].

10.1.1.3 Summary of the Minimizer Approach

In summary, the upper-level gradient expression for the minimizer approach (i.e., when one “exactly” minimizes the
lower-level cost function) is

∇`(γ) = ∇γ`(γ ; x̂) −
(
∇xγΦ(x̂;γ)

)′
(∇xxΦ (x̂ ;γ))-1

∇x`(γ ; x̂). (10.8)

Thus, for a given loss function and cost function, calculating the gradient of the upper-level loss function (with respect
to γ) requires the following components all evaluated at x = x̂: ∇γ`(γ ; x) ∈ FR, ∇xγΦ(x ;γ) ∈ FN×R, ∇xxΦ(x ;γ) ∈
FN×N , and ∇x`(γ ; x) ∈ FN .

Continuing the specific example of learning filter coefficients and tuning parameters (Ex), the components are:

∇xΦ(x̂ ;γ) = A′(Ax − y) + eβ0

K∑

k=1

eβk c̃k ~ φ̇.(ck ~ x; ε)

∇xβkΦ(x̂ ;γ) = eβ0+βk c̃k ~ φ̇.(ck ~ x̂)

∇xck,sΦ(x̂ ;γ) = eβ0+βk
(
φ̇.((ck ~ x̂)〈s〉) + c̃k ~

(
φ̈.(ck ~ x̂) � x̂〈-s〉

))

∇xxΦ(x̂ ;γ) = A′A + eβ0
∑

k

eβk C′kdiag(φ̈.(ck ~ x̂))Ck

∇γ`(γ ; x) = 0

∇x`(γ ; x̂) = x̂(γ) − xtrue. (10.9)

Here, the notation x〈i〉 means circularly shifting the vector x by i elements, and ck,s denotes the sth element of the kth
filter ck, where s is a tuple that indexes each dimension of ck. Appendix E gives examples of using the x〈i〉 notation
and derives ∇ck,s (c̃k ~ f .(ck ~ x)), which is the key step to expressing ∇xck,sΦ(x̂ ;γ). The other components follow
directly from ∇xΦ(x̂ ;γ) using standard gradient tools for matrix expressions [263].
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The minimizer approach to finding ∇`(γ) uses the following assumptions:

1. Both the upper-level and lower-level optimization problems have no inequality constraints.
2. x̂ is the minimizer to the lower-level cost function, not an approximation of the minimizer. This constraint

ensures that (10.3) holds.
3. The cost function Φ is twice-differentiable in x and differentiable with respect to x and γ.
4. The Hessian of the lower-level cost function, ∇xxΦ(x ;γ), is invertible; this is guaranteed when Φ is strictly

convex.

The first condition technically excludes applications like CT imaging, where the image is typically constrained
to be non-negative. However, non-negativity constraints are rarely required when good regularizers are used, so the
resulting non-constrained image can still be useful in practice [259].

The second constraint is often the most challenging since the lower-level problem typically uses an iterative
algorithm that runs for a certain number of iterations or until a given convergence criteria is met. As previously
noted, if there were a closed-form solution for x̂, then we would not have needed to use the IFT or Lagrangian to
find the partial derivative of x̂ with respect to γ. Since one usually does not reach the exact minimizer, the calculated
gradient will have some error in it, depending on how close the final iterate is to the true minimizer x̂. Thus, the
practical application of this method is more accurately called Approximate Implicit Differentiation (AID) [264], [265].
Section 10.1.4 further discusses gradient accuracy.

The third condition disqualifies sparsity-promoting functions such as the 0-norm and 1-norm as choices for φ.
Finally, the fourth (strict convexity) condition is easily satisfied in denoising problems where A = I whenever

φ is convex. Common convex φ choices include (CR1N) and the Fair potential [266]. However, in applications like
compressed sensing where A′A is not positive definite, the strict convexity of Φ depends non-trivially on γ. The
condition is likely to hold in practice for “good” values of γ. Specifically, if φ is strictly convex, then the condition
will hold for any value of γ such that the null-space of the regularization term is disjoint from the null-space of A
and the regularization parameters are sufficiently large (eβk cannot approach 0). To interpret this condition, recall
that regularization helps compensate for the under-determined nature of A (Section 8.1.1). Values of γ that do not
sufficiently “fill-in” the null-space of A will leave the lower-level cost function under-determined. The task-based
nature of the bilevel problem should discourage these “bad” values, but this intuition is insufficient to claim that the
minimizer approach is well-defined at all iterations. To ensure that the lower-level problem is strongly convex, one
could include a term like ‖x‖22 with a small positive regularization parameter, like is done with elastic-net regularization
[267].

10.1.1.4 Computational Costs

The largest cost in computing the gradient of the upper-level loss using (10.8) is often finding (an approximation
of) x̂. However, this cost is difficult to quantify, as the IFT approach is agnostic to the lower-level optimization
methodology. To compare the bilevel gradient methods, we will later assume the cost is comparable to the gradient
descent calculations used in the unrolled approach (described in Section 10.1.3). However, this is an over-estimation of
the cost, as the IFT approach is not constrained to smooth lower-level updates, and one can use optimization methods
with, e.g., warm starts and restarts to reduce this cost.

When the lower-level problem satisfies the assumptions above, and assuming one has already found x̂, a straight-
forward approach to computing the gradient (10.8) would be dominated by the O

(
N3

)
operations required to compute

the Hessian’s inverse. For many problems, N is large, and that matrix inversion is infeasible due to computation or
memory requirements. Instead, as described in [268], one can use a conjugate gradient (Conjugate gradient (CG))
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method to compute the matrix-vector product

(∇xxΦ (x̂ ;γ))-1
∇x`(γ ; x̂) (10.10)

because the Hessian is symmetric and positive definite (see assumption #4 in the previous section). For a generic A,
each CG iteration requires multiplying the Hessian by a vector, which has a computational complexity that is O

(
N2

)
.

CG takes N iterations to converge fully (ignoring finite numerical precision), so the final complexity is still O
(
N3

)

in general. However, the Hessian often has a special structure that simplifies computing the matrix-vector product.
Consider the running example of learning filters per (Ex). The Hessian, as given in (10.9), multiplied with any vector
v ∈ FN is

∇xxΦ(x̂;γ, y) · v = A′(Av)︸ ︷︷ ︸
2N2

+eβ0
∑

k

eβk C′k·︸︷︷︸
NS

N︷ ︸︸ ︷
diag(φ̈.(ck ~ x̂︸︷︷︸

NS

))· (Ckv)︸︷︷︸
NS

. (10.11)

The annotations show the multiplications required for each component, where we used the simplifying assumption
that the number of measurements matches the number of unknowns (M = N).

As written, (10.11) does not make any assumptions on A, so the first term is still computationally expensive. If A
is the identity matrix (as in denoising), the N2 term could instead be zero cost. If A′A is circulant, e.g., if A is a MRI
sampling matrix that can be written in terms of a discrete Fourier transform, then the cost is Nlog (N). More generally,
the computational cost for one (of N) iterations of CG is O(cAN) where cA ∈ [0,N] is some constant dependent on
the structure of A.

For the second addend in (10.11), we assume that S � N, so direct convolution is most efficient and the matrix-
vector product requires O(NS ) multiplies. When the filters are relatively large, one can use Fourier transforms for the
filtering, and the cost is O

(
Nlog(N)

)
. The final cost of the Hessian-vector product for (Ex) is O(cAN + RN). This cost

includes a multiplication by K to account for the sum over all filters, which simplifies since S K is1 O(R).
If N is small enough that storing the inverse Hessian is feasible, then one can estimate the Hessian inverse rather

than computing it directly. Consider using a quasi-Newton algorithm to find x̂, which involves estimating the in-
verse Hessian as a pre-conditioning matrix for the gradient steps. This inverse Hessian estimate can be “shared” to
efficiently approximate the inverse Hessian-vector product in (10.8) [219]. Ref. [269] used this strategy and also incor-
porated information from the upper-level loss function to improve the estimated inverse Hessian vector product while
maintaining the super-linear convergence rate of the quasi-Newton algorithm.

10.1.2 Translation to a Single-Level
Before discussing the other widely used approach to calculating the gradient of the upper-level loss, we summarize a
specialized approach for 1-norm regularizers. Like the minimizer approach described above, this approach assumes
we have computed an (almost) exact minimizer of the lower-level cost function. It writes the minimizer as an (almost
everywhere) differentiable function in terms of that x̂, then substitutes this expression for the minimizer into the
upper-level loss to create a single-level optimization problem that is suitable for one hyperparameter update step.

Ref. [270] proposed the translation to a single-level approach to solve a bilevel problem with both synthesis and
analysis operators. Refs. [271], [272] more recently presented versions specific to analysis operators. The bilevel

1The full parameter dimension includes the filters and tuning parameters, so R = S (K + 1) + 1.
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problem considered in [271], [272] is:

argmin
γ

∑

j

1
2
‖x̂ j(γ) − xtrue

j ‖
2
2

x̂ j(γ) = argmin
x∈FN

1
2

∥∥∥x − y j

∥∥∥2
2 +

∥∥∥Ωγx
∥∥∥

1 , (10.12)

where Ωγ ∈ FF×N is a matrix constructed based on γ. We write Ω without the γ subscript and x̂ j(γ) without the j
subscript in the following discussion to simplify notation. As in the minimizer approach, the first step is to compute
x̂(γ) for the current guess of γ, e.g., using ADMM. After optimizing for x̂(γ), [271], [272] both used the known
sign pattern of the filtered signal, Ωx̂(γ) to rewrite the lower-level problem (10.12) in a simpler, (almost everywhere)
differentiable form. By rewriting the problem, the translation to a single-level approaches handle the non-smooth
1-norm in (10.12) directly–they do not require any corner rounding as in the minimizer approach.

One way to rewrite the lower-level problem is to split the 1-norm into its positive and negative elements, e.g.,

‖Ωx̂(γ)‖1 =
∑

i∈I+(γ)

[Ωx̂(γ)]i −
∑

i∈I−(γ)

[Ωx̂(γ)]i,

where I+(γ) and I−(γ) denote the set of indices where Ωx̂(γ) is positive and negative, respectively. Ref. [271] used
this approach and defined a diagonal sign matrix, S(γ) = diag(sign(Ωx̂(γ))), having positive and negative diagonal
elements at the appropriate indices. For a single training image, the lower-level problem (10.12) is thus equivalent to

x̂(γ) = argmin
x∈FN

1
2
‖Ax − y‖22 + β1′S(γ)Ωx, s.t. [Ωx]I0(γ) = 0, (10.13)

where I0(γ) denotes the set of indices where [Ωx̂(γ)]i = 0. The rewritten problem (10.13) it is a quadratic cost function
with a linear equality constraint and thus has a closed-form solution. Ref. [271] states that x̂(γ) is differentiable
everywhere except a set of measure zero when A = I and when the rows of Ω corresponding to I0(γ) are linearly
independent.

Another way to rewrite (10.12) uses the results from [273]. The lower-level problem (10.12) can be transformed
into the dual problem

min
d ∈RF

1
2

∥∥∥-Ω′d + y
∥∥∥2
−

1
2
‖y‖2 s.t. |di| ≤ 1 ∀i. (10.14)

where the dual variable d is related to the filtered signal by

di ∈


sign([Ωx]i) if [Ωx̂]i 6= 0

[-1, 1] if [Ωx̂]i = 0
(10.15)

(compare to (C.9) and (C.13) in Appendix C). Ref. [273] defines boundary indices as the set of indices where the
dual variable is at the edges of its allowed range: B ··= {i : |di| = 1}. The complement to this set is B̄ ··= {i : |di| 6= 1}
and contains all coordinates where d is in the interior of its allowed range. Let Ωd ∈ F|B|×N contain the rows of Ω
that correspond to B and similarly for ΩB̄. By taking the gradient of the Lagrangian of the dual formulation and then
substituting the dual variable minimizer into (C.11), [273] derives the following closed-form expression for x̂

x̂ = (I −Ω+
B̄ΩB̄) (y −ΩB sign(ΩB x̂)) , (10.16)

which is a projection onto the null space ofΩB̄. Thus, similar to splitting the 1-norm based on the sign ofΩx̂, splitting
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the dual variable into boundary and interior indices yields a rewritten problem with a simpler structure.
Ref. [272] used (10.16) to rewrite the lower-level problem (10.12) and then used matrix gradient relations to derive

a closed-form expression for ∇γ x̂(γ). Unlike [271], the final upper-level gradient ∇`(γ) in [272] does not require that
the rows of Ω that are orthogonal to x̂(γ) are linearly independent.

In both (10.13) and (10.16), the rewritten problem has the same minimizer as the original problem (10.12), but
the reformulated problem has a simpler structure. Recall that the rewriting process requires x̂(γ), so one cannot use
this equivalence to optimize the lower-level problem. However, the closed-form expressions can be differentiated.
Because of the discontinuity of the sign function, both methods require the sign pattern of Ωx̂ to be constant within
a region to compute an accurate gradient [271], [272]. The authors have shown that this condition holds in various
empirical settings [274].

In summary, the translation to a single-level approach involves computing x̂, creating a closed-form expression
for x̂, and then differentiating the closed-form expression to compute the desired Jacobian, ∇γ x̂(γ). As in the min-
imizer approach, ∇γ x̂(γ) is related to the upper-level gradient by the chain rule (10.2). In terms of computation,
both translation to a single-level approaches require optimizing the lower-level cost sufficiently precisely to ensure
the sign pattern converges; [272] used thousands of iterations of ADMM. Ref. [272] demonstrates that evaluating the
closed-form expression for ∇`(γ) is faster than using automatic differentiation tools that rely on backpropagation.

10.1.3 Unrolled Approaches
A popular approach to finding ∇γ x̂(γ) is to assume that the lower-level cost function is approximately minimized by
applying T iterations of some (sub)differentiable optimization algorithm, where we write the update step at iteration
t ∈ [1 . . . T ] as

x(t) = Ψ(x(t−1) ;γ),

for some mapping Ψ : FN 7→ FN that should have the fixed-point property Ψ(x̂(γ) ;γ) = x̂(γ). For example, GD
has Ψ(x ;γ) = x − αΦ∇Φ(x ;γ) for some step size αΦ. We write the update here only in terms of x; the idea easily
extends to updates in terms of a state vector that allows one to include momentum terms, weights, and other accessory
variables in γ [275].

In contrast to the two approaches described above, the “unrolled” approach no longer assumes the solution to the
lower-level problem is an exact minimizer. Instead, the unrolled approach reformulates the bilevel problem (LL) as

argmin
γ

`
(
γ ; x(T )(γ)

)
︸ ︷︷ ︸

`(γ)

s.t. (10.17)

x(t)(γ) = Ψ(x(t−1) ;γ), ∀t ∈ [1 . . . T ],

where x(0) is an initialization, e.g., A′y. One can then take the (sub)gradient of a finite number of iterations T of Ψ,
hoping that x(T ) approximately minimizes the lower-level function Φ.

The chain rule for derivatives is the foundation of the unrolled method. The gradient of interest, ∇`(γ), depends on
the gradient of the optimization algorithm step with respect to x and γ. For readability, define the following matrices
for the tth unrolled iteration

Ht ··= ∇xΨ
(
x(t−1) ;γ

)
∈ FN×N and J t ··= ∇γΨ

(
x(t−1) ;γ

)
∈ FN×R,

for t ∈ [1,T ]. We use these letters because, when using gradient descent as the optimization algorithm, ∇xΨ(x ;γ)
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is closely related to the Hessian of Φ and ∇γΨ(x ;γ) is proportional to the Jacobian of the gradient2. Thus, when
Ψ corresponds to GD, an unrolled approach involves computing the same quantities as required by the IFT approach
(10.8).

By the chain rule, the gradient of (10.17) is

∇`(γ) =∇γ`(γ ; x(T )) +


T∑

t=1

(HT · · ·Ht+1) J t


′

∇x`(γ ; x(T )) ∈ FR. (10.18)

One can derive this gradient expression using a reverse or forward perspective, with parallels to back-propagation
through time and real-time recurrent learning respectively [275]. Appendix D describes the reverse and forward
approaches to unrolling.

Most unrolled implementations use the reverse-mode approach (backpropagation) due to its lower computational
burden, but unrolling with reverse mode differentiation may have prohibitively high memory requirements if T is
large or if the training dataset includes large images [241]. A strategy to trade-off the memory and computation
requirements is checkpointing, which stores x every few iterations. Checkpointing is an active research area; see [276]
for an overview. Another option is to use (some or all) reversible network layers [277] to trade off the memory and
computational requirements.

The following sections overview some design decisions for unrolling and draw some parallels to unrolled methods
as used in the (non-bilevel specific) machine learning literature. Section 12.2.1 further discusses the relation between
bilevel problems and unrolling methods common in the broader literature.

10.1.3.1 Number of Iterations

Unlike the minimizer approach, where the goal is to run the lower-level optimization until (close to) convergence so
that an optimally condition holds and one can use implicit differentiation to find ∇`(γ), most unrolling methods set
the number of lower-level iterations T in advance. The set number of lower-level iterations mimics the depth of neural
networks and allows a precise estimate of how much computational effort each lower-level optimization takes. The
chosen number of iterations is important as, at test time, “one cannot deviate from the choice of [number of unrolled
iterations] and expect good performance” [278].

Although it is generally not equal to the gradient of the original bilevel problem (UL), the unrolled gradient is
exact for the reformulated problem (10.17). Therefore, when T is small enough that the lower-level optimizer is far
from convergence, the unrolled method is only loosely tied to the original bilevel optimization problem. To maintain
a stronger connection to the bilevel problem while avoiding setting T larger than necessary for convergence, [279]
used a convergence criterion to determine the number of Ψ iterations rather than pre-specifying a number of iterations.
Unrolling until convergence is also used in deep equilibrium or fixed point networks, see Section 12.2.1.

A subtle point in unrolling gradient-based methods for the lower-level cost function is that the Lipschitz constant
of ∇xΦ is a function of the hyperparameters, so the step size range that ensures convergence cannot be pre-specified.
Many unrolled methods use a fixed step size alongside a fixed T and allow the learned parameters to adapt to these
set values. An alternative approach is to compute a new step-size as a function of the current parameters, γ(u), every
upper-level iteration. For example, from (E.5), for a given value γ of the tuning parameters and filter coefficients, a

2When Ψ(x ;γ) = x − αΦ∇xΦ(x ;γ), then ∇xΨ(x ;γ) = I − αΦ∇xxΦ(x ;γ) and ∇γΨ(x ;γ) = -αΦ∇xγΦ(x ;γ).
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Lipschitz constant of the lower-level gradient for (Ex) is

L = σ2
1(A) + eβ0 Lφ̇

∑

k

eβk ‖ck‖
2
1 , (10.19)

where Lφ̇ is a Lipschitz constant for φ̇(z) (for (CR1N), Lφ̇ = 1/ε). A reasonable step size for the classical gradient
descent method would be 1/L. It is relatively inexpensive to update this L as γ evolves.

The adaptive approach to setting the step size ensures that any theoretical guarantees of the lower-level optimizer
hold. This approach may be beneficial when using a convergence criteria for the lower-level optimization algorithm or
when running sufficiently many lower-level iterations to essentially converge. However, updating the step-size every
upper-level iteration is incompatible with fixing the number of unrolled iterations. To illustrate, consider an upper-
level iteration where the tuning parameters increase, leading to a larger L and a smaller step size. In a fixed number
of iterations, the smaller step size means the lower-level optimization algorithm will be farther from convergence, and
the estimated minimizer, x̂(γ(u+1)), may be worse (as judged by the upper-level loss function) than x̂(γ(u)), even if the
updated hyperparameters are better when evaluated with the previous (larger) step-size or more lower-level iterations.
Fig. 11.1 and 11.2 demonstrate this phenomenon.

Another approach is to learn the step-size and/or number of iterations. For example, [157] provides a continuous-
time perspective on the unrolling approach and learns the stopping time, which translates to the number of iterations
in the discrete approach.

The continuous time perspective on unrolling models the lower-level problem as a differential equation with an
initial condition enforcing that x at time 0 is x0 [157], [280]. Just as the unrolled approach better approximates the
bilevel problem as the number of iterations approaches infinity, the continuous perspective on unrolling approaches
the bilevel problem as the stopping time T → ∞. The discretization of the continuous-time gradient flow corre-
sponds to an unrolled optimization algorithm (or, more generally, to a variational network with shared weights) and
back-propagation can be seen as a discretization of the continuous-time adjoint equation [157], [280]. Solving the
differentiable adjoint equation does not require saving the forward-pass output at every “step,” making the backward
pass feasible for large problems such as 3D CT image reconstruction [281].

Like many other bilevel methods for filter learning, [157] uses a regularizer based on the Field of Experts [187]
and the standard data-fit term. The lower-level problem in [157] is

State equation:
dx(t)

dt
= -A′(Ax(t) − y) −

∑

k

C′kφk(Ck x(t))

Initial condition: x(0) = x0,

where [157] learns a separate penalty function for each filter. Ref. [157] found that beyond a certain depth, increasing
the number of layers did not significantly decrease the upper-level loss. Further, following intuition, the learned
stopping time increased with higher noise levels or blur strengths in the denoising and deblurring problem settings
[157].

10.1.3.2 Application to Non-smooth Cost Functions

An important distinction between the minimizer approach and the unrolled approach is that the unrolled approach
depends on the optimization algorithm. Therefore, in addition to the number of iterations and step size, one must
select an optimization algorithm to unroll. The choice is typically driven by parameters such as memory availability
and desired run-time, with the one requirement being that Ψ be differentiable in both x and γ. For certain cost
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functions, a resulting advantage of the unrolling method is that one can use a smooth Ψ to optimize a non-smooth cost
function, removing the need for smoothing techniques such as used in (CR1N).

Ochs et al. [146] describe one such smooth update algorithm for a non-smooth cost function. At a high-level,
their approach is to:

1. transform the lower-level cost function to a primal-dual, saddle-point problem, using the Legendre-Fenchel
conjugate of φ (defined in Appendix C),

2. use a forward-backward splitting algorithm to alternatively update the primal (x) and dual (d) variables, and

3. replace the Euclidean norm in the proximal operator in the dual variable update equation with a Bregman
divergence measure.

If the Bregman divergence measure is chosen carefully, the resulting update is smooth and standard backpropagation
tools can compute ∇`(γ). This section overviews how the approach in [146] applies to (Ex). Ref. [146] derives
the full backpropagation formula and uses Bregman divergences to unroll non-smooth cost functions in a multi-label
segmentation problem, but the approach generalizes to image reconstruction as shown here.

Using the stacked convolutional matrix notation for the learned filters defined in (8.7) and selecting φ to be the
absolute value function3, the lower-level optimization problem is

argmin
x

1
2
‖Ax − y‖2 + ‖Ωx‖1 .

From (C.8), the corresponding saddle-point formulation is

argmin
x

min
d

1
2
‖Ax − y‖2 − 〈d,Ωx〉 s.t. |di| ≤ 1 ∀i,

where d is the dual variable. The minimum cost value and corresponding minimizer, x̂, of the saddle-point problem
are equivalent to those of the original problem because the 1-norm is convex.

To optimize the saddle-point problem, one can alternate x and z updates. Ref. [146] uses the primal-dual algorithm
from [282] that introduces a proximity function to each update step:

x(t+1) = argmin
x

1
2
‖Ax − y‖2 − 〈d(t),Ωx〉 +

1
αx

1′D.(x, x(t))

d(t+1) = argmin
d

1
αd

1′D.(d, d̃) − 〈d,Ωx̃〉 s.t. |di| ≤ 1 ∀i, (10.20)

where x̃ and d̃ are defined in terms of previous iterates, e.g., when including momentum, and αx and αd are step size
parameters chosen according to the theory in [282]. The x update is a smooth, quadratic problem and is straight-
forward. However, the standard dual update involves a non-smooth projection; in particular, if the proximal distance
function is the standard Euclidean 2-norm, i.e., D(d, d̃) = 1

2 (d − d̃)2, then the d update is the projection

d(t+1) = sign.(d̃ + αdΩx̃) �min.(1, |d̃ + αdΩx̃|),

which is non-smooth.
To make the d update smooth, [146] replaces the standard Euclidean norm in the proximity operator with a

3When using the absolute value, one can absorb the tuning parameters βk into the filter magnitudes, conveniently
reducing the dimension of γ.
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Figure 10.1: Proximal operators for R(x) =
1
2
|x| and some smooth relatives. The black line in both plots is

the soft thresholding function, which is the proximal operator for the absolute value function, i.e., prox(y) =

argminx
1
2

(x − y)2 +
1
2
|x|. (a) As described in [146], the number of iterations of the primal-dual algorithm

with the Bregman proximity function acts as a smoothing parameter for the proximal operator estimate and
the estimate improves as the number of iterations increases (from light to dark lines). (b) Smooth proximal
operator for the non-smooth penalty function (10.23) for p = 3/2, β = 0.5, and four different values of β̃.
The proximal operator is closer to soft thresholding for smaller values of β̃ (darker lines).

Bregman divergence. For the 1-norm regularizer, [146] considers the divergence measure

D(d, d̃) = ψ(d) − ψ(d̃) − ∇ψ(d̃)′(d − d̃) (10.21)

where ψ(d) =
1
2

(
(d + 1)log (d + 1) + (1 − d)log (1 − d)

)
. Similar to standard distance metrics, this Bregman diver-

gence is zero when d = d̃. However, it is not symmetric, i.e., D(d, d̃) 6= D(d̃, d) in general. Using this definition for D,
one can differentiate and solve for the minimizer in the d update (10.20) [146]. Because all the functions are separable,
the update can be done independently for each d coordinate:

d(t+1)
i =

e2αd[Ωx]i −
1−d̃i

1+d̃i

e2αd[Ωx]i + 1−d̃i

1+d̃i

. (10.22)

When the step-size αd approaches infinity, d(t+1)
i approaches ±1 (its extreme values). When αd approaches 0, d(t+1)

i =

d̃i. The updated coordinate is guaranteed to satisfy the constraint |di| ≤ 1 whenever d̃i does, so there is no need
for a (non-smooth) projection. Although this approach allows for applying the unrolled method to non-smooth cost
functions, [146] comments that “the [equivalent of a] ‘smoothing parameter’ in our approach is the number of iterations
of the algorithm that replaces the lower level problem.” Fig. 10.1 demonstrates how the number of iterations impacts
the effective smoothing for a simple version of the problem where A = I and Ω = I.

Ref. [241] uses the same saddle-point problem as in [146] to propose another approach to computing ∇`(γ). In-
stead of unrolling an algorithm and then back-propagating, [241] uses a sensitivity analysis and introduces additional
adjoint variables that allow for simultaneously computing ∇`(γ) in the same forward iteration as x̂(γ), without incur-
ring the large matrix-matrix multiplications costs as in the forward-mode method of computing (10.18). Although the
theoretical analysis of the resulting “piggy-backing” optimization algorithm is for smooth functions, [241] found it
worked well empirically in non-smooth settings.

Christof [283] shows another approach to achieving a smooth optimization algorithm for a non-smooth cost func-
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tion. Ref. [283] specifically considers cost functions with penalty functions of the form

φ(z) = β|z| + 2β̃
|z|p

p
for 1 < p < 2. (10.23)

As a simple demonstration, in the case where there are no convolutional filters and p = 3/2, the lower-level cost
function is the proximal operator

proxφ(y) = argmin
x

1
2

(x − y)2 + φ(x).

Differentiating and solving for the minimizer yields

proxφ(y) =


sign(y)

(√
β̃2 + |y| − β − β̃

)2
if |y| > β

0 else,

which is continuous and differentiable everywhere with respect to y despite the non-differential absolute value function
in φ! Fig. 10.1 shows this proximal operator alongside the proximal operator when φ(z) = |z| (soft thresholding). Ref.
[283] proves that this simple example generalizes to the bilevel problem of learning filters.

10.1.4 Summary
This section focused on computing ∇`(γ), the gradient of the upper-level loss function with respect to the learnable
parameters. Section 10.2 builds on this foundation to consider optimization methods for bilevel problems. Many
of those optimization methods can be used in conjunction with the minimizer, translation to a single-level, or un-
rolled approaches to compute ∇`(γ). Thus, how one selects an approach may depend on the structure of the specific
bilevel problem, how closely tied one wishes to be to the original bilevel problem, computational cost, and/or gradient
accuracy.

The translation to a single-level approach is tailored to a specific type of bilevel problem. A benefit of the transla-
tion approach is the ability to use the 1-norm (without any corner rounding) in the lower-level cost function. However,
the corresponding drawback is the (current) lack of generality in the minimizer approach; the closed-form expression
derived in [270]–[272] is specific to using the 1-norm as φ. Expanding this approach to regularizers other than the
1-norm is a possible avenue for future work.

One difference among the methods is whether they depend on the lower-level optimization algorithm; while the
unrolled approach depends on the specific optimization algorithm, the minimizer approach and the translation to a
single-level approach do not. A resulting downside of unrolling is that one cannot use techniques such as warm
starts and non-differentiable restarts, so x(T ) may be farther from the minimizer than the approximation from a similar
number of iterations of a more sophisticated, non-differentiable update method. However, the unrolled method’s
dependence on Ψ is also a benefit, as an unrolled method can be applied to non-smooth cost functions, as long as the
resulting update mapping Ψ is smooth. Further, defining Ψ and the initial starting point ensures that x(T ) is unique,
avoiding concerns about non-unique minimizers.

Another advantage of unrolling is that one can run a given number of iterations of the optimization algorithm,
without having to reach convergence, and still calculate a valid gradient. Particularly in image reconstruction problems,
where finding x̂ exactly can be time intensive, the benefit of a more flexible run-time could outweigh the disadvantages.
However, the corresponding downside of unrolling is that the learned hyperparameters are less clearly tied to the
original cost function than when one uses the minimizer approach. Section 12.2.1 further discusses this point in
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connection to how unrolling for bilevel methods can differ from (deep) learnable optimization algorithms.
One way to connect the minimizer and unrolling strategies is to consider the limit as the number of unrolled

iterations approaches infinity. Assuming the optimization algorithm converges, this “fixed point” approach is strongly
related to the minimizer approach. For instance, [284] shows that backpropagating through the last T̃ iterations of a
converged unrolled algorithm can be viewed as approximating the matrix inverse in the minimizer gradient equation
(10.8) with an order-T̃ Taylor series. Section 12.2.1 further discusses how fixed point networks (or “equilibrium
networks”) relate the unrolled-to-convergence and minimizer approaches.

Gradient accuracy and computational cost are, unsurprisingly, trade-offs. Tab. 10.2 summarizes the cost of the
minimizer and unrolled approaches, derived in Section 10.1.1.4 and Appendix D respectively, but the total computation
will depend on the required gradient accuracy. By accuracy, we mean error from the true bilevel gradient

‖∇̂T `(γ)︸ ︷︷ ︸
Estimated
gradient

− ∇`(γ)︸︷︷︸
True bilevel

gradient

‖,

where T denotes the number of lower-level optimization steps. The unrolled gradient is always accurate for the
unrolled mapping, but not for the original bilevel problem. Therefore, unrolling may be more computationally feasible
when one cannot run a sufficient number of lower-level optimization steps to reach close enough to a minimizer to
assume the gradient in (10.3) is approximately zero [161].

In all of the approaches considered, the accuracy of the estimated hyperparameter gradient in turn depends on
the solution accuracy or number of unrolled iterations of the lower-level cost function. Ref. [271] notes that their
translation to a single-level approach failed if they did not optimize the lower-level problem to a sufficient accuracy
level. However, [270]–[272] did not investigate how the solution accuracy of the lower-level problem impacts the
upper-level gradient estimate.

For the minimizer and unrolled approaches, [264], [265] found that the gradient estimate from the minimizer
approach converges to the true gradient faster than the unrolled approach (in terms of computation). To state the
bounds, [264], [265] assert conditions on the structure of the bilevel problem. They assume that x̂(γ) is the unique
minimizer of the lower-level cost function, the Hessian of the lower-level is invertible, the Hessian and Jacobian of Φ
are Lipschitz continuous with respect to x, the gradients of the upper-level loss are Lipschitz continuous with respect

Minimizer Unrolled: reverse Unrolled: forward
Memory 0 O(T N) O(NR)
Hessian-vector products 0 O(T ) O(TR)
Hessian-inverse vector products 1 0 0
Other multiplications NR O(T NR) O(NR)

Table 10.2: Memory and computational complexity of the minimizer approach (10.8), reverse-mode un-
rolled approach (D.2), and forward-mode unrolled approach (D.3) to computing ∇γ`(γ ; x̂(γ)). Compu-
tational costs do not include running the optimization algorithm (typically expensive but often compara-
ble across methods), computing ∇x`(γ ; x(T )) (typically cheap), or computing ∇γ`(γ ; x) (frequently zero).
Memory requirements do not include storing a single copy of x, A, γ, H, and J . Recall x ∈ FN , γ ∈ FR,
and there are T iterations of the lower-level optimization algorithm for the unrolled method. Hessian-vector
products (first row) and Hessian-inverse-vector products (middle row) are listed separately from all other
multiplications (last row) as the computational cost of Hessian operations can vary widely; see discussion
in Section 10.1.1.4.
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to x, the norm of x is bounded, and the lower-level cost is strongly convex and Lipschitz smooth for every γ value.
Section 10.2.3.1 discusses similar investigations that use these conditions, how easy or hard they are to satisfy, and
how they apply to (Ex).

Ref. [265] initializes the lower-level iterates for both the unrolled and minimizer approach with the zero vector,
i.e., x(0) = 0. Under their assumptions, [265] prove that both the unrolled and minimizer gradients converge linearly in
the number of lower-level iterations when the lower-level optimization algorithm and conjugate gradient algorithm for
the minimizer approach converge linearly. Although the rate of the approaches is the same, the minimizer approach
converges at a faster linear rate and [265] generally recommends the minimizer approach, though they found empir-
ically that the unrolled approach may be more reliable when the strong convexity and Lipschitz smooth assumptions
on the lower-level cost do not hold.

Ref. [264] extended the analysis from [265] to consider a warm start initialization for the lower-level optimization
algorithm. They similarly find that the minimizer approach has a lower complexity than the unrolled approach. Sec-
tion 10.2.3.2 and 10.2.3.3 further discuss complexity results after introducing specific bilevel optimization algorithms.

10.2 Gradient-Based Bilevel Optimization Methods
The previous section discussed different approaches to finding ∇`(γ), the gradient of the upper-level loss function with
respect to the learnable parameters. Building on those results, we now consider approaches for optimizing the bilevel
problem. In particular, this section concentrates on gradient-based algorithms for optimizing the hyperparameters.
While there is some overlap with single-level optimization methods, this section focuses on the challenges due to the
bilevel structure. Therefore, we do not discuss the lower-level optimization algorithms in detail; for overviews of
single-level optimization, see, e.g., [173], [285].

Gradient-based methods for bilevel problems are an alternative to the approaches described in Section 8.2, e.g.,
grid or random search, Bayesian optimization, and trust region methods. By incorporating gradient information, the
methods presented in this section can scale to problems having many hyperparameters. In fact, Section 10.2.3 reviews
papers that provide bounds on the number of upper-level gradient descent iterations required to reach a point within
some user-defined tolerance of a solution. While the bounds depend on the regularity of the upper-level loss and
lower-level cost functions, they do not depend directly on the number of hyperparameters nor the signal dimension.
Although having more hyperparameters will increase computation per iteration, using a gradient descent approach
means the number of iterations need not scale with the number of hyperparameters, R.

As mentioned in the introduction of this chapter, most gradient-based bilevel methods fall into two broad cate-
gories: double-loop algorithms or single-loop algorithms. The following section discuss each category in turn. Sec-
tion 10.1 used t to denote the lower-level iteration counter; this section introduces u as the iteration counter for the
upper-level iterations and as the single iteration counter for single-loop algorithms.

10.2.1 Double-Loop Algorithms
After using one of the approaches in Section 10.1 to compute the hyperparameter gradient ∇`(γ), typical double-loop
algorithms for bilevel problems run some type of gradient descent on the upper-level loss. Alg. 3 shows an example
double-loop algorithm [286]. Line 10 of Alg. 3 uses the CG method to compute the product of the Hessian inverse
with a vector in (10.8). Thus, Alg. 3 actually involves three loops. However, the third, CG loop is often left as an
implementation detail and we will continue to use the term “double-loop” for the overall strategy. There is similarly
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Figure 10.2: Error in the upper-level gradient, ∇`(γ), for various convergence thresholds for the lower-level
optimizer. The bilevel problem is (Ex) with a single filter, c =

[
c0 c1

]
, eβ0 = 0, eβ1 = −5, and φ(z) = z2 so

there is an analytic solution for ∇`(γ). The training data is piece-wise constant 1d signals and the learnable
hyperparameters are the filter coefficients. (a) Upper-level loss function, `(γ). The cost function is low
(dark) where c1 ≈ c0, corresponding to approximate finite differences. The star indicates the minimum. (b-
d) Error in the estimated gradient angle using the minimizer approach (10.8), defined as the angle between
∇̂`(γ) and ∇`(γ), when the lower-level optimization is run until ‖∇xΦ(x ;γ)‖2 < ε.

a third, hidden loop in approaches that use the reverse mode method for backpropogation in the unrolled approaches
described in Section 10.1.3.

The final iterate of a lower-level optimizer is only an approximation of the lower-level minimizer. However, the
minimizer approach to calculating the upper-level gradient ∇`(γ) from Section 10.1.1 assumes ∇xΦ(x̂ ;γ) = 0. Any
error stemming from not being at an exact critical point can be magnified in the full calculation (10.8), and the resulting
hyperparameter gradient will be an approximation of the true gradient, as illustrated in Fig. 10.2. Thus, how accurately
one optimizes the lower-level problem can greatly impact the quality of the learned parameters, γ̂ [287]. Alternatively,
if one uses the unrolled approach with a set number of iterations (10.17), the gradient is accurate for that specific
number of iterations, but the lower-level optimization sequence may not have converged and the overall method may
not accurately approximate the original bilevel problem.

Due to such inevitable inexactness when computing ∇`(γ), one may wonder about the convergence of double-
loop algorithms for bilevel problems. Considering the unrolled method of computing ∇`(γ), [288] showed that the
sequence of hyperparameter values in a double-loop algorithm, γ(u), converges as the number of unrolled iterations
increases. To prove this result, [288] assumed the hyperparameters were constrained to a compact set, `(γ ; x) and
Φ(x ;γ) are jointly continuous, there is a unique solution x̂(γ) to the lower-level cost for all γ; and x̂(γ) is bounded
for all γ. These conditions are satisfied for problems with strictly convex lower-level cost functions and suitable box
constraints on γ. Section 10.2.3.2 further discusses convergence results for double-loop algorithms.

Pedregosa [286] proved a similar result for the minimizer formula (10.8) using CG to compute (10.10). Specif-
ically, [286] showed that the hyperparameter sequence convergences to a stationary point if the sequence of positive
tolerances, {ε(u), u = 1, 2, . . .} in Alg. 3, is summable. The convergence results are for the algorithm version shown in
Alg. 3 that uses a Lipschitz constant of `(γ), which is generally unknown. Although [286] discusses various empirical
strategies for setting the step size, the convergence theory does not consider those variations. Thus, the double-loop
algorithm [286] requires multiple design decisions.

There are four key design decisions for double-loop algorithms:
1. How accurately should one solve the lower-level problem?
2. What upper-level gradient descent algorithm should one use?
3. How does one pick the step size for the upper-level descent step?
4. What stopping criteria should one use for the upper-level iterations?
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Algorithm 3 Hyperparameter optimization with approximate gradient (HOAG) from [286]. As
written below, the HOAG algorithm is impractical because it uses x̂(γ(u)) in the convergence
criteria; however, for strongly convex lower-level problems, the convergence criteria, ‖x̂(γ(u)) −
x(t)(γ(u))‖, is easily upper-bounded.

1: procedure HOAG({ε(u), u = 1, 2, . . .}, γ(0), x(0), y)
2: for u do=0,1,. . . . Upper-level iteration counter
3: t = 0 . Lower-level iteration counter
4: while ‖x̂(γ(u)) − x(t)(γ(u))‖ ≥ ε(u) do
5: x(t+1) = Ψ(x(t) ;γ(u)) . Lower-level optimization step
6: t = t + 1
7: end while
8: Compute gradient ∇x`(γ(u) ; x(t)) and
9: Jacobian ∇xγΦ(x(t) ;γ(u))

10: Using CG, find q such that
‖∇xxΦ(x(t) ;γ(u))q − ∇x`(γ(u) ; x(t))‖ ≤ ε(u)

11: g = ∇γ`(γ(u) ; x(t)) −
(
∇xγΦ(x(t) ;γ(u))

)′
q . From (10.8)

12: γ(u+1) = γ(u) − 1
L g . L is a Lipschitz constant of ∇`(γ)

13: end for
14: return γ(u+1)

15: end procedure

This section first reviews some (largely heuristic) approaches to these design decisions and presents example bilevel
gradient descent methods with no (or few) assumptions beyond those made in Section 10.1. Without any further
assumptions, the answers to the questions above are based on heuristics, with few theoretical guarantees but often
providing good experimental results. Section 10.2.3.2 discusses recent methods with stricter assumptions on the
bilevel problem and their theory-backed answers to the above questions.

The first step in a double-loop algorithm is to optimize the lower-level cost, for which there are many optimization
approaches. The only restriction is computability of the gradient of the upper-level loss∇`(γ), which typically includes
a smoothness assumption (see Section 10.1 for discussion). Many bilevel methods use a standard optimizer for the
lower-level problem, although others propose new variants, e.g., [166].

The first design decision (how accurately to solve the lower-level problem) involves a trade-off between compu-
tational complexity and accuracy. Example convergence criteria are fairly standard to the optimization literature, e.g.,
the Euclidean norm of the lower-level gradient [162], [289] or the normalized change in the estimate x [290] being
less than some threshold. For example, [162] used a convergence criteria of ‖∇xΦ(x(t) ;γ)‖2 ≤ 10-3 (where the image
scale is 0-255). As mentioned above, [286] uses a sequence of convergence tolerances so that the lower-level cost
function is optimized more accurately as the upper-level iterations continue.

Ref. [287] investigated the importance of lower-level optimization accuracy. The authors use the same training
model as in [163], which is the bilevel extension of the Field of Experts [187], but varied the convergence criteria for
the lower-level problem. When using a convergence tolerance of ‖∇xΦ(x(t) ;γ)‖2/

√
N ≤ 10-5, [287] found an average

improvement of 0.65dB in the PSNR for test images over [163], who ran their lower-level optimization algorithm for
a set number of iterations. Ref. [287] also plots the test PSNR and training loss versus the lower-level convergence
criteria and shows how test PSNR increases and training loss decreases with increased lower-level solution accuracy
for this specific filter learning bilevel problem.
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Many publications do not report a specific threshold or discuss how they chose a convergence criteria or number
of lower-level iterations. However, a few note the importance of such decisions. For example, [271] found that their
learning method fails if the lower-level optimizer is insufficiently close to the minimizer and [162] stated their results
are “significantly better” than [163] because they solve the lower-level problem “with high[er] accuracy.”

After selecting a level of accuracy, finding (an approximation of) x̂, and calculating ∇`(γ) using one of the
approaches from Section 10.1, one must make the second design decision: which gradient-based method to use for
the upper-level problem. Many bilevel methods suggest a simple gradient-based method such as plain gradient descent
(GD) [165], GD with a line search (see the third design decision), projected GD [279], or stochastic GD [271]. These
methods update γ based on only the current upper-level gradient; they do not have memory of previous gradients nor
require/estimate any second-order information.

Methods that incorporate some second-order information use more memory and computation per iteration, but
may converge faster than basic GD methods. For example, Broyden-Fletcher-Goldfarb-Shanno (BFGS) and L-BFGS
(the low-memory version of BFGS) [291] are quasi-Newton algorithms that store and update an approximate Hessian
matrix that serves as a preconditioner for the gradient. The R×R size of the Hessian grows as the number hyperparame-
ters increases, but quasi-Newton methods like L-BFGS use practical rank-1 updates with storage O(R). Adam [292] is
a popular GD method, especially in the machine learning community, that tailors the step size (equivalently the learn-
ing rate) for each hyperparameter based on moments of the gradient. Although Adam requires its own parameters, the
parameters are relatively easy to set and the default settings often perform adequately. Example bilevel papers using
methods with second-order information include those that use BFGS [164], L-BFGS [162], Gauss-Newton [293], and
Adam [166].

Many gradient-based methods require selecting a step size parameter, e.g., one must choose a step size α` in
classical GD:

γ(u+1) = γ(u) − α` ∇`
(
γ(u)

)
.

This choice is the third design decision. Bilevel problems are generally non-convex4, and typically a Lipschitz
constant is unavailable, so line search strategies initially appear appealing. However, any line search strategy that
involves attempting multiple values quickly becomes computationally intractable for large-scale problems. The upper-
level loss function in bilevel problems is particularly expensive to evaluate because it requires optimizing the lower-
level cost! Further, recall that the upper-level loss is typically an expectation over multiple training samples (UL),
so evaluating a single step size involves optimizing the lower-level cost J times (or using a stochastic approach and
selecting a batch size).

Despite these challenges, a line search strategy may be viable if it rarely requires multiple attempts. For example,
the backtracking line search in [289] that used the Armijo–Goldstein condition required 57-59 lower-level evaluations
(per training example) over 40 upper-level gradient descent steps, so most upper-level steps required only one lower-
level evaluation. Other bilevel papers that used backtracking with Armijo-type conditions include [143], [164], [290];
[294] used the Barzilai-Borwein method for picking an adaptive step size.

Other approaches to determining the step size are: (i) normalize the gradient by the dimension of the data and
pick a fixed step size [271], (ii) pick a value that is small enough based on experience [165], or (iii) adapt the step size
based on the decrease from the previous iteration [286].

The fourth design decision is the convergence criteria for the upper-level loss. As with the lower-level conver-
gence criteria, few publications include a specific threshold, but most bilevel methods tend to use traditional conver-
gence criteria such as the norm of the hyperparameter gradient falling below some threshold [164], the norm of the

4Although there are exceptions for simple functions, for common upper and lower-level functions, non-convexity
is easily verified by plotting a cross-section of the cost function.
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change in parameters falling below some threshold [162], and/or reaching a maximum iteration count (many papers).
One specific example is to terminate when the normalized change in learned parameters, ‖γ(u+1)−γ(u)‖/‖γ(u)‖, is below
0.01 [290]. The normalized change bound is convenient because it is unitless and thus invariant to scaling of γ.

Fig. 10.3 shows example upper-level convergence plots for a double-loop algorithm for the bilevel problem (Ex).
After an initial first run of OGM to get the lower-level initialization x̂(γ(0)) such that 1

√
N

∥∥∥∥∇xΦ
(
x̂(γ(0)) ; γ(0)

)∥∥∥∥
2
< 10-7,

the lower-level optimizer consisted of 10 iterations of OGM [295], initialized with the estimate from the previous
upper-level iteration. The upper-level optimizer is Adam [292] with the default parameters, negating the need for
a separate upper-level step-size parameter. We ran 10,000 outer-loop iterations. The final norm of the upper-level
gradient, 1

√
R
‖∇(γ(U))‖ was 0.08 when learning the filter coefficients and tuning parameters and 5 · 10-4 when learning

only β. Fig. 12.2 shows the corresponding denoised images and Appendix F further details the experiment settings.

10.2.2 Single-Loop Algorithms
Unlike double-loop algorithms, single-loop algorithms take a gradient step in γ without optimizing the lower-level
problem each step. Two early bilevel method papers [158], [192] proposed single-loop approaches based on solving
the system of equations that arises from the Lagrangian.

The system of equations approach in [158], [192] closely follows the KKT perspective on the minimizer approach
in Section 10.1.1.2. Recall that the gradient of the lower-level problem is zero at a minimizer, x̂, and one can use this
equality as a constraint on the upper-level loss function. The corresponding Lagrangian is

L(x,γ, ν) = `(γ ; x) + νT∇xΦ(x ;γ), (10.24)

where ν is a vector of Lagrange multipliers. For the filter learning example (Ex), the Lagrangian is

L(x,γ, ν) =
1
2
‖x − xtrue‖22 + νT

A′(Ax − y) + eβ0

K∑

k=1

eβk c̃k ~ φ.(ck ~ x; ε)

 .

As in Section 10.1.1.2, we consider derivatives of the Lagrangian with respect to ν, x, and γ. Here are the
general expressions and the specific equations for the filter learning example (Ex) when considering the element of γ

`
(
γ(u), x(T )

)
γ = h,β
γ = β

1√
N

∥∥∥∥∇xΦ
(
x(T ) ; γ(u)

)∥∥∥∥
2

Iteration (u) Iteration (u)
0 10000 0 10000

2

5

10-6
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(a) (b)
Figure 10.3: Example convergence plots for a double-loop bilevel method when γ includes h and β (solid
lines) and when γ = β (dotted lines). (a) Estimated upper-level loss function evaluated at the current estimate
of the lower-level minimizer, x(T ) = x(T )(γ(u)), versus upper-level iteration u. (b) Lower-level convergence
metric, averaged over all training samples, versus upper-level iteration. The estimated lower-level minimizer
remains close to convergence throughout the double-loop method.
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corresponding to βk:

∇νL(x,γ, ν) = ∇xΦ(x ;γ)

= A′(Ax − y) + eβ0

K∑

k=1

eβk c̃k ~ φ.(ck ~ x; ε)

∇xL(x,γ, ν) = ∇x`(γ ; x) + ∇xxΦ(x ;γ)ν

= x − xtrue + A′Aν + eβ0
∑

k

eβk C′kdiag(φ̈.(ck ~ x̂))Ckν

∇γL(x,γ, ν) = ∇γ`(γ ; x) + νT∇xγΦ(x ;γ)

= νT
(
eβ0 eβk c̃k ~ φ̇.(ck ~ x̂)

)
when γ = βk.

These expressions are equivalent to the primal, adjoint, and optimality conditions respectively in [192].
Here the minimizer and single-loop approach diverge. Section 10.1.1.2 used the above Lagrangian gradients to

solve for ν̂, substitute ν̂ into the gradient of the Lagrangian with respect to γ, and thus find the minimizer expression
for ∇`(γ). The single-loop approach instead considers solving the system of gradient equations directly:

G(x,γ, ν) =



∇νL(x,γ, ν)
∇xL(x,γ, ν)
∇γL(x,γ, ν)


= 0.

For example, [192] proposed a Newton algorithm using the Jacobian of the gradient matrix G.
Another approach to single-loop algorithms is to replace the “while” loop in Alg. 3 line 4 with a single gradient

step in the lower-level optimization variables. Two single-loop algorithms are the two-timescale stochastic approxi-
mation (TTSA) method [296] and the Single Timescale stochAstic BiLevEl optimization (STABLE) method [297].
Alg. 4 shows TTSA as an example single-loop algorithm. Both TTSA and STABLE alternate between one gradient
step for the lower-level cost and one gradient step for the upper-level problem.

There are two main challenges in designing such a single loop algorithm for bilevel optimization. Because both
TTSA and STABLE use the minimizer approach (10.8) to finding the upper-level gradient, the first challenge is ensur-
ing the current lower-level iterate is close enough to the minimizer to calculate a useful upper-level gradient. TTSA
addresses this challenge by taking larger steps for the lower-level problem while STABLE addresses this using a
lower-level update that better predicts the next lower-level minimizer, x̂(γ(u+1)).

The second main challenge is estimating the upper-level gradient, even given stochastic estimates of ∇xxΦ and
∇xγΦ, because the minimizer equation (10.8) is nonlinear. The theoretical results about TTSA are built on the as-
sumption that the upper-level gradient is biased due to this nonlinearity. In contrast, STABLE uses recursion to update
estimates of the gradients and thus reduce variance. Section 10.2.3.3 goes into more detail about both algorithms.

10.2.3 Complexity Analysis
A series of recent papers established finite-time sample complexity bounds for stochastic bilevel optimization methods
based on gradient descent for the upper-level loss and lower-level cost. Ref.s [264], [298] use double-loop approaches
and [296], [297] use single-loop algorithms. Unlike most of the methods discussed in Section 10.2.1, these papers
make additional assumptions about the upper and lower-level functions then select the upper and lower-level step sizes
to ensure convergence.

213



Algorithm 4 Two-Timescale Stochastic Approximation (TTSA) method from [296]. TTSA in-
cludes a possible projection of the hyperparameter after each gradient step onto a constraint set,
not shown here. The tildes denote stochastic approximations for the corresponding expressions.

1: procedure TTSA(γ(0), x(0), α(u)
` , α(u)

Φ
)

2: for u = 1, . . . do
3: x(u+1) = x(u) − α(u)

Φ
∇̃xΦ(x(u);γ(u))

4: g = ∇γ`
(u) −

(
∇̃xγΦ

(u)
)′ (
∇̃xxΦ

(u)
)-1
∇x`

(u)

5: γ(u+1) = γ(u) − α(u)
` g

6: end for
7: end procedure

Table 10.3: Finite-time sample complexities for the stochastic bilevel problem in the common scenario
where ` is non-convex when using BA [298], stocBiO [264], TTSA [296], and STABLE [297]. When `
is strongly convex, the sample complexity of STABLE is O

(
1
ε1

)
(for the upper- and lower-level gradients),

which is the same as single level stochastic gradient algorithms. See cited papers for other complexity results
when ` is strongly convex.

In these works, “finite-time sample complexity” refers to big-O bounds on a number of iterations that ensures
one reaches a minimizer to within some desired tolerance. In contrast to asymptotic convergence analysis, finite-time
bounds provide information about the estimated hyperparameters, γ(u), after a finite number of upper-level iterations.
These bounds depend on problem-specific quantities, such as Lipschitz constants, but not on the hyperparameter or
signal dimensions.

To summarize the results, this section returns to the notation from the introduction where the upper-level loss may
be deterministic or stochastic, e.g., the bilevel problem is

γ̂ = argmin
γ

`(γ) with `(γ) =


`(γ, x̂(γ)) deterministic

E [`(γ, x̂(γ))] stochastic.
(10.25)

The expectation in (10.25) can have different meanings depending on the setting. When one has J training images with
one noise realization per image, one often picks a random subset (“minibatch”) of those J images for each update of
γ, corresponding to stochastic gradient descent of the upper-level loss. In this setting, the randomness is a property of
the algorithm, not of the upper-level loss, and the expectation reduces to the deterministic case. Section 13.2 discusses
other possible definitions of the stochastic bilevel formulation.

The complexity results (summarized in Tab. 10.3) are all in terms of finding γε , defined as an ε-optimal solution. In
the (atypical) setting where `(γ) is convex, γε is an ε-optimal solution if it satisfies either `(γε)−`(γ̂) ≤ ε [264], [296],
[298] or

∥∥∥γ̂ − γε
∥∥∥2
≤ ε [297]. (These conditions are equivalent if ` is strongly convex in γ, but can differ otherwise.)

In the (common) non-convex setting, γε is typically called an ε-stationary point if it satisfies
∥∥∥∇`(γε)

∥∥∥2
≤ ε [264],

[297], [298]. In the stochastic setting, γε must satisfy these conditions in expectation.
The following sections briefly describe the BA, stocBiO, TTSA, and STABLE algorithms. The literature in this

area is quickly evolving; between the writing and editing of this work, new double-loop and single-loop methods
appeared with improved complexity results. For example, [299], [300] concurrently proposed bilevel optimization
methods that leverage momentum and variance reduction techniques to reduce the bound on the number of iterations
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to Õ
(

1
ε1.5

)
for both upper-level and lower-level gradients. Ref. [299] achieved this complexity result for both a double-

loop method and a single-loop method.
Whether double-loop or single-loop methods are preferred is an open question. Refs. [264], [299] find that double-

loop methods converge faster (in terms of wall time) than single-loop methods. The authors hypothesize that ∇`(γ) is
sensitive enough to changes in the estimate of the lower-level optimizer that the increased accuracy of the double-loop
estimates of ∇`(γ) is worth the additional lower-level optimization time. Future work should test this hypothesis in
different experimental settings and establish guidelines on when to use a double-loop or single-loop algorithm.

10.2.3.1 Assumptions

References [264], [296]–[298] all make similar assumptions about ` and Φ to derive theoretical results for their
proposed bilevel optimization methods. We first summarize the set of sufficient conditions from [298], and later note
any additional assumptions used by the other methods. The conditions in [298] on the upper-level function, `(γ ; x),
are:

A`1. ∀γ ∈ FR, ∇γ`(γ, x) and ∇x`(γ, x) are Lipschitz continuous with respect to x, with corresponding
Lipschitz constants Lx,∇γ` and Lx,∇x`. (These constants are independent of x and γ.)

A`2. The gradient with respect to x is bounded, i.e.,
‖∇x`(γ, x)‖ ≤ C∇x`, ∀x ∈ FN .

A`3. ∀x ∈ FN , ∇x`(γ, x) is Lipschitz continuous with respect to γ, with corresponding Lipschitz constant
Lγ,∇x`.

The conditions in [298] on the lower-level function, Φ(x ;γ), are:

AΦ1. Φ is continuously twice differentiable in γ and x.

AΦ2. ∀γ ∈ FR, ∇xΦ(x ;γ) is Lipschitz continuous with respect to x with corresponding constant Lx,∇xΦ.

AΦ3. ∀γ ∈ FR, Φ(x ;γ) is strongly convex with respect to x, i.e., µx,ΦI � ∇2
xΦ(γ ; x), for some µx,Φ > 0.

AΦ4. ∀γ ∈ FR, ∇xxΦ(x ;γ) and ∇γxΦ(x ;γ) are Lipschitz continuous with respect to x with Lipschitz con-
stants Lx,∇xxΦ and Lx,∇γxΦ.

AΦ5. The mixed second gradient of Φ is bounded, i.e.,∥∥∥∇γxΦ(x ;γ)
∥∥∥ ≤ C∇γxΦ, ∀γ, x.

AΦ6. ∀x ∈ FN , ∇γxΦ(x ;γ) and ∇xxΦ(x ;γ) are Lipschitz continuous with respect to γ with Lipschitz con-
stants Lγ,∇γxΦ and Lγ,∇xxΦ.

In addition to the assumptions above on ` and Φ, analyses of optimization algorithms for the stochastic bilevel
problem assume that (i) all estimated gradients are unbiased and (ii) the variance of the estimation errors is bounded
by σ2

∇γ`
, σ2
∇x`

, σ2
∇xΦ

, σ2
∇γxΦ

, and σ2
∇xxΦ

. The stochastic methods discussed here are all based on the minimizer ap-
proach to finding the upper-level gradient. Therefore, the methods use estimates of ∇γ`(γ ; x), ∇x`(γ ; x), ∇xΦ(x ;γ),
∇γ,xΦ(x ;γ), and ∇x,xΦ(x ;γ). We denote the estimates of these gradient using tildes, e.g., ∇̃γ`(γ ; x). Following
(10.8), an estimate of the upper-level gradient approximation is thus

∇̂`(γ) = ∇̃γ`(γ, x) − (∇̃xγΦ(x ;γ))′(∇̃xxΦ(x ;γ))-1∇̃x`(γ, x).

As an example of the bounded variance assumption, [298] assumes

E
[
‖∇γ`(γ ; x) − ∇̃γ`(γ ; x)‖2

]
≤ σ2

∇γ`
∀x,γ.
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Algorithm 5 Bilevel Approximation (BA) Method from [298]. The differences for the AID-BiO
and ITD-BiO methods from [264] are: (1) when u > 0, the BiO methods replace line 3 with
x(0) = x(Tu−1), (2) Ti does not vary with upper-level iteration, (3) the upper-level gradient calculation
in line 7 can use the minimizer approach (10.8) or backpropagation (D.2), and (4) the hyperparam-
eter update is standard gradient descent, so line 8 becomes γ(u+1) = γ(u) − α` g.

1: procedure BA(γ(0), x(0), α`, αΦ, Tu ∀u)
2: for u = 1, . . . do . Upper-level iterations
3: x(0) = x(0) . Included for comparison with [264]
4: for t = 1 : Tu do . T lower-level iterations
5: x(t) = x(t−1) − αΦ∇xΦ(γ, x(t−1))
6: end for
7: g = ∇γ`(γ(u), xTi) . Use minimizer result (10.8)

8: γ(u+1) = argmin
γ

{
1
2
‖γ − γ(u)‖2 + α`〈g,γ〉

}

9: end for
10: end procedure

To consider how the complexity analysis bounds may apply in practice, Appendix E examines how assumptions
A`1-A`3 and assumptions AΦ1-AΦ6 apply to the running filter learning example (Ex). Although a few of the con-
ditions are easily satisfied, most are not. Appendix E shows that the conditions are met if one invokes box constraints
on the variables x and γ. Although imposing box constraints requires modifying the algorithms, e.g., by including
a projection step, the iterates remain unchanged if the constraints are sufficiently generous. However, such generous
box constraints are likely to yield large Lipschitz constants and bounds, leading to overly-conservative predicted con-
vergence rates. Further, any differentiable upper-level loss and lower-level cost function would meet the conditions
above with such box constraints. Generalizing the following complexity analysis for looser conditions is an important
avenue for future work.

10.2.3.2 Double-loop

Ghadimi and Wang [298] were the first to provide a finite-time analysis of the bilevel problem. The authors proposed
and analyzed the Bilevel Approximation (BA) method (see Alg. 5). BA uses two nested loops. The inner loop
minimizes the lower-level cost to some accuracy, determined by the number of lower-level iterations; the more inner
iterations, the more accurate the gradient will be, but at the cost of more computation and time. The outer loop is
(inexact) projected gradient steps on `. Ref. [298] used the minimizer result (10.8) (with the IFT perspective for the
derivation) to estimate the upper-level gradient.

To bound the complexity of BA, [298] first related the error in the lower-level solution to the error in the upper-
level gradient estimate as

‖∇̂γ`(γ, x(T ))︸ ︷︷ ︸
Estimated gradient

−∇γ`(γ, x̂(γ))︸ ︷︷ ︸
True gradient

‖ ≤ CGW
∥∥∥x(T ) − x̂(γ)

∥∥∥
︸ ︷︷ ︸
Error in lower-level

,

where CGW is a constant that depends on many of the bounds defined in the assumptions above [298]. Combing the
above error bound with known gradient descent bounds for the accuracy of the lower-level problem yields bounds on
the accuracy of the upper-level gradient. The standard lower-level bounds can vary by the specific algorithm ([298]
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uses plain GD), but are in terms of QΦ =
Lx,∇xΦ
µx,Φ

(the “condition number” for the strongly convex lower-level function)
and the distance between the initialization and the minimizer.

Ref. [298] shows that x̂(γ) is Lipschitz continuous in γ under the above assumptions, which intuitively states
that the lower-level minimizer does not change too rapidly with changes in the hyperparameters. Further, ∇`(γ) is
Lipschitz continuous in γ with a Lipschitz constant, Lγ,∇γ`, that depends on many of the constants given above.

The main theorems from [298] hold when the lower-level GD step size is αΦ = 2
Lx,∇xΦ+µx,Φ

and the upper-level step
size satisfies α` ≤ 1

Lγ,∇γ`
. Then, the distance between the uth loss function value and the minimum loss function value,

`(γ(u), x̂(γ(u)))−`(γ̂, x̂(γ̂)), is bounded by a constant that depends on the starting distance from a minimizer (dependent
on the initialization of γ and x), QΦ, CGW, the number of inner iterations, and the upper-level step size. The bound
differs for strongly convex, convex, and possibly non-convex upper-level loss functions. Tab. 10.4 summarizes the
sample complexity required to reach an ε-optimal point in each of these scenarios.

Table 10.4: Sample complexity to reach an ε-optimal solution of the deterministic bilevel problem using BA
[298], for various assumptions on the upper-level loss function. Usually `(γ) is non-convex and that case has
the worst-case order results. The complexities show the total number of partial gradients of the upper-level
loss (equal to the number of lower-level Hessians needed for estimating ∇`(γ) using (10.8)) and the partial
gradients of the lower-level. The convex results use the accelerated BA method, which uses acceleration
techniques similar to Nesterov’s method [301] applied to the upper-level gradient step in Alg. 5.

Ji, Yang, and Liang [264] proposed two methods for Bilevel Optimization that improve on the sample complexities
from [298] for non-convex loss functions under similar assumptions. The first, ITD-BiO (ITerative Differentiation),
uses the unrolled method for calculating the upper-level gradient (see Section 10.1.3). The second, AID-BiO (Ap-
proximate Implicit Differentiation), uses the minimizer method with the implicit function theory perspective (see
Section 10.1.1). Tab. 10.5 summarizes the sample complexities [264]. Much of the computational advantage of ITD-
BiO and AID-BiO is in improving the iteration complexity with respect to the condition number (not shown in the
summary table).

One of the main computational advantages of the AID-BiO and IFT-BiO methods in [264] over the BA algorithm
Alg. 5 is a warm restart for the lower-level optimization. Although the hyperparameters change every outer iteration,
the change is generally small enough that the stopping point of the previous lower-level descent is a better initialization
than the noisy data (recall that [298] showed the lower-level minimizer is Lipschitz continuous in γ). One can account
for this warm restart when using automatic differentiation tools (backpropagation) [264]. The caption for Alg. 5
summarizes the other differences between BA and the BiO methods.

Table 10.5: A comparison of the finite-time sample complexity to reach an ε-solution of the deterministic
bilevel problem when the upper-level loss function is non-convex using BA [298], AID-BiO [264], and
ITD-BiO [264]. Õ(·) = order omits any log (ε)-1 term.

The Bilevel Stochastic Approximation (BSA) method replaces the lower-level update in BA (see Alg. 5) with
standard stochastic gradient descent. The corresponding upper-level step in BSA is a projected gradient step with
stochastic estimates of all gradients. Another difference in the stochastic versions of the BA [298] and BiO [264]
methods is that they use an inverse matrix theorem (based on the Neumann series) to estimate the Hessian inverse.
Ref. [264] simplifies the inverse Hessian calculation to replace expensive matrix-matrix multiplications with matrix-
vector multiplications. This same strategy makes backpropagation more computationally efficient than the forward
mode computation for the unrolled gradient; see Appendix D.
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10.2.3.3 Single-Loop

Recently, [296], [297] extended the double-loop analysis of [264], [298] to single-loop algorithms that alternate gra-
dient steps in x and γ.

Alg. 4 summarizes the single-loop algorithm TTSA [296]. The analysis of TTSA uses the same lower-level cost
function assumptions as mentioned above for BSA [298] and one additional upper-level assumption: that ` is weakly
convex with parameter µ` > 0, i.e.,

`(γ + δ) ≥ `(γ)〈∇`(γ), δ〉 + µ` ‖δ‖
2 , ∀γ, δ ∈ RR.

TTSA assumes the lower-level gradient estimate is still unbiased and that its variance is now bounded as

E
[
‖∇xΦ(x,γ) − ∇̃xΦ(x,γ)‖2

]
≤ σ2

∇xΦ
(1 + ‖∇xΦ(x,γ)‖2).

Further, the stochastic upper-level gradient estimate, ∇̃γ`(γ(u), x(u+1)), includes a bias that stems from the nonlinear
dependence on the lower-level Hessian. This bias decreases as the batch size increases.

The “two-timescale” part of TTSA comes from using different upper and lower step size sequences. The lower-
level step size is larger and bounds the tracking error (the distance between x̂ and the x iterate) as the hyperparameters
change (at the upper-level loss’s relatively slower rate). Thus, [296] chose step-sizes such that α`(u)/αΦ(u)→ 0.
Specifically, if ` is strongly convex, then α` is O

(
u-1

)
and αΦ is O

(
u-2/3

)
. If ` is convex, then α` is O

(
u-3/4

)
and αΦ is

O
(
u-1/2

)
.

Chen, Sun, Xiao, et al. [297] improved the sample complexity of TTSA. By using a single timescale, their al-
gorithm, STABLE, achieves the “same order of sample complexity as the stochastic gradient descent method for the
single-level stochastic optimization” [297]. However, the improved sample complexity comes at the cost of additional
computation per iteration as STABLE can no longer trade a matrix inversion (of size R×R) for matrix-vector products,
as done in the [264]. Ref. [297] therefore recommended STABLE when sampling is more costly than computation or
when R is relatively small.

The analysis of STABLE uses the same upper-level loss and lower-level cost function assumptions as listed above
for BSA. Additionally, STABLE assumes that, ∀x, ∇γ`(γ ; x) is Lipschitz continuous in γ. This condition is easily
satisfied as many upper-level loss functions do not regularize γ. Further, those that do often use a squared 2-norm,
i.e., Tikhonov-style regularization, that has a Lipschitz continuous gradient. Additionally, rather than bounding the
gradient norms as in assumptions A`2 and AΦ5, [296] assumes the following moments are bounded:

• the second and fourth moment of ∇γ`(γ ; x) and ∇x`(γ ; x) and
• the second moment of ∇γxΦ(x ;γ) and ∇xxΦ(x ;γ),

ensuring that the upper-level gradient is Lipschitz continuous.
Like the previous algorithms discussed, STABLE evaluates the minimizer result (10.8) at non-minimizer lower-

level iterates, x(T )(γ(u)), to estimate the hyperparameter gradient. However, it differs in how it estimates and uses the
gradients. STABLE replaces the upper-level gradient in TTSA line 4 with

g = ∇γ`
(u) − (∆(u)

xγ)′︸︷︷︸
Prev. ∇̃xγΦ(u)

(∆(u)
xx︸︷︷︸

Prev. ∇̃xxΦ
(u)

)-1∇x`
(u). (10.26)

Taking inspiration from variance reduction techniques for single-level optimization problems, e.g., [302], STABLE
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recursively updates the newly defined matrices as follows:

∆
(u)
xγ = P‖∆‖≤C∇γxΦ


(1 − τu) (∆(u−1)

xγ − ∇̃xγΦ
(u−1))︸ ︷︷ ︸

Recursive update

+ ∇̃xγΦ
(u)

︸ ︷︷ ︸
New estimate



∆
(u)
xx = P∆�µx,Φ I

(
(1 − τu)

︷ ︸︸ ︷
(∆(u−1)

xx − ∇̃xxΦ
(u−1)) +

︷ ︸︸ ︷
∇̃xxΦ

(u)
)
.

In the ∆
(u)
xγ update, the projection onto the set of matrices with a maximum norm helps ensure stability by not allowing

the gradient to get too large. The projection in the ∆
(u)
xx update is an eigenvalue truncation that ensures positive definite-

ness of the estimated Hessian in this Newton-based method. After computing the gradient g (10.26), the upper-level
update is a standard descent step as in Alg. 4 line 5.

STABLE [297] also uses the recursively estimated gradient matrices in the lower-level cost function descent. It
replaces the standard gradient descent step in Alg. 4 line 3 with one that uses second order information:

x(u+1) = x(u) − αΦ(u)∇̃xΦ(x(u);γ(u))︸ ︷︷ ︸
Standard GD step

− (∆(u)
xx)-1(∆(u)

γx)′(x(u+1) − x(u))︸ ︷︷ ︸
New term

.

With these changes, STABLE is able to reduce the iteration complexity relative to TTSA as summarized in Tab. 10.3.

10.2.4 Summary of Methods
There are many variations of gradient-based methods for optimizing bilevel problems, especially when one considers
that many of the upper-level descent strategies can work with either the minimizer or unrolled approach discussed in
Section 10.1. There is no clear single “best” algorithm for all applications; each algorithm involves trade-offs.

Building on the minimizer and unrolled methods for finding the upper-level gradient with respect to the hyperpa-
rameters, ∇`(γ), double-loop algorithms are an intuitive approach. Although optimizing the lower-level problem every
time one takes a gradient step in γ is computationally expensive, the lower-level problem is is embarrassingly paral-
lelizable across samples. Specifically, one can optimize the lower-level cost for each training sample independently
before averaging the resulting gradients to take an upper-level gradient step. In the typical scenario when training is
performed offline, training wall-time can therefore be dramatically reduced by using multiple processors.

Single-loop algorithms remove the need to optimize the lower-level cost function multiple times. The single-
loop algorithms that consider a system of equations often accelerate convergence using Newton solvers [143], [192].
However, the optimality system grows quickly when there are multiple training images, and may become too computa-
tionally expensive as J increases [162]. Another type of single-loop algorithm uses alternating gradient steps in x and
γ [296], [297]. Although each method has slight variations (such as whether it uses momemtum), these single-loop
methods are generally equivalent to considering T = 1 in the double-loop methods.

This section organized algorithms based on the number of for-loops; double-loop algorithms have two loops while
single-loop algorithms have one5. However, there are many other ways in which bilevel optimization methods differ
and not all methods fall cleanly into one group. One such example is the Penalty method [303]. The Penalty method
forms a single-level, constrained optimization problem, with the constraint that the gradient of the lower-level cost
function should be zero, ∇xΦ(x ;γ) = 0. (This step is similar to the derivation of the minimizer approach via KKT
conditions; see Section 10.1.1.2.) Rather than forming the Lagrangian as in (10.24), [303] penalizes the norm of the

5As noted at the start of the section, this loop counting does not include the loop in CG or in backpropagation.

219



gradient, with increasing penalties as the upper iterations increase. Thus, the Penalty cost function6 at iteration u is

p(γ , x) = `(γ ; x̂(γ)) + λ(u) ‖∇xΦ(x ;γ)‖22 .

The penalty variable sequence, λ(u), must be positive, non-decreasing, and divergent (λ(u) → ∞).
Penalty [303] incorporates elements of both double-loop and single-loop algorithms. Similar to the double-loop

algorithms, Penalty takes multiple gradient descent steps in the lower-level optimization variable, x, before calcu-
lating and updating the hyperparameters. However, Penalty forms a single-level optimization problem that could be
optimized using techniques such as those used in single-loop algorithms.

Another variant on a double-loop bilevel optimization method is to optimize a lower-level surrogate function
Φ̃(x ; γ(u)) instead of optimizing Φ(x ; γ(u)). For example, [304] replaces Φ with its first-order approximation around
the current solution point (γ(u), x̂(γ(u))). Because this approximation is only reliable in the neighborhood of
(γ(u), x̂(γ(u))), [304] adds the proximal term λ‖γ−γ(u)‖2 to the upper-level loss function at each outer iteration, where
λ is a positive tuning parameter.

The finite-time complexity analyses [264], [296]–[299] justify the use of gradient-based bilevel methods for prob-
lems with many hyperparameters, as none of the sample complexity bounds involved the number of hyperparameters.
This is in stark contrast with the hyperparameter optimization strategies in Section 8.2. However, the per-iteration cost
for bilevel methods is still large and increasing with the hyperparameter dimension. Further, the conditions on the
lower-level cost function AΦ1-AΦ6 seem restrictive and may not be satisfied in practice. Complexity analysis based
on more relaxed conditions could be very valuable.

Because of the restrictive conditions in the complexity analysis, it is generally infeasible to compute theoretically
justified step-sizes and other algorithm parameters in the single-loop and double-loop methods [264], [296]–[299].
Thus, one must often resort to grid searches or use heuristics, such as those discussed in Section 10.2.1, to select
these algorithm parameters. Ref. [299] comments on one example of how empirical practice can differ from theory.
Although their theory requires that the number of iterates of the Neumann series used to approximate the inverse
Hessian matrix grows with the desired solution accuracy, the authors found that using a few iterates was sufficient
(and faster) in practice.

Gradient-based and other hyperparameter optimization methods are active research areas, and the trade-offs con-
tinue to evolve. Although it currently seems that gradient-based bilevel methods make sense for problems with many
hyperparameters, new methods may overtake or combine with what is presented here. For example, many bilevel
methods (and convergence analyses thereof) use classical gradient descent for the lower-level optimization algorithm,
whereas [305] showed that the Optimized Gradient Method (OGM) has better convergence guarantees and is opti-
mal among first-order methods for smooth convex problems [306]. These advances provide opportunities for further
acceleration of bilevel methods.

6This is a simplification; [303] allows for constraints on x and γ.
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CHAPTER 11

RQ#5: Revisiting the Simple Filter Learning
Experiment

This chapter applies the bilevel methodology defined in Chapter 10 to the filter learning experiment from Section 9.2.
Recall that Section 9.2 examined a simple experiment with PWC signals where learned transforms did not denoise
test data as well as a handcrafted transform. The learned transforms were trained to sparsify the training data, but, to
efficiently minimize the training cost, we had to introduce an auxiliary variable and tuning parameter. The impact of
introducing these variables and “splitting” the training cost, was to learn smoother transforms that did not denoise the
test data as well as the sharp, handcrafted transform.

This chapter addresses RQ#5: How does the bilevel method compare to handcrafted filters and filters learned
in a non-task-based method? We hypothesized that

1. the task-based nature of the bilevel problem will ensure that filters learned in a bilevel manner outperform (on
average) handcrafted filters and

2. the bilevel method would learn filters that are more similar to the handcrafted TV-based filters than the sparsity
approach in Section 9.2.

This chapter expands on the results presented in [10]:

C. Crockett and J. A. Fessler, “Motivating bilevel approaches to filter learning: A case study,” in 2021
IEEE International Conference on Image Processing (ICIP), IEEE, Sep. 19, 2021, pp. 2803–2807, ISBN:
978-1-66544-115-5. DOI: 10.1109/ICIP42928.2021.9506489

11.1 Methods
This chapter considers the example bilevel problem (Ex) in the denoising setting (A = I). The sparsifying function

is (CR1N) with ε = 0.1 and the learning parameters are either γ = (β1, c) or γ = c. We consider initializing c with
finite differencing filters and with random initializations.

Note that (Ex) does not have any constraints on the tuning parameters. Unlike (9.21), there are no trivial solutions;
we should not learn the 0 filter because that does not provide any benefit to denoising. Likewise, the task-based
approach means that we should not learn equivalent, but shifted, versions of the same filters, as we saw in the simple
1D experiment, where we more often learned two shifted versions of the finite differencing filter rather than learning
an extended finite differencing filter, i.e., we tended to learn transforms similar to T2 in (9.19). However, as we will
discuss further in each of our experiments, the bilevel problem is highly non-convex and the amount of diversity in the
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learned filters depends on how we initialize the upper-level optimization algorithm.
As before, we test learning one or two length-4 filters from 1D PWC training data and compare the learned filters

with the TV-based handcrafted filters. However, because the bilevel problem takes much longer to train, we only use
128 signals instead of 1,024. We use the set of 128 test signals as defined in Section 9.2.2.

To optimize the lower-level cost function, we use gradient descent with the step size 1
L with L defined in (10.19).

Note that L changes every time we take a gradient step on the hyperparameters because the Lipschitz constant of ∇xΦ

is a function of β and c. We could easily imagine setting a norm constraint on c. However, setting an upper limit on β
and the norm of c is likely to either yield poor denoising performance (if the limit is too small) or slow convergence of
the lower-level cost function (if the limit is too large). Thus, we cannot reasonably upper-bound L. Another approach
to avoiding the L update would be to simply declare a value and allow the bilevel problem to learn c and βk that works
with the set value. However, this approach risks losing theoretical convergence guarantees on the lower-level problem.

We use reverse-mode backpropagation (defined in Appendix D) to compute ∇`(γ) and Adam [292] with the
default settings to take a gradient step with respect to γ. Section 11.2.1 discusses the influence of T ; after that section,
we use T = 100 to learn a single filter, a single filter and its corresponding tuning parameter, and two filters. For
each of the configurations in the sections below, unless otherwise noted, we ran 7,000 upper-level iterations and then
selected the hyperparameter with the lowest upper-level loss as the returned minimizer.

We used the same metrics as in Section 9.2 to measure how similar the learned filters are from the handcrafted fil-
ters. However, we additionally have to consider the norm of the filters, since there is no longer a unit-norm constraint.1

Therefore, we also present the norm of the learned filters.

11.2 Results

11.2.1 Effect of the Number of Lower-level Iterations
The number of iterations of the lower-level optimization algorithm, T , determines how closely we approximate x̂,
which in turn influences the gradient calculation for ∇γ`(γ ; x̂(γ)). Further, recall that the proposed bilevel method for
analysis filters updates the Lipschitz constant for the lower-level algorithm after every hyperparameter gradient step.

Fig. 11.1 and Fig. 11.2 show the upper-level error per bilevel iteration when T = 10 where we evaluate the error
at the current estimate of the denoised signal x̃(γ(u))) = x(10)(γ(u)). We initialize c1 with cFD = 1/

√
2
[
0 -1 1 0

]
.

Fig. 11.1 considers when γ = c and Fig. 11.2 considers when γ = (c, β1). After initially decreasing, the loss function
tends to steadily increase. Although Adam does not guarantee a monotonically decreasing loss function [292], a steady
increase is concerning.

Upon investigating some of the iterations where the loss function increased, we found the gradient calculation was
correct, and a gradient step in γ would decrease the loss function if L were held constant. However, by updating L after
every gradient step in the hyperparameters, without accounting for this in the gradient calculation, the loss function
tended to increase. Specifically, the loss function increased when the hyperparameter update caused L to increase.
Larger values of L correspond to a smaller step size for the lower-level image denoising problem, and thus a worse
approximation to x̂ given a fixed number of iterations.

We considered two high-level strategies to ensure the loss function did not steadily increase. One option is to fix
the step size2 and allow the bilevel problem to adjust the norm of c and β appropriately. When T is small enough

1The scale factor does not influence the similarity and distance metrics.
2In this approach, it makes more conceptual sense to think about fixing the step size, rather than fixing L because

L would no longer represent the Lipschitz constant of the cost function.
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Figure 11.1: Upper-level RMSE as defined in (9.10)
averaged over the 128 training signals versus the
upper-level iteration when learning c and when T =

10. The different colored lines show different set val-
ues of β.

Figure 11.2: RMSE as defined in (9.10) averaged
over the 128 training signals versus the upper-level
iteration when learning c and β when T = 10. The
different colored lines show different initializations
of β.

that the lower-level cost function does not reach convergence, this approach would allow the optimization algorithm
to take larger step sizes than the step size corresponding to the Lipschitz constant.

The second option is to run the lower-level optimization algorithm to convergence either by selecting a large
enough value for T or iterating until some lower-level convergence criteria is met. This approach requires us to set
a convergence tolerance and it could take much longer, since the lower-level problem may take many iterations to
converge. However, one can use a warm start as in the methods from [264] to decrease the total number of lower-
level iterations; see Section 10.2.3.2. A benefit of this approach is that, once the hyperparameters are learned, the
corresponding step size for the lower-level problem has all the theoretical convergence guarantees of the chosen opti-
mization method.

We take the second approach of setting T large enough for the lower-level to be close to convergence due to
its additional theoretical convergence guarantees. To measure convergence of the cost function, we examine the
normalized change in x on the last iteration:

‖xT − xT−1‖

xT
. (11.1)

Fig. 11.3 and Fig. 11.4 show a histogram of this convergence measure over many training signals at the start of the
bilevel algorithm and at the end. For these plots, we initialized the bilevel algorithm with a random filter and learned
both c and β. In both plots, the convergence measure (11.1) is small, suggesting that the optimization algorithm is
close to convergence. Further, the convergence measure is smaller at the end of the bilevel algorithm, when the filters
are tuned for denoising the signals, than at the start of the algorithm, when the filters are mostly random noise.

After verifying that the lower-level optimization algorithm was relatively close to convergence after T = 100
iterations, we re-examined the estimated upper-level loss function. In contrast to the plots in Fig. 11.1 and 11.2 for
T = 10, the errors in Fig. 11.5 and 11.6 steadily decreases with the upper-level iteration when T = 100. Using more
lower-level iterations (100 instead of 10) is thus sufficient for the upper-level loss function to decrease in this simple
experiment because the lower-level estimate of the minimizer, x̃(T )(γ(u)), remains close enough to convergence.

For the remainder of this chapter, we use T = 100.
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Figure 11.3: Histogram of the convergence measure
(11.1) for 128 signals for the first 100 Adam itera-
tions when learning c and β from a random initial-
ization.

Figure 11.4: Histogram of the convergence measure
(11.1) for 128 signals for the last 100 Adam itera-
tions (out of a total of 7,000 iterations) when learn-
ing c and β. Note the much smaller horizontal scale
than in Fig. 11.3.

Figure 11.5: Upper-level RMSE as defined in (9.10)
averaged over the 128 training signal when learning
c and when T = 100. The different colored lines
show different set values of β.

Figure 11.6: Upper-level RMSE as defined in (9.10)
averaged over the 128 training signal when learning
c and β when T = 100. The different colored lines
show different initializations of β.
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11.2.2 Learning One Filter
We next examine the learned filters with T = 100. Our first test involved setting β and learning only the filter. We
initialized the filter with cFD and tested nine values of eβ1 between 0.001 and 0.35 (we set eβ0 = 1 so that it has no
effect).

With this informed initialization for c, the mean and maximum angle between the learned filters and cFD are 1.3
degrees and 1.5 degrees respectively. Further, the minimum upper-level loss function shows no obvious trend with
the initialization of the tuning parameter, β1. Although the bilevel filter is not forced to take the simple form given in
(9.12), we compared our results by forming an approximation to d by normalizing the filters and taking the mean of
the two larger absolute value elements (after normalization). For the bilevel filters, this approximation to d is between
0.704 and 0.707 for all tuning parameter settings (with a mean of 0.706). In comparison, using the single-level split
sparsity training cost in Section 9.2, d was as low as 0.65 (see Fig. 11.7). This means that the task-based bilevel filters
are less smoothed than the previous, non-task-based filters, despite our relaxation of the 0-norm to the corner rounded
1-norm!

There is no discernible effect of β on the angle between the learned filter or on the approximation of d. However,
as seen in Fig. 11.7, the minimum loss function value depends on β3, The loss function measures the training error;
this is our expected test error assuming that the bilevel problem does not over-fit the training data. Considering that
our goal is to minimize the loss function, we should therefore either initialize β carefully or incorporate β into γ and
learn it. We take the latter approach below.

Figure 11.7: Upper-level RMSE as defined in (9.10)
versus β1 for learning a single filter using the bilevel
set-up in (Ex).

Figure 11.8: The scattered points show the norm of
the learned filter versus different, set values of the
tuning parameter, β1. For comparison, the solid line
plots the expected relation for a 1-norm sparsifying
function, i.e., ‖c‖ = α/eβ1 where α is a constant that
describes the inverse relationship between β1 and the
norm of the learned filter.

Before investigating minimizing (Ex) with both c and β in γ, we make two more observations about the results
from learning c with β set. First, Fig. 11.8 shows the filter 2-norm versus the tuning parameter, β1. There is a
general trend for the norm to decrease as β1 increases. Because φ is a corner-rounded 1-norm, we cannot quite absorb

3This might suggest that using angle to cFD is a bad measure of quality for the learned filters. However, we can
also interpret these results as learning a good filter, but without a good corresponding tuning parameter. The results in
the next section support this interpretation.
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Figure 11.9: Number of outer (Adam) iterations to reach the lowest loss function evaluation. Note that for
the smallest values of the tuning parameter, β, the loss function was still descending at iteration 7,000.

the change in filter magnitude into β1. However, the reverse relationship between the filter magnitude and tuning
parameter value has a similar effect.

Finally, we note that the bilevel problem tends to converge faster with larger values of β, as seen in Fig. 11.9.
Thus, filters learned with relatively large values of β are still close to cFD, while taking less time to learn. Although
the filters are close to cFD, some achieve a lower loss function value largely due to the difference in the norm of the
learned filter.

11.2.3 Learning One Filter and One Tuning Parameter
Now we consider adding β1 to the γ hyperparameter vector in the bilevel problem (Ex), while still learning only a
single filter. Our initialization for these tests is the same: cFD for the filters and a value of eβ1 between 0.001 and 0.35.

As when we optimized for only c, when we optimized c and β, there was no apparent trend in the measures of
closeness to the cFD filter and the initialization for β. The equivalent d value for the filters (the average of the two
largest in absolute value elements after normalization) is between 1

√
2
0.997 and 1

√
2
, with a mean value just below 1

√
2
.

The mean and maximum angle between the learned filters and cFD are 1.3 degrees and 1.5 degrees respectively. Thus,
the filters are closer, on average, to cFD than the filters learned when only descending on c.

Learning β has additional benefits. As seen in Fig. 11.6, the upper-level RMSE when we also learn the tuning
parameter has a range of 0.0956 to 0.0972, which is less than the corresponding loss function value for learning only
c (which has a range of 0.0966 to 0.1613).

The downside of learning β is the increased training time. All experiments were still decreasing after the full
7,000 iterations, though the flatness at the end of the curves in Fig. 11.6 suggests we were close to convergence.

11.2.4 Random Initialization
The above experiments all initialized c to cFD. A more interesting test of the non-convex bilevel problem is a random
initialization. For this, we initialized c with 100 normalized Gaussian noise realizations, set β1 = -1, and ran 10,000
upper-level iterations. Fig. 11.12 shows that there is a strong positive correlation (correlation coefficient of 0.77)
between the minimum loss function value and the angle between the learned filter and cFD, suggesting the angle from
cFD is a reasonable indicator of the denoising performance during training.
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Figure 11.10: Upper-level RMSE as defined in (9.10)
versus β1 when learning a single filter and its tuning
parameter using the bilevel set-up in (Ex). Shown on
the same scale as Fig. 11.7.

Figure 11.11: The scattered points show the norm of
the learned filter versus different, learned values of
the tuning parameter, β̂1. For comparison, the solid
line plots the expected relation for a 1-norm sparsi-
fying function, i.e., ‖c‖ = α/eβ1 where α is a con-
stant that describes the inverse relationship between
β1 and the norm of the learned filter.

Figure 11.12: Scatter plot of the angle between
learned filter and cFD and the RMSE on the test
data as defined in (9.10) evaluated at the learned fil-
ter. The correlation coefficient is 0.77, suggesting
that the angle from cFD is a relatively good indicator
of the denoising performance during training of the
learned filter.

Figure 11.13: Scatter plot of the angle between the
learned filter ĉ and cFD and the angle between the
randomly initialized filter c(0) and cFD. The correla-
tion coefficient is 0.4, suggesting there is some rela-
tion between the starting angle and final angle.
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Figure 11.14: Scatter plot a metric of convergence versus the denoising performance during training of the
learned filter. Here, convergence is measured as the norm of the upper-level gradient with respect to the
filter coefficients evaluated at the learned filter (ĉ = c(10,000)). The correlation coefficient is 0.99, suggesting
a strong relation between the filter initialization and the norm of the gradient.

On average, the learned filters are separated from cFD by 2.0 degrees. Fig. 11.13 shows that, for a wide range of
random initial filters, all but two of the learned filters are within 0.56 to 3.14 degrees of cFD. This result is promising
considering the highly non-convex nature of the bilevel problem.

However, Fig. 11.13 also shows a weak correlation between how close the random initialization is to cFD and how
close the learned filter is to cFD. Fig. 11.14 suggests this relation is related to filters that were randomly initialized to
be further from cFD being further from convergence after 10,000 upper-level iterations.

11.2.5 Denoising Performance
To test denoising performance of the learned filters, we used the lower-level cost function from (Ex) with the

same corner-rounded 1-norm sparsifying function as in training process. When initialized with cFD, the gradient
descent nature of the bilevel problem suggests that learned filters will perform better than cFD on the training data.

The right half of Tab. 11.1 shows the results for the learned filters corresponding to the smallest (ĉbest) and largest
(ĉworst) RMSE values on the test data across all 100 learned filters from the random initialization experiment described
in the previous section. Fig. 11.15 shows a histogram of the average RMSEs for all the random initializations. For
comparison, Tab. 11.1 also reports the denoising performance of cFD for the same lower-level cost function, with the
filter norm and β1 tuned (150 and -6.5 respectively) using a grid search to minimize RMSE.

Transforms: Denoised using (11.2) Filters (Bilevel method): Denoised using (Ex)

TFD T̂λ=0.23 cFD ĉbest ĉworst

RMSE 0.081 ± 0.035 0.131 ± 0.035 0.083 ± 0.026 0.089 ± 0.022 0.103 ± 0.022

Table 11.1: Average and standard deviation of the RMSE as defined in (9.10) for the 128 test signals. Left
columns: denoising using (11.2) with T being TFD or learned according to (9.3) with the training tuning
parameter λ set as 0.23. Right columns: denoising using the lower-level cost function in (Ex) with cFD and
the best and worst performing filters (judged on the test data) learned using the bilevel method with random
initializations. The mean denoising RMSE across all random initializations was 0.097.
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Figure 11.15: Histogram of the average RMSE for the test signals for all 100 random initializations c(0) in
the set-up bilevel filter learning.

The left half of Tab. 11.1 repeats the denoising results from Section 9.2. Recall that the denoising cost in that
section was

x̂(y) = argmin
x

1
2
‖x − y‖22 + β

∑

j

min
z j

∥∥∥TP jx − z j

∥∥∥2
2 + α

∥∥∥z j

∥∥∥
0 , (11.2)

where T was either a learned transform or TFD. The lower-level cost function for the transforms uses the 0-norm to
encourage sparsity while the cost function for the filters uses (CR1N). This difference in the cost function definitions
explains the increase in error from 0.081 when using TFD to 0.803 when using cFD. Namely, the increased error
illustrates the cost of replacing the split 0-norm with a convex, smooth sparsity penalty function. Recall that we used
(CR1N) in the bilevel formulation because of the smoothness requirements to compute the upper-level gradient; see
Section 10.1.3. An interesting avenue for future work would be to compare the denoising performance of the bilevel
methods that do not require smoothing (the unrolled methods in Section 10.1.3.2 and the translation to a single level
methods from Section 10.1.2). Another interesting comparison would be to use a non-convex sparsifying functions
such as φGR(z) = α|z|/(1 + α|z|) [307] or the corresponding smoothed version achieved by rounding the corners of the
absolute value functions.

Although the handcrafted filter cFD performs worse at denoising than the handcrafted transform TFD does with
(11.2) due to the structure of the regularizer in the lower-level cost function, the learned filters perform better than
the learned transform. In other words, the learned filters denoise signals better than the learned transforms despite an
inferior cost function design. We attribute this advantage to the task-based nature of the bilevel learning method.

Finally, counter to our hypothesis that the task-based nature of the bilevel training method would ensure that the
learned filters outperformed the handcrafted filter, Tab. 11.1 shows that the filters learned using bilevel methods do
not denoise better than cFD. Specifically, the test RMSEs using the filters learned from 100 different initializations are
7-24% higher than the RMSE using cFD. In comparison, the learned transform with λ = 0.23 resulted in denoised
signals with 38% more error than the finite differencing transform. The strong denoising ability of cFD stems from the
simple, piece-wise constant structure of the test signals.

11.3 Conclusion
We started the investigation in Section 9.2 based on an observation that we did not learn TFD using the split

transform learning training cost with noiseless PWC training signals. From this observation, we asked: Why do
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handcrafted sparsifying filters sometimes outperform learned filters? By construction, the learned transform achieves
a lower training loss (9.3) than TFD. Though this might suggest that the learned transform is “better,” in fact the
handcrafted transform better denoises the test signals. The disparity is due to the structure of the training cost: the
transform is learned to make training data approximately match sparse codes, which is best accomplished by a smooth
transform, rather than to separate signal and noise for denoising. Section 9.2 speficially showed that the smoothness
in the learned transform results from splitting the cost function as in (9.3), and that the smoothness increases as the
tuning parameter increases.

The observation that handcrafted filters can outperform learned filters due to the mismatch of the training cost and
test criteria naturally leads to the task-based bilevel formulation. This chapter addressed RQ#5: How does the bilevel
method compare to handcrafted filters and filters learned in a non-task-based method? Although the learned filters
did not denoise signals better than cFD, our simple experimental results show the learned filters perform more similar
to cFD than the learned transforms from Section 9.2 that perform noticeably worse than TFD. Further, the results in
Section 11.2.4 suggest that the learned filters using the bilevel method would continue to be better at denoising if we
ran additional upper-level iterations. Also, the learned task-based filters denoise better than the transforms learned to
(approximately) sparsify training signals, despite the relaxation from the 0-norm in the transform learning problem to
the corner-rounded 1-norm in the bilevel problem.

The results from Chapter 9 and this chapter exemplify the benefit of the task-based approach for simple experi-
ments where we specifically designed the training and test signals so that we expected TFD to denoise very well. In
more complicated problems, there is typically no obvious minimizer and one cannot hand-craft ideal filters. Thus, the
benefit of task-based learning will likely be amplified in real-world settings.
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CHAPTER 12

RQ#6: Survey of Applications and Connections

Along with Chapter 10, this chapter addresses RQ#6: What are the current trends in the literature on bilevel methods
for image reconstruction? Section 12.1 surveys applications in the bilevel methods literature and Section 12.2 connects
the bilevel literature and other machine learning techniques.

This material in this chapter is presented in chapters 6 and 7 of [11]:

C. Crockett and J. A. Fessler, “Bilevel methods for image reconstruction,” Foundations and Trends® in
Signal Processing, vol. 15, no. 2-3, pp. 121–289, May 5, 2022, ISSN: 1932-8346, 1932-8354.
DOI: 10.1561/2000000111

12.1 Survey of Applications
Bilevel methods have been used in many image reconstruction applications, including 1D signal denoising [165],
image denoising (see following sections), compressed sensing [166], spectral CT image reconstruction [290], and
MRI image reconstruction [166]. Bilevel methods are also used for classification problems. For example, [Sec.
6]nowozin:2011:structuredlearningprediction shows how the structured support vector machine (SSVM) is a convex
surrogate for the bilevel model when the lower-level cost is linear in γ. This section discusses trends and highlights
specific applications to provide concrete examples of bilevel methods for image reconstruction.

Many papers present or analyze bilevel optimization methods for general upper-level loss functions and lower-
level cost functions, under some set of assumptions about each level. Chapter 10 summarized many of these methods.
Although there are cases when the choice of a loss function and/or cost impacts the optimization strategy, many bilevel
problems could use any optimization method. Thus, this section concentrates on the specific applications, rather than
methodology.

This section is split into a discussion of lower-level cost and upper-level loss functions. (Lower-level cost functions
that involve CNNs are discussed separately; see Section 12.2.1.) The conclusion section discusses examples where the
loss function is tightly connected to the cost function.

12.1.1 Lower-level Cost Function Design
Once a bilevel problem is optimized to find γ̂, the learned parameters are typically deployed in the same lower-level
problem as used during training but with new, testing data. Thus, it is the lower-level cost function that specifies the
application of the bilevel problem, e.g., CT image reconstruction or image deblurring.
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Denoising applications consider the case where the forward model is an identity operator (A = I). This case has
the simplest possible data-fit term in the cost function and requires the least amount of computation when computing
gradients or evaluating Φ. Because bilevel methods are generally already computationally expensive, it is unsurprising
that many papers focus on denoising, even if only as a starting point towards applying the proposed bilevel method to
other applications.

More general image reconstruction problems consider non-identity forward models. Few papers learn parameters
for image reconstruction in the fully task-based manner described in (UL), likely due to the additional computational
cost. Some papers, e.g., [161], [162], [241] consider learning parameters for denoising, and then apply γ̂ in a re-
construction problem with the same regularizer but introducing the new A to the data-fit term. These “crossover
experiments” [241] test the generalizability of the learned parameters, but they sacrifice the specific task-based nature
of the bilevel method.

Recall from Chapter 8.1 that the regularizer (with its learned parameters) can be related to a prior for x in a
maximum a posteriori probability perspective. If this perspective is valid, then the γ̂ should generalize to other system
matrices. However, the exact connection between the regularizer and the probability distribution is not straight-forward
[308] and previous results suggest that γ̂ varies with different A’s [157], [241]. Further, A is often an imperfect model
for the true underlying phenomena and γ̂ may end up compensating for modeling errors that are specific to a given A,
and thus may not generalize to other imaging system models.

Many bilevel methods, especially in image denoising [162], [163], [165], [192], [293], but also in image recon-
struction [164], use the same or a very similar lower-level cost as the running example in this review. From Section 7.3,
the running example cost function is:

x̂(γ, y) = argmin
x

Φ(x ;γ)︷ ︸︸ ︷
1
2
‖Ax − y‖22 + eβ0

K∑

k=1

eβk 1′φ(ck ~ x; ε)

︸ ︷︷ ︸
R(x ;γ)

. (12.1)

The learned hyperparameters, γ, include the tuning parameters, βk and/or the filter coefficients, ck. The image
reconstruction example in [164] generalized (12.1) for implicitly defined forward models by using a different data-fit
term, as given in (10.7). Their two example problems involve learning parameters to estimate the diffusion coefficient
or forcing function in a second-order elliptic partial differential equation.

Two common variations among applications using (12.1) are (1) the choice of which tuning parameters to learn
and (2) what sparsifying function, φ, to use. Some methods [164], [192], [293] learn only the tuning parameters; these
methods typically use finite differencing filters or discrete cosine transform (DCT) filters (excluding the DC filter)
as the ck’s. Other methods learn only filter coefficients [165]. Fig. 12.1 shows filters learned from patches of the
“cameraman” image when γ = (β, h) and shows filter strengths when γ = β. The corresponding bilevel problem
is (Ex) with φ given in (CR1N). Fig. 12.2 shows the corresponding denoised image and Appendix F describes the
experiment settings and additional results.

A slight variation on learning the filters is to learn coefficients for a linear combination of filter basis elements
[162], [163], i.e., learning ak,i where

ck =
∑

i

ak,ibi,

for some set of basis filter elements, bi. One benefit of imposing a filter basis is the ability to ensure the filters lie in
a given subspace. For example, [162], [163] use the DCT as a basis and remove the constant filter so that all learned
filters are guaranteed to have zero-mean.
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DCT Filters Learning β Learning β and h

(a) (b) (c)

Figure 12.1: The DCT filter bank and example learned filters for (Ex) with training data from the “cam-
eraman” image. (a) The 48 non-constant 7 × 7 DCT filters used to initialize γ. The dark, top-left square
represents the removed DC filter. (b) The DCT filters multiplied by their respective tuning parameter βk

when γ = β. The range of eβ0+βk is 0.001-1.08. The learned tuning parameters emphasize the higher-
frequency DCT filters. (c) Learned filters when γ = (β, h) (scaled to have unit-norm for visualization).

In terms of sparsifying functions, [165], [293] used the same corner rounded 1-norm as in (CR1N), [163] used
φ = log

(
1 + z2

)
to relate their method to the Field of Experts framework [187], [164] used a quadratic penalty, and

[162], [192] both consider multiple φ options to examine the impact of non-convexity in φ. Ref. [192] compared
p-norms, ‖ck ~ x‖pp, for p ∈ { 12 , 1, 2}, where the p = 1

2 and p = 1 cases are corner-rounded to ensure φ is smooth. (The
p = 1

2 case is non-convex.) Ref. [162] compared the convex corner-rounded 1-norm in (CR1N) with two non-convex
choices: the log-sum penalty log

(
1 + z2

)
, and the Student-t function log

(
10ε +

√
z2 + ε2

)
.

Both [162], [192] found that non-convex penalty functions led to denoised images with better (higher) PSNR.
They hypothesize that the improvement is due to the non-convex penalty functions better matching the heavy-tailed
distributions in natural images. As further evidence of the importance of non-convexity, [162] found that untrained
7 × 7 DCT filters (excluding the constant filter) with learned tuning parameters and a non-convex φ outperformed
learned filter coefficients with a convex φ, despite the increased data adaptability when learning filter coefficients. The
trade-off for using non-convex penalty functions is the possibility of local minimizers of the lower-level cost.

Chen, Ranftl, and Pock [162] also investigated how the number of learned filters and the size of the filters impacted
denoising PSNR. They concluded that increasing the number of filters to achieve an over-complete filter set may not be
worth the increased computational expense and that increasing the filter size past 11×11 is unlikely to improve PSNR.
Using 48 filters of size 7 × 7 and the log-sum penalty function, [162] achieved denoising results on natural images
comparable to algorithms such as BM3D [309], as seen in Fig. 12.3. Although results will vary between applications
and training data sets, the results from [162] provide motivation for filter learning and an initial guide for designing
bilevel methods.

In addition to variations on the running example for Φ (12.1), a common regularizer for the lower-level cost is
Total Generalized Variation with order 2 (TGV2) [310]. Whereas TV encourages images to be piece-wise constant,
TGV2 is a generalization of TV designed for piece-wise linear images. Another generalization of TV for piece-wise
linear images is Infimal Convolutional Total Variation (ICTV) [311]. Bilevel papers that investigate ICTV include
[143], [144]; these papers also investigate TGV2. See [312] for a comparison of the two.
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xtrue
y

(14.56 dB)
x̂(γ = β)

(23.49 dB)
x̂(γ = {h,β})
(25.35 dB)

(a) (b) (d)(c)

Figure 12.2: Example denoising results for the full “cameraman” test image and two of the training patches.
(a) Noiseless training “cameraman” test image. (b) Noisy image and its SNR. (c) Denoised image using the
learned tuning parameters that weight the DCT filters as shown in Fig. 12.1b. (d) Denoised image using the
learned filter coefficients and tuning parameters as shown in Fig. 12.1c. For comparison, the denoised image
using BM3D [309] has a SNR of 26.87. See Appendix F for more details.

TGV cost functions are typically expressed in the continuous domain, at least initially, but then discretized for
implementation, e.g., [313], [314]. One discrete approximation of the TGV2 regularizer is:

RTGV(x) = min
z

eβ1 ‖cFD ~ x − z‖1 + eβ2 ‖∂z‖1 ,

where cFD is a filter that takes finite differences and ∂ is a filter that approximates a symmetrized gradient. In TV,
one usually thinks of z as a sparse vector; here z is a vector whose finite differences are sparse, so z is approximately
piece-wise constant. Encouraging z to be piece-wise constant in turn makes x approximately piece-wise linear, since
cFD ~ x ≈ z from the first term. Bilevel methods for learning β1 and β2 for the TGV2 regularizer include [143], [144].
An extension to the TGV2 regularizer model is to learn a space-varying tuning parameter [289].

As an example of how the regularizer should be chosen based on the application, [289] found that standard TV
with a learned tuning parameter performed best (in terms of SSIM) for approximately piece-wise constant images
while TGV2 with learned tuning parameters performed best for approximately piece-wise linear images.

12.1.2 Upper-Level Loss Function Design
From some of the earliest bilevel methods, e.g., [158], [165], to some of the most recent bilevel methods, e.g., [161],
[279], square error or mean squared error (MSE) remains the most common upper-level loss function. In the unsu-
pervised setting, [223], [224] used SURE (an estimate of the MSE, see Section 8.3) as the upper-level loss function.
Unlike many perceptually motivated image quality measures, MSE is convex in x and it is easy to find ∇x`(γ ; x̂(γ)).
However, MSE does not capture perceptual quality nor image utility (see Section 8.3). This section discusses a few
bilevel methods that used different loss functions.

Ref. [144] compared a squared error upper-level loss function with a Huber (corner rounded 1-norm) loss func-

234



Bilevel (29.48)FoE (29.15)y (20.17)xtrue BM3D (29.52)

(a) (b) (c) (d) (e)

Figure 12.3: Example denoising results from [162] comparing filters learned using bilevel methods to other
denoising methods. (a) The original image xtrue. (b) The noisy image y. (c-d) Denoised images using FoE
[187], BM3D [309], and a bilevel approach using a set-up equivalent to (Ex) with a non-convex penalty func-
tion, φ(z) = log

(
1 + z2

)
[162]. The PSNR values in dB are given in parenthesis. ©2014 IEEE. Reprinted,

with permission, from [162].

tion. The corresponding lower-level problem was a denoising problem with a standard 2-norm data-fit term and three
different options for a regularizer: TV, TGV2, and ICTV. The authors learned tuning parameters for a natural image
dataset using both upper-level loss function options for each of the lower-level regularizers.

Since SNR is equivalent to MSE, the MSE loss will always perform the best according to any SNR-based metric
(assuming the bilevel model is well-trained). However, [144] found the tuning parameters learned using the Huber
loss yielded denoised images with better qualitative properties and better SSIM, especially at low noise levels. Like
MSE, the Huber loss operates point-wise and is easy to differentiate. Thus, the authors conclude that the Huber loss is
a good trade-off between tractability and improving on MSE as an image quality measure.

A set of loss functions in [289], [290], [293] consider the unsupervised or “blind” bilevel setting, where one wishes
to reconstruct an image without clean samples. Therefore, rather than using an image quality metric that compares a
reconstructed image, x̂, to some true image, xtrue, these loss function consider the estimated residual,

n̂ = n̂(γ) = Ax̂(γ) − y,

where γ is learned using only noisy data. Unsupervised bilevel methods may be beneficial when there is no clean
data and one has more knowledge of noise properties than of expected image content. All three methods [289], [290],
[293] assume the noise variance, σ2, is known.

The earliest example [293], learned tuning parameters γ such that n̂ matched the second moment of the assumed
Gaussian distribution for the noise. Their lower-level cost is comparable to (Ex), but re-written in terms of n and with
pre-defined finite differencing or 5 × 5 DCT filters, i.e., they learn only the tuning parameters, βk. Their upper-level
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Figure 12.4: Noise corridor function (12.2) used as part of the upper-level loss function for the unsupervised
bilevel method in [289].

loss encourages the empirical variances of the noise in different frequency bands to match the expected variances:

`(γ ; n(γ)) =
1
2

∑

i

(∥∥∥ f i ~ n
∥∥∥2

2 − µi

)2

vi

µi = E
[∥∥∥ f i ~ n

∥∥∥2
2

]
and vi = Var

[∥∥∥ f i ~ n
∥∥∥2

2

]
,

where f i are predetermined filters that select specific frequency components. By using bandpass filters that partition
Fourier space, the corresponding means and variances of the second moments of the filtered noise are easily computed,
with

µi = Nσ2
∥∥∥ f i

∥∥∥2
and vi = Nσ4

∥∥∥ f i

∥∥∥4
.

Although the experimental results are promising, [293] does not claim state-of-the-art results since their lower-level
denoiser is relatively simple.

As an alternative to the Gaussian-inspired approach in [293], [289] and [290] use loss functions that penalize noise
outside a set “noise corridor.” Both methods learn space-varying tuning parameters, and the upper-level loss consists
of a data-fit term (that measures noise properties) and a regularizer on γ. The data-fit term in the upper-level loss
function in [293] defines the noise corridor between a maximum variance, σ̄2, and a minimum variance, σ2:

1′F. (w � (n(γ) � n(γ))) for

F(n) =
1
2

max(n − σ̄2, 0)2 +
1
2

min(n − σ2, 0)2, (12.2)

where w is a predetermined weighting vector. The noise corridor function, F(n), penalizes any noise outside of the
expected range as shown in Fig. 12.4. Ref. [290] uses the same noise corridor function, but extends the bilevel
method for images with Poisson noise; [290] thus estimates the noisy image using the Kullback-Leibler distance. In
addition to the noise corridor function as the data-fit component of the upper-level loss function, [289], [290] include
a smoothness-promoting regularizer on γ, which is a spatially varying tuning parameter vector in both methods.

The task-based nature of bilevel typically makes regularizers or constraints on γ unnecessary (see Section 9.1 for
common options for other forms of learning). However, there are two general cases where a regularizer on γ is useful
in the upper-level loss function. First, a regularizer can help avoid over-fitting when the amount of training data is in-
sufficient for the number of learnable hyperparameters. This is often the case when learning space-varying parameters
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that have similar dimensions as the input data, e.g., [158], [289], [290], [315]. In such cases, the regularization often
takes the form of a 2-norm on the learned hyperparameters, ‖γ‖22.

Second, some problems require application-specific constraints, e.g., [241] incorporates constraints in the upper-
level loss to ensure that the learned parameters are valid interpolation kernels. Many other hyperparameter constraints
do not require a regularization term, For example, non-negativity constraints on tuning parameters are easily handled
by redefining the tuning parameter in terms of an exponential, as in (Ex), and box constraints are common and easy
to incorporate with a projection step if using a gradient-based method. Constraints that require sparsity on the learned
parameters may benefit from regularization in the upper-level loss function.

An example of an application-specific constraint is found in [159], [160], which consider MRI reconstruction
with a data-fit term and a variational regularizer. Both papers extend the bilevel model in (Ex) to include part of the
forward model in the learnable parameters, γ. Specifically, [159], [160] learned the sparse sampling matrix for MRI.
(Ref. [160] additionally learns tuning parameters for predetermined filters, whereas [159] sets the tuning parameters
and filters and learns only the sampling matrix.) Here, the forward model is

A = diag(s1, s2, . . . , sM︸ ︷︷ ︸
s(γ)

)F,

where F is the DFT matrix and si are learned binary values that specify whether a frequency location should be
sampled.

The motivation for learning a sparse sampling matrix comes from the lower-level MRI reconstruction problem;
designing more effective sparse sampling patterns in MRI can decrease scan time and thus improve patient experience,
decrease cost, and decrease artifacts from patient movement. This goal requires the learned parameters, si, to be binary,
which in turn influences the upper-level loss function design. Thus, [159], [160] include regularization in the upper-
level to encourage s to be sparse, e.g., [160] uses an upper-level loss with a squared error term and regularizer on
s:

`(γ ; x̂(γ)) = ‖x̂(γ) − xtrue‖22 + λ
∑

i

(si + si(1 − si)) , (12.3)

where λ is a upper-level tuning parameter that one must set manually. (In experiments, they thresholded the learned
si values to be exactly binary.) An alternative approach is to constrain the number of samples [316], though that
formulation requires other optimization methods.

12.1.3 Conclusion
This section split the discussion of lower-level cost and upper-level loss functions to discuss trends in both areas.
However, when designing a bilevel problem, design decisions can impact both levels. For example, the unsupervised
nature of [290], [293] clearly impacted their choice of upper-level loss function to use noise statistics rather than
squared error calculated with ground-truth data. Since it can be challenging to learn many good parameters from noisy
training data, the unsupervised nature also likely impacted the authors’ decision to learn only tuning parameters and
set the filters manually. Another example of coupling between lower-level and upper-level design is when one enforces
application-specific constraints on the learned parameters, e.g., using a regularizer like (12.3) in the upper-level loss
to promote sparsity of the MRI sampling matrix [159], [160].

In addition to design decisions influencing both levels, bilevel methods may adopt common techniques for the
upper-level loss function and lower-level cost function. For example, a common theme is the tendency to use smooth
functions, such as replacing the 1-norm with a corner-rounded 1-norm. This approach requires setting a smoothing
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Figure 12.5: Spectrum of learning to inference-based methods from [317].

parameter, e.g., ε in (CR1N), which in turn impacts the Lipschitz constant and optimization speed. More accurate
approximations generally lead to larger Lipschitz constants and slower convergence. One approach to trading-off the
accuracy of the smoothing with optimization speed is to use a graduated approach and approximate the non-smooth
term more and more closely as the optimization progresses [166].

The prevalence of smoothing is unsurprising considering that this review focuses on gradient-based bilevel meth-
ods. Rare exceptions include [271], [272], which used the (not corner-rounded) one-norm to define φ to learn convo-
lutional filters using the translation to a single level approach described in Section 10.1.2. The impact of smoothing
and how accurately one should approximate a non-differentiable point remains an open question.

From an image quality perspective, ideally one would independently design the lower-level cost function and
upper-level training loss. The lower-level cost would depend on the imaging physics and would incorporate regular-
izers that expected to provide excellent image quality when tuned appropriately, and the upper-level loss would use
terms that are meaningful for the imaging tasks of interest. As we have seen, in practice one often makes compromises
to facilitate optimization and reduce computation time.

12.2 Connections
This section uses the spectrum of learning methods from Shlezinger et al. [317] as a framework for comparing
bilevel methods to other learning-based approaches that combine inferences or prior knowledge1 and deep learning.
Inferences can include information about the structure of the forward model, A, or about the object x being imaged.
For example, any known statistical properties of the object of interest could be used to design a regularizer that
encourages the minimizer x̂ to be compatible with that prior information. At one extreme, inference-based approaches
rely on a relatively small number of handcrafted regularizers with a few, if any, tuning parameters learned from training
data. At the other extreme, fully learned approaches assume no information about the application or data and learn all
hyperparameters from training data. Fig. 12.5 depicts the spectrum [317].

1Ref. [317] uses the term “model-based”, but this review uses “inferences” to differentiate from other definitions
of model-based learning in the literature.
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Ref. [317] proposed two general categories for methods that mix elements of inference-based and learning-based
methods. The first category, inference-aided networks, includes deep neural networks (DNNs) with architectures
based on an inference-based method. For example, in deep unrolling, one starts with a fixed number of iterations
of an optimization algorithm derived from a cost function and then learns parameters that may vary between iter-
ations, or “layers,” or may be shared across such iterations. Section 12.2.1 further discusses unrolling, which is a
common inference-aided network design strategy, and the connection to the bilevel unrolling method described in
Section 10.1.3.

The second general category is DNN-aided inference methods [317]. These methods incorporate a deep learning
component into traditional inference-based techniques (typically a cost function in image reconstruction). The learned
DNN component(s) can be trained separately for each iteration or end-to-end. Because prior knowledge takes a larger
role than in the inference-aided networks, these methods typically require smaller training datasets, with the amount
of training data required varying with the number of hyperparameters. Section 12.2.3 discusses how bilevel methods
compare to Plug-and-Play, which is an example DNN-aided inference model.

While [317] focused on DNNs due to their highly expressive nature and the abundance of interest in them, the
idea of trading off prior knowledge and learning components applies to machine learning more broadly. Section 12.2.1
through 12.2.3 describe how bilevel methods fit into the framework from [317] and relates bilevel methods to other
methods in the framework.

12.2.1 Learnable Optimization Algorithms
Learning parameters in unrolled optimization algorithms to create an inference-aided network, often called a Learnable
Optimization Algorithm (LOA), is a quickly growing area of research [318]. The first such instance was a learned
version of the Iterative Shrinkage and Thresholding Algorithm (ISTA), called LISTA [319]. Similar to the bilevel
unrolling method, a LOA typically starts from a traditional, inference-based optimization algorithm, unrolls multiple
iterations, and then learns parameters using end-to-end training.

There are many unrolled methods for image reconstruction [318]. Two examples that explicitly state the bilevel
connection are [166], [320]; both set-up a bilevel problem with a DNN as a regularizer and then allow the parameters to
vary by iteration, i.e., learning c(t)

k where t denotes the lower-level iteration. Ref. [320] motivated the use of an unrolled
DNN over more inference-based methods by the lack of an accurate forward model, specifically coil sensitivity maps,
for MRI reconstruction. Other examples of unrolled networks are [321], which unrolls the Field of Experts model
[187] (see Section 8.1.3 and 12.1.1 for how the Field of Experts model has inspired many bilevel methods); [322],
which unrolls the convolutional analysis operator model [193] (see (8.12)); and [288], which discusses the connection
to meta-learning.

Unlike the unrolled approach to bilevel learning described in Section 10.1.3, many LOAs depart from their base
cost function and “only superficially resemble the steps of optimization algorithms” [166]. For example, unrolled
algorithms may “untie” the gradient from the original cost function, e.g., using Ã

′
(Ax − y), instead of A′(Ax − y)

for the gradient of the common 2-norm data-fit term, where Ã′ is learned or otherwise differs from the adjoint of A.
LOAs that allow the learned parameters to vary every unrolled iteration or learn step size and momentum parameters
further depart from a cost function perspective.

In addition to selecting which variables to learn, one must decide how many iterations to unroll for both bilevel
unrolled approaches and LOAs. Most methods pick a set number of iterations in advance, perhaps based on previous
experience, initial trials, or the available computational resources. Using a set number of iterations yields an algorithm
with predictable run times and allows the learned parameters to adapt to the given number of iterations. Further,
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picking a small number of iterations can act as implicit regularization, comparable to early stopping in machine
learning, which may be helpful when the amount of training data is small relative to the number of hyperparameters
in the unrolled algorithm [288].

One can also use a convergence criteria to determine the number of iterations to evaluate, rather than selecting a
number in advance [279]. This convergence-based method more closely follows classic inference-based optimization
algorithms. A benefit of running the lower-level optimization algorithm until convergence is that one could switch
optimization algorithms between training and testing, especially for strictly convex lower-level cost functions, and
still expect the learned parameters to perform similarly. This ability to switch optimization algorithms means one
could use faster, but not differentiable, algorithms at test-time, such as accelerated gradient descent methods with
adaptive restart [295]. We are unaware of any bilevel methods that have exploited this possibility.

Even within the unrolling methodology, one must make several design decisions. To remain most closely tied to
the original optimization algorithm, an unrolled method might fix a large number of iterations or run the optimization
algorithm until convergence, use the same parameters every layer, and calculate the step size based on the Lipschitz
constant every upper-level iteration (see discussion in Section 10.1.3.1 and 11.2.1). Like all design decisions, there are
trade-offs and the literature shows many successful methods that benefit from the increased generality of designing
LOAs that are further removed from their cost function roots [318]. Echoing the ideas from [317], the design should be
based on the specific application and relative availability, reliability, and importance of prior knowledge and training
data.

This survey focuses on unrolled methods that are closely tied to the original bilevel formulation; [318] reviews
LOAs more broadly. A benefit of maintaining the connection to the original cost function and optimization algorithm
is that, once trained, the lower-level problem in an unrolled bilevel method inherits any theoretical and convergence
results from the corresponding optimization method. The corresponding benefit for LOAs is increased flexibility in
network architecture.

12.2.2 Equilibrium-based Networks
Equilibrium-based, or fixed point, networks are related to both LOAs and the minimizer approach from Sec-

tion 10.1.1. The idea was proposed only recently in [323], but has received much attention. From the unrolled
perspective, equilibrium networks consider what happens when the number of unrolled iterations approaches infinity.
Alternatively, they can be viewed as a single, implicit layer; as in the minimizer approach, the output is the solution to
a nonlinear equation.

We first consider the unrolled perspective. If an algorithm Ψ is a contraction, i.e.,

‖Ψ(x1 ; γ) − Ψ(x2 ; γ)‖ ≤ δ ‖x1 − x2‖ , ∀x1, x2 ∈ FN

for some parameter δ ∈ [0, 1), then the sequence of iterates will eventually converge to a fixed-point of Ψ. If the
optimization algorithm optimizes a cost function with a data-fit and regularization term, then the equilibrium network
approach is equivalent to a bilevel method. For a given value of γ, the contraction condition is typically easy to
satisfy by selecting an appropriate step-size in algorithms like gradient descent. Ref. [278] provides conditions on
deep equilibrium models specific to optimization algorithms based on gradient descent, proximal gradient descent,
and ADMM that ensure convergence.

Re-using some of our bilevel notation, let x̂(γ) denote a fixed-point of an equilibrium network. The derivation
for finding ∇γ x̂(γ) ∈ FN×R follows similar steps to the IFT perspective on the bilevel minimizer approach in Sec-
tion 10.1.1.1. The key difference is that, rather than using the first-order optimally condition as in the minimizer
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approach (10.3), the equilibrium method considers the lower-level minimizer to be a fixed point of an optimization
algorithm.

When the goal of the lower level problem is to find a fixed point, the bilevel problem becomes

argmin
γ

` (γ ; x̂(γ))︸ ︷︷ ︸
`(γ)

s.t. x̂(γ) = Ψ(x̂(γ) ;γ)︸ ︷︷ ︸
Fixed point equation

. (12.4)

Similar to the IFT perspective, one can differentiate both sides of the fixed point equation using the chain rule

∇γ x̂(γ) = (∇xΨ(x̂(γ) ;γ))∇γ x̂(γ) + ∇γΨ(x̂(γ) ;γ)

and then rearrange to derive an expression for ∇γ x̂(γ)

∇γ x̂(γ) = (I − (∇xΨ(x̂(γ) ;γ))︸ ︷︷ ︸
Ĵ

)-1∇γΨ(x̂(γ) ;γ). (12.5)

The matrix Ĵ is the Jacobian of the optimization algorithm, evaluated at the fixed point x̂(γ).
Substituting (12.5) into the expression for the upper-level gradient (10.2) yields

∇`(γ) = ∇γ`(γ ; x̂(γ)) +
(
∇γΨ(x̂(γ) ;γ)

)′
(I − Ĵ)-1∇x`(γ ; x̂(γ)). (12.6)

If the optimization is standard gradient descent, i.e., Ψ(x ;γ) = x − αΦ∇xΦ(x ;γ), then

∇γΨ(x̂(γ) ;γ) = -αΦ∇xγΦ(x ;γ) and

∇xΨ(x̂(γ) ;γ) = I − αΦ∇xxΦ(x ;γ).

Substituting these expressions into (12.5) yields the gradient as derived using the IFT perspective in the minimizer
approach (10.5), showing the close connection between the equilibrium and minimizer approach.

Similar to the minimizer approach, one can use any algorithm to find a fixed point x̂(γ) of Ψ. For example, [323]
used a quasi-Newton method and [278] used a standard fixed-point accelerated method. One can use any fixed point
algorithm to find x̂(γ); the algorithm used need not correspond to Ψ in (12.4). For example, Ψ could be standard
gradient descent, even if one uses a more advanced algorithm to initially compute x̂(γ). Another similarity to the
minimizer approach is that the learned parameters are optimal at convergence of the lower-level problem, rather than
after a fixed number of lower-level iterations. Therefore, the end-user can trade-off accuracy and compute requirements
at test time, unlike in unrolled approaches where the number of iterations is pre-decided.

Although the equilibrium model is the limit as the number of unrolled iterations approaches infinity, computing
∇`(γ) does not require backpropagation nor storing any intermediate matrices. The trade-off is that (12.6) requires
multiplying (I − Ĵ)-1 by a vector. The remaining computations in the full upper-level gradient (12.6) are straight-
forward. Similar to the required Hessian inverse-vector product in the minimizer approach, one can use an iterative
algorithm to approximate the matrix inverse. Ref. [278] notes that the inverse matrix-vector product

v = (I − Ĵ)-1∇x`(γ ; x̂(γ)),

is a fixed point of the equation
v = Ĵv + ∇x`(γ ; x̂(γ)).
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Therefore, one can use any fixed-point solver to compute the matrix-vector product. Another way to decrease the
computational cost of the Jacobian product is to use the method from [269]: if a quasi-Newton algorithm is used to
estimate the Jacobian for the forward step of computing x̂(γ), then one can “re-use” this estimated Jacobian to find
∇`(γ).

Fixed point networks can also be viewed from the perspective of unrolled methods. Although it is often infeasible
to backpropagate through the large number of iterations required to reach a fixed point, backpropagating through
the last few iterations yields a valid gradient estimate for ∇γ x̂(γ) [284]. Ref. [284] proves that this “truncated
backpropagation” approach converges to a stationary point of the upper-level loss when the lower-level cost function
is locally strongly convex around x̂(γ) because the backpropagation gradient error decays exponentially with reverse
depth. A similar approach is to use x̂(γ) at every backpropagation step rather than previous iterates. Ref. [324] shows
this is equivalent to approximating the matrix inverse in the minimizer approach using a Neumann series.

Recently, [325] proposed a Jacobian-free method to find ∇`(γ) that takes the approach from [284] to the extreme
case: it considers unrolling a single layer. The approach in [325] is equivalent to viewing the deep equilibrium network
as a single layer network where the initialization is the fixed-point, i.e., using x̂(γ) = Ψ(x(0) ; γ) in the unrolled method
with x(0) = x̂(γ). With this new perspective, it is easy to use existing backpropagation tools to compute the derivative
through the single layer network. Assuming that the network is Lipschitz, contractive, and differentiable and that the
upper-level loss is differentiable, [325] shows the Jacobian-free gradient is a descent direction for estimates of x̂(γ)
that are within some error bound of the true fixed point.

Deep equilibrium networks can be fully learned or they can incorporate physics-based models into their network
architecture and move into the inference-aided networks category in Fig. 12.5. For example, [278], [326] incorporated
system matrices into fixed point networks and applied them to MRI and CT image reconstruction problems.

12.2.3 Plug-and-play Priors
The Plug-and-Play (PNP) framework [327] is an example of a DNN-aided inference method. It is similar to bilevel
methods in its dependence on the forward model. However, unlike bilevel methods, the PNP framework need not be
connected to a specific lower-level cost function and it leverages pre-trained denoisers rather than training them for a
specific task.

As a brief overview of the PNP framework, consider rewriting the generic data-fit plus regularizer optimization
problem (8.1) with an auxiliary variable:

x̂ = argmin
x∈FN

Data-fit︷︸︸︷
d(x ; y) + β

Regularizer︷ ︸︸ ︷
R(z ;γ)︸ ︷︷ ︸

Φ(x ;γ)

s.t. x = z. (12.7)

Using ADMM [328] to solve this constrained optimization problem and rearranging variables yields the following
iterative optimization approach for (12.7):

x(u+1) = argmin
x

d(x ; y) +
λ

2
‖x − (z(u) − u(u))︸ ︷︷ ︸

x̃

‖22 = prox 1
λ d(x ;y)(x̃)

z(u+1) = argmin
z

βR(z ;γ) +
λ

2
‖z − (x(u) + u(u))︸ ︷︷ ︸

z̃

‖22 = prox β
λR(z ;γ)( z̃)

u(u+1) = u(u) + (x(u+1) − z(u+1)),

where λ is an ADMM penalty parameter that effects the convergence rate (but not the limit, for convex problems). The
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first step is a proximal update for x that uses the forward model but does not depend on the regularizer. Conversely, the
second step is a proximal update for the split variable z that depends on the regularizer, but is agnostic of the forward
model. This step acts as a denoiser. The final step is the dual variable update and encourages x(u) ≈ z(u) as u→ ∞.

The key insight from [327] is that the above update equations separate the forward model and denoiser. Thus, one
can substitute, or “plug in,” a wide range of denoisers for the z update, in place of its proximal update, while keeping
the data-fit update independent.

Whereas in the original ADMM approach, the parameter λ has no effect on the final image for convex cost
functions, in the PNP framework that parameter does affect image quality. Thus, one could also use training data to
tune the λ in a bilevel manner. Although PNP allows one to substitute a pre-trained denoiser, one could additionally
tune the parameters in the denoiser. Ref. [329] provides one such example of starting from a PNP framework then
learning denoising parameters and λ that vary by iteration.

A large motivation for the PNP framework is the abundance of advanced denoising methods, including ones that
are not associated with an optimization problem such as BM3D [309]. However, using existing denoisers sacrifices
the ability to learn parameters to work well with the specific forward model, as is done in task-based methods. As
simple examples of how learned parameters may differ when A changes, [241] found that different filters worked
better for image denoising versus image inpainting and [157] found that unrolled deblurring methods required more
upper-level iterations than unrolled denoising methods. A more complicated example is using bilevel methods to learn
some aspect of A alongside some aspect of the regularizer, e.g., [160] learned a sparse sampling matrix and tuning
parameter for MRI that are adaptive to the regularization for the image reconstruction problem.

12.3 Conclusion
This chapter discussed a variety of bilevel methods and how bilevel methods compare to other machine learning

methods. It is meant to provide perspective, ideas, and connections to increase understanding for readers who may be
more familiar with a different area of the literature. It is not meant to claim one perspective or definition is superior or
to narrow the definition or application of any method.

Section 12.1 considered different upper-level and lower-level formulations for bilevel methods in the literature.
Here, the variety across methods is most obvious in the choice of the upper-level loss function and lower-level cost
function. Many methods consider filter learning similar to (Ex), but existing bilevel approaches are far from limited to
this particular set-up. As just one example of the extent of the differences between methods, much of Part 6.3 refers
to the bilevel method as a supervised method, but Section 8.3 includes examples of unsupervised bilevel methods.

The loss function and cost function should be designed based on a specific image reconstruction problem. Of-
fering guidelines on how to approach this design problem will differ by application and is beyond the scope of this
work. However, one theme we noted from the studies comparing multiple sparsifying functions is the benefit of non-
convexity [162], [192]. An interesting avenue for future work is testing if there is a similar benefit to non-smooth
sparsifying functions; Section 13.2 expands on this point.

Section 12.2 showed how bilevel methods compare to a variety of other machine learning methods. Some authors
refer to inference-aided or learned networks as being bilevel methods. This is true if one takes a broad perspective on
the definition of bilevel methods and defines any method that uses training data to tune hyperparameters based on a
performance metric, e.g., as in cross-validation, as a bilevel method. We took a more narrow view of bilevel methods;
(UL) specifies an upper-level loss function that measures quality using the result of a model-based lower-level cost
function. Thus, for example, unrolled algorithms that untie parameters between layers might be bilevel-inspired but
do not fit our definition for a bilevel method.
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Finally, although not covered in the framework in Fig. 12.5, a connection noted throughout Part 6.3 is the compar-
ison between bilevel methods and “single-level” learning methods. Section 9.1 reviews single-level learning methods,
where hyperparameters are learned to sparsify training data or to model the distribution of the training data. Like most
bilevel methods, single-level methods learn hyperparameters in a supervised manner. However, they generally learn
parameters that sparsify the training images, {xtrue

j }, and do not use the noisy data, {y j}. Chapter 11 demonstrates the
benefit of task-based approaches over the single-level methods from Chapter 9 for a simple experiment.
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CHAPTER 13

Part II: Summary, Contributions, Conclusions, and
Future Work

Part 6.3 of this dissertation focused on bilevel methods for image reconstruction. The three research questions were:

RQ#4 Why do handcrafted sparsifying filters sometimes outperform learned filters?

RQ#5 How does the bilevel method compare to handcrafted filters and filters learned in a non-task-based
method?

RQ#6 What are the current trends in the literature on bilevel methods for image reconstruction?

Chapter 9 and Chapter 11 addressed the first two questions using a series of case studies. For RQ#6, Chapter 10
reviewed bilevel methods and Chapter 12 discussed applications of bilevel methods and how bilevel methods compare
to other machine learning approaches. This conclusion reviews the main contributions of Part 6.3 and summarizes
ideas for future directions. We end Part 6.3 with a summary of the advantages and disadvantages of bilevel methods.

13.1 Summary of Contributions
The main contribution of Part 6.3 is motivating bilevel methods. At the start of my graduate studies, I was working on
extending models such as those presented in Chapter 9 where the training objective was to sparsify a set of training
signals. The initial impetus for learning about bilevel methods stemmed from concern over the constraints required in
the training process. We developing the handcrafted CAOL algorithm (see Section 9.3) to avoid sparsifying the DC
component, but the tight-frame filter constraint in CAOL still seemed overly restrictive.

There are many constraint and penalty options for single-level filter learning problems (see Section 9.1), but
ultimately they all led us to the same question: is this the correct training objective? Chapter 9 learned filters using
a common optimization method based on approximately sparsifying training signals. The results showed that these
learned filters did not denoise a signal or reconstruct an image as well as handcrafted filters. One reason for the
disparity is that the training task may not match the end application for the filters.

The training objective in bilevel methods considers the end application. For example, in words, the training
objective might be “learn filters that, on average, perform best at denoising these example signals.” In comparison, the
single-level objectives from Chapter 9 were “learn filters that sparsify these training signals.” The task-based set-up
of the bilevel optimization problem clearly connected the training objective to the end application and it removed the
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need for hyperparameter constraints! Chapter 11 demonstrated how filters learned using a bilevel method denoised
signals better than those learned using the single-level training objective.

Having discovered the benefit of bilevel methods, we set out to design a bilevel image reconstruction method. In
many ways, bilevel methods serve as a bridge from the (traditional) single-level training objectives and the machine
learning literature on convolutional and deep neural networks. Like the single-level objectives, the bilevel method has
a model-based lower-level cost function that one can design to have a chosen set of theoretical guarantees. Like the
neural networks, the bilevel method learns hyperparameters to minimize a loss function. While familiar with methods
from both of the adjoining fields, I was not familiar with bilevel methods.

Thus, we embarked on a review of the literature that turned into a formal literature review [11]. The hope for
the literature review, largely presented in Chapter 10 and 12, is that it aids other engineers who are similarly new
to the bilevel literature to learn about the available tools and the existing applications. The next section shows that
that are many promising avenues for future work on bilevel methods, particularly in fields such as medical image
reconstruction where explainability and theoretical guarantees are highly valued, there are limited training datasets,
and engineers have good models for the physics of the imaging system.

13.2 Future Directions
Throughout Part 6.3, we mentioned a few areas for future work on bilevel methods. This section highlights some of
the avenues that we think are particularly promising.

Advancing upper-level loss function design is identified as future work in many bilevel papers. Despite the
abundance of research on image quality metrics (see Section 8.3), most bilevel methods use squared error for the upper-
level loss function (see Section 12.1.2 for exceptions). Using loss functions that better match the end-application of
the images is a clear future direction for bilevel methods that nicely aligns with their task-based nature. For example,
in the medical imaging field there is a large literature on objective measures of image quality [330], often based on
mathematical observers designed to emulate human performance on signal detection tasks, e.g., in situations where
a lesion’s location is unknown [331]. To our knowledge, there has been little if any work to date on using such
mathematical observers to define loss functions for bilevel methods or for training CNN models, though there has
been work on CNN-based observers [332]. Using task-based metrics for bilevel methods and CNN training is a natural
direction for future work that could bridge the extensive literature on such metrics with the image reconstruction field.

Unsupervised bilevel problems are exceptions to the trend of using squared error for the upper-level loss function.
Section 12.1.2 considered a few unsupervised bilevel methods that use noise statistics to estimate the quality of the
reconstructed images, e.g., [289], [290], [293] [223], [224]. One extension to the unsupervised setting is the semi-
supervised setting, where one might have access to a few clean training samples and additional, noisy training samples.

A related opportunity for future work is to use bilevel methods to learn patient-adaptive parameters. The population-
based learning approach considered in (7.5) learns hyperparameters that are best on average over the set of training
images. In contrast, a patient-adaptive approach tunes hyperparameters for every input image. For example, one could
learn filters and initial tuning parameters offline from a training dataset and then adjust the tuning parameters when
reconstructing a specific image, e.g., using approaches such as the unsupervised approaches in Section 12.1.2. An
alternative approach for adapting hyperparameters at test time is to learn a mapping from the input data to the set of
hyperparameters [186], [333].

Just as considering more advanced image quality metrics for the upper-level loss function is a promising area for
future work, bilevel methods can likely be improved by using more advanced lower-level cost functions. For example,
one could use bilevel methods to learn multi-scale filters, increasing the receptive field of a regularizer and providing a
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more natural representation for data that is inherently multiscale [334], [335]. Perhaps due to the already challenging
and non-convex nature of bilevel problems, most methods consider relatively simple convex lower-level cost functions.
Papers that examine non-convex regularizers, e.g., [162], [192], conclude that non-convex regularizers lead to more
accurate image reconstructions, likely due to better matching the statistics of natural images. This observation aligns
with the simple denoising experimental results in [10], where learned filters with (CR1N) as the regularizer yielded
noisier signals than signals denoised with a hand-crafted filter with the non-convex 0-norm regularizer. In other words,
the structure of the regularizer matters in addition to how one learns the filters.

In addition to non-convexity, future bilevel methods could consider non-smooth cost functions. Many bilevel
methods require the lower-level cost to be smooth. Exceptions include the translation to a single level approach
(Section 10.1.2), which uses the 1-norm as the lower-level regularizer, and unrolled methods, which can be applied to
non-smooth cost functions as long as the optimization algorithm has smooth updates (Section 10.1.3.2). The impact
of smoothing the cost function on the perceptual quality of the reconstructed image is largely unknown.

Another avenue for future work is based on the fact that xtrue is really a continuous-space function. A few meth-
ods, e.g., [143], [144], develop bilevel methods in continuous-space. However, the majority of methods use discretized
forward models without considering the impact of this simplification (as done in this dissertation). Future investiga-
tions of bilevel methods should strive to avoid the “inverse crime” [336] implicit in (7.4) where the data is synthesized
using the same discretization assumed by the reconstruction method.

Future work may also consider how to more closely tie the bilevel method to a statistical modeling framework
and leverage progress made in that field. Many bilevel methods for filter learning use the Field of Experts [187] as a
starting point. Ref. [187] takes a maximum-likelihood perspective and learns parameters to model the training data
distribution. In contrast, bilevel methods such as (Ex) have their roots in a maximum a posteriori perspective. While
this approach is motivated by and aligns with the task-based nature of bilevel methods [163], it is not clear how well
the learned parameters reflect a prior or how to use the learned parameters to generate model uncertainties. Ideas from
the Bayesian statistics literature, such as Monte Carlo methods, may be a promising avenue for future research.

Related to connecting bilevel methods and statistical processes, an interesting opportunity for a stochastic bilevel
formulation is to add different noise realizations in (7.4), providing an uncountable ensemble of (x, y) training tuples,
where the expectation in (7.5) is over the distribution of noise realizations. Yet another possibility is to have a truly
random set of training images xtrue drawn from some distribution. For example, [337] trained a CNN-based CT
reconstruction method using an ensemble of images consisting of randomly generated ellipses. Other variations, such
as random rotations or warps, have also been used for data augmentation [338]. One could combine such a random
ensemble of images with a random ensemble of noise realizations, in which case the expectation in (7.5) would be
taken over both the image and noise distributions. We are unaware of any bilevel methods for imaging that exploit this
full generality. Future literature on stochastic methods should clearly state what expectation is used and may consider
exploiting a more general definition of randomness.

13.3 Summary of Advantages and Disadvantages
Like the methods described in Shlezinger, Whang, Eldar, et al. [317], bilevel methods for computational imaging
involve mixing inference-based optimization approaches with learning-based approaches to leverage benefits of both
techniques.

Inference-based approaches use prior knowledge, usually in the form of a forward model and an object model,
to reconstruct images. Typically the forward model, A, is under-determined, so some form of regularization based
on the object model is essential. Regularizers always involve some number of adjustable parameters; traditionally
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inference-based methods select such parameters empirically or using basic image properties like resolution and noise
[256], [259]. The regularization parameters may also be learned from training to maximize SNR [339] or detection
task performance [340] in a bilevel manner (often using a grid or random search due to the relatively small number
of learnable parameters). When the forward model and object model are well-known and easy to incorporate in a
cost function, inference-based methods can yield accurate reconstructions without the need for large datasets of clean
training data.

Learning-based approaches use training datasets to learn a prior. Recently, learning-based approaches have
achieved remarkable reconstruction accuracy in practice, largely due to the increased availability in computational
resources and larger, more accessible training datasets [137], [138]. However, many (deep) learning methods lack
theoretical guarantees and explainability and finding sufficient training data is still challenging in many applications.
Both of these challenges may impede adoption of learning-based methods in clinical practice for some applications,
such as medical image reconstruction [257]. Some deep learning methods for CT image reconstruction were approved
for clinical use in 2019 [341]; early studies have shown such methods can significantly reduce noise but may also
compromise low-contrast spatial resolution [342].

Combining inference-based and learning-based approaches allows the integration of learning from training data
while using smaller training datasets by incorporating prior knowledge. Such mixed methods often maintain inter-
pretability from the inference-based roots while using learning to provide adaptive regularization. Thus, the bene-
fits of bilevel methods mentioned in Chapter 6.3 introduction are generally shared among the methods described in
[317]: theoretical guarantees, competitive performance in terms of reconstruction accuracy, and similar performance
to learned networks with a fraction of the free parameters, e.g., [161], [166].

What distinguishes bilevel methods from the other methods in the inference-based to learning-based spectrum
in Fig. 12.5? While one can argue that the conventional CNN and deep learning approach is always bilevel in the
sense that the hyperparameters are trained to minimize a loss function, Part 6.3 considered bilevel methods with the
cost function structure (LL). The regularization term in (LL) could be based on a DNN [166], but we followed the
bilevel literature that focuses on priors/regularizers, such as in (Ex), maintaining a stronger connection to traditional
cost function design.

Another lens for understanding bilevel methods is extending single-level hyperparameter optimization approaches
to be task-based, bilevel approaches. Single-level approaches to image reconstruction, such as those using dictionary
learning [211], convolutional analysis operator learning [193], and convolutional dictionary learning [245], [343],
generally aim to learn characteristics of a training dataset, with the idea that these characteristics can then be used in
a prior for an image reconstruction task. While such an approach may learn more general information, [10], [271]
showed that a common single-level optimization strategy resulted in learning a regularizer that was suboptimal for the
simple task of signal denoising.

As further evidence of the benefit of task-based learning, [271] found that the lack of constraints in the bilevel
filter learning problem is important; the learned filters used the flexibility of the model and were not orthonormal,
whereas orthonormality is a constraint often imposed in single-level models (see Section 9.1). Ref. [192] showed how
the task-based nature adapts to training data; total variation based regularization works well for piece-wise constant
images but less so for natural images. Beyond adapting to the training dataset, bilevel methods are task-based in terms
of adapting to the level of noise; [159] found the learned tuning parameters for image denoising go to 0 as the noise
goes to 0, since no regularization is needed in the absence of noise for well-determined problems.

A primary disadvantage cited for most bilevel methods is the computational cost compared to single-level hy-
perparameter optimization methods or other methods with a smaller learning component. In turn, the main driver
behind the large computational cost of gradient descent based bilevel optimization methods is that one typically has to
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optimize the lower-level cost function many times, either to some tolerance or for a certain number of iterations. The
computational cost involves a trade-off because how accurately one optimizes the lower-level problem can impact the
quality of the learned parameters. For example, [162], [192] both claim better denoising accuracy than [163] because
they optimize the lower-level problem more accurately. Similarly, [271] notes that learning will fail if the lower-level
cost is not optimized to sufficient accuracy.

There are various strategies to decrease the computational cost for bilevel methods. Some are relatively intuitive
and applicable to a wide range of problems in machine learning. For example, [271] used larger batch size as the
iterations continue, [143] increased the batch size if a gradient step in γ does not sufficiently improve the loss function,
and [159] tightened the accuracy requirement for the gradient estimation over iterations. These strategies all save
computation by starting with rougher approximations near the beginning of the optimization method, when γ(u) is
likely far from γ̂, while using a relatively accurate solution by the end of the algorithm.

Another disadvantage of bilevel methods is that, while the optimization algorithm for the lower-level problem
often has theoretical convergence guarantees, and the lower-level cost is often designed to be strictly convex, the full
bilevel problem (UL) is usually non-convex, so the quality of the learned hyperparameters can depend on initialization.
Thus, in practice, one requires a strategy for initializing γ. For example, for (Ex), one may decide to use a single-
level filter learning technique such as the Field of Experts [187] to initialize the hyperparameters. Or, one can use
a handcrafted set of filters, such as the DCT filters (or a subset thereof). Other hyperparameters often have similar
warm start options. Despite the non-convexity, papers that tested multiple initializations generally found similarly
good solutions surprisingly often, e.g., [159], [162], [289].

There is no one correct answer for how much a method should use prior information or learning techniques, and
it is unlikely that any single approach can be the best for all image reconstruction applications. Like most engineer-
ing problems, the trade-off is application-dependent. One should (minimally) consider the amount of training data
available, how representative the training data is of the test data, how under-determined the forward model is (i.e.,
how strong of regularization is needed), how well-known the object model is, the importance of theoretical guarantees
and explainability, and the available computational resources at training time and at test time. Bilevel methods show
particular promise for applications where training data is limited and/or explainability is highly valued, such as in
medical imaging.
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APPENDIX A

Full Survey Instruments

A.1 Qualitative Protocols
The protocols in the following sections all refer to a table of concepts that we offered participants. We provided this
in a formatted table for in-person interactions and as a list in the chat window for the interactions over Zoom.

Note that the table simply lists what the concepts are, without describing any in much detail. The purpose of
the table was to job participants’ memories (especially those of engineers working in industry) of what is covered in
S&S and what they already know about those concepts; we did not want the table to explain concepts and accidentally
increase participants’ knowledge.

Table A.1: Table of concepts in S&S provided to interview and focus group participants.

Topic Description

Background mathematics Function manipulation in the time domain (for example, subtracting func-
tions from each other or shifting a function in time)

Linearity and time invari-
ance

Definition of linear and time invariant (LTI) and properties of systems that
are LTI

Convolution The procedure for simple graphical convolution, how convolution can be
used to determine the system output given the impulse response, and the
relationship with multiplication and the Fourier transform

Fourier transform How the Fourier transform (FT) maps time to frequency space and basic
properties of the FT

Pole-zero plots How pole-zero plots can be used to determine system causality and stability
Filtering The procedure for using the frequency response to determine the output of a

system given the input

A.1.1 Focus group protocol
We used the same basic protocol for both the undergraduate and graduate focus groups, with only minor modi-

fications. The focus groups lasted one hour each, with about five minutes allowed for everyone arriving and getting
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settled.
1. Background: The purpose of the first step is to make participants feel comfortable with the format of the focus

group and to follow good Institutional Review Board (IRB) practices.

• I’m Caroline. I’ve organized this focus group to talk about how students learn signals and systems.
You’ve all taken [course name/number here for signals and systems at given university], so I want to get
your opinions on your experience. I might step in occasionally to redirect the conversation to make sure
we get through everything in the time we have or to pose new questions, but I really want to hear from
all of you because you’ve had different experiences. It’s helpful if you talk to each other, not just to me,
and there aren’t any right or wrong answers here, so it’s okay to disagree with each other.

• Just a reminder, the conversation’s being audio-recorded for me to transcribe and look at later. However,
it’s only me that will ever hear the tape, and nobody will be named on the transcript. I don’t expect to
talk about anything too sensitive today, but please respect the other people and don’t talk about what
others share here after we leave. Any questions before we get started?

2. Introduction to the research: Next is a simple intro question to promote interaction and get everyone to talk
at least once. I talk first to set an expectation for how much everyone will talk and to further build rapport with
the participants by acknowledging that there are concepts in S&S that I did not learn during my course.

• I want to start by just getting to know each other a little. Can we all go around and say your name, year,
when you took [signals and systems course], and one example of something you remember or something
you have completely forgotten from the course.

• I go first by introducing myself and my experience in signals and systems.

3. Formally introduce concepts: We provided a list of concepts to help them recall what S&S covered.

• Okay, I want to just give you a little more detail on our topic for the day. I really want to focus on
concepts in signals and systems, not procedures. So, for example, I’m more interested in how you
learned that the Fourier transform converts signal space to frequency space and less interested if you can
still do the math and take a Fourier transform by hand.

• With that said, here’s a cheat sheet for what concepts I am interested in talking about today (see Tab. A.1).
Leave a minute for them to read it.

• Do the descriptions of the concepts are clear to you?

4. Focus in-course: The first major goal of the focus group is to understand what factors helped/hindered students
learning concepts during their S&S course.

• While you were taking the course, what do you think helped or hindered you from understanding these
concepts?

• If the following ideas do not come up, probe for the possibility of: format of the class, interest in the
topic, perceived value of topic to future career, use of the topic outside of class.

• If needed to stimulate conversation, you can also probe for how they learned specific concepts.

5. Focus longitudinal: The second major goal of the focus group is to understand what factors made students
learn, retain, or forget concepts after their S&S course.
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• Do you think you have a better or worse understanding of these concepts now versus right after you
finished [signals and systems]?

• If needed to stimulate conversation: Is there any reason you remember one concept but not another?

• Was there anything that you feel like helped or hindered you learning more of the concepts after you
finished [signals and systems]?

• As before, if these items do not come up, you can probe for: interest in the topic, perceived value of the
topic, use of the topic outside of class, seeing the topic again in upper-level courses

6. Summarizing big-picture question: This question is more open-ended and should encourage students to think
more broadly about their S&S education.

• Okay, I feel like we had a lot of good things come out of that conversation. I want to just ask a final
summarizing question. If you had to name just one thing that helped and one thing that hindered your
learning of signals and systems, what would it be? It can be something we’ve already talked about or
something new.

7. Conclusion: Thank the participants and make sure they have nothing else to add.

• I have no more questions to ask but is there anything else you all would like to bring up, or ask about,
before we finish this session?

• Thanks for coming and being a part of the conversation. It’s really helpful for us to hear from current
students and get your perspectives. If there is something you didn’t have a chance to say, I’ll send a
follow-up email just to thank you and feel free to send a response with anything you thought of.

A.1.2 Industry interview
We scheduled industry interviews for 30 minutes, and reserved the last 5 minutes to allow our participants to ask

any questions about the research (because we did not reward industry participants with gift cards or free food, this was
a small gesture of thanks). We did all industry interviews over Zoom.

1. Background: I start the interview by introducing myself and reviewing the most important parts of the IRB
consent form.

• I’m Caroline. As part of my dissertation, I’m studying conceptual understanding of signals and systems.
I’ve organized this interview to get your opinions as someone in industry. There are no right or wrong
answers.

• Just a reminder, the conversation’s being audio recorded for me to transcribe and look at later. However,
it’s only me that will ever hear the tape, and you will be anonymous in any reporting of the data.

• Any questions before we get started?

2. Concepts:

• I really want to focus on concepts in signals and systems, not procedures. So, for example, I’m more
interested in how students learn that the Fourier transform converts signal space to frequency space and
less interested if they can still do the math and take a Fourier transform by hand.
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• With that said, here are some common concepts in signals and systems. Briefly talk through the hand-out
(see A.1).

• Any questions about conceptual understanding or these concepts?

3. Student years:

• I want to start by asking you about when you were a student. Can you first briefly tell me about your
undergraduate and how your signals and systems class fit into the curriculum and what it covered?

• When you were first learning signals and systems, which concepts did you find particularly easy or hard
to understand?

• Why? Probe as needed for impact from teaching style, interest/motivation, previous classes/known
material, etc.

• As you continued in undergraduate classes, do you remember any concept making more sense? Or
perhaps making less sense?

• Probe as needed for impact of other courses and passing of time helping/hurting?

4. Industry years:

• I want to transition to talking about your experiences in industry.

• Can you first tell me a little about what your job entails and maybe about the other positions you’ve had
over the years? [Note: from experience, this usually comes up naturally earlier in the interview and I
can skip this question.]

• How often do you find yourself using material from signals and systems? In what way do you use it?
Which parts of it come up most?

• Do you feel like you understand signals and systems better or worse now than when you were an under-
grad? (probe for why and various possible factors)

• How do you feel your undergraduate S&S related courses prepared you for your work in industry?

5. Summarizing big-picture question

• I feel like we’ve talked about a lot of good things. I want to ask some big-picture summarizing questions.

• If you could change one thing about your undergraduate EE education, what would be your change?
What if you had to change something about the signals and systems curriculum? (Note if its purpose to
help conceptual understanding?)

6. Conclusion:

• Thanks again for talking with me. It’s really helpful for me to get your perspective.

• Do you have anything else you want to add?

• I like to leave the last few minutes in case you want to ask me any questions about the research.
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A.1.3 Instructor Interview
We scheduled instructor interviews for 60 minutes, but planned to take only 45 (we reserved the last 15 minutes

for answering their questions about our study). We did the UM interview in-person and the UVA interview over Zoom
due to COVID-19.

1. Background: I start the interview by introducing myself and reviewing the most important parts of the IRB
consent form.

• I’m Caroline. As part of my dissertation, I’m studying conceptual understanding of signals and systems.
I’ve organized this interview to get your opinions as someone in industry. There are no right or wrong
answers.

• Just a reminder, the conversation’s being audio recorded for me to transcribe and look at later. However,
it’s only me that will ever hear the tape, and you will be anonymous in any reporting of the data.

• Any questions before we get started?

2. Concepts:

• I really want to focus on concepts in signals and systems, not procedures. So, for example, I’m more
interested in how students learn that the Fourier transform converts signal space to frequency space and
less interested if they can still do the math and take a Fourier transform by hand.

• With that said, here are some common concepts in signals and systems. Briefly talk through the hand-out
(see A.1).

• Any questions about conceptual understanding or these concepts?

3. Student years: By asking the instructors to think back to when they were students, we hope to help them recall
struggling with certain concepts that they now know so well and to get them more engaged in our interview
questions, rather than giving a pre-planned lecture on students understanding of conceptual understanding.

• I want to start by asking you about when you were a student. Can you first briefly tell me about your
undergraduate and how your signals and systems class fit into the curriculum and what it covered?

• When you were first learning signals and systems, which concepts did you find particularly easy or hard
to understand?

• Why? Probe as needed for impact from teaching style, interest/motivation, previous classes/known
material, etc.

• As you continued in undergraduate classes, do you remember any concept making more sense? Or
perhaps making less sense?

• Probe as needed for impact of other courses and passing of time helping/hurting?

4. Teaching years: This is the primary focus of the interview.

• I want to transition to talking about your experiences teaching signals and systems.

• I want to start by asking about your overall philosophy regarding [signals and systems course]. How
have you structured your course and why did you do it that way?
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• Probe for: Lectures, lab design, homework problems, changes over the years, graphical vs mathematical
representation (e.g., of convolution), and point of each component of the class

• What concepts do you think students find easiest or hardest? Why?

• Probe for interest/perceived usefulness, prior classes, level of abstraction, etc.

• Have you tried modifying the class or your teaching to help with the harder concepts? If so, how did it
work out?

5. Summarizing big-picture question:

• I feel like we’ve talked about a lot of good things. I want to ask some big-picture summarizing questions.

• If you could redesign the signals and systems curriculum without any time, financial, or department-
imposed constraints, what would be your biggest change?

6. Conclusion:

• Thanks again for talking with me. It’s really helpful for me to get your perspective.

• Do you have anything else you want to add?

• I like to leave the last few minutes in case you want to ask me any questions about the research.

A.2 Surveys
Note that the formatting presented below is not a representation of the survey given to students. All Likert questions
had 5-point scales. Here, we only present the two extremes of the Likert response options. Most surveys (those other
than Fall 2019 in EECS 216 at UM) were given in Qualtrics.

All surveys were proceeded by a statement that the survey would not impact their grade and that their answers
would be used anonymously.

A.2.1 Survey #1
This is the survey given to students at the end of their S&S class (EECS 216 at UM and FUN 3 at UVA). For text

that differs between the UM survey and UVA survey, we present both versions of the text in brackets, i.e., [UM survey
text/UVA survey text]

1. I would like to graduate with a major in Electrical Engineering 1. [Strongly disagree – Strongly agree]

2. After graduating, I would like to... (mark all that apply)

• be in a technical role

• be in a managerial role

• be a systems engineer

• teach

• work in a service- focused role

1This question was not included in the UVA survey as most students have already declared their major by the time
they take FUN 3
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• do research (in industry or academia)

• get a Master’s degree in [text entry line]

• get a PhD degree in [text entry line]

• Other: [text entry line]

3. Learning signals and systems is interesting. [Strongly disagree – Strongly agree]

4. For each of the following, please respond to the statement: Understanding 2 this topic will benefit me in my
career. [Strongly disagree – Strongly agree]

• Convolution

• Linear and Time Invariance

• Fourier transform

• Laplace transform

• Filtering

5. How would you rate the overall quality of instruction in [EECS 216/the three Fundamentals courses]? [Very
poor – Excellent]

6. How often did your peers help your understanding of the [EECS 216/Fundamentals] material? [Never – Al-
ways]

7. The [EECS 216/Fundamentals] learning environment made me feel comfortable. [Strongly disagree – Strongly
agree]

8. In a typical week, how many hours did you spend on [EECS 216/Fundamentals] homework (including work
completed for lab outside of your lab session) 3? [text entry line]

9. What percentage of EECS 216 lectures did you attend in-person or watch recorded 4? [text entry line]

10. What is the highest educational status achieved by your parent(s)/guardian(s)?

• Did not finish high school

• High school degree

• Associates degree

• Bachelor’s Degree

• Master’s degree

• Doctoral or Professional degree

11. How do you describe your gender identity? [text entry line]

12. With which racial and ethnic group(s) do you identify? (Mark all that apply)

• American Indian or Alaska Native

2“Learning” was used in place of “Understanding” on the Fall 2019 survey
3The parenthetical statement was not included in the Fall 2019 survey nor in the UVA survey
4This question was just “What percentage of EECS 216 lectures did you attend” on the Fall 2019 survey
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• Asian

• Black or African American

• Hispanic, Latino, or Spanish origin

• Middle Eastern or North African

• Native Hawaiian or Other Pacific Islander

• White

• Another race or ethnicity not listed: [text entry line]

13. Is there anything you would like to add?5

A.2.2 Survey #2
This is the survey given to students in their final year of undergraduate studies. For text that differs between the

UM survey and UVA survey, we present both versions of the text in brackets, i.e., [UM survey text/UVA survey text]
1. After graduating, I would like to... (mark all that apply)

• be in a technical role

• be in a managerial role

• be a systems-level designer

• teach

• work in a service-focused role

• Go into a non-traditional engineering role (such as banking, finance, law, medicine, or sales)

• do research (in industry or academia)

• get a Master’s degree in [text entry line]

• get a PhD degree in [text entry line]

• Other: [text entry line]

2. I am majoring in:

• EE

• CpE

• Another major: [text entry line]

3. For each of the following topics, please respond to the statement: Understanding this signals and systems topic
will benefit me in my career. [Strongly disagree – Strongly agree]

• Convolution

• Linear and Time Invariance

5We did not explicitly ask this on the paper version of the survey in Fall 2019, though there was room for students
to write comments.
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• Fourier transform

• Laplace transform

• Filtering

4. I am excited to learn about Signals and Systems. [Strongly disagree – Strongly agree]

5. How would you rate the overall quality of instruction in [EECS 216 (or equivalent signals and systems class if
you took it elsewhere)/FUN 2 and FUN 3] ? [Terrible – Excellent]

6. How much did your peers help your understanding of the [signals and systems/FUN 2 and FUN 3] material?
[None at all – A great deal]

7. The [EECS 216/FUN 2 and FUN 3] learning environment made me feel comfortable. [Strongly disagree –
Strongly agree]

8. In a typical week, [and averaging across the two semesters,] how many hours did you spend on [EECS 216/FUN
2 and FUN 3] homework (including time spent on lab assignments out of class)? [text entry line]

9. In any extracurriculars and/or internships you did, how often did you use the concepts from signals and sys-
tems? [None at all – A great deal]

10. Did you complete a course on differential equations (such as [MATH 216/APMA 2130]) before beginning
[EECS 216/FUN 2]?

• Yes

• I’m not sure, but I think so

• I’m not sure, but I think not

• No (please select this if you took them in the same semester)

11. • Mostly A

• About half A and half B

• Mostly B

• About half B and half C

• Mostly C or below

12. My grade in [EECS 216/FUN 2, 36] was (your best guess is fine if you do not remember):

• A+, A, or A-

• B+, B, or B-

• C+, C, or C-

• D+ or below

13. UM only: Which semester did you take EECS 216 (or equivalent signals and systems class if you took it
elsewhere)? Your best guess is fine if you do not remember.

6Asked as two separate questions
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• Fall 2017 or earlier

• Winter 2018

• Fall 2018

• Winter 2019

• Winter 2020

• Fall 20207

• Winter 2021

• Other: [test box entry]

14. Which of the following courses have you taken or are you currently taking?

• UM list: EECS 351: Intro to digital signal processing, EECS 442: Computer vision, EECS 445: Ma-
chine learning, EECS 452: Digital signal processing design lab, EECS 455: Wireless communications
systems, EECS/BIOMEDE 458: Biomedical instrumentation and design, EECS 460: Control system
analysis and design, EECS 461: Embedded control

• UVA list: Science of information (ECE 2066), How the iPhone works (specific section of ECE 2066),
The math of information (specific section of ECE 2066), Wireless devices (ECE 4209), Communications
(ECE 4710), Digital signal processing (ECE 4750), Wireless communications (ECE 4784/6784), Digital
image processing (a section of ECE 4501 or ECE 6782), Linear control systems (ECE 4850)

15. Considering your experience in all courses that cover concepts in signals and systems:8 [Never – Always]

• The overall instruction was high-quality

• I was engaged in the classes

• The courses included hands-on activities, demonstrations, or open-ended projects

16. Considering your experience in all courses that cover concepts in signals and systems: [Strongly disagree –
Strongly agree]

• On average, students felt comfortable participating in classes (for example, asking or answering ques-
tions)

• The classes made me interested in learning signals and systems

• The classes made me more confident in my engineering knowledge

17. Growing up, I was aware of my family’s educational expectations for me. [Strongly disagree – Strongly agree]

18. My family believes a college education is important for my future. [Strongly disagree – Strongly agree]

19. While I was growing up, my family encouraged me to take classes that would challenge me. [Strongly disagree
– Strongly agree]

20. In general, my friends value receiving good grades. [Strongly disagree – Strongly agree]

7Fall 2020 and Winter 2021 were only options on the Fall 2021 survey.
8This questions and the following were deliberately placed immediately after the question that listed courses that

used signals and systems concepts.
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21. In general, my friends enjoy engineering. [Strongly disagree – Strongly agree]

22. What is the highest educational status achieved by your parent(s)/guardian(s)?

• Did not finish high school

• High school degree

• Associates degree

• Bachelor’s Degree

• Master’s degree

• Doctoral or Professional degree

23. How do you describe your gender identity (such as “female”)9? [text entry line]

24. With which racial and ethnic group(s) do you identify? (Mark all that apply)

• American Indian or Alaska Native

• Asian

• Black or African American

• Hispanic, Latino, or Spanish origin

• Middle Eastern or North African

• Native Hawaiian or Other Pacific Islander

• White

• Another race or ethnicity not listed: [text entry line]

25. In Fall 2021 only:

• UVA: Are you interested in participating in an interview on Nov. 3 or 4? This would involve talking
through some questions from the concept inventory for 30 minutes. You would get a $10 gift card to
thank you for your time. No preparation required. Select yes if interested. This is a chance to learn more,
not a commitment. Prof. Powell is not involved and will not know whether you decide to participate.
Research study ID: UVA IRB-SBS #4661.

• UM:

26. Is there anything you would like to add?

9This example was added because some of the responses from the first survey were “heterosexual” or similar.
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APPENDIX B

Qualitative Codebook

The following table is the full codebook for the qualitative analysis from Chapter 5, including example quotes from
the interviewed undergraduate students (UG), graduate students (G), faculty (F), and practicing engineers (PE).

Table B.1: Codebook for the focus groups and interviews.

Code Description Example quote

Concepts in SS

FT Fourier Transform and Fourier Series.
General comments about the frequency
domain.

“Like the FT is pretty intuitive in that, at least
for me, when there’s things like music visualiz-
ers, that is exactly showing the spectrum of your
sound” (G).

LT Laplace Transform and pole-zero plots. “I mean, I remember how to take a Laplace trans-
form – well, if I looked it up, I could do it” (G)

Conv Convolution. Includes comments about
impulse or frequency response.

“Students have a heck of a time doing convolu-
tion. And in real life, no one does convolution,
which is interesting” (F)

LTI Basic system properties (linearity, time
invariance, and stability or their oppo-
sites)

“I feel like everybody just kinda assumes LTI.
There’s never been like a conversation where
you’re just like kinda like ‘what if it’s not LTI?’
... It’s like don’t go to the forbidden zone” (UG).

Filtering Filtering or Bode plots. “One thing that helped me a lot... was getting an
intuition of what kind of filtering is the most use-
ful for what your goal is... Like any kind of low
pass filter means you’re blurring out edges” (UG).

DT Anything contrasting continuous and
discrete time or talking specifically
about discrete time.

“I was super confused at how to do the Fourier
transform on the analog version before doing it on
the discrete version. And then once we did it in
code it just sort of clicked for me” (PE).
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Table B.1 continued from previous page

Code Description Example quote

Math The math curriculum or mathematics in
signals and systems.

“Peoples’ exposure to complex variables prior to
college is probably like a maybe a month or two
in honors, pre-calc, or in a calculus course, prob-
ably in high school... And then all of electrical
engineering is complex variables” (UG).

Class components

class Class environment, e.g., if students felt
comfortable participating. Includes of-
fice hours, discussion sections, and on-
line interactions.

“That perceived sense of diversity [of students’
majors in the class] made it a lot easier to accept
that it was okay to not know what was going on
because I felt like everyone else didn’t and we’re
all in the same boat even if that boat is sort of sink-
ing” (G).

grades Grades, feedback on assignments, the
grading weights, or exams.

“[homeworks] were only like 10% of the grade
when they were like a huge part of the work of
the class” (UG).

hw Homework problems. “[If] the questions are designed in such a way that
they test your understanding, maybe that helps
more. But then our homeworks are also similar,
it’s very, very procedural” (G).

lab All comments about lab sections. “I wanted the students to appreciate that these
techniques were very powerful and they actually
allow you to build and analyze real things. And
this was the hope for the lab” (F).

visuals Visuals and how they complement or
compare with mathematical formulas.

“I certainly visualize things a lot better than like
hearing them spoken to me... especially in the Sig-
nals and system space, pictures are really useful to
sort of describe what’s going on” (PE).

Instructional quality and quantity

quantity Amount of work for the class or time in
class spent on concepts/a specific con-
cept. Specific to S&S classes or con-
cepts.

“I just really really disliked those homeworks, just
cause like they were too long... I feel like you
could have gotten close to the same understanding
it they had been half the length” (UG).

quantity:
repetition

Seeing material again in a separate
class, an extracurricular activity, or in
industry.

“I would say that my knowledge grew after taking
other classes as well. Um, but also very specific
to what areas I ended up taking more classes in,
because I would advance in those areas but not
advance at all in other EE areas and maybe forget
some stuff too” (UG).

pace The pace of a S&S course and con-
straints on how much material must be
covered during the course.

“I’m afraid in the labs, they’re so time-pressured,
that they’re going through the, you know, the
steps, but they-they don’t really have enough time
to really sit down and figure out why they’re doing
it all” (F).
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Table B.1 continued from previous page

Code Description Example quote

quality:
style

The quality of instruction, including
active learning strategies and how the
student liked the style of the class, e.g.,
emphasis on theory vs. application.

“I had just good professors for all of them that
I would say resonated with myself... I think my
junior level signals and systems course was very
much just like a very strict, it’s like we’re going
through this mathematically, textbook style, going
through it. That’s helpful for me” (PE).

Interest

purpose Seeing or wanting to see the big pic-
ture or wondering why something is the
way it is. May or may not cause inter-
est or motivation.

“I loved it because it really connected. It was an
engineering course.. It was, it was the whole sys-
tem. Like you had to think big picture. And it was
great” (PE).

motivate Any comments related to student moti-
vation or motivating students that does
not otherwise fall under purpose or
grades. Includes statements about in-
terest.

“...they told you like, ‘hey, we’re building this,
and you can test this, and you can play with it and
do things with it.’ That’s what keeps you moti-
vated to keep working at the projects” (UG).

abstract Discussion of the ideas in S&S being
abstract or, the opposite, concrete. In-
cludes mentions of real examples of
systems, how designing systems im-
pacted learning, and how building sys-
tems in hardware impacted learning.

“Pole-zero plots were pretty easy for me because I
was an analog guy, I understood what-what poles
and zeros were. That wasn’t a big deal, that-that’s
all translatable” (PE).

Outcomes and reactions

ability General student ability to reason/think
or anything that prepared students (or
didn’t) for S&S, such as former courses
or extracurricular activities.

“I have to imagine that a lot of the people that ei-
ther struggled or succeeded in that course, really
hinged on that first bullet point of the - just the
background mathematics” (PE).

easy Comments about a concept being rela-
tively easy or hard to understand.

“there were things that I later learned were actu-
ally pretty easy to understand. But just in that one
point in time, the way it was presented just wasn’t
the right fit for me or I just, it just didn’t click for
some reason” (UG).

false con-
fidence

Realization that they previously
thought they understood something,
but later realized they did not. In-
cludes comments about “unlearning”
a concept because they did not learn it
correctly the first time.

“On a surface level LTI concepts are like the eas-
iest thing... But, listening to [name removed], I
realized, I never learned why it’s good for a sys-
tem to be linear or LTI... So I guess I had like a
sense of false confidence that I really understood
this stuff” (UG).

familiar Knowing enough about a topic to know
it exists and how to find out more about
it if they need to in the future. Includes
comments about forgetting specifics,
especially when discussed over time.

“I understand it worse now but I think, I think it
would come back, it wouldn’t be too hard for it to
come back to me if I like reviewed the material”
(UG).
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Table B.1 continued from previous page

Code Description Example quote

hate Hatred, fear, or love of a concept, S&S,
or a S&S instructor.

“I really thought about jumping to a computer sci-
ence degree because I was so flustered by my un-
dergraduate signals and systems course.. Which
again, the irony is that I love this stuff” (PE).

importance Importance of CU in S&S or more
broadly.

“what I constantly try to emphasize is concep-
tual... Because if you know that, you can fill in
the details” (F).

Procedural Comparing S&S to a math course
or any comments about the procedu-
ral nature of S&S knowledge or S&S
courses.

“I’ve had numerous comments over the year of
course evaluations and things. ‘This seems like
just a math course.’ I think that is one perception
that could easily be held” (F).

Outside influences

peers Interaction with or influence from
peers. For example, comments about
friends enjoying (or disliking) certain
classes, valuing good grades, cheating,
and working together on assignments.

“Interaction with my teammates and interactions
with the TAs has just really helped me” (UG).

work How internships or work experience in-
fluence CU and learning.

“The very use of the term signal is a little ambigu-
ous, I suspect, to students. ... the context in which
we use it is just a representation of a time series
continuous time, or could be in space could be an
image or something like that. It’s a mathematical
abstraction of some physical quantity” (F).

workload Students responsibilities outside of the
S&S class. Includes other classes, so-
cial life, etc.

“it definitely was a huge factor in my undergrad as
to like whether or not I actually learned something
or enjoyed it, was like how much I had going on”
(G).
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APPENDIX C

Background: Primal-Dual Formulations

This appendix is presented Crockett and Fessler [11, App. A].
This appendix briefly reviews primal-dual analysis as it applies to (Ex). Section 3.3 in [173] provides a more

general but brief introduction to the notion of conjugate functions and duality and [344] goes into more depth on
duality.

The conjugate of a function f : RN → R ∪ {-∞,∞} is denoted f ∗ : RN → R ∪ {-∞,∞}, and is defined as

f ∗(d) = sup
x ∈ domain( f )

d′x − f (x), (C.1)

where d ∈ RN is a dual variable. The derivations below use the following two conjugate function relations.

1. When f (x) =
1
2
‖x − y‖2 for y ∈ RN , the conjugate function is

f ∗(d) = sup
x ∈RN

d′x −
1
2
‖x − y‖2.

The maximizer of the quadratic cost function f ∗ is

x̂ = y + d (C.2)

and the maximum value simplifies to

f ∗(d) =
1
2
‖d + y‖2 −

1
2
‖y‖2. (C.3)

2. When φ(z) = |z| is defined on R, the conjugate function is

φ∗(d) = sup
z ∈R

dz − |z|.

One can verify that the conjugate is

φ∗(d) =


0 if |d| ≤ 1

∞ else
(C.4)
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and the corresponding sets of suprema are

argmax
z ∈R

dz − |z| =



sign(d) · ∞ if |d| > 1

0 if |d| < 1

[0,∞) if d = 1

(-∞, 0] if d = -1.

(C.5)

Generalizing (C.4) to a vector, the conjugate function of the 1-norm is a characteristic function that is infinity
if any element of the input vector is larger than 1 in absolute value.

Ref. [344, p. 50] provides a table with many more conjugate functions.
The biconjugate, denoted f ∗∗, is the conjugate of f ∗, i.e.,

f ∗∗(x) = sup
d ∈ domain( f ∗)

x′d − f ∗(d), (C.6)

and is the largest convex, lower semi-continuous function below f . When f is convex and lower semi-continuous, the
biconjugate is equal to the original function, i.e., f ∗∗ = f . One can use the equality of the original function and the
biconjugate to derive the saddle point and dual problems when f is convex.

Consider the specific lower-level problem with an analysis-based regularizer

argmin
x ∈RN

1
2
‖Ax − y‖2 + 1′φ.(Ωx), (C.7)

where Ω ∈ RF×N . When φ is convex, the corresponding saddle-point problem is

argmin
x ∈RN

1
2
‖Ax − y‖2 + sup

d ∈RF
〈d,Ωx〉 − 1′φ∗.(d)

︸ ︷︷ ︸
1′φ∗∗. (Ωx)

,

where 〈·, ·, 〉 is the standard inner product. Under very mild conditions (satisfied for the absolute value function) [173],
one can swap the minimum and supremum operations and write the saddle-point problem as

sup
d ∈RF

min
x ∈RN

1
2
‖Ax − y‖2 + 〈d,Ωx〉 − 1′φ∗.(d).

Substituting the conjugate of the 1-norm (C.4), the saddle-point problem is thus

min
x∈RN

min
d ∈RF

1
2
‖Ax − y‖2 − 〈d,Ωx〉 s.t. |di| ≤ 1 ∀i. (C.8)

We hereafter assume A = I to derive the dual problem from the saddle-point problem. By grouping terms and
re-arranging negative signs, the dual problem can be derived from the saddle point problem. For a general φ, the
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saddle-point problem is equivalent to

max
d ∈RF

-1′φ∗.(d) +

(
min
x∈RN
〈d,Ωx〉 +

1
2
‖x − y‖2

)

= max
d ∈RF

-1′φ∗.(d) −
(
max
x∈RN
〈-Ω′d, x〉 −

1
2
‖x − y‖2

)

︸ ︷︷ ︸
f ∗(-Ω′d)

,

where the last line follows from properties of inner products. The expression in parenthesis is the conjugate function
for the data-fit term, given in (C.3). Therefore, the dual problem for a general, convex φ is

max
d ∈RF

-1′φ∗.(d) − f ∗(-Ω′d) = - min
d ∈RF

1′φ∗.(d) + f ∗(-Ω′d).

Substituting the conjugates for the data-fit term (C.3) and the conjugate for the 1-norm regularizer (C.4), the dual
problem for (C.7) with φ(z) = |z| becomes

min
d ∈RF

1
2

∥∥∥-Ω′d + y
∥∥∥2
−

1
2
‖y‖2 s.t. |di| ≤ 1 ∀i. (C.9)

When we require only the minimizer (not the minimum), an equivalent dual problem is

d̂ = argmin
d ∈RF

1
2

∥∥∥-Ω′d + y
∥∥∥2

s.t. |di| ≤ 1 ∀i. (C.10)

This dual problem is a constrained least squares problem and can be solved with a projected gradient descent method,
optionally with momentum [295]. From (C.2), the primal minimizer can be recovered from the dual minimizer by

x̂ = y −Ω′ d̂. (C.11)

Finally, from (C.5), the dual variable is related to the filtered signal by

di ∈



1 if [Ωx̂]i > 0

-1 if [Ωx̂]i < 0

[0,∞) if [Ωx̂]i = 1

(-∞, 0] if [Ωx̂]i = -1.

(C.12)

Ref. [273] provides a more general version of the dual function for non-identity system matrices.
Above, we derived the saddle-point and dual problems using the equality of the biconjugate and the original

function for a convex regularizer. The dual problem can also be derived using Lagrangian theory, as shown in [273].
Define an auxiliary (split) variable that is constrained to equal the filtered signal, i.e., z = Ωx. Considering the specific
case of the 1-norm regularizer, the Lagrangian of the constrained version of (C.7) is

1
2
‖x − y‖2 + ‖z‖1 + d′(Ωx − z),

where d ∈ RF is a vector of Lagrange multipliers and we have omitted the KKT conditions. Minimizing the Lagrangian
with respect to x and z yields the conjugate functions for the data-fit term and 1-norm and thus the dual problem.

Using the Lagrangian perspective to derive the dual problem yields a useful relation between the filtered signal
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and the dual variable [273]. Because the split variable z is constrained to equal Ωx, [Ωx]i > 0 implies zi > 0. From
(C.5), zi is only positive and finite when di = 1. A similar argument holds for [Ωx]i < 0. Therefore, the dual variable
and x̂ are related by

di ∈


sign([Ωx]i) if [Ωx̂]i 6= 0

[-1, 1] if [Ωx̂]i = 0.
(C.13)

The second case follows from observing that di can take any value in its constrained range when zi = 0 as the minimum
in (C.9) will be 0 regardless of di.

The primal-dual results reviewed in this appendix are referenced in Section 8.1.2.3 to relate analysis and synthesis
regularizers, Section 10.1.2 to rewrite the lower-level minimizer as a differentiable function of itself and γ, and in
Section 10.1.3.2 to unroll a differentiable algorithm for a non-smooth cost function.
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APPENDIX D

Forward and Reverse Approaches to Unrolling

This appendix is presented Crockett and Fessler [11, App. B].
This appendix provides background on the forward and backward approaches to the unrolled gradient computation

introduced in Section 10.1.3. From (10.18), the gradient of interest is:

∇`(γ) =∇γ`(γ ; x(T )) +


T∑

t=1

(HT · · ·Ht+1) J t


′

∇x`(γ ; x(T )) ∈ FR. (D.1)

If one uses a gradient descent based algorithm to optimize the lower-level cost function Φ, then Ht = ∇xΨ(x(t−1) ;γ) ∈
FN×N is closely related to the Hessian of Φ and J t = ∇γΨ(x(t−1) ;γ) ∈ FN×R is proportional to the Jacobian of the
gradient.

To compare the forward and reverse approaches to gradient computation for unrolled methods, we introduce
notation for an ordered product of matrices. We indicate the arrangement of the multiplications by the set endpoints,
s ∈ [s1 ↔ s2] with the left endpoint, s1, corresponding to the index for the left-most matrix in the product and the right
endpoint, s2, corresponding to the right-most matrix. Thus, for any sequence of square matrices {A}i:

∏

s∈[t↔T ]

As ··= At At+1 · · · AT =
(
A′T A′T−1 · · · A

′
t
)′

=


∏

s∈[T↔t]

A′s


′

.

The above double arrow notation does not indicate order of operations. In the following notation the arrow direc-
tion does not affect the product result (ignoring finite precision effects), but rather signifies the direction (order) of
calculation:

∏

s∈[T←t]

As ··= AT (AT−1 · · · (At+1 (At)))

∏

s∈[T→t]

As ··= (((AT AT−1) · · · ) At+1) At.

We use a similar arrow notation to denote the order that terms are computed for sums; as above, the order is only
important for computational considerations and does not affect the final result.

Using this notation, the reverse gradient calculation of (D.1) is

∇γ`(γ ; x(T )) +
∑

t∈[T→1]

J t
′


∏

s∈[(t+1)←T ]

H′s

∇x`(γ ; x(T )). (D.2)
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x(0) x(1) x(2) x(T )

Ψ Ψ . . .Ψ

Store iterates {xt}
T
t=0

∆ = ∇x`
(
γ ; x(T )

)

r = 0
For t = T − 1 . . . 0

Use x(t) to compute J t+1 and Ht+1

r = r + J ′t+1∆

∆ = H′t+1∆

Figure D.1: Reverse mode computation of the unrolled gradient from (D.1). The first gradient computation
requires x(T ), so all computations occur after the lower-level optimization algorithm is complete. The final
gradient is ∇`(γ) = ∇γ`(γ ; x(T )) + r.

This expression requires
∏

s∈[(T+1)←T ] H′s = I, because HT+1 is not defined. For example, for T = 3, we have

∇γ`(γ ; x(3)) + J ′3(I)g︸︷︷︸
t=3

+ J ′2
(
H′3

)
g

︸ ︷︷ ︸
t=2

+ J ′1
(
H′2H′3

)
g

︸ ︷︷ ︸
t=1

,

where g is shorthand for ∇x`(γ ; x(T )) here. This version is called reverse as all computations (arrows) begin at the
end, T .

The primary benefit of the reverse mode comes from the ability to group ∇x`(γ ; x(T )) with the right-most HT ,
such that all products are matrix-vector products, as seen in Fig. D.1 Further, one can save the matrix-vector products
for use during the next iteration and avoid duplicating the computation. Continuing the example for T = 3, we have

∇γ`(γ ; x(3)) + J ′3(I)g︸︷︷︸
t=1

+ J ′2(

∆︷︸︸︷
H′3 g )︸ ︷︷ ︸
t=2

+ J ′1(H′2

∆︷︸︸︷(
H′3 g

)
)

︸ ︷︷ ︸
t=3

,

where one only needs to compute ∆ once. This ability to rearrange the parenthesis to compute matrix-vector products
greatly decreases the computational requirement compared to matrix-matrix products. Excluding the costs of the
optimization algorithm steps and forming the Hs and J t matrices (these costs will be the same in the forward mode
computation), reverse mode requires O(T ) Hessian-vector multiplies and O(T NR) additional multiplies. The trade-
off is that reverse mode requires storing all T iterates, x(t), so that one can compute the corresponding Hessians and
Jacobians from them as needed, and thus has a memory complexity O(T N).

The forward mode calculation of (D.1), depicted in Fig. D.2, has all computations (arrows) starting at the earlier
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x(0) x(1)

Z1 = H1Z0 + J1

x(2)

Z2 = H2Z1 + J2

x(T )

ZT = HT ZT−1 + JT

Ψ Ψ . . .Ψ

Figure D.2: Forward mode computation of the unrolled gradient from (D.3). The intermediate computation
matrix, Z, is initialized to zero (Z0 = 0) then updated every iteration. The final gradient is ∇`(γ) =

∇γ`(γ ; x(T )) + Z′T∇x`(γ ; x(T )).

iterate:

∇γ`(γ ; x(T )) +


∑

t∈[1→T ]


∏

s∈[T←(t+1)]

Hs

 J t


′

∇x`(γ ; x(T )). (D.3)

As before, HT+1 is not defined, so we take
∏

s∈[T←(T+1)] Hs = I. For example, for T = 3 we have

∇γ`(γ ; x(T )) +

((H3H2)J1)′︸ ︷︷ ︸
t=1

+ ((H3)J2)′︸ ︷︷ ︸
t=2

+ ((I)J3)′︸ ︷︷ ︸
t=3

 g.

How the forward mode avoids storing x iterates is evident after rearranging the parenthesis to avoid duplicate calcula-
tions, as illustrated in Fig. D.2. Continuing the example for T = 3, we have

∇γ`(γ ; x(T )) +



H3



Z2︷ ︸︸ ︷
H2 (H1 · 0 + J1)︸ ︷︷ ︸

Z1

+J2

 + J3

︸ ︷︷ ︸
Z3



′

g,

where Z s = HsZ s−1 + J s ∈ FN×R stores the intermediate calculations. The above formula also illustrates why H1 is
not needed in (10.17); ∇γx(0) = 0 is the last element from applying the chain rule.

There is no way to rearrange the terms in the forward mode formula to achieve matrix-vector products (while
preserving the computation order). Therefore, the computation requirement is much higher at O(TR) Hessian-vector
multiplications. The corresponding benefit of the forward mode method is that it does not require storing iterates, thus
decreasing (in the common case when T > R) the memory requirement to O(NR) for storing the intermediate matrix
Z s during calculation.

As with the minimizer approach in Section 10.1.1, the computational complexity of the unrolled approach is
lower than the generic bound when we consider the specific example of learning convolutional filters according to
(Ex). Nevertheless, the general comparison that reverse mode takes more memory but less computation holds true.
See Tab. 10.2 for a comparison of the computational and memory complexities.
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APPENDIX E

Additional Running Example Results

This appendix is adapted from Crockett and Fessler [11, App. C].
This appendix derives some results that are relevant to the running example used throughout Part 6.3 of this

dissertation.

E.1 Derivatives for Convolutional Filters
This section proves the result

∂

∂cs
(c̃k ~ f .(ck ~ x)) = f .(ck ~ z〈s〉) + c̃k ~

(
ḟ .(ck ~ x) � x〈−s〉

)
, (E.1)

when considering F = R. This equation is key to finding derivatives of the lower-level cost function in (Ex) with
respect to the filter coefficients.

To simplify notation, we drop the indexing over k, so c is a single filter and cs denotes the sth element in the filter
for s ∈ ZD. Here, s indexes every dimension of c, e.g., for a two-dimensional filter, we could equivalently write s as
〈s1, s2〉. Recall that the notation c̃ signifies a reversed version of c, as needed for the adjoint of convolution.

Define the notation x〈i〉 as the vector x circularly shifted according to the index i. Thus, if x is 0-indexed and we
use circular indexing,

(x〈s〉)i = xi−s.

As two examples,

x =



x1

x2
...

xN−1

xN



→ x〈-1〉 =



x2

x3
...

xN

x1



,
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and, in two dimensions, if X ∈ FM×N

X〈1,2〉 =



xM,N−1 xM,N xM,1 . . . xM,3

x1,N−1 x1,N x1,1 . . . x1,3

x2,N−1 x2,N x2,1 . . . x2,3
...

. . .
...

xM−1,N−1 xM−1,N xM−1,1 . . . xM−1,3



.

This circular shift notation is useful in the derivation and statement of the desired gradient.
Define z = c ~ x, where c and x are both N-dimensional. By the definition of convolution, z is given by

z =
∑

i1

· · ·
∑

iN

ci1,...,iN x〈-i1,...,-iN 〉 ··=
∑

i1,...,iN

ci1,...,iN x〈-i〉,

where, for each sum, the indexing variable in iterates over the size of c in the ith dimension and we simplify the index
for circularly shifting vectors, i1, . . . , iN , as simply 〈i〉. This expression shows that the derivative of c ~ x with respect
to the sth filter coefficient is the -sth coefficient in x, i.e.,

∂

∂cs
(c ~ x) = x〈−s〉. (E.2)

We can now find the partial derivative of interest:

c̃ ~ f .(z) =
∑

i1,...,iN

[c̃]i1,...,iN f .(z)〈-i〉 by the convolution formula

=
∑

i1,...,iN

[c̃]i1,...,iN f .
(
z〈-i〉

)
since f operates point-wise

=
∑

i1,...,iN

c-i1,...,-iN f .
(
z〈-i〉

)
by definition of c̃

=
∑

i1,...,iN

ci1,...,iN f .
(
z〈i〉

)
reverse summation order.

Recall that z is a function of cs. Therefore, using the chain rule to take the derivative,

∂

∂cs
(c̃ ~ f .(z)) = f .(z〈s〉) +

∑

i1

· · ·
∑

iN

ci1,...,iN ḟ .(z〈i1,...,iN 〉) � ∇cs

(
z〈i〉

)

= f .(z〈s〉) +
∑

i1

· · ·
∑

iN

[c̃]-i1,...,-iN ḟ .(z〈i1,...,iN 〉) � x〈i−s〉,

where the second equality follows from (E.2) and the definition of c̃. Recognizing the convolution formula in the
second summand, the expression can be simplified to

f .(z〈s〉) + c̃ ~
(

ḟ .(z) � x〈−s〉
)
.

This proves the claim. Note that the provided formula is for a single element in c. One can concatenate the partial
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derivative result for each value of s to get the full Jacobian.

E.2 Evaluating Assumptions for the Running Example
To better understand the upper-level assumptions A` 1-A` 3 and lower-level assumptions AΦ1-AΦ6 in Sec-

tion 10.2.3.1, this section examines whether the filter learning example (Ex) meets each assumption.

E.2.1 Upper-level Loss Assumptions
Recall the upper-level loss function in (Ex) is squared error:

`(γ ; x) =
1
2
‖x − xtrue‖22, (E.3)

where ` is typically evaluated at x = x̂(γ).
The loss function (E.3) satisfies A`1. Because there is no dependence on γ in the upper-level, Lx,∇γ` = 0. The

gradient with respect to x is ∇x`(γ ; x) = x − xtrue, so Lx,∇x` = 1.
The norm of the upper-level gradient with respect to x,

‖∇x`(γ ; x)‖ =
∥∥∥x − xtrue

∥∥∥ ,

can grow arbitrarily large, so condition A`2 is not met in general. However, in most applications, one can assume an
upper bound (possibly quite large) on the elements of xtrue and impose that bound as a box constraint when computing
x̂. Then the triangle inequality provides a bound on

∥∥∥x − xtrue
∥∥∥ for all x within the constraint box.

Finally, A`3 is met by any loss function, including (E.3), that lacks cross terms between x and γ. We are unaware
of any bilevel method papers using such cross terms.

E.2.2 Lower-level Cost Assumptions
One property used below in many of the bounds for the lower-level cost function is that

σ1(Ck) = ‖ck‖1 , (E.4)

whereσ1(·) is a function that returns the first singular value of its matrix argument. This property follows from Young’s
inequality and is related to bounded-input bounded-output stability of linear and time invariant systems [345].

As with the upper-level assumptions considered above, (Ex) meets the lower-level assumptions AΦ1-AΦ6 if we
impose additional constraints on the maximum norm of variables. In addition to bounding the elements in x, as we
did to ensure A` 2, imposing bounds on ‖ck‖ and |βk | is sufficient to meet all the lower-level assumptions. We now
examine each condition individually.

Recall from (Ex) that the example lower-level cost function is

x̂(γ) = argmin
x∈FN

1
2
‖Ax − y‖22 + eβ0

K∑

k=1

eβk 1′φ.(ck ~ x; ε),

where φ is a corner-rounded 1-norm (CR1N).
As described in Section 10.1.1, the minimizer approach requires Φ to be twice differentiable. Thus, Φ satisfies

AΦ1. This condition limits the choices of φ to twice differentiable functions.
Considering AΦ2, the gradient of Φ with respect to x is Lipschitz continuous in x if the norm of the Hessian,
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‖∇xxΦ(x ;γ)‖2, is bounded. Using (10.9) and assuming the Lipschitz constant of the derivative of φ is Lφ̇ (for (CR1N),
Lφ̇ = 1

ε
), a Lipschitz constant for ∇xΦ is

Lx,∇xΦ = σ2
1(A) + Lφ̇eβ0

∑

k

eβkσ1(C′kCk)

= σ2
1(A) + Lφ̇eβ0

∑

k

eβk ‖ck‖
2
1 by (E.4). (E.5)

The Lipschitz constant Lx,∇xΦ depends on the values in γ and therefore does not strictly satisfy AΦ2. Here if β0, βk,
and ck have upper bounds, then one can upper bound Lx,∇xΦ. All of the bounds below have similar considerations.

To consider the strong convexity condition in AΦ3, we consider the Hessian,

∇xxΦ(x ;γ) = A′A︸︷︷︸
From data-fit term

+ eβ0
∑

k

eβk C′kdiag(φ̈.(ck ~ x))Ck

︸ ︷︷ ︸
From regularizer

. (E.6)

We assume that φ̈(z) ≥ 0∀z, as is the case for the corner rounded 1-norm. If A′A is positive-definite with σN(A′A) > 0
(this is equivalent to A having full column rank), then the Hessian is positive-definite and µx,Φ = σ2

N(A) suffices as
a strong convexity parameter. In applications like compressed sensing, A does not have full column rank. In such
cases, σN(A′A) = 0 and as eβ0 → 0 the regularizer term vanishes, so there does not exist any universal µx,Φ > 0 for
all γ ∈ FR, so the strong convexity condition AΦ3 is not satisfied. However, as discussed in Section 10.1.1.3, the
condition may hold in practice for many values of γ. How to adapt the complexity theory to rigorously address these
subtleties is an open question.

The fourth condition, AΦ4, is that ∇xxΦ(x ;γ) and ∇γxΦ(x ;γ) are Lipschitz continuous with respect to x for
all γ. For the first part part, a Lipschitz constant results from bounding the difference in the Hessian evaluated at two
points, x(1) and x(2):

∥∥∥∇xxΦ(x(1) ;γ) − ∇xxΦ(x(2) ;γ)
∥∥∥

2 =

∥∥∥∥∥∥∥
eβ0

∑

k

eβk C′kdiag(φ̈.(ck ~ x(1)) − φ̈(ck ~ x(2)))Ck

∥∥∥∥∥∥∥
2

.

Since every element of φ̈ is bounded in (0, Lφ̇), the difference between any two evaluations of φ̈ is at most Lφ̇. Thus

∥∥∥∇xxΦ(x(1) ;γ) − ∇xxΦ(x(2) ;γ)
∥∥∥

2 ≤ eβ0 Lφ̇
∑

k

eβk
∥∥∥C′kCk

∥∥∥
2

≤ eβ0 Lφ̇
∑

k

eβk ‖ck‖
2
1 .

The final simplification again uses (E.4). Thus,

Lx,∇xxΦ = eβ0 Lφ̇
∑

k

eβk ‖ck‖
2
1 .

For the second part of AΦ4, we must look at the tuning parameters and filter coefficients separately. When
considering learning a tuning parameter, βk,

∇βk xΦ(x ;γ) = eβ0+βk C′kφ̇.(Ck x).
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To find a Lipschitz constant, consider the Jacobian:

∇x
(
∇βk xΦ(x ;γ)

)
= eβ0+βk C′kdiag(φ̈.(Ck x))Ck.

A Lipschitz constant of ∇βk xΦ(x ;γ) is given by the bound on the norm of this matrix (we chose to use the matrix 2-
norm, also called the spectral norm). Using similar steps as above to simplify the expression, Lx,∇βk xΦ = eβ0+βk Lφ̇ ‖ck‖

2
1.

When considering learning the sth element of the kth filter,

∇ck,s xΦ(x ;γ) = eβ0+βk
(
φ̇.((Ck x)〈s〉) + C′k

(
φ̈.(Ck x) � x〈-s〉

))

= eβ0+βk


φ̇.(R1Ck x)︸ ︷︷ ︸
Expression 1

+ C′k
(
φ̈.(Ck x) � R2x

)
︸ ︷︷ ︸

Expressions 2-3


∈ FN ,

where R1 and R2 are rotation matrices that depends on s such that R1x = x〈s〉 and R2x = x〈-s〉. For taking the gradient,
it is convenient to note that the last term can be expressed in multiple ways:

φ̈.(Ck x) � x〈-s〉 = diag(φ̈.(Ck x))R2x︸ ︷︷ ︸
Expression 2

= diag(R2x)φ̈.(Ck x)︸ ︷︷ ︸
Expression 3

.

Using the alternate expressions to perform the chain rule with respect to the x term that is not in the diag(·) statement,
the gradient with respect to x is:

∇x
(
∇ck,s xΦ(x ;γ)

)
= eβ0+βk ( C′k R′1diag(φ̈.(R1Ck x))︸ ︷︷ ︸

Expression 1

+ C′kdiag(φ̈.(Ck x))R2︸ ︷︷ ︸
Expression 2

+ C′kdiag(
...
φ (Ck x))diag(R2x)′Ck︸ ︷︷ ︸

Expression 3

).

The bound on the spectral norm of the first and second expressions are both σ1(Ck)Lφ̇ because, for any z ∈ FN ,

‖diag(φ̈.(z))‖2 ≤ max
z
|φ̈(z)| = Lφ̇.

The third expression is bounded by σ2
1(Ck) ‖x‖2 Lφ̈, which requires a bound on the norm of x, similar to A`2. Summing

the three expressions and including the tuning parameters gives the final Lipschitz constant

Lx,∇ck,s xΦ = eβ0+βkσ1(Ck)(2Lφ̇ + σ1(Ck)Lφ̈ ‖x‖2). (E.7)

The fifth assumption, AΦ5 states that the mixed second gradient of Φ is bounded. For the tuning parameters, the
mixed second gradient is given in (10.9) as

∇βk xΦ(x̂ ;γ) = eβ0 eβk c̃k ~ φ̇.(ck ~ x̂).

The bound given in AΦ5 follows easily by considering that

‖diag(φ̇.(ck ~ x̂))‖2 ≤ max
z
|φ̇(z)| = Lφ.
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For a filter coefficient, the mixed second gradient is more complicated:

∇ck,s xΦ(x̂ ;γ) = eβ0+βk
(
φ̇.((ck ~ x̂)〈s〉)︸ ︷︷ ︸

Bounded by Lφ

+c̃k ~
(
φ̈.(ck ~ x̂)︸ ︷︷ ︸
Bounded by Lφ̇

�x̂〈-s〉
))
.

Assuming that the bounds Lφ and Lφ̇ exist (they are 1 and 1
ε

respectively for (CR1N)), a bound on the norm of the
mixed gradient is

‖∇ck,s xΦ(x̂ ;γ)‖2 ≤ eβ0+βk
(
Lφ + Lφ̇ ‖ck‖1 ‖x‖2

)
.

The sixth assumption, AΦ6, is that Lγ,∇γxΦ and Lγ,∇xxΦ exist. Lipschitz constants for the tuning parameters are

Lβk ,∇βk xΦ = eβ0+βk ‖ck‖1 Lφ and Lβk ,∇xxΦ = eβ0+βk ‖ck‖
2
1 Lφ̇.

Using similar derivations as shown above, corresponding Lipschitz constants for the filter coefficients are

Lck,s,∇ck,s xΦ = eβ0+βk
(
Lφ + ‖x‖2

(
Lφ̇ + Lφ̈ ‖ck‖1 ‖x‖2

))

Lck,s,∇xxΦ = eβ0+βk
(
2Lφ̇ ‖ck‖1 + Lφ̈ ‖ck‖

2
1 ‖x‖2

)
.

This is the last lower-level condition in Section 10.2.3.1 for the single-loop and double-loop bilevel optimization
method analysis.
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APPENDIX F

Implementation Details

This appendix is presented Crockett and Fessler [11, App. D].
This appendix describes the experimental settings for the results in Fig. 7.3 and for the series of figures using

the cameraman image (Fig. 10.3, Fig. 12.1, and Fig. 12.2). We first present the common settings; the following
sub-sections detail any differences or additional settings. The code for all experiments is available on github [346].

The experiments consider the denoising problem (A = I) and use (CR1N) as the sparsifying function φ with
ε = 0.01. The training data is typically on the scale [0, 1] and noisy samples are generated from the clean training data
using (7.4) with zero-mean Gaussian noise with a standard deviation of σ = 25/255, following [162].

The lower-level optimizer is the optimized gradient method (OGM) with gradient-based restart [295]. We calcu-
late the step-size based on the Lipschitz constant of the lower-level gradient using (E.5) every upper-level iteration.
Each experiment sets a maximum number of lower-level iterations, but the lower-level optimization will terminate
early if it converges, defined as if ‖∇xΦ(x ;γ)‖ < 10-5.

The upper-level optimizer follows the general structure of the double-loop procedure outlined in Alg. 5. To
compute ∇`(γ), we use the minimizer formulation (10.8), with the conjugate gradient (CG) method to compute the
Hessian-inverse-vector product (10.10). As suggested in [264], the initialization for the lower-level optimization is the
estimated minimizer from the previous outer loop iteration, x(T )(γ(u-1)) and the initialization for the CG method is the
solution from the previous CG iteration. Following [166] and other bilevel works, the experiments use Adam with the
default parameters [292] to determine the size of the upper-level gradient descent; this choice avoids introducing the
tuning parameter α`.

The learnable parameters include the filter coefficients and the tuning parameters βk for k ∈ [1,K]. The experi-
ments either use random or DCT filters to initialize h. An initial grid search determines the tuning parameter β0; βk

for k ∈ [1,K] are initialized as 0 such that eβk = 1.

F.1 Vertical Bar Training Image
This section describes additional details for Fig. 7.3. This simple proof of concept used 50 lower-level iterations

(T = 50) and 4,000 upper-level iterations (U = 4, 000). The initial grid search for β0 yielded -4.6.
When φ(z) = |z|, one can absorb the kth filter’s magnitude into the tuning parameter βk because ‖ck ~ x‖1 =

‖ck‖2

∥∥∥∥ 1
‖ck‖2

ck ~ x
∥∥∥∥

1
. When using (CR1N), this equality no longer holds, but

eβ0+βk ‖ck‖2 (F.1)

279



still provides a reasonable approximation for the overall regularization strength for the kth filter. From left to right, the
approximate regularization strengths of the filters in Fig. 7.3 are 0.77, 0.49, 0.17, and 0.05.

The learned filters reflect that the training data is constant along the columns. Visually, the filters resemble vertical
(extended) finite differences. This matches our expectations as a filter that takes vertical finite differences will exactly
sparsify the noiseless signal. Further, the maximum sum of the columns of the learned filters is 10-5. In contrast, the
sum of the rows of the learned filters varies from -2.6 to 3.0.

F.2 Cameraman Training Image
This section describes the experimental settings for Fig. 10.3, Fig. 12.2, and Fig. 12.1.
To reduce computation, we selected three 50 × 50 patches from the “cameraman” image in Fig. 12.2 to use as the

training data. We hand selected the training patches to contain structure. Fig. F.1 shows the training image patches.
We set the lower-level initialization x̂(γ(0)) by optimizing the lower-level cost function until the norm of the

gradient fell below a threshold for each training patch, i.e., until 1
√

N

∥∥∥∥∇xΦ
(
x̂ j(γ(0)) ; γ(0)

)∥∥∥∥
2
< 10-7 for j ∈ [1, J]. The

lower-level optimizer consisted of 10 iterations of OGM [295].
As shown in Fig. 12.1, the initial filters are the 48 non-constant DCT filters of size 7 × 7. The initial grid search

for β0 yielded -4. In summary, the settings are J = 3, N = 50 · 50, S = 7 · 7, K = 48, R = 48(49 + 1) = 2400, β0 = -4,
T = 10, and U = 10, 000.

Fig. 12.1 shows the learned filters. To visualize the filters when γ includes h, Fig. 12.1c scales each learned filter
ĉk to have unit norm. Fig. F.2 shows the learned filters with the effective regularization strength printed above each
filter.

1.0

0

0.5

Figure F.1: Patches from the cameraman test images used as the training dataset.
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Figure F.2: Learned filers for (Ex) when γ includes h and β, ordered by their effective regularization strength
eβk ‖ck‖2, which is printed above each filter. This effective regularization does not include the influence of
eβ0 , which is uniform across all filters.
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[145] P. Knöbelreiter, C. Sormann, A. Shekhovtsov, F. Fraundorfer, and T. Pock, “Belief propa-
gation reloaded: Learning BP-layers for labeling problems,” presented at the The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 7897–
7906. DOI: 10.1109/CVPR42600.2020.00792.

[146] P. Ochs, R. Ranftl, T. Brox, and T. Pock, “Techniques for gradient-based bilevel optimiza-
tion with non-smooth lower level problems,” Journal of Mathematical Imaging and Vision,
vol. 56, no. 2, pp. 175–194, Oct. 2016, ISSN: 0924-9907, 1573-7683.
DOI: 10.1007/s10851-016-0663-7.

[147] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numer-
ical computing,” SIAM Review, vol. 59, no. 1, 65–98, 2017.
DOI: 10.1137/141000671.

[148] M. Stone, “Cross-validation: A review,” Math Oper Stat Ser Stat., vol. 9, no. 1, 127–139,
1978. DOI: 10.1080/02331887808801414.

[149] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as a method for
choosing a good ridge parameter,” Technometrics, vol. 21, no. 2, 215–23, May 1979. [On-
line]. Available: http://www.jstor.org/stable/1268518.

[150] D. L. Phillips, “A technique for the numerical solution of certain integral equations of the
first kind,” J. Assoc. Comput. Mach., vol. 9, no. 1, 84–97, Jan. 1962.
DOI: 10.1145/321105.321114.

[151] S. S. Saquib, C. A. Bouman, and K. Sauer, “ML parameter estimation for Markov random
fields, with applications to Bayesian tomography,” IEEE Trans. Im. Proc., vol. 7, no. 7,
1029–44, Jul. 1998. DOI: 10.1109/83.701163.

[152] W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and B. M. W. Tsui, “4D XCAT phan-
tom for multimodality imaging research,” Medical Physics, vol. 37, no. 9, pp. 4902–15,
Aug. 2010. DOI: 10.1118/1.3480985.

295

https://doi.org/10.1007/978-3-030-52119-6
https://doi.org/10.1109/TPAMI.2011.156
http://arxiv.org/abs/1505.02120
http://arxiv.org/abs/1505.02120
https://doi.org/10.1007/s10851-016-0662-8
https://doi.org/10.1109/CVPR42600.2020.00792
https://doi.org/10.1007/s10851-016-0663-7
https://doi.org/10.1137/141000671
https://doi.org/10.1080/02331887808801414
http://www.jstor.org/stable/1268518
https://doi.org/10.1145/321105.321114
https://doi.org/10.1109/83.701163
https://doi.org/10.1118/1.3480985
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