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Abstract

Dynamic magnetic resonance imaging (MRI) has important clinical and neuro-

science applications (e.g., cardiac disease diagnosis, neurological behavior studies).

It captures an object in motion by acquiring data across time, then reconstructing

a sequence of images from them. This dissertation considers efficient dynamic MRI

reconstruction using handcrafted models, to achieve fast imaging with high spatial

and temporal resolution. Our modeling framework considers data acquisition process,

image properties, and artifact correction. The reconstruction model expressed as a

large-scale inverse problem requires optimization algorithms to solve, and we consider

efficient implementations that make use of underlying problem structures.

In the context of dynamic MRI reconstruction, we investigate efficient updates in

two frameworks of algorithms for solving a nonsmooth composite convex optimization

problem for the low-rank plus sparse (L+S) model. In the proximal gradient frame-

work, current algorithms for the L+S model involve the classical iterative soft thresh-

olding algorithm (ISTA); we consider two accelerated alternatives, one based on the

fast iterative shrinkage-thresholding algorithm (FISTA), and the other with the recent

proximal optimized gradient method (POGM). In the augmented Lagrangian (AL)

framework, we propose an efficient variable splitting scheme based on the form of the

data acquisition operator, leading to simpler computation than the conjugate gra-

dient (CG) approach required by existing AL methods. Numerical results suggest

faster convergence of our efficient implementations in both frameworks, with POGM

providing the fastest convergence overall and the practical benefit of being free of

algorithm tuning parameters.

In the context of magnetic field inhomogeneity correction, we present an efficient

algorithm for a regularized field inhomogeneity estimation problem. Most existing

minimization techniques are computationally or memory intensive for 3D datasets,

and are designed for single-coil MRI. We consider 3D MRI with optional consideration

of coil sensitivity and a generalized expression that addresses both multi-echo field

map estimation and water-fat imaging. Our efficient algorithm uses a preconditioned

ix



nonlinear conjugate gradient method based on an incomplete Cholesky factorization

of the Hessian of the cost function, along with a monotonic line search. Numerical

experiments show the computational advantage of the proposed algorithm over state-

of-the-art methods with similar memory requirements.

In the context of task-based functional MRI (fMRI) reconstruction, we introduce a

space-time model that represents an fMRI timeseries as a sum of task-correlated signal

and non-task background. Our model consists of a spatiotemporal decomposition

based on assumptions of the activation waveform shape, with spatial and temporal

smoothness regularization on the magnitude and phase of the timeseries. Compared

with two contemporary task fMRI decomposition models, our proposed model yields

better timeseries and activation maps on simulated and human subject fMRI datasets

with multiple tasks.

The above examples are part of a larger framework for model-based dynamic

MRI reconstruction. This dissertation concludes by presenting a general framework

with flexibility on model assumptions and artifact compensation options (e.g., field

inhomogeneity, head motion), and proposing future work ideas on both the framework

and its connection to data acquisition.
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Chapter 1

Introduction

Dynamic magnetic resonance imaging (MRI) is a non-invasive medical imaging

technique that has important clinical applications. For example, cardiac MRI is used

in the diagnosis and treatment of cardiovascular disease, and brain functional MRI

(fMRI) is used in neurological and psychological studies. Dynamic MRI captures an

object in motion by acquiring a sequence of data across time, then reconstructing a

sequence of images from them. Goals in advancing dynamic MRI include fast and

high quality imaging. In data acquisition, parallel imaging with multiple receiver

coils [160], as well as different undersampling schemes [162,182], have been proposed

to accelerate sampling while preserving image quality. Given undersampled multi-coil

data, this dissertation focuses on the efficient reconstruction of a MR image sequence

with high spatial and temporal resolution. Chapter 2 provides further background

for dynamic MRI reconstruction.

Numerous reconstruction models have been proposed for MRI and extended to

dynamic MRI [56,164], introducing inverse problems that require different optimiza-

tion methods [57]. Since the additional time dimension in dynamic imaging scales up

the problem size, it is essential to design fast algorithms and take advantage of the

structure of our problem when possible. In particular, the low-rank plus sparse (L+S)

model decomposes an image sequence into a temporally correlated background and

a dynamic foreground, which can be formulated as a nonsmooth composite convex

optimization problem. Chapter 3 investigates new efficient algorithms in the proxi-

mal gradient and variable splitting frameworks, with faster convergence than previous

L+S reconstruction algorithms in each framework.

One subset of dynamic MRI is brain fMRI, which images neural activity in the

brain based on blood-oxygenation-level dependent (BOLD) contrast [144]. FMRI uses

relatively late echo times to ensure good BOLD contrast, and relatively long readout

times to speed imaging to track functional changes [61]. These characteristics lead

1



to sensitivity of fMRI to magnetic field inhomogeneity, causing image distortion and

artifacts if uncorrected, especially near air/tissue interfaces. One way to compensate

for field inhomogeneity effect is to estimate a field map and account for it during

reconstruction. Chapter 4 presents a regularized field map estimation problem, with

a generalized formulation that considers multiple coils with coil sensitivity and ad-

dresses both the multi-echo field map estimation and the water-fat imaging settings.

Our novel algorithm uses a preconditioner based on an incomplete Cholesky factoriza-

tion, achieving faster convergence than state-of-the-art methods with similar memory

requirements.

FMRI can be broadly categorized into resting state fMRI and task-based fMRI.

Resting state fMRI explores functional connectivity across the brain, while task-based

fMRI identifies brain regions that are functionally involved in a specific task perfor-

mance. Conventional fMRI studies postprocess the reconstructed image sequences to

correct for noise and artifacts, then analyze functional connectivity or task activation

of the processed timeseries. Model-based reconstruction with undersampled data, on

the other hand, attempts to use model assumptions to recover the original image

sequence and extract neural signal of interest during reconstruction. Chapter 5 intro-

duces a new model for task-based fMRI using a priori knowledge of the task waveform,

with spatial and temporal smoothness regularization on the magnitude and phase of

the timeseries. Compared with contemporary task fMRI decomposition models, our

method shows better timeseries and activation maps on fMRI reconstruction with

multiple tasks.

FMRI analysis favors high spatiotemporal resolution images, yet a challenge in

fMRI reconstruction is its weak signal of interest. Sources of confounding factors

include scanner drift, physiological noise (e.g., cardiac and respiratory rhythms), sub-

ject head motion during scan, and magnetic field inhomogeneity. Failure to separate

noise and artifacts from the neural signal of interest can cause false correlation or

anti-correlation [132,158]. Chapter 6 formulates a model-based reconstruction frame-

work for 3D multi-coil dynamic MRI with additional compensation for intravoxel field

inhomogeneity and undesired head motion, leading to a discussion of future work in

Chapter 7.
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Chapter 2

Background

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging uses electromagnetic fields to excite magnetic spins

in the body, causing hydrogen protons (spins) to precess around the magnetic field

direction. After a radiofrequency (RF) pulse tips the spins into the transverse (xy)

plane, relaxation occurs as the spins precess back to equilibrium. For spatial local-

ization, locally varying gradients are applied, and the resulting location-dependent

frequency of precession provides information of magnetization at each position ~r =

(x, y, z). Our received time-dependent signal data d(t) is a summation of the magne-

tization over the locations.

2.1.1 Signal equation

We can represent the magnetization at location ~r by its image magnitude x(~r) and

phase φ(~r, t) = 2πk(t) · ~r, where the k-space trajectory k(t) is the spatial frequency

sample locations. Ideally, the demodulated MRI signal data seen by a single ideal

receiver coil is

d(t) =

∫
x(~r)e−i2πk(t)·~rd~r . (2.1)

This is a Fourier transform of the image value x(~r), and the k-space is the Fourier

domain of image space.

In reality, samples are collected by a receiver coil at discrete time points ti. For

(static) MRI we can approximate the signal by di = d(ti) at k-space location ki = k(ti)

and discretize the continuous x(~r) into xj:

di ≈
Nv∑
j=1

xje
−i2πki·~rj ,

3



where Nv is the number of voxels. This can be compactly represented as

d = Ex + ε , (2.2)

where d ∈ CNk is a collection of Nk recorded signal samples, E : CNv → CNk is an

encoding operator that can can be represented by an Nk ×Nv matrix with elements

Eij = e−i2πki·~rj , ε is complex Gaussian noise, and x ∈ CNv is an unknown image that

we aim to reconstruct.

2.1.2 Dynamic MRI

In dynamic MRI with Nt time frames, the unknown image in (2.2) becomes a

space-time image sequence matrix X ∈ CNv×Nt , and with multiple coils, the encoding

operator generalizes to E : CNv×Nt → CNkNc , where Nk is now the total number of

k-space samples over the entire timeseries, and Nc is the number of signal receiver

coils. Since the object is changing while data is collected, dynamic MRI is inherently

undersampled. Our goal in reconstruction is to obtain high spatiotemporal resolution

images from undersampled k-space data.

As a subset of dynamic MRI, brain function MRI has been developed and ex-

plored since the 1990’s to study functional activity and cognitive behaviors of the

brain. In particular, task-based fMRI localizes brain activations in response to short

stimuli or tasks, and its analysis typically includes statistical tools such as the gen-

eral linear model (GLM) [64,118]. On the other hand, resting state fMRI investigates

the functional connectivity, where one uses seed-based analysis [22] or independent

component analysis (ICA) [17] to find correlation across brain regions. These im-

age analyses favor high spatiotemporal resolution images, and typically require image

processing steps that correct for physiological noise (e.g., cardiac and respiratory

rhythms), scanner drift, head motion, and image distortion [112]. Failure to separate

noise and artifacts from the neural signal of interest can cause false correlation or

anti-correlation [132,158].

2.2 Model-based reconstruction for dynamic MRI

For dynamic MRI, we aim to reconstruct a MR image sequence X from under-

sampled k-space data d in (2.2) by solving an optimization problem

argmin
X

1

2
‖EX − d‖2

2 + λR(X) , (2.3)

4



where R(·) is a regularizer with parameter λ that depends on model assumptions.

This dissertation focuses on parallel imaging with undersampling, hence E is no

longer a single Fourier transform. E can also address field inhomogeneity and motion

compensation, and Section 2.2.1 discusses its general formulation. The regularizer

R(·) contains model assumptions and is critical for the reconstructed image quality,

and Section 2.2.2 reviews some state-of-the-art models for dynamic MRI reconstruc-

tion. Section 2.2.3 presents some optimization methods to solve (2.3) once E and R(·)
are formulated, and Section 2.2.4 discusses common evaluation metrics and analysis

techniques on reconstructed images.

2.2.1 System operator

The system operator E in (2.3) can account for a priori knowledge of the imag-

ing system and artifact correction. This section covers its formulation with k-space

sampling, coil sensitivity, head motion, and field inhomogeneity compensation.

k-space sampling

In (single-coil, single-frame) MRI, the system E : CNv → CNk has elements

Eij = e−i2πki·~rj .

With uniform sampling in k-space, it can be efficiently computed by a fast Fourier

transform (FFT) operator F : CNv → CNv . In practice, however, undersampling

schemes are often used to speed up acquisition. For example, undersampled Echo-

Planar Imaging (EPI) combined with parallel imaging [46] accelerates fMRI acqui-

sition while preserving image quality. In this case, the spatial Fourier operator is

followed by an undersampling mask Ω : CNv → CNk

E = ΩF.

In addition to uniform undersampling, nonuniform trajectories are extensively

used in fMRI sampling [36,69,152]. The nonuniform FFT (NUFFT) [55] efficiently

approximates the nonuniform Fourier transform using an oversampled discrete Fourier

transform (DFT) of scaled image values, then interpolates the DFT values onto de-

sired frequency locations. The (single-coil, single-frame) MRI system matrix with

NUFFT Q ∈ CNk×Nv is

Q = ΓFΛ,

5



where Λ ∈ CNv×Nv is a diagonal scaling matrix that precompensates for imperfections

in the interpolation by Γ, F ∈ CK×Nv is the oversampled (K point) DFT that can be

computed by FFT, and Γ ∈ CNk×K is a frequency-domain interpolator that can be

tabulated to reduce operations and memory storage.

In dynamic MRI, Γ and Λ are defined based on the sampling trajectory of each

time frame, and can be reused if the same trajectory is repeated across frames. For

nonuniform sampling, the (single-coil) system operator E : CNv×Nt → CNk can be

written as

E = ΩQ ,

where the dimensions of Ω and Q depend on the sampling trajectory. One practi-

cal trajectory is a stack of spirals with spiral NUFFT Qxy ∈ CNkxy×NxNy and kz-t

undersampling mask Ω : CNkxyNzNt → CNk . In this case, the sampling operator

Q : CNv×Nt → CNkxyNzNt is

Q = INt ⊗ (INz ⊗Qxy) ,

where ⊗ is the Kronecker product operation, and IN is the identity matrix with

dimension N ×N .

Coil sensitivity

Parallel MRI uses multiple signal receiver coils to accelerate data acquisition while

maintaining image quality. Since its development, multiple strategies have been pro-

posed that consider coil sensitivity in image reconstruction [72,160,181]. In particular,

Sensitivity Encoding (SENSE) explicitly uses coil sensitivity maps in reconstruction.

The coil sensitivity matrix S ∈ CNvNc×Nv can be represented by a stack of Nc coil

maps from S1 to SNc , where the cth coil map Sc ∈ CNv×Nv is diagonal and can be

estimated from individual coil images xc = Scx [190]. In multi-coil dynamic MRI,

the elements in E : CNv×Nt → CNkNc now become

Ectij = e−i2πkti·~rtjscj ,

and together with sampling ΩQ, the system operator can be written as

E = (INc ⊗ΩQ)(INt ⊗ S) ,

where the coil sensitivity maps S are static across Nt time frames.
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Head motion compensation

Subject motion during MRI scans causes image artifacts and can degrade MRI

analysis results. One example is the 3D head movement during a brain fMRI scan,

captured by a rigid motion with three rotation and three translation parameters. Nu-

merous methods have been proposed for head motion correction, including k-space

compensation [13,26,155,193], image space registration [91], and joint image recon-

struction with motion estimation [42,78].

Given image space rigid transformation T : CNv×Nt → CNv×Nt for all Nt time

frames, the multi-coil dynamic system E : CNv×Nt → CNkNc now has elements

Ectij = e−i2πkti·~rtjscjTt ,

and the operator becomes

E = (INc ⊗ΩQ)(INt ⊗ S)T .

In practice, we can implement T by interpolation using a rotation with three shears

and a translation [42,52]. The rotation and translation parameters can be estimated

using an initial reconstructed image sequence. Section 6.2 provides implementation

detail and a simulation example for reconstruction with motion correction.

Field inhomogeneity

For MR scans with long readout times, there are off-resonance effects caused by

magnetic field (B0) inhomogeneity. This is due to main field imperfections and mag-

netic susceptibility variations in tissues, which can cause signal loss and image distor-

tions if uncorrected. For fMRI in brain regions near air/tissue interface, signal degra-

dation can be severe [143]. Numerous compensation strategies have been proposed

based on both data acquisition [47,141,208] and image reconstruction [76,96,139,184].

The field map can be estimated using MR scans at multiple echo times (usually 2 or

3) [10,65,147,185,201], and built into the system operator using a low-rank approxi-

mation [59,61,108].

Given a field map ω(~r) at location ~r, the signal equation (2.1) becomes

d(t) =

∫
x(~r)e−iω(~r)te−i2πk(t)·~rd~r . (2.4)

With piecewise constant discretization of ω(~r), the multi-coil dynamic system E :
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CNv×Nt → CNkNc now has elements

Ectij = e−iωjtie−i2πkti·~rtjscj .

Since it is impractical to carry out this large-scale matrix multiplication, a basis

expansion [59] can approximate the exponential term

L∑
l=1

BilClj ≈ e−iωjti

with estimated terms Bil, Cil. While this piecewise constant discretization of ω(~r)

assumes a constant field map across a voxel, it can be extended to a piecewise linear

discretization that accounts for intravoxel B0 inhomogeneity [61,108]. With bases

Bl = diag(Bil) ∈ CNk×Nk and Cl = diag(Clj) ∈ CNvNf×NvNf , the system operator now

becomes

E =

(
INc ⊗

( L∑
l=1

Bl(ΩQ)Cl

))
(INt ⊗ S) .

In functional MRI when the field map is assumed static after motion correction,

one can collect multi-echo images before the dynamic scan, and reuse its low-rank

approximation across frames. Dynamic field map estimation has also been explored

in the joint reconstruction setting [84,128,145,185,192,205].

Chapter 4 discusses an efficient algorithm for regularized field map estimation,

and Section 6.1 provides implementation details and a simulation example for recon-

struction with intravoxel field inhomogeneity compensation.

A generalized expression for E

We summarize this section 2.2.1 on the dynamic MRI system operator E : CNv×Nt →
CNkNc by its generalized form, considering head motion T : CNv×Nt → CNv×Nt ,

coil sensitivity maps S ∈ CNvNc×Nv , low-rank approximation factors of field in-

homogeneity Bl ∈ CNk×Nk , Cl ∈ CNvNt×NvNt , and undersampled NUFFT operator

ΩQ : CNvNt → CNk :

E =

(
INc ⊗

( L∑
l=1

Bl(ΩQ)Cl

))
(INt ⊗ S)T.

In analytical reconstruction methods such as conjugate phase (CP) [139], one can

apply a adjoint operator E∗ to data d to get the images X. One can also use such
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analytical reconstruction results as initial estimates for model-based reconstruction.

2.2.2 Model assumptions

In the image reconstruction problem (2.3), formulations of X and R(X) capture

the underlying model assumptions. Here we briefly review some state-of-the-art mod-

els for dynamic MRI reconstruction. For example, a low-rank constraint or a nuclear

norm regularizer has been used to model the approximately low-rank k-t image [36,39].

A spatial-temporal factorization also achieves low-rankness [37,109,134]. An l1 norm

regularizer encourages sparsity in a transformed domain [54,135]. To combine low-

rankness and sparsity, the low-rank plus sparse decomposition [149,154,180,199] rep-

resents a dynamic image as a summation of low-rank static background and Fourier-

sparse dynamic foreground, while the low-rank and sparse model encourages the im-

age sequence to be both low-rank and sparse [119]. Other regularizers such as total

variation (TV) and temporal finite difference are also used to encourage spatial and

temporal regularity [9,31,34,136].

In addition to predefined operators for regularization, data-driven approaches

adaptively learn the operators. The dictionary learning model learns a synthesis dic-

tionary and its sparse codes [12,120,163], while the transform learning model learns an

analytical transform and its sparse codes [79,200]. Recently, model-based deep learn-

ing is also explored for dynamic MRI, where a convolutional neural network (CNN)

denoising prior is included in the model-based iterative scheme [23,172].

This dissertation considers handcrafted models that capture desired properties of

the reconstructed image sequence. Chapter 3, for example, focuses on a decomposition

model that represents a dynamic image as a sum of a relatively static background

and a dynamic foreground. Chapter 5 proposes a task fMRI model that separates

task activation from non-task background signal.

2.2.3 Optimization methods

Given formulations of the system operator E and regularizer R(X), different op-

timization methods [57] have been proposed to solve the image reconstruction prob-

lem (2.3).

One common dynamic MRI reconstruction problem formulation uses a composite

convex function consisting of a sum of a smooth and a nonsmooth function. This

includes, for example, cost functions with nuclear norm or l1 norm regularization.

Proximal gradient methods (PGM), whose iterates are based on the proximal opera-

tor [14,41,151], specialize in solving composite optimization problems. Classical PGM,
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also known as iterative soft thresholding algorithm (ISTA) [45], has a slow O(1/k)

convergence bound. The fast iterative soft thresholding algorithm (FISTA) [15,16]

accelerates it by achieving a O(1/k2) convergence, and the proximal optimized gra-

dient method (POGM) [104,186] further improves the worst-case convergence bound

in FISTA by about two.

While PGM provides convenient updates for composite cost functions in a syn-

thesis model, its update formulation may not be straightfoward for cost functions in

an analysis model, due to the analysis operator. In this case, variable splitting meth-

ods reformulate the cost as an equivalent constrained minimization problem with an

auxiliary variable, and solve it with algorithms using augmented Lagrangian (AL)

and alternating direction method of multipliers (ADMM) [8,25]. To achieve faster

convergence of variable splitting methods, [202,203] explore adaptive selection of AL

parameters. In MRI reconstruction, one can further exploit structure of the system

operator E for efficient update [161].

Quadratically regularized cost functions arise in dynamic MRI reconstruction,

for example, when one considers finite difference regularizers, or as a step in AL-

based methods. The conjugate gradient (CG) algorithm is well-suited for such cost

functions, and one can explore faster convergence with CG using preconditioners, such

as a circulant preconditioner [32] when the Hessian matrix is approximately Toeplitz.

Nonconvex regularized cost functions arise, for example, when one considers sep-

arate magnitude and phase regularization [60,209,211]. In this case, an optimization

approach is to minimize a sequence of surrogate functions using optimization trans-

fer [110]. Alternatively, one can use nonlinear CG with line search [43].

This dissertation includes efficient algorithms for different optimization problems.

Chapter 3 discusses fast proximal gradient methods and efficient AL algorithms in the

context of the low-rank plus sparse model for dynamic parallel MRI reconstruction.

Chapter 4 provides a computationally and memory efficient preconditioned nonlinear

CG scheme for the regularized field map estimation problem. Chapter 5 efficiently

solves a reconstruction problem using CG and alternating minimization.

2.2.4 Evaluation and analysis

After reconstruction, image quality is evaluated using different metrics based

on one’s focus and intended use of the reconstructed images. Given a reference

“ground truth” image, the mean square error (MSE) and the structural similarity

index (SSIM) [197] are useful for assessing difference of structural information and

structural distortion from a desired image. The signal-to-noise ratio (SNR) and peak
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SNR (PSNR) are also widely used to measure the reconstruction quality from under-

sampled k-space data.

In addition to evaluating an image in its spatial dimension, the reconstruction

quality of dynamic MRI also depends on its temporal dimension. In particular, an

active research area of fMRI analysis aims to find relationships between brain regions

using their timeseries. Conventional fMRI analysis processes the reconstructed images

by smoothing and artifact correction, then evaluates the timeseries across voxels in the

brain based on specific goals in fMRI. In task-based fMRI, a main goal is detecting

activated brain regions. Given a predefined task waveform, one can compute the

correlation map of the image sequence to the task, and define a task activation map

based on correlation values. As activation maps can be sensitive to the choice of

correlation threshold and experimental setup, robust methods have been proposed,

such as false discovery rate (FDR)-controlling procedure [66], test-retest scheme [67,

140], and permutation tests [7,137]. In resting state fMRI, one goal is to analyze

functional connectivity by identifying resting state networks (RSN) [44]. To this end,

seed voxel / region-based regression [22] and independent component analysis (ICA)-

based methods [17] have been used extensively.

In iterative reconstruction, we also evaluate the performance of an algorithm by

monitoring its convergence behavior and speed. For example, we can plot the cost or

the normalized root mean square difference (NRMSD) of each iterate to a converged

image. In cases with a non-strictly convex or even nonconvex cost, a “converged

image” is not unique, and one can take, for example, the average of converged images

by different algorithms.

Throughout this dissertation, we measure image quality by the error to the ground

truth or the difference to a reference. We also use metrics specific to our goals, such as

timeseries and activation maps for fMRI analysis, and convergence plots in algorithm

comparison.
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Chapter 3

Efficient Algorithms

for the Low-rank Plus Sparse Model

Among MRI reconstruction models, the low-rank plus sparse (L+S) model con-

siders the spatiotemporal feature of dynamic images, and decomposes an image se-

quence into a temporally correlated background and a dynamic foreground. This

assumption enables the reconstruction of undersampled dynamic parallel MRI data.

Solving for the low-rank and the sparse components involves nonsmooth composite

convex optimization, and algorithms for this problem can be categorized into proxi-

mal gradient methods and variable splitting methods. This chapter investigates new

efficient algorithms for both schemes. While current proximal gradient techniques

for the L+S model involve the classical iterative soft thresholding algorithm (ISTA),

we consider two accelerated alternatives, one based on the fast iterative shrinkage-

thresholding algorithm (FISTA), and the other with the recent proximal optimized

gradient method (POGM). In the augmented Lagrangian (AL) framework, we pro-

pose an efficient variable splitting scheme based on the form of the data acquisition

operator, leading to simpler computation than the conjugate gradient (CG) approach

required by existing AL methods. Numerical results suggest faster convergence of

the efficient implementations for both frameworks, with POGM providing the fastest

convergence overall and the practical benefit of being free of algorithm tuning param-

eters.

3.1 Introduction

The application of compressed sensing (CS) to Magnetic Resonance Imaging

(MRI) has been extensively explored to accelerate the data acquisition process [75,

This chapter presents our published work in the conference and journal papers [114,115].
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124]. In particular, since dynamic MRI data is inherently undersampled, it is useful to

use a CS-MRI model for image reconstruction. CS has also been combined with par-

allel MRI techniques such as SENSitivity Encoding (SENSE) [160], aiming to collect

more data with multiple receiver coils, thereby possibly improving the spatiotempo-

ral resolution trade-off of the reconstructed images. This combination is especially

useful in dynamic MRI, where reconstruction of high spatial and temporal resolution

is desired [94]. Compared with models that use coil-by-coil auto-calibration [72,125],

the SENSE framework uses explicit knowledge of the sensitivity of the receiver coils.

In addition to image sparsity based on CS, the low-rank models of the space-time

matrix have also been explored for dynamic MRI, based on assumptions of the sim-

ilarities between temporal profiles [119,148,169,188]. In particular, a low-rank plus

sparse (L+S) matrix decomposition assumes incoherence between a low-rank com-

ponent L and a sparse component S, with L modeling the temporally correlated

background, and S the dynamic information that lies on top of the background. The

corresponding reconstruction problem can be formulated as a convex optimization

problem, where the nuclear norm and l1 norm are used to respectively promote low-

rankness and sparsity regularization on L and S. The L+S formulation has various

applications, such as motion estimation in dynamic contrast-enhanced MRI, and au-

tomated background suppression for angiography [148,188].

One technique for solving such optimization problems involves the class of prox-

imal gradient methods (PGM), whose iterates are based on the proximal opera-

tor [14,41,151]. In particular, [148] solves the L+S decomposition with the iterative

soft thresholding algorithm (ISTA). Although accelerated variants of ISTA have been

applied to various non-parallel and parallel MRI models with sparsity regulariza-

tion [19,28,85,129], to our knowledge, fast PGM has yet to be explored for the L+S

reconstruction problem.

Variable splitting is another category of optimization schemes that has been used

extensively for various MRI reconstruction models, with formulation in the aug-

mented Lagrangian (AL) framework. In single-coil dynamic MRI, variable splitting

has provided efficient alternating update schemes for L+S models [119,188]. Using

the splitting of variables to decouple a cost function into simpler sub-problems, one

can also apply accelerated schemes, such as the fast iterative shrinkage-thresholding

algorithm (FISTA) [16], to the sub-problems, for more efficient computation [97,204].

For the L+S model, [188] proposed a splitting scheme for which the AL function leads

to sub-problems with quadratic updates. That approach requires inverting a matrix

of the form (E∗E + δI)−1, where E is an encoding operator (see Section 2.2.1), E∗

13



is its adjoint, and δ denotes a penalty parameter. With non-Cartesian sampling, or

with multiple coils in the case of parallel MRI, a computationally demanding iterative

approach like the conjugate gradient (CG) method is required for the updates. Effi-

cient formulations of this update have been investigated, including a singular value

decomposition (SVD) of E∗E [20], and pre-multiplication of a Fourier operator [169].

However, these implementations are still computationally intensive with multi-coil

data.

For undersampled dynamic parallel MRI, this chapter presents efficient algorithms

for the L+S image reconstruction problem. In particular, in the PGM category, we

investigate two accelerated alternatives to ISTA, one based on FISTA, and the other

the recent proximal optimized gradient method (POGM) [186]. For methods involv-

ing variable splitting, we adapt a splitting scheme that uses the matrix structures

associated with the undersampling pattern, the Fourier encoding and the sensitiv-

ity maps, leading to faster MRI reconstruction [35,111,161]. In this case, we take

advantage of the L+S model structure, leading to efficient updates with only two

AL variables. This chapter is an extension of our conference work [114] that briefly

investigated the two accelerated algorithms in the PGM category. Compared with

this earlier work, here we discuss the algorithms in more detail, investigate another

accelerated algorithm in the variable splitting scheme, and include an extension to

non-Cartesian MRI in the Supplement (Section 3.7).

The rest of this chapter is organized as follows. Section 3.2 formulates the corre-

sponding convex optimization problem, and reviews some related methods for solving

it. Section 3.3 presents the efficient implementations for the two classes of algorithms.

Section 3.4 reports experimental results, followed by discussion and conclusion in Sec-

tions 3.5 and 3.6 respectively.

3.2 Problem and related methods

In the L+S framework for dynamic MRI, the goal is to estimate an unknown image,

modeled as a superposition of a low-rank component L and a sparse component S.

In parallel MRI, we are provided with undersampled k-space data d ∈ CNsNc , where

Ns is the total number of samples received from each receiver coil (across all frames),

and Nc is the number of coils. Nx and Ny denote the image dimensions of each image

frame, and Nt is the number of time frames. The L+S formulation [148] uses the
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following regularized convex optimization scheme:

argmin
L,S

1

2
‖E(L+ S)− d‖2

2 + λL‖L‖∗ + λS‖TS‖1 , (3.1)

where L, S ∈ CNxNy×Nt are the desired dynamic image components, E : CNxNy×Nt →
CNsNc is the data acquisition operator that considers the coil sensitivities and the

Fourier transform with undersampling, and T : CNxNy×Nt → CNxNyNt a known spar-

sifying transform operator based on a priori assumptions of the domain of image

sparsity. This work considers the (unitary) temporal Fourier transform operator,

with TS = (T ⊗ INxNy)vec(S), where T is the Nt × Nt unitary temporal discrete

Fourier transform matrix. This sparsifying transform has been extensively used to

promote sparsity in dynamic MRI reconstruction [94,119,148,188]. Our accelerated

methods adapt readily to other unitary operators and to 3D dynamic MRI problems.

Here the data consistency is captured by the vector l2-norm term, the low-rankness of

L by the matrix nuclear norm, and the sparsity of the transformed S by the vector l1

norm. The contributions between these three terms are balanced by the regularization

parameters λL and λS.

Methods for solving the optimization problem (3.1) fall into two classes: those

based on the proximal gradient methods, and those using AL with variable split-

ting. Below, we review these two methods and existing implementations for the L+S

reconstruction model.

3.2.1 Conventional proximal gradient scheme

To implement the classical PGM on the L+S optimization problem, we combine

the two unknowns by forming a single “stacked” variable X =

[
L

S

]
. With this

change, (3.1) can be equivalently expressed as

min
X

g(X ) + h1(X ) + h2(X ) , where

g(X ) =
1

2
‖[E E]X − d‖2

2 , (3.2)

h1(X ) = λL‖[I 0]X‖∗ , and h2(X ) = λS‖[0 T]X‖1 .

Here I and 0 denote respectively the identity and the zero matrices, of size NxNy ×
NxNy. To verify the convergence assumptions of PGM, we note that g(X ) is a smooth,
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convex, and continuously differentiable function, whose gradient is Lipschitz continu-

ous with constant l(∇g); h1(X ), h2(X ) are continuous, convex and nonsmooth func-

tions. For arbitrary variables Y ,Z, the kth iterate of the PGM is then given by the

proximal operator:

Yk = proxh
(
Yk−1 − t∇g(Yk−1)

)
, where

proxh(Z) = argmin
Y

h(Y) +
1

2
‖Y − Z‖2

2 .

Here t is a chosen step size, whose dependence on the Lipschitz constant l(∇g) guar-

antees convergence of the algorithm.

The proximal maps for the nuclear norm in h1 and the vector l1 norm in h2

have closed-form expressions. In particular, proxh2 is given by the soft thresholding

operator

Λλ(Y) = sign(Y)� (|Y| − λ)+ ,

where � denotes element-wise multiplication. proxh1 is the singular value threshold-

ing operator

SVTλ(Y) = UΛλ(Σ)V ∗ ,

where UΣV ∗ is a singular value decomposition of Y . Since h1 and h2 are functions of

L and S respectively, the k-th iterate can be written separately for Lk and Sk:

Lk = SVTλL

(
Lk−1 − td(Xk−1)

)
, and

Sk = T∗
(

ΛλS

[
T
(
Sk−1 − td(Xk−1)

)])
, where

d(X ) = [I 0]∇g(X ) = E∗([E E]X − d) = [0 I]∇g(X ) .

Here T∗ denotes the adjoint operator of T, defined by the corresponding inverse

Fourier transform. The expression of Sk uses the fact that T represents the unitary

temporal Fourier transform, and that the l2 norm is unitary invariant.

Since the gradient d(Xk−1) is the same in both expressions of Lk and Sk, only

one gradient evaluation is necessary in each iteration. The methods in [148] use this

fact, exploiting computational efficiency by jointly estimating L and S. However,

Section 3.3 shows that fast PGM provides much further acceleration.
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3.2.2 Conventional variable splitting scheme

It has been empirically observed that in some problem settings, AL-based methods

can achieve higher accuracy than PGM in fewer iterations [30]. This has motivated

another technique of solving (3.1), using variable splitting.

A splitting scheme is introduced in [188] to solve the L+S decomposition problem.

In particular, (3.1) is reformulated with two constraints:

argmin
L,S

min
U,W

1

2
‖E(L+ S)− d‖2

2 + λL‖U‖∗ + λS‖W‖1

subject to

{
U = L

W = TS .
(3.3)

With this formulation, the associated modified AL function is

1

2
‖E(L+ S)− d‖2

2 + λL‖U‖∗ + λS‖W‖1

+
δ1

2
‖L− U + V1‖2

2 +
δ2

2
‖TS −W + V2‖2

2 ,

where V1, V2 are Lagrange multiplier arrays, and δ1, δ2 are two corresponding AL

penalty parameters that affect the convergence rate, but not the final estimates.

This problem can be solved by iterative updates of the four unknowns, followed

by updates of the Lagrange multipliers. In particular, each update of L and S is

quadratic, requiring computation of (E∗E + δiI)−1 for i = 1, 2. With single-coil

Cartesian data, as considered in [188], E∗E is circulant and one can use FFT oper-

ations for efficient computation. However, in parallel MRI, the operator E contains

additional information of coil sensitivities, so E∗E is not circulant, and the updates

of the quadratic terms would require an iterative method like the CG approach.

Based on this observation, Section 3.3 presents a new AL algorithm that simplifies

the computation by considering a more efficient variable splitting scheme for the L+S

model.

3.3 Accelerated algorithms

This section presents three efficient algorithms for the minimization problem (3.1).

Two of them are in the class of PGM, with additional momentum terms in the updates

that help achieve faster convergence rates. The third is an AL method that uses a
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different variable splitting scheme than (3.3), exploiting the structure of the data

acquisition operator E, improving computation efficiency for parallel MRI.

3.3.1 Proximal gradient scheme

The ISTA update for L and S, as given in [148], is based on classical PGM, for

which the sequence of function values converges to the optimal function value at a

rate of O(1/k) [16]. We assume from now on that the operator E is normalized such

that the spectral norm ‖E‖2 = 1 for fully sampled data. Then the Lipschitz constant

of g(·) in (3.2) satisfies

l(∇g) = ‖[E E]‖2
2 = 2‖E‖2

2 ≤ 2 , (3.4)

so ISTA converges for any step size t with 0 < t < 2
2‖E‖22

= 1.

We now introduce two accelerated methods for (3.1) that have O(1/k2) conver-

gence rates; their convergence analyses build on the work of Nesterov’s fast gradient

methods [133]. We use the same algorithm framework for these two accelerated L+S

variants of ISTA, formulated as Algorithm 1. Computing the gradient is the most

expensive step in each iteration; because both the L and S updates involve the same

gradient expression, we jointly update them by first computing

Xk =

[
Lk

Sk

]
,

then evaluating the gradient in a data consistency term, denoted as Mk below.

FISTA update

Built upon the convergence analysis in [133], FISTA achieves the same rate of

convergence of O(1/k2) [16]. In addition to the unknown Xk in each iteration, the

FISTA update involves a secondary sequence X̃k =

[
L̃k

S̃k

]
computed by adding a

“momentum” term to the original sequence. This addition preserves the computa-

tional simplicity of ISTA, as the main computational effort of gradient evaluation

remains unchanged from ISTA. Given the L+S framework of Algorithm 1, the ad-

ditional FISTA initialization and updates are:
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Algorithm 1: Proximal Gradient L+S
Inputs:
d: undersampled k-t data
E: data acquisition operator
T: temporal Fourier transform
λL: singular value threshold
λS: sparsity threshold

Initialization:
M0 = L0 = E∗d, S0 = 0
additional initialization (I) for FISTA or POGM

for k = 1, 2, . . . , N do
update Xk by FISTA or POGM scheme (Xk)
update Mk by FISTA or POGM scheme (Mk)

end for
output: XN

(I) X̃0 = X0 , θ0 = 1

(Xk) Lk = SVTλL(Mk−1 − S̃k−1)

Sk = T∗
(
ΛλS

[
T
(
Mk−1 − L̃k−1)

])
θk =

1+
√

1+4θ2k−1

2

X̃k = Xk + θk−1−1

θk
(Xk −Xk−1)

(Mk) Mk = L̃k + S̃k − tE∗
(
E(L̃k + S̃k)− d

)
.

Based on the Lipschitz constant in (3.4), convergence for FISTA is guaranteed

when the step size satisfies 0 < t ≤ 1
2‖E‖22

= 0.5.

POGM update

In the smooth unconstrained setting, the recent optimized gradient method (OGM)

achieves a worst-case convergence bound twice as small as that of Nesterov’s fast

gradient methods (FGM) [102,103] by optimizing the choice of the coefficients that

determine the step size in a first-order algorithm by minimizing a relaxed worst-case

performance bound of f(XN)−f(X∗), the cost function discrepancy at the Nth itera-

tion. This optimization problem is solved by semi-definite programming (SDP) in [50],

and an analytical expression of the optimized step size is derived in [102], confirming

the numerical observation that the worst-case performance is two times better than

FGM’s bound. OGM was shown to have optimal complexity for large-scale smooth

problems in [50].
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OGM has been extended to the proximal case for nonsmooth composite problems,

where a numerical worst-case performance twice better than FISTA is achieved by

POGM [186]. In the L+S model, compared with the FISTA iterate, POGM introduces

an additional sequence X k =

[
Lk

Sk

]
, whose update involves three momentum terms.

The POGM formulation is guaranteed to converge when using the same step size

as in FISTA, and it again achieves the same computational simplicity as ISTA. The

initialization and updates with POGM for the L+S framework are:

(I) X̃0 = X 0 = X0 , θ0 = ζ0 = 1

(Xk) L̃k = Mk−1 − Sk−1

S̃k = Mk−1 − Lk−1

θk =

{
1+
√

1+4θ2k−1

2
, k < N

1+
√

1+8θ2k−1

2
, k = N

X k = X̃k + θk−1−1

θk
(X̃k − X̃k−1)

+ θk−1

θk
(X̃k −Xk−1) + θk−1−1

ζk−1θk
t(X k−1 −Xk−1)

ζk = t
(
1 + θk−1−1

θk
+ θk−1

θk

)
Lk = SVTλL(Lk)

Sk = T∗
(
ΛλS

[
T
(
Sk)
])

(Mk) Mk = Lk + Sk − tE∗
(
E(Lk + Sk)− d

)
.

The empirical results in Section 3.4 show that POGM converges faster than ISTA

and FISTA, yet requires essentially the same computation time per iteration (domi-

nated by the Mk update needed in all methods).

3.3.2 Variable splitting scheme

We now consider variable splitting methods for the L+S reconstruction problem

for parallel MRI. In this setting, the data acquisition operator is E = ΩQC, where

Ω : CNxNyNtNc → CNsNc contains the undersampling patterns for all frames, Q ∈
CNxNyNtNc×NxNyNtNc represents a Fourier encoding matrix, and C : CNxNy×Nt →
CNxNyNtNc captures the sensitivity maps of the receiver coils [35,111,161] While direct

extension of the splitting scheme in [161] to the L+S model leads to at least four

more variables in the AL function, here we make use of the L and S formulations,

and introduce only two AL variables to capture the constrained cost function. For

simpler formulation of the algorithm, we assume from now on that C is normalized

such that C∗C = I (identity). This normalization is valid since our model considers

sparsity with temporal Fourier transform T, and the spatial scaling does not affect
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the rank of the low-rank component. After reconstruction, one can undo the image

scaling if needed.

With this expression, we represent the following novel reformulation of (3.1) in

the constrained form

argmin
L,S

min
Z,X

1

2
‖ΩZ − d‖2

2 + λL‖L‖∗ + λS‖TS‖1

subject to

{
Z = QCX

X = L+ S .
(3.5)

Compared with (3.3), this splitting scheme also involves four variable updates,

but leads to simpler updates, as shown next.

The modified AL function corresponding to (3.5) is

1

2
‖ΩZ − d‖2

2 + λL‖L‖∗ + λS‖TS‖1 +
δ1

2
‖Z −QCX + V1‖2

2 +
δ2

2
‖X − (L+ S) + V2‖2

2 .

The L update involves the nuclear norm, and its proximal map is given by singular

value thresholding:

argmin
L

λL‖L‖∗ +
δ2

2
‖X − (L+ S) + V2‖2

2

= SVTλL/δ2(X − S + V2) . (3.6)

The S update contains a vector l1-norm term, whose proximal operator is soft

thresholding, where we use the fact that T is a unitary operator, with the change of

variables S̃ = TS:

argmin
S

λS‖TS‖1 +
δ2

2
‖X − (L+ S) + V2‖2

2

= T∗
(

argmin
S̃

λS‖S̃‖1 +
δ2

2
‖T(X − L+ V2)− S̃‖2

2

)
= T∗ΛλS/δ2

(
T(X − L+ V2)

)
. (3.7)

The updates for Z and X involve quadratic terms:

argmin
Z

1

2
‖ΩZ − d‖2

2 +
δ1

2
‖Z −QCX + V1‖2

2

= (Ω∗Ω + δ1I)−1
(
Ω∗d + δ1(QCX − V1)

)
, (3.8)

21



argmin
X

δ1

2
‖Z −QCX+ V1‖2

2 +
δ2

2
‖X−(L+ S)+V2‖2

2

= (C∗C +
δ2

δ1

I)−1
(
C∗Q∗(Z + V1) +

δ2

δ1

(L+ S − V2)
)

=
δ1

δ1 + δ2

(
C∗Q∗(Z + V1) +

δ2

δ1

(L+ S − V2)
)
, (3.9)

where we use the fact thatQ is the unitary Fourier encoding matrix, and that C∗C = I

by assumption.

Compared with the splitting scheme in (3.3), which involves the inverse (E∗E +

δiI)−1, our proposed variable splitting scheme in (3.5) only involves computing (Ω∗Ω+

δ1I)−1. Representing the undersampling mask matrix as a Kronecker product Ω =

INc ⊗ Ω̃, we note that Ω̃∗Ω̃ is diagonal, hence the inverse (Ω∗Ω + δ1I)−1 is easy to

compute.

Algorithm 2 summarizes the implementation of these updates, as well as updates

for the updates of the Lagrange multipliers.

Algorithm 2: Variable Splitting L+S
Inputs:
d: undersampled multi-coil k-t data
Ω: undersampling mask
Q: Fourier encoding operator
C: coil sensitivity maps
T: temporal Fourier tranform
λL: singular value threshold
λS: sparsity threshold
δ1, δ2: AL penalty parameters

Initialization:X0 = L0 = C∗Q∗Ω∗d, S0 = V1,0 = V2,0 = 0
for k = 1, 2, . . . , N do

compute Zk by efficient inverse (3.8)
compute Xk by efficient inverse (3.9)
compute Lk by singular value thresholding (3.6)
compute Sk by soft thresholding (3.7)
V1,k ← V1,k−1 + (Zk −QCXk)
V2,k ← V2,k−1 +

(
Xk − (Lk + Sk)

)
end for
output: LN , SN
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3.4 Results

To compare the algorithms, we first performed experiments on two dynamic MRI

datasets examined in [148]. Each dataset includes Cartesian undersampled multi-

coil data d, the k-space undersampling mask Ω, and coil sensitivity maps C. We

compared the results of the three accelerated algorithms with ISTA [148] and the AL-

based method that requires CG for parallel MRI [188]. We then tested our methods on

the physiologically improved nonuniform cardiac torso (PINCAT) numerical phantom

used in [119]. In this case, the data is undersampled with a pseudo-radial scheme,

as in the original implementation [3]. To compare algorithms in the parallel MRI

setting, we included simulated coil sensitivity maps based on [73], using the Michigan

Image Reconstruction Toolbox (MIRT) [4]. In the Supplement, we also explore a non-

Cartesian MRI dataset from [148], where we compare methods in the PGM scheme.

All our experiments used MATLAB R2018a, with a 2.7-GHz dual-core Intel Core i5.

The MATLAB code that reproduces the experiments with our efficient algorithms is

at https://github.com/JeffFessler/reproduce-l-s-dynamic-mri.

For each of the three datasets, we kept the regularization parameters λL, λS consis-

tent for all algorithms. For the in vivo data, we set them to align as closely as possible

with those in the original code provided by [148]; Section 3.5 discusses further details

of this procedure. Similarly, we set a stopping criterion for our ISTA implementation

that provides analogous results to the reconstructed images in [148]. To ensure fast

convergence, we used a step size t of 0.99 for ISTA, and 0.5 for FISTA and POGM, as

provided by the convergence theory of those methods. In addition, FISTA and POGM

used an adaptive restart scheme [150]; we explored both the function and the gradient

restart schemes, and report the results with the function scheme due to its slightly

faster convergence with both datasets. We tuned the penalty parameters δ1, δ2 for the

AL-based methods by sweeping across a range of values and choosing the ones that

achieve the fastest convergence among them. For both datasets, we applied 3 inner

CG iterations for each outer iteration of the AL scheme (3.3), with warm-starting; i.e.,

each CG call starts with the estimate from the previous AL iteration. No such inner

iterations are needed for the proposed AL approach (3.5). We examine convergence

rate by computing the normalized root-mean-squared difference (NRMSD) of each

iterate to a converged image, defined by ‖Xk −X∞‖2/‖X∞‖2, where Xk = Lk + Sk,

and ‖ · ‖2 denotes the vector l2 norm. We obtained X∞ = L∞ + S∞ as a reference

by averaging XAL-2
∞ and XPOGM

∞ , as discussed below for each dataset, then computed

the distance to the minimizer.
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3.4.1 Cardiac perfusion dataset

Images for this dataset have size Nx × Ny = 128 × 128, with Nt = 40 temporal

profiles and Nc = 12 coils. Data were retrospectively undersampled by a factor of

10, using the sampling pattern from [148], with fully sampled low spatial frequencies

and low-density-sampled outer k-space. We used λL = λS = 0.01 as in [148], with

scalings to match the original implementation, as discussed below in Section 3.5. For

the variable splitting framework, the penalty parameters were empirically tuned to

achieve fast convergence, with δ1 = δ2 = 1/5 for AL with CG, and δ1 = 1/5, δ2 = 1/50

for the efficient AL method. We ran the efficient AL and the POGM implementations

for 24,000 seconds to obtain XAL-2
∞ and XPOGM

∞ . In this case, the cost function values

fAL-2
∞ and fPOGM

∞ are within 10−16 relative difference from each other, and we averaged

the results to obtainX∞ and f∞. In this case, the NRMSD betweenXAL-2
∞ andXPOGM

∞

is approximately 8.9× 10−13%. As shown in Fig. 3.4.1, POGM converges the fastest

overall. ISTA converges faster than the other three methods at the beginning, a

phenomenon that could be due to the chosen step size. FISTA converges faster than

the AL-based methods in this case, with the CG implementation being the slowest of

all. The supplement contains additional figures showing the long-run behavior of the

algorithms.

For this dataset, ISTA reached its stopping criterion from [148] at k = 53 iter-

ations, after 30 seconds of elapsed compute time. Fig. 3.4.2 shows the magnitude

of the reconstructed X∞, as well as images of all 5 algorithms at 30 seconds time

elapsed.

To help visualize the reconstructed image in the spatial-temporal domain, the

Supplement includes y-t images for a selected y-slice in the center, with comparison

to the fully sampled case. The AL-2 and the POGM updates provide significantly

faster convergence than the other methods in their corresponding algorithmic schemes.

3.4.2 Cardiac cine dataset

This dataset corresponds to images of size 256×256, with 24 temporal frames and

12 coils, and a retrospective undersampling factor of 8. As in the cadiac perfusion case,

we used λL = 0.01, λS = 0.0025 with additional scalings. For the AL-based methods,

we used δ1 = 1/10, δ2 = 1/20 for AL-CG, and δ1 = 1/10, δ2 = 1/100 for AL-2. To

obtain X∞ and f∞, we ran the efficient AL and the POGM implementations for 30,000

seconds and averaged the results. The cost function values are within 10−16 relative

difference from each other, and the NRMSD betweenXAL-2
∞ andXPOGM

∞ is 1.4×10−7%.
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Fig. 3.4.1 illustrates that AL-2 achieving faster convergence than the FISTA update,

but slower than POGM. Fig. 3.4.3 shows results with the same run time cut-off of

48 seconds, with ISTA taking k = 30 iterations to reach the stopping criterion. We

again observed superior rates of convergence of the efficient implementations, in both

the proximal gradient and the variable splitting schemes.
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Figure 3.4.1: Convergence of five algorithms for cardiac perfusion and cine datasets,
in terms of NRMSD to the minimizer (top row), as well as the cost function values
(bottom row). AL-CG and AL-2 refer respectively to the AL methods with CG (3.3)
and with Algorithm 2 implementations. Every 100th iteration is marked by a dot,
indicating their relative speeds. The blue square markers show when ISTA reaches
the approximate stopping criteria corresponding to the implementation in [148].
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Figure 3.4.2: X∞, reconstructed and
residual images on cardiac perfusion
dataset. First row: X∞ and Xfull. Left
column: reconstructed images on a scale
of [0,1] of one temporal frame, after the
closest run time less than when ISTA
reaches its stopping criterion (30 sec-
onds). Right column: the residual images
are plotted on a scale of [0,0.2], with their
corresponding NRMSD shown on the left
of each row.

Figure 3.4.3: X∞, reconstructed and
residual images on cardiac cine dataset.
First row: X∞. Left column: recon-
structed images on a scale of [0,1] on one
temporal frame, after the closest run time
less than when ISTA reaches its stopping
criterion (48 seconds). Right column: the
residual images are plotted on a scale of
[0,0.2], with their corresponding NRMSD
shown on the left of each row.
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3.4.3 PINCAT phantom dataset

The ground truth phantom data provided by [119] has spatial dimension 128×128

with 50 temporal frames. To compare the algorithms in the multi-coil setting, we

added simulated coil sensitivity maps of 32 coils (4 rings of 8 coils), with coil com-

pression to reduce to Nc = 8 coils. Following the setup in [119], we applied a pseudo-

radial undersampling mask Ω, i.e., a Cartesian trajectory that closely approximates

a radial trajectory, with 24 spokes per frame, corresponding to a acceleration factor

of 128/24 ≈ 5.3. We added zero mean Gaussian noise such that the signal to noise

ratio is 46 dB. We tuned the regularization parameters λL to 0.0025 multiplied by the

top singular value of L0, and λS to 0.05, each divided by a constant that captures the

square root of the sum of squares of the coil sensitivitiy maps before the normalization

C∗C = I. The penalty parameters in the AL-based methods were empirically tuned

to achieve fast convergence, with δ1 = δ2 = 1/3 for AL-CG, and δ1 = 1/5, δ2 = 1/20

for AL-2. We ran AL-2 and POGM for 30,000 seconds, and averaged the results

to obtain X∞ and f∞. The NRMSD between XAL-2
∞ and XPOGM

∞ is approximately

4.4× 10−4%, and the cost function values fAL-2
∞ and fPOGM

∞ are within 10−12 relative

difference from each other. The convergence behavior is similar to the in vivo case;

Fig. 3.4.4 demonstrates again the superior convergence speed of AL-2 and POGM

in the two schemes. For unknown reasons, AL-2 reaches a final cost that is about

10−10 higher than the proximal algorithms. This behavior is unimportant practically

but still somewhat curious; it is unique to the PINCAT data. To visualize the re-

sults, Fig. 3.4.5 shows the ground truth Xtrue and the undersampled reconstruction

X∞ = L∞ + S∞. See the Supplement for y-t images compared to the ground truth.
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Figure 3.4.4: Convergence of five algorithms on PINCAT phantom dataset, in
terms of NRMSD and cost to the minimizer. Every 100th iteration of each algorithm
is marked by a dot, indicating their relative speeds.
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Figure 3.4.5: Xtrue, X∞ and residual images on PINCAT phantom dataset. From
left to right: Xtrue of one temporal frame from the ground truth data, and its cor-
responding reconstruction X∞ as the average of XAL-2

∞ and XPOGM
∞ , all on a scale of

[0,1]. The residual image |Xtrue −X∞| is on a scale of [0,0.1].

3.5 Discussion

3.5.1 Alternative variable splitting

With undersampled multi-coil data, we have expressed the data acquisition oper-

ator as E = ΩQC, and our proposed AL approach (3.5) splits the sampling mask Ω

from the Fourier encoding together with the coil sensitivity maps QC. An alterna-

tive is to split the Fourier encoding operator with undersampling, ΩQ, from the coil

sensitivities C, as proposed in [161]. Compared with (3.5), this splitting introduces

a slight variation:

min
Z,X,L,S

1

2
‖ΩQZ − d‖2

2 + λL‖L‖∗ + λS‖TS‖1

subject to

{
Z = CX ,

X = L+ S .

In this case, the update for Z involves the inverse of Q∗Ω∗ΩQ + δ1I, which is block

circulant and can be diagonalized by pre- and post-multiplication by FFT opera-

tors [111]. Hence with this splitting, efficient implementation of the inverse is again

possible. We chose to implement the splitting (3.5) because of the simpler expres-

sions (3.8), (3.9) for the Z and X updates, with diagonal matrix inverses due to the

unitary property of Q. This leads to simpler updates with only inversion of diagonal

matrices.

Although the proposed AL scheme shows empirical convergence, it does not have
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analytical convergence guarantee as in generalized Alternating Direction Method of

Multipliers (ADMM). To compare the variable splitting (3.5) to the ADMM scheme,

we note that it is equivalent to a formulation in the monotropic programming frame-

work [51]:

min
U
f(U)

subject to AU = b ,

where U =


Z

X

L

S

, A =

[
I −QC 0 0

0 I −I −I

]
, and b = 0.

Since the last two columns of A are linearly dependent, this splitting scheme does not

satisfy the sufficient conditions for the convergence guarantee of ADMM [51]. To sat-

isfy those conditions, one could introduce an alternative variable splitting that meets

the convergence criteria of ADMM, but at the cost of more variables, and thus po-

tentially slightly slower convergence [111]. We did not investigate that approach here

since AL-2 empirically converged well, despite not satisfying the sufficient conditions

in [51]. In addition, POGM converged faster, and is practically preferable because it

does not require any AL-type tuning parameters.

3.5.2 ISTA implementation in comparison with [148]

Our ISTA implementation is based on the algorithm discussed mathematically

in [148]. However, we did not directly use the MATLAB code provided for [148] at

http://cai2r.net/resources/software/ls-reconstruction-matlab-code, because

that code is slightly inconsistent with the math in [148].

The first inconsistency is the implementation of the operator E. The MATLAB

code for the Hermitian adjoint E∗ operation contains an additional division by the

sum of squares of the coil sensitivity maps that causes inconsistency between the

forward and the adjoint operations, preventing convergence to the minimizer of the

stated cost function. We modified the code so that E∗ is the exact adjoint of E, so

that all of the algorithms, including ISTA, can converge to the same cost function.

To obtain similar images as those in [148], we preprocess by dividing the given coil

sensitivities C by the square root of its sum of squares. Since this factor is close to

being constant across the image, we absorb it into the regularization parameters λL

and λS, to ensure a consistent setup with [148].
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Another implementation difference involves the singular value threshold. In the

cost function (3.1), the nuclear norm regularization parameter λL is a fixed constant,

but in the provided code, λL changes across iterations, with a factor that depends

on the leading singular value of L. This “moving target” cost function would make

it impossible to compare the convergence rates of different algorithms. To ensure

fair comparison of all the algorithms, while maintaining similar overall regularization

as in [148], we fix λL by considering the leading singular value of L∞, produced by

running the original implementation until convergence.

The provided implementation has stopping criteria based on the maximum number

of iterations and the tolerance of the change in updates. With the above modifications,

we stop our ISTA implementation when it reaches the same cost function value as at

the stopped points, and compare the NRMSD at these points with other algorithms,

as indicated by the blue square markers in Fig. 3.4.1.

3.6 Conclusion

This chapter presents efficient algorithms for the L+S reconstruction of dynamic

parallel MRI. Within the proximal gradient category, in place of using ISTA to solve

the optimization problem, we consider updates by FISTA and POGM. Both methods

can be efficiently formulated within the L+S framework, preserving the computa-

tional simplicity of the original ISTA implementation. Experiments with two cardiac

datasets in [148] and a phantom dataset in [119] verify their accelerated rates of

convergence.

For AL-based approaches, we also proposed an efficient variable splitting scheme

that considers the structure of the data acquisition operator. In particular, we split

the variables based on the undersampling mask, the Fourier transform operator and

the coil sensitivity maps. While the existing splitting scheme for the L+S model

requires CG approach to solve for the quadratic updates [188], our proposed formu-

lation leads to a diagonal matrix inverse that can be easily computed. Numerical

experiments again confirms its superior convergence rate, compared with the existing

implementation.

Although there is no strict convexity guarantee for the L+S optimization problem,

our experimental results suggest high similarities between the reconstructed images

by the AL and the PGM schemes, due to the observed low NRMSD of both XAL-2
∞

and XPOGM
∞ . In the implementation perspective, however, AL-based methods in the

L+S model requires the tuning of two additional penalty parameters, whereas POGM
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has no extra tuning parameters. This practical benefit, combined with the empirical

faster convergence of POGM seen in the examples, make POGM our recommended

approach for solving L+S reconstruction problems for dynamic MRI.

3.7 Supplementary material

This supplement presents additional figures of space-time images and long-run

convergence behaviors. We also illustrate the flexibility of our algorithm by a non-

Cartesian experiment.

3.7.1 y-t images

To help visualize the reconstruction results for different time frames, we provide

figures of the reconstructed images in the y-t domain, compared to their reference

images, as shown in Figs. 3.7.1 and 3.7.2.

Figure 3.7.1: y-t images reconstructed
from fully and undersampled perfusion
dataset. The reconstructed images are on
a scale of [0,1], and the central slice for y
is taken. The difference image is plotted
on a scale of [0,0.2].

Figure 3.7.2: y-t ground truth and
image reconstructed from undersampled
PINCAT dataset. The images are on a
scale of [0,1], and the central slice for y is
taken. The difference image is plotted on
a scale of [0,0.2].

3.7.2 Long-run behaviors

Figs. 3.7.3 and 3.7.4 show the results of running many more iterations of the

algorithms investigated to illustrate the long-run behaviors of the methods, for the

Cardiac Perfusion, Cardiac Cine and the PINCAT phantom datasets.
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Figure 3.7.3: Long-run cost convergence
of five algorithms on three datasets. Ev-
ery 500th iteration is marked by a dot,
indicating their relative speeds.
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Figure 3.7.4: Long-run NRMSD conver-
gence of five algorithms on three datasets.
Every 500th iteration is marked by a dot,
indicating their relative speeds.

3.7.3 Non-Cartesian experiment

We performed an additional experiment on the Abdominal dynamic contrast-

enhanced (DCE) MRI dataset examined in [148]. This non-Cartesian dataset uses a

golden-angle radial sampling pattern, and corresponds to images of size 384 × 384,

with 28 temporal frames and 12 receiver coils, having an acceleration factor of 12.
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As in the setup in the MATLAB code provided by [148], we used λL = 0.025, λS =

2e-5, with adjusted scaling as described in Section 3.5.2. Here, the step size for

PGM depends on the maximum eigenvalue of E∗E, and we estimated it using power

iteration. Due to the observed faster convergence of POGM than the AL methods,

and because an additional variable splitting would needed for an AL approach for

the non-Cartesian case, we focused on the proximal methods for this experiment. To

obtain X∞ and f∞, we ran the POGM implementations for 1e5 seconds. Fig. 3.7.5

illustrates that POGM achieves the fastest convergence among the three methods.

Fig. 3.7.6 shows reconstructed image results with the same run time cut-off of 153

seconds, with ISTA taking k = 9 iterations to reach the stopping criterion.

Figure 3.7.5: NRMSD and cost convergence of three proximal algorithms on ab-
dominal DCE dataset. Every 500th iteration of each algorithm is marked by a dot,
indicating their relative speeds.
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Figure 3.7.6: Reconstructed and residual images by ISTA, FISTA, and POGM
with similar runtime on abdominal DCE dataset. First row: XPOGM

∞ . Left column:
reconstructed images on a scale of [0,5e-4] on one temporal frame, after the closest
runtime less than when ISTA reaches its stopping criterion (153 seconds). Right
column: the residual images are plotted on a scale of [0,2e-4], with their corresponding
NRMSD shown on the left of each row.
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Chapter 4

Efficient Regularized Field Map Estimation

Functional MRI with long readout times is sensitive to magnetic field inhomogene-

ity effects, which if uncorrected could lead to image distortion and artifacts, especially

near air/tissue interfaces. Field inhomogeneity estimation is also important in chem-

ical shift based water-fat imaging. Regularized field map estimation methods that

account for phase wrapping and noise involve nonconvex cost functions that require

iterative algorithms. Most existing minimization techniques were computationally or

memory intensive for 3D datasets, and are designed for single-coil MRI. This chap-

ter considers 3D MRI with optional consideration of coil sensitivity, and addresses

the multi-echo field map estimation and water-fat imaging problem. Our efficient

algorithm uses a preconditioned nonlinear conjugate gradient method based on an

incomplete Cholesky factorization of the Hessian of the cost function, along with a

monotonic line search. Numerical experiments show the computational advantage of

the proposed algorithm over state-of-the-art methods with similar memory require-

ments.

4.1 Introduction

In magnetic resonance imaging (MRI), scans with long readout times require cor-

rection for magnetic field inhomogeneity during reconstruction to avoid artifacts [65,

92,139,165,174]. Field inhomogeneity is also a nuisance parameter in chemical shift

based water-fat imaging techniques [24,68,82,82,88,168]. Field map estimation is thus

crucial to field-corrected MR image reconstruction, and for fat and water image sep-

aration.

One field map estimation approach is to acquire MR scans at multiple echo times

This chapter presents our published work in the journal paper [116].
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(usually 2 or 3), where a small echo time difference can help resolve any phase wrap-

ping issues and a large echo time difference can help improve SNR. One can then

estimate field inhomogeneity using images reconstructed from these scans [65]. Since

field maps tend to be smooth within tissue, estimation methods with smoothness

assumptions have been proposed for water-fat separation, including region growing

techniques [49,90,123,167,206,210], filtering [201], curve fitting [89,173,178], multires-

olution and subspace approaches [123,177,178,189], and graph cut algorithms [21].

To improve robustness of water and fat separation and reduce ambiguity of assign-

ment, field map pre-estimation methods such as demodulation [48] and magnetization

transfer [171] have been proposed as part of the water-fat imaging framework. Most

of these methods, however, use various approximations to account for phase wrapping

between different acquisitions. In contrast, regularized estimation methods [65,81,82]

have been proposed to account for both phase wrapping and the smoothness of the

field map from multiple acquisition images. Because the field map affects image

phase, these approaches involve a nonconvex optimization problem that requires it-

erative methods.

To solve such optimization problems, [10,65,88] use a majorization-minimization

(MM) approach by introducing a quadratic majorizer for their cost functions. The

MM approach decreases the cost monotonically, but is computationally intensive,

especially for large-scale datasets. Other regularized field map estimation minimiza-

tion techniques quantize the solution space [81,82] and may require a second de-

scent algorithm to produce sufficiently smooth estimates. An alternative minimiza-

tion technique [147] uses nonlinear conjugate gradient (NCG) with a monotonic line

search (MLS), and explored various preconditioners in the 3D single-coil case.

This chapter considers the regularized field map estimation problem in the 3D

multi-coil MRI setting. In particular, we consider a generalized cost function in the

multi-coil case for both multi-echo field map estimation and water-fat imaging. We

minimize it by a NCG algorithm with an efficient MLS and an iteration-dependent

preconditioner based on an incomplete Cholesky factorization [127] of the Hessian of

the cost function. The incomplete Cholesky factorization has been applied to field

inhomogeneity estimation using surface fitting [107], and recently to single-coil field

map estimation with a similar cost function [147]. In addition to faster convergence,

this preconditioner exploits the sparse structure of the Hessian, thus it is memory

efficient and scales to 3D datasets. Compared to previous works [10,88,147], our new

approach unifies the field map correction and the water-fat imaging problems, with a

generalized expression that optionally considers multiple coils in MRI. Our efficient
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algorithm on this problem shows significant computational and storage advantages

compared with existing MM and NCG methods.

The rest of this chapter is organized as follows. Section 4.2 describes the optimiza-

tion problem for the field map estimation problems for multi-coil MRI. Section 4.3

presents the NCG-MLS optimization scheme with the proposed preconditioner. Sec-

tion 4.4 reports simulated and real experimental results, followed by conclusions in

Section 4.5.

4.2 Problem formulation

We are given reconstructed images ycl ∈ CNv for the cth receiver coil of the lth

scan, with c = 1, . . . , Nc , l = 1, . . . , L, where Nv denotes the total number of voxels

in the image, Nc denotes the number of coils, and L ≥ 2 denotes the number of echo

times. We model the field inhomogeneity effect as

yclj = eiωjtlscjxlj + εclj , (4.1)

where j = 1, . . . , Nv is the voxel index, ω ∈ RNv is the unknown field map, tl ∈ R is

the echo time shift of the lth scan, sc ∈ CNv is the (known) coil sensitivity map for

the cth coil, and εcl ∈ CNv denotes the noise. For single-coil MRI, or when the coil

images are combined as a preprocessing step, we have Nc = 1 and s = 1 in (4.1).

The unknown image xl ∈ CNv for the lth echo is problem-dependent, where

xlj =


mj in field map estimation,

mw,j +mf,j

P∑
p=1

αpe
i2π∆f,ptl in water-fat imaging,

where m,mw,mf ∈ CNv are respectively the magnetization, water, and fat com-

ponents, and ∆f,p ∈ R denotes the (known) frequency shifts of P fat peaks in the

multipeak fat model [27,82,166] with relative amplitudes
P∑
p=1

αp = 1 that can be

estimated and averaged over all fat pixels as a preprocessing step by existing meth-

ods [207]. The goal of the field map estimation problem is to estimate ω and x given

y and s.

Assuming the noise ε is zero-mean, white complex Gaussian, the joint maximum-

likelihood (ML) estimates of the field map ω and image x are the minimizers of the
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negative log-likelihood as follows:

argmin
ω,x

Φ̃(ω,x), where

Φ̃(ω,x) =
Nv∑
j=1

L∑
l=1

Nc∑
c=1

|yclj − eiωjtlscjxlj|2 . (4.2)

For a given field map ω, the ML estimate of x has a closed-form expression [10,81]

that one can substitute into (4.2) to give a cost function in terms of ω:

Φ(ω) = min
x

Φ̃(ω,x) =
Nv∑
j=1

L∑
m,n=1

Nc∑
c,d=1

φcdmnj(ωj) , (4.3)

where

φcdmnj(ωj) := |rcdmnj|
[
1− cos

(
∠rcdmnj + ωj(tm − tn)

)]
,

rcdmnj :=
Γmn∑Nc

c′=1 |sc′j|2
scjs

∗
djy
∗
cmjydnj , (4.4)

Γ := γ(γ∗γ)−1γ∗ ,

where ·∗ denotes the complex conjugate, and L× L matrix Γ is defined in terms of

γ =


1 in field map estimation,[
1

P∑
p=1

αpe
i2π∆f,pt

]
in water-fat imaging,

(4.5)

in which 1 denotes an all one vector of length L, and the exponential is applied

element-wise. In the field map estimation case, this simplifies to Γmn = 1/L ∀ m,n.

As B0 field maps tend to be spatially smooth in MRI, we add a regularization

term to (4.3) to form a penalized-likelihood (PL) cost function

Ψ(ω) = Φ(ω) +
β

2
‖Cω‖2

2 , (4.6)

where C is a first or second order finite difference operator with optional spatial

weights as in [82]. Such regularization has been used in many other prior works [10,

65,147].
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4.3 Efficient algorithm

Several approaches have been proposed to solve the field map estimation problem

in the single-coil setting, but are demanding in computation or memory. In particular,

a quadratic majorizer with a diagonal Hessian [65] takes many iterations to converge

even for 2D images, and a quadratic majorizer with an optimal curvature that inverts

a Nv × Nv Hessian matrix [10] is memory-limited to small-scale data. In water-fat

imaging, [82,176] process data in a single-coil manner using the graph cut method.

Since graph cut requires discretization, [82] proposes to overcome this limitation by

additionally running a descent algorithm such as in [88], which considers a quadratic

majorizer with a diagonal Hessian that convergences slowly.

Here, we optimize (4.6) using NCG with a monotonic line search [147], and con-

sider a preconditioner with efficient computation and memory storage. Our field map

estimation procedure is tabulated in the Algorithm below. For NCG, we choose the

Polak-Ribiere update to compute a µi that satisfies the conjugacy condition [157].

After estimating the field map ω̂, we estimate the water and fat components for

each voxel in water-fat imaging by applying the closed-form expression [81] using ω̂:[
mw,j

mf,j

]
=
(

(γ · diag(eiωjt)
)
⊗ sj

)†
yj , (4.7)

where ⊗ denotes the Kronecker product, (·)† denotes the pseudo inverse, and sj ∈ CNc

denotes the coil sensitivity map for the jth voxel.

Next we present our initialization, choice of preconditioner, and derive our iterative

monotone line search algorithm in the multi-coil setting.

4.3.1 Initialization

For field map estimation, we initialize ω by a field map computed from the phase

of the first two echoes of the coil combined images:

(ωj)
0 = ∠

[( Nc∑
c=1

s∗cjyc1j

)∗( Nc∑
d=1

s∗djyd2j

)]/
(t2 − t1) . (4.8)

To initialize ω for water-fat imaging, we follow [88] and sweep through a range of

100 values from −|∆f/2| to |∆f/2| for each voxel, and choose the value with minimal

cost (4.3), denoted as ω̃0. We then run a few CG iterations to minimize a penalized
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weighted least squares (PWLS) problem

ω0 = argmin
ω

Nv∑
j=1

ρj(ωj − ω̃0
j )

2 +
β

2
‖Cω‖2

2 , (4.9)

where the spatial weights

ρj =
L∑

m,n=1

Nc∑
c,d=1

|rcdmnj|

are given by (4.4). We then use ω0 as our initial estimate in the water-fat case.

To reduce ambiguity of water and fat assignment, one can also consider robust

initialization schemes such as demodulation [48] or magnetization transfer [171].

4.3.2 Preconditioning matrices

To accelerate the NCG-based algorithm, given gradient gi of the cost at the ith

NCG iteration, we explore a preconditioner Pi with memory efficient implementa-

tion of (Pi)−1gi using an incomplete Cholesky factorization [127]. In particular, the

gradient g ∈ RNv is given by

g = ∇Ψ(ω) = ∇Φ(ω) + βC>Cω , (4.10)

where

(
∇Φ(ω)

)
j

=
L∑

m,n=1

Nc∑
c,d=1

|rcdmnj|(tm − tn)2

· sin
(
∠rcdmnj + ω(tm − tn)

)
.

The Hessian of the cost (4.6) at the ith iteration is the sum of a diagonal matrix

and an (approximately, due to the support mask) block Toeplitz with Toeplitz block

(BTTB) matrix:

Hi = Di + βC>C ∈ RNv×Nv , (4.11)

where C is the finite difference operation and Di = diag(dij) � 0, where the Hessian

of the negative log-likelihood has diagonal elements given by

dij =
L∑

m,n=1

Nc∑
c,d=1

κcdmnj
(
ucdmnj(ω

i
j)
)
, (4.12)

40



with

κcdmnj(u) = |rcdmnj|(tm − tn)2 sin(u)

u
, and

ucdmnj(ω) =
(
∠rcdmnj + ω(tm − tn)

)
modπ . (4.13)

In fact, the finite difference term can be seen as analogous to the Laplacian that arises

in partial differential equations (PDE), where incomplete Cholesky factorization has

also been used in its solvers [101].

Since the terms rcdmnj and tm − tn are shared across iterations, we precompute

them at the initialization stage to efficiently calculate the gradient and Hessian at

each iteration i. Note also that Hi is positive definite as long as at least one value of

dij is positive (which is true for any nontrivial problem).

Although Hi is sparse and banded, its inverse is approximately full, so directly

computing the inverse would require far too much memory. To reduce memory, we

propose to use a preconditioner that approximates the symmetric Hessian with a LU

factorization of the form

Pi = Li(Li)> ≈ Hi , (4.14)

where Li ∈ RNv×Nv is sparse lower triangular, enabling efficient computation (via

back-substitution) of (Pi)−1gi in the precondition step. Taking advantage of the

sparsity and positive definiteness of our Hessian (4.11), preconditioning with an in-

complete Cholesky factorization reduces both computation and memory. A popular

form of the incomplete Cholesky factorization matches the matrix H on its nonzero

set, thus is at least as sparse as H. Similar preconditioning with incomplete LU fac-

torization has been used for simulating anisotropic diffusion in MRI [98]. In practice,

for a better approximation one can control the sparsity of the factors by defining a

tolerance on the magnitude of the elements of H (below which entries in the factors

are set to zero), with the trade-off between approximation accuracy and memory

storage.

Fig. 4.3.1 illustrates the memory improvement by a toy problem of image size

20 × 16 × 8, where we compute H = D + βC>C and its inverse, with randomly

chosen diagonal elements dj ∈ (0, 0.1) and β = 0.1. Fig. 4.3.1 considers the incom-

plete Cholesky factorization without tolerance, denoted L0, and with a tolerance of

Hmax×10−3, denoted Lt, where Hmax is the element in H with maximum magnitude.

Fig. 4.3.1 shows the sparse structure of H, its nonsparse inverse H−1, and the Cholesky

factorizations as well as their approximation errors. Table 4.1 shows the number of

nonzero elements of each matrix, their memory storage, and their errors that af-

fect the convergence rate, using the normalized root mean square error (NRMSE)
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Figure 4.3.1: Factorization and error images on a toy problem of size 20× 16× 8.

H H−1 Lc Lt L0

Number of nonzeros (×105) 1.67 655 72.5 1.77 0.96
Storage (megabytes) 0.31 100.1 11.9 0.53 0.27

NRMSE 3e-16 4e-3 3e-2

Table 4.1: Number of nonzeros, memory usage, and NRMSE of factorizations on a
toy problem of size 20× 16× 8.

‖I−L−1HL−>‖F/
√
Nv for each factorization L in our example. Fig. 4.3.2 illustrates

how the sparsity of Lt changes with respect to its tolerance by showing the percentage

of nonzero elements in Lt versus the scaling factor of Hmax in the tolerance.

For memory storage in this case, the number of nonzero elements in the incomplete

Cholesky factor without tolerance L0 is more than 70 times less than that in the

(complete) Cholesky factor Lc, with more than 40 times memory saving. In general,

we observe (by the banded structures) that the number of nonzero elements of Lc

is lower bounded by (Nv − NxNy)NxNy, while that of L0 is upper bounded by 4Nv.

This leads to the generalization that L0 is at least (Nv − NxNy)/(4Nz) times more

sparse than Lc, which scales significantly with the problem size. The storage of the

incomplete Cholesky factor with tolerance Lt depends on the tolerance, and with the

choice of tolerance here we observe a 40 times fewer nonzero values, saving memory

by a factor of more than 20 compared with Lc.

The trade-off with a sparser factorization, however, is a worse approximation error.

This is reflected in the error matrices in Fig. 4.3.1 and the NRMSE in Table 4.1. While

L0 has lower memory usage than Lt, the inverse is a worse approximation to H−1.
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Figure 4.3.2: Change of sparsity of Lt with respect to the scaling factor of Hmax in
its tolerance.

In practice, nevertheless, both incomplete factorizations LL> are positive definite, so

as preconditioners they provide a descent direction in addition to storage advantage,

whereas storing Lc is infeasible for realistically sized 3D datasets.

4.3.3 Monotonic step size line search

With a search direction given by NCG, the choice of step size is important for

convergence of the algorithm. To avoid multiple function evaluations required by

backtracking line search algorithms [138], we implement a recursive line search al-

gorithm using a quadratic majorizer with an optimal curvature, which guarantees

monotone decrease of the cost function [58].

In the line search step, given a current field map estimate ωi and a search direction

zi ∈ RNv , we aim to find a step size that minimizes the cost (4.6):

α̂ = argmin
α

f(α) , where

f(α) = Φ(ωi + αzi) +
β

2
‖C(ωi + αzi)‖2

2 , (4.15)

We iteratively minimize the nonconvex problem (4.15) using a quadratic majorizer

based on Huber’s method [87, p. 184] at the kth inner iteration (dropping outer iter-

ation i for brevity):

qk(α) = Φ(ω + α(k)z)

+ z>∇Φ(ω + α(k)z)(α− α(k))

+
1

2
d(k)(α− α(k))2 +

β

2
‖C(ω + αz)‖2

2 ,
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where the optimal curvature is given by [10]

d(k) =
Nv∑
j=1

|zj|2d(k)
j ,where

d
(k)
j =

L∑
m,n=1

Nc∑
c,d=1

κcdmnj
(
ucdmnj(ωj + α(k)zj)

)
, (4.16)

with κcdmnj(·) and ucdmnj(·) defined in (4.13).

Using one step of Newton’s method on the quadratic majorizer qk(α) gives the

step size update

α(k+1) = α(k) −
∂
∂α
qk(α

(k))
∂2

∂α2 qk(α(k))

= α(k) −
∂
∂α
f(α(k))

d(k) + β‖Cz‖2
2

. (4.17)

We implement (4.17) efficiently by computing ‖Cz‖2
2 only once per outer NCG

iteration i. Since the majorizer satisfies qk(α) ≥ f(α) for all step size α and inner

line search iteration k, the update (4.17) guarantees monotonic decrease of the cost

(4.15).

4.4 Results

We investigated our algorithm and its efficiency with two multi-echo field map

estimation experiments and two water-fat imaging experiments. Due to the large

data size, memory intensive methods with a direct solver using the full Hessian are

excluded from our experiments. In particular, we compare our incomplete Cholesky

preconditioner (NCG-MLS-IC) method versus a quadratic majorizer update with di-

agonal Hessian (QM) [65] and versus the NCG algorithm without any preconditioner

(NCG-MLS) and with a diagonal preconditioner (NCG-MLS-D) [10]. In addition, we

used the Poblano toolbox [5] to compare the convergence of the quasi-Newton (QN)

and truncated Newton (TN) methods in our simulations.

For each dataset, we define a mask using the convex hull of all voxels that con-

tribute to the signal (with coil-combined image magnitude thresholded below by

0.1ymax, where ymax denotes the maximum image magnitude in the coil-combined im-

age for the first echo time.), with a dilation of two voxels. We then computed ω within

the mask, and tuned the regularization parameter β by sweeping across a range of val-
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Algorithm: Preconditioned NCG-MLS
Inputs:
y, s, t, C, β

Intialization:
ω0 by (4.8) or (4.9)
z0 = −∇Ψ(ω0)
α(0) = 0
precompute rcdmnj by (4.4) and tm − tn

for i = 0, 1, . . . , N − 1 do
compute gradient gi = ∇Ψ(ωi) with (4.10)
precondition pi = −(Pi)−1gi with (4.14)
compute µi with conjugacy
search direction zi+1 = pi + µizi ∈ RNv

for k = 0, 1, . . . , Ni − 1 do
update step size α(k+1) by (4.17)

end for
update ωi+1 = ωi + α(Ni)zi+1

end for
output: ωN

ues. All our experiments used MATLAB R2020a, with a 2.4-GHz dual-core Intel Core

i7. The MATLAB code that reproduces the experiments with our efficient algorithm is

available at https://github.com/ClaireYLin/regularized-field-map-estimation.

4.4.1 Brain simulation

We first simulated a 3D brain dataset with 40 64 × 64 slices, 4 simulated coils

and 3 echo times tl = 0, 2, 10 ms, with added complex Gaussian noise so that the

SNR ≈ 20 dB. To generate multi-coil data, we simulated coil sensitivity maps with

4 coils based on [73] using the Michigan Image Reconstruction Toolbox (MIRT) [4].

We set β = 2−4 with first order regularization to achieve visual resemblance to the

ground truth field map. In light of the trade-off between storage and approximation

error discussed in Section 4.3.2, we explored preconditioners using the incomplete

Cholesky factorization both without tolerance (NCG-MLS-IC-0) and with a tolerance

of H i
max × 10−3 for each iteration i (NCG-MLS-IC).

Fig. 4.4.1 shows four selected slices, their initial field map, and the regularized

estimate by our algorithm. To examine the speed of convergence, we plot the root

mean square error (RMSE) ‖ωi − ωtrue‖2/
√
Nv versus wall time in Fig. 4.4.2. The

RMSE plots show that the QM and all the NCG-MLS methods converge to RMSE
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≈ 5.6 Hz, though going through a slightly lower RMSE in the iterative process. Both

the quasi-Newton and the truncated Newton methods converge to minimizers with

higher RMSE, hence we omitted their comparison in the phantom experiment below.

The plots show a significant computational gain of NCG-MLS preconditioned with

the incomplete Cholesky factorization over all the other methods.

We also observe that using a nonzero tolerance in the incomplete Cholesky fac-

torization gives a slightly faster convergence than not using one, hence we adopt that

choice for the NCG-MLS-IC implementations in our next experiments.

Figure 4.4.1: Selected slices of coil-combined simulation image, initial field map
(in Hz), regularized field map estimate ω̂, ground truth field map ωtrue, and error
|ω̂ − ωtrue|.
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Figure 4.4.2: RMSE convergence of seven algorithms on simulation dataset. Every
10 iteration is marked by a dot.

4.4.2 Phantom dataset

Our second experiment uses a Function Biomedical Informatics Research Network

(FBIRN) phantom [100] with two pieces of metal staple to induce field inhomogeneity,

collected on a GE MR750 3T scanner with a 32-channel Nova Head Coil receiver. This

dataset has size 74× 74× 10 with 3 mm3 isotropic voxel size, TR = 10.5 ms, with 3

echo times tl = 0, 1, 2.3 ms. We computed coil sensitivity maps using ESPIRiT [190],

and set β = 2−3 with first-order finite difference regularizaiton.

Fig. 4.4.3 shows four selected slices, their initial field map, and the regularized

estimate by our algorithm. To compare convergence, we computed the root mean

square difference (RMSD) ‖ωi−ω∞‖2/
√
Nv to the converged ω∞ of the QM method.

The RMSD plots in Fig. 4.4.4 show that our algorithm converges much faster than the

other three, reaching 0.33 Hz RMSD in 1 iteration, and 0.005 Hz RMSD in 2 iterations.

Since this 3D dataset has a more realistic problem size than the simulated data, we

quantify the convergence speedup by comparing the time it takes for each method to

reach an RMSD below 0.5 Hz. Table 4.3 shows that our NCG-MLS algorithm with an

incomplete Cholesky preconditioner provides a speedup of 15 times from NCG-MLS

with a diagonal preconditioner, 18 times from that without a preconditioner, and 21

times from the quadratic majorizer implementation.

QM NCG-MLS NCG-MLS-D NCG-MLS-IC
Time (s) 96 81 69 4.5

vs. IC time 21× 18× 15×

Table 4.3: Time for each algorithm to reach an RMSD below 0.5 Hz, and their
relative proportions to the time taken by NCG-MLS-IC.
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Figure 4.4.3: Selected slices of coil-combined phantom image, initial field map (in
Hz), and regularized field map estimate.

Figure 4.4.4: RMSD convergence of four algorithms on phantom data. Every iter-
ation is marked by a dot.

4.4.3 Cardiac water-fat simulation

For water-fat imaging, we first performed a cardiac simulation based on one of the

8-echo datasets used in the ISMRM Fat-Water Toolbox [2]. Since implementations

in the toolbox work only for 2D datasets, andcoil combination such as [195] is often

used in practice, we illustrate the flexibility of our algorithm in a 2D coil-combined

case by simply setting the number of coils Nc = 1 and the coil sensitivitiy map s = 1.

We also consider the multipeak model in water-fat imaging.

This dataset has size 256×192 with 8 echo times from 1.5 to 17.4 ms (each 2.3 ms
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apart). We generated ground truth field map and water and fat images using golden

section search with multiresolution [123]. We used the same values {αp} and {∆f,p}
as in the toolbox implementations both for simulating images with 8 echo times using

the model (4.1) and for estimation. For comparison, we also ran the graph cut (GC)

method [82] using the same cost (4.6) with second-order finite differences as in [82],

and β = 2−7 as the regularization parameter.

Fig. 4.4.6 shows the first echo image, the initial field map ω̃0 by voxel-wise estima-

tion, and the initial ω0 after 10 CG iterations of PWLS minimization (4.9). Fig. 4.4.7

shows the ground truth field map, water and fat images, and the estimates and error

images by the graph cut and by our algorithm. Compared with graph cut, our algo-

rithm achieves slightly lower NRMSE on the water image (20.09% vs. 23.57%) and

the fat image (20.93% vs. 23.43%), with lower final RMSE on the field map, shown

in Fig. 4.4.5. To explore a combination suggested by [82], we ran 100 graph cut itera-

tions followed by 100 optimal transfer iterations using a quadratic majorizer [88]. We

used the implementation in the toolbox [2] which did not precompute rcdmnj by (4.4).

Fig. 4.4.5 shows the graph cut RMSE curve jumps up (to 615 Hz) on its first iteration,

and converges to its own minimizer. The subsequent quadratic majorizer update low-

ers the RMSE further, which opens a promising future direction of combining graph

cut with the faster NCG-MLS-IC with precomputation of common terms. Fig. 4.4.5

also shows the truncated Newton and quasi-Newton methods again converge to their

minimizers with higher RMSE. We omitted all methods with higher RMSE in the

real data experiment below.

Figure 4.4.5: RMSE convergence of seven algorithms on water-fat simulation. Every
20 iterations is marked by a dot.
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Figure 4.4.6: Simulated image for the 1st echo, initial field map ω̃0 (in Hz) by
voxel-wise estimation, and initial fieldmap ω0 by PWLS (4.9).

Figure 4.4.7: Ground truth and estimated field map, water, and fat images on
simulated data. 1st row: ground truth field map, water, and fat images. 2nd and 3rd

rows: graph cut estimates and their error images. 4th and 5th rows: NCG-MLS-IC
estimates and their error images.

4.4.4 Ankle water-fat dataset

We further illustrate our algorithm in the 3D multi-coil setting using an ankle

dataset from the ISMRM Fat-Water Separation Dataset [2]. This dataset has 4

256 × 256 slices, 8 coils and 3 echo times tl = 2.2, 3, 3.8 ms, in a 3T scanner that

corresponds to a single ∆f ≈ 440 Hz. We chose β = 2−10 with first-order finite
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Figure 4.4.8: Image, initial and regularized field maps, and estimated water and
fat images on ankle dataset. Top to bottom: coil-combined water-fat image for the
1st echo, initial field map ω̃0 (in Hz) by voxel-wise estimation, initial fieldmap ω0 by
PWLS (4.9), regularized field map estimate, estimated water image, and estimated
fat image.

difference regularization to achieve visual separation of water and fat components.

Fig. 4.4.8 shows the first echo image, the initial field map ω̃0 by voxel-wise esti-

mation, the initial ω0 after 10 CG iterations of PWLS minimization (4.9), and the
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Figure 4.4.9: RMSD convergence of four algorithms on ankle dataset. Every itera-
tion is marked by a dot.

regularized estimate by our algorithm. For completeness, Fig. 4.4.8 also shows the

estimated water and fat images using (4.7), which achieve a visual separation of the

two components. However, it is worth emphasizing that our main interest is in the

speed of finding a minimizer of the problem (4.6). In this case, since QM converged to

a different local minimum than the other three methods, we computed the RMSD to

ω∞ of the NCG-MLS method (without preconditioner). The RMSD plots in Fig. 4.4.9

show a significant computational gain of our algorithm over the other algorithms.

4.5 Conclusion

This chapter presents an efficient algorithm for both multi-echo field map esti-

mation and water-fat imaging problem in the 3D multi-coil MRI setting. Given the

nonconvex cost function, our algorithm uses the nonlinear conjugate gradient method

with a preconditioner based on an incomplete Cholesky factorization, and a mono-

tonic step size line search based on a quadratic majorizer with optimal curvatures.

This is the first work to use the incomplete Cholesky factorization as a preconditioner

for multi-coil field map estimation. Experiments with simulation and real data show

that our method has faster convergence than existing memory-efficient methods.

This method is suitable for routine use; the main practical issue is choosing the

regularization parameter in (4.6); the spatial resolution analysis in [65] is helpful as a

guide for that in the single-coil case, and that work should be easily extended to the

multi-coil case and the fat-water separation problem.
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Chapter 5

A Spatiotemporal Model

for Task-based Functional MRI

As a category of fMRI, the main goal of task-based fMRI is to identify brain

regions that are functionally involved in performing specific tasks. To better iden-

tify task-activated brain regions in task-based functional magnetic resonance imaging

(fMRI), various space-time models have been used to reconstruct image sequences

from undersampled k-space data. These models represent an fMRI timeseries as

a sum of two components, aiming to separate task-correlated signal from non-task

background. This chapter proposes a model based on assumptions of the activa-

tion waveform shape, with spatial and temporal smoothness regularization on the

magnitude and phase of the timeseries. We compare the proposed approach to two

contemporary task fMRI decomposition models, and show that the proposed model

yields better timeseries and activation maps on simulated and human subject fMRI

datasets with multiple tasks.

5.1 Introduction

FMRI uses blood oxygenation level dependent (BOLD) contrast to measure dy-

namic neural activity [142]. As rapid whole brain imaging is desired to reduce noise

and motion artifacts while acquiring more data, various methods have been proposed

for fMRI acceleration [36,80,175,198]. In the case of undersampled acquisition, a sig-

nificant challenge is to reconstruct functional MR images with both high spatial and

temporal resolution. This has led to reconstruction models based on assumptions such

as low-rankness, sparsity, and temporal smoothness [9,34,38,39,95,113,149,154,180].

This chapter extends our image recovery work in the conference paper [117] to image recon-
struction from k-space data.
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Due to the low strength of the signal of interest in fMRI, the reconstruction results

can depend heavily on model assumptions, and it is desirable to develop a goal-driven

model that considers the purpose of the fMRI experiment, such as identifying acti-

vated regions.

This chapter considers task-based fMRI, with the goal to detect task-activated

regions of the brain. Conventional image analysis for conventionally reconstructed

fMRI timeseries involves processing a reconstructed image sequence to correct for

noise and artifacts, then comparing it with a predefined hemodynamic response func-

tion (HRF)-convolved task waveform using general linear modeling (GLM) [130].

Each voxel’s temporal correlation to the task waveform is a test statistic that indi-

cates its activation by the task, and one can visualize the activated areas in the brain

by, for example, plotting a thresholded correlation map for all the voxels.

Since MR images reconstructed from k-space are complex-valued, analysis ap-

proaches on complex images have also been proposed. For example, [11,170] inves-

tigate functional activation separately on the magnitude and phase images, whereas

[29,106] combine magnitude and phase information of the complex independent com-

ponents extracted from the complex image sequence. In the reconstruction setting,

separate magnitude and phase regularization has been developed for static MRI, with

quadratic spatial smoothness penalty on the phase [60,122,209,211].

With the aim of integrating task detection into the reconstruction process itself,

we propose a reconstruction model based on a priori knowledge of the task wave-

form shape, with spatial and temporal smoothness assumptions on the magnitude

and phase images. We compare it to two contemporary task fMRI decomposition

models, and show that our model reconstructs better timeseries and activation maps

on undersampled fMRI datasets with multiple simulated and real tasks. Compared

to our conference work [117], this chapter considers the multi-coil image reconstruc-

tion problem with spatiotemporal undersampled k-space data, and uses an additional

regularizer for the phase images. To the best of our knowledge, this is the first fMRI

reconstruction model with separate magnitude and phase regularization.

The rest of this chapter is organized as follows. Section 5.2 formulates a general

optimization framework for fMRI image reconstruction, and reviews two related task

fMRI models using special cases of the formulation. Section 5.3 presents the proposed

model and its optimization scheme. Section 5.4 reports simulated and human task

experiment results, followed by conclusions in Section 5.5.
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5.2 Problem and related models

To reconstruct task-based fMRI images from undersampled multi-coil k-space

data, several space-time models have been proposed that all involve an optimization

problem with a cost function of the form

argmin
X

1

2
‖EX − d‖2

2 + λR(X), (5.1)

where X ∈ CNv×Nt is the desired image sequence with Nv voxels and Nt time frames,

E : CNv×Nt → CNkNc is an encoding operator with Nc signal receiver coils (see

Section 2.2.1), d ∈ CNkNc is the undersampled multi-coil k-space data, and R(·)
is a regularizer with parameter λ that depends on specific model assumptions.

We now review two existing task fMRI reconstruction models that are essentially

special cases of framework (5.1), with underlying assumptions that inspire the pro-

posed model in Section 5.3.

5.2.1 L+S: low-rank plus sparse decomposition

The low-rank plus sparse (L+S) approach [149,180] decomposes an fMRI image

sequence into X = L + S, where the low-rank component L aims to model the non-

task temporally correlated background, and the sparse component S aims to model

the pseudo-periodic BOLD activity. With these assumptions, the L+S approach

replaces (5.1) with the following optimization problem

argmin
L,S

1

2
‖E(L+ S)− d‖2

2 + λL‖L‖∗ + λS‖TS‖1, (5.2)

where T : CNv×Nt → CNvNt is the (unitary) temporal Fourier transform operator.

The nuclear norm encourages L to be low-rank, and the l1 norm encourages S to be

periodic.

One way to solve (5.2) is to alternate between two proximal gradient updates, with

singular value thresholding (SVT) for L and soft thresholding for S [149,180]. In our

experiments, we used POGM to accelerate convergence (see Chapter 3 and [115]).

5.2.2 L+UV: low-rank plus task-based decomposition

Another task fMRI model [37] also considers a low-rank component in hopes of

capturing the background signal, inspired by a resting state model [39]. Instead of

using temporal Fourier sparsity as a regularizer, this model considers a spatiotemporal
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decomposition UV , where U ∈ CNv×r is an estimated spatial map corresponding to a

predefined temporal basis V ∈ Rr×Nt , where r is the number of task-associated basis

vectors. This real-valued V can be a task waveform, or more generally a sinusoidal or

block-like function, along with its temporal derivatives [37]. Compared with the L+S

model, the temporal basis V constrains the shape of activation signal to lie in a given

r-dimensional subspace, largely paralleling what is done with GLM approaches that

are used for postprocessing. Together with the low-rank component L, the L+UV

approach replaces (5.1) with the following optimmization problem

argmin
L,U

1

2
‖E(L+ UV )− d‖2

2 + λL‖L‖∗, (5.3)

which has one fewer regularization parameter to tune than (5.2).

In our experiments, we solved (5.3) by alternating minimization as in [37], with

POGM to accelerate the L update, and a closed-form linear least squares update for U .

One can also apply an accelerated proximal gradient method to simultaneously update

L and U , by a relatively simple extension of the methods in Chapter 3 and [115].

5.3 Proposed model

A desirable decomposition in task-based fMRI is to separate a timeseries into its

non-task background signal and task-activated foreground dynamics. However, both

models (5.2) and (5.3) contain overlapping assumptions in their components. For

example, a periodic task can be both low rank and temporally Fourier sparse, hence

might appear in either L or S in the L+S model. Similarly in L+UV, a block-like

task that is supposed to be capture in UV (by design of V ) can also appear in L due

to its low-rankness.

Another desired property is inspired by fMRI analysis. As most methods use the

magnitude images and decompose them for activation analysis, we hope to account for

the magnitude operation in reconstruction. While one could analyze the magnitude

of the reconstructed sum, or the real and imaginary parts of each component in the

sum, there lacks an intuitive way to visualize the timeseries and activation of the

reconstructed complex non-task and task components.

To this end, we propose a decomposition model that strives to better capture

separate features of the non-task background and the task-activated foreground, using

a sum of two real-valued components. This section discusses its formulation under

framework (5.1) and an optimization scheme.
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Notations : We use � as the Hadamard product and ⊗ as the Kronecker product.

vec(·) denotes vectorization, ·∗ denotes complex conjugate, and <(·) takes the real

part of a complex input. IN is the identity matrix with dimension N ×N .

5.3.1 B+UV: background plus spatiotemporal decomposition

We propose to model the complex image sequence as X = (B+UV )� eiP , where

B,UV, P ∈ RNv×Nt respectively capture the magnitude of background signal, magni-

tude of task signal, and phase. Under these assumptions, we consider a predefined

temporal basis V ∈ Rr×Nt with task waveforms, similar to the L+UV model [37].

We also use an edge-preserving spatial smoothness regularizer on the spatial coef-

ficients in U ∈ RNv×r. Inspired by spatial and temporal similarity assumptions in

resting state fMRI reconstruction models [9,34,38,113], we consider spatial and tem-

poral smoothness penalty on the background BOLD magnitude signal B and the

phase P . To accommodate phase wrapping, we apply spatial and temporal finite

difference on the exponentiated phase eiP as opposed to P itself [122,209,211]. Any

temporally smooth terms that would normally be included in a GLM analysis of an

fMRI timeseries, such as a linear drift term and/or discrete cosine transform (DCT)

low frequency components, should appear in the background component B, whereas

the task signals are represented in V and hence appear as coefficients in U. In cases

where the hemodynamic response function is uncertain or subject to delays, one can

also include temporal derivatives of the HRF-convolved task waveforms in V [37].

Our proposed cost function for task-based fMRI is

argmin
U

min
B,P

1

2
‖E
(
(B + UV )� eiP

)
− d‖2

2

+
1

2
‖DBB‖2

2 +
1

2
‖DP eiP‖2

2 + Ψ(DUU), (5.4)

where

DB =

[√
λv
B(Dt ⊗ INv)√
λt
B(INt ⊗Dv)

]
: RNv×Nt → R2NvNt

and

DP =

[√
λv
P (INt ⊗Dv)√
λt
P (Dt ⊗ INv)

]
: CNv×Nt → C2NvNt
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include first-order finite matrices Dt ∈ RNt×Nt and Dv ∈ RNv×Nv in temporal and

spatial dimensions. For U we consider (columnwise) spatial finite difference

DU = (Ir ⊗Dv) : RNv×r → RNvr,

with Ψ(·) as the sum of an edge-preserving potential function on its elements to

account for spatial task-activated regions, weighted by a regularization parameter λU :

Ψ(U) = λU
∑
i

ψ(Ui).

There are many typical edge-preserving potential functions, e.g., Cauchy [83], Hu-

ber [86], hyperbola [33], etc.. In this chapter we use the Fair potential function [53]

as an illustration:

ψδ(u) = δ2
(
|u/δ| − log(1 + |u/δ|)

)
.

5.3.2 Optimization

To minimize the nonconvex cost (5.4), we use the nonlinear conjugate gradient

(NCG) method with line search (LS) alternately on X̃ = [B U ] and P . Our imple-

mentation for both variables is tabulated in the Algorithm below. For NCG, we use

the Fletcher–Reeves update [63] to compute a µi that satisfies the conjugacy condi-

tion. Our algorithm decreases the cost (5.4) monotonically by design and converges to

a local minimizer. Below we show the initialization scheme, and the NCG algorithm

with line search for X̃ and P updates.

Initialization

A good initialization is important for the nonconvex cost (5.4). In cases with

spatiotemporal undersampling, we use data sharing among nearby frames to fill in

missing k-space samples, for initialization only. This temporal interpolation technique

is a generalization of the keyhole method [93,194]. For an initial guess of the overall

image sequence X0, we apply a conjugate phase (CP) reconstruction [139] with sam-

pling density compensation computed by an iterative method [156] to the data-shared

k-space data. Due to nonconvexity, we provide the option to further estimate X0 by

running a few CG iterations of the (convex) B+UV without magnitude and phase

separation [117], where the variables B,U become complex-valued:

argmin
U

min
B

1

2
‖E(B + UV )− d‖2

2 +
1

2
‖DBB‖2

2 + Ψ(DUU). (5.5)
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To initialize U , we use the least squares solution

U0 = M0V
>(V V >)−1

where M0 is the magnitude of the demeaned X0. The background is initialized as

B0 = |X0| − U0V,

and the initial phase is

P0 = ∠X0.

The solution to the optimization problem (5.4) has ambiguity due to its nonunique-

ness, as a sign flip of B,U and a π shift of P would result in the same cost. Using

the above initialization scheme in our experiments, the reconstructed B̂ and Û were

nonnegative and did not suffer from this effect; if needed, one could consider enforcing

nonnegativity constraints on B or B + UV to avoid potential ambiguity.

Update of image sequences X̃ = [B U ]

To simplify the B,U updates, we can express

EPB := E · diag(eiP )B = E(B � eiP ),

and

EP,VU := E · diag(eiP )(V > ⊗ Ir)vec(U)

= E
(
(UV )� eiP

)
,

where we use the compatibility of vectorization with the Kronecker product

vec(UV ) = (V > ⊗ INv)vec(U).

Then for a fixed P , the cost with respect to X̃ = [B U ] can be written as

ΦP (X̃) =
1

2
‖ẼP X̃ − d‖2

2 + Ψ̃(D̃X̃),

where

ẼP =
[
EP EP,V

]
,
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D̃ =

[
DB 0

0 DU

]
,

and Ψ̃(·) consists of the l2 norm on the B term and Ψ(·) on the U term. Its gradient

is

∇ΦP (X̃) = <{Ẽ∗P (ẼP X̃ − d)}

+
[
D∗BDBB D∗U∇Ψ(DUU)

]
(5.6)

where, for the Fair potential,

[∇Ψδ(U)]i =
Ui

1 + |Ui/δ|
.

With a search direction given by NCG, the choice of step size is important for

convergence of the algorithm. We implement a recursive line search algorithm using a

quadratic majorizer with an optimal curvature, which guarantees monotone decrease

of the cost function [58].

In the line search step, given a current estimate X̃ i = [Bi U i] and a search direction

Zi = [Zi
B Z

i
U ] ∈ RNv×(Nt+r), we aim to find a step size

argmin
α

fP (α) , where

fP (α) =
1

2
‖ẼP (X̃ i + αZi)− d‖2

2 + Ψ̃
(
D̃(X̃ i + αZi)

)
=

1

2
‖EP

(
(Bi + αZi

B) + (U i + αZi
U)V

)
− d‖2

2

+
1

2
‖DB(Bi + αZi

B)‖2
2 + Ψ

(
DU(U i + αZi

U)
)
.

We iteratively minimize fP (α) using a quadratic majorizer based on Huber’s method [87,

p. 184] at the kth inner iteration (dropping outer iteration i for brevity):
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qk(α) =
1

2
‖ẼP (X̃ + αZ)− d‖2

2 +
1

2
‖DB(B + αZB)‖2

2

+ Ψ
(
DU(U + α(k)ZU)

)
+ vec(ZU)>D∗U∇Ψ

(
DU(U + α(k)ZU)

)
(α− α(k))

+
1

2
d(k)(α− α(k))2,

where the optimal curvature is given by

d(k) = vec(ZU)>D∗U∇2Ψ
(
DU(U + α(k)ZU)

)
DUZU

= vec(ZU)>D∗Udiag
(
ωΨ

(
DU(U + α(k)ZU)

))
DUZU ,

where

[ωΨδ(U)]i =
1

1 + |Ui/δ|
.

Using one step of Newton’s method on the quadratic majorizer qk(α) gives the

step size update

α(k+1) = α(k) −
∂
∂α
qk(α

(k))
∂2

∂α2 qk(α(k))

= α(k) −
∂
∂α
fP (α(k))

d(k) + ‖ẼPZ‖2
2 + ‖DBZB‖2

2

. (5.7)

We implement (5.7) efficiently by computing ‖ẼPZ‖2
2 and ‖DBZB‖2

2 only once per

outer NCG iteration i. Since the majorizer satisfies qk(α) ≥ f(α) for all step size α

and inner line search iteration k, the update (5.7) guarantees monotonic decrease of

fP (α).

Update of phase sequence P

For a fixed X̃, the cost with respect to the phase sequence P is

ΦX(P ) =
1

2
‖EXeiP − d‖2

2 +
1

2
‖DP eiP‖2

2,
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where EX = E · diag(B + UV ). Its gradient is

∇ΦX(P ) =−<{diag(ie−iP )E∗X(EXP − d)}

− <{ie−iP � (D∗PDP eiP )}. (5.8)

Similar to the line search iterates for X̃, we use the Newton’s method to update

the step size. In this case, due to nonconvexity of the exponential term, we use a

backtracking strategy [138] to ensure monotone decrease of the cost. Given a current

estimate P i and a search direction Zi
P ∈ RNv×Nt , we aim to find a step size

argmin
α

fX(α) , where

fX(α) = ΦX(P + αZi
P ).

The Newton step size update on fX(α) is

α(k+1) = α(k) −
∂
∂α
fX(α(k))

∂2

∂α2fX(α(k))
, (5.9)

where
∂

∂α
fX(α(k)) = vec(Zi

P )>∇ΦX(P + αZi
P ),

and
∂2

∂α2
fX(α(k)) = vec(Zi

P )>∇2ΦX(P + αZi
P )Zi

P

where

∇2ΦX(P ) =−<{diag
(
e−iP � E∗X(EXP − d)

)
− diag(e−iP )E∗XEXdiag(eiP )}

+ <
{

diag(e−iP )D∗PDPdiag(eiP )

− diag
(
e−iP � (D∗PDP eiP )

)}
.

Normalization of V

Before our optimization procedure, we normalize the rows of V ; this leads to

similar magnitudes across columns of U , and justifies our use of a single regularization

parameter λU for the regularizer on U . This scaling also ensures the diagonal elements

of Ẽ∗P ẼP have similar magnitudes, so the same µi can be used for both B and U
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Algorithm: NCG-LS for Y = X̃ or Y = P
Intialization:
Y0 = previous iterate (or CP reconstruction for 1st iteration)
Z0 = −∇Φ(Y0) by (5.6) or (5.8)
α(0) = 0

for i = 0, 1, . . . , N − 1 do
compute descent direction gi = −∇Φ(Y i) by (5.6) or (5.8)
compute µi with conjugacy
search direction Zi+1 = gi + µiZi

for k = 0, 1, . . . , Ni − 1 do
update step size α(k+1) by (5.7) or (5.9)

end for
update Y i+1 = Y i + α(Ni)Zi+1

end for
output: YN

without preconditioning.

5.4 Results

We validate our B+UV model using two fMRI experiments. The first experiment

reconstructs images using a resting state fMRI dataset with simulated task waveforms

imposed on specified regions of interest. The second experiment reconstructs images

using an in vivo visual and motor fMRI dataset.

To compare how the signal changes within a voxel, we plot the timeseries of each

component for randomly selected activated and non-activated voxels. To evaluate

task detection accuracy, we use a blockwise permutation method [7] on the k-space

data to compute an activation map for each algorithm. During each permutation, we

first perform a circular shift at a random time frame of the k-t data sequence, then

randomly permute it by blocks of size 50 s to account for fMRI autocorrelation. After

reconstruction, we use the distribution of correlation between the task waveform and

permuted timeseries to compute a p-value with Bonferroni correction for each voxel.

We repeat this permutation process for Nperm = 5000 times, and define the final

activation maps using p-value maps with a threshold at 10/Nperm = 0.002.

Since the components in L+S and L+UV are complex-valued, for visualization

purpose we show the magnitude of sums and the real part of individual components

in the timeseries plots; we omit plots of the imaginary parts, as they show similar

behaviors to the real parts. We compare their results with the (real-valued) B and
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UV in our B+UV model.

5.4.1 Reconstruction: simulated tasks

Simulation setup

Our first experiment uses unprocessed resting state images from a Human Con-

nectome Project (HCP) 1200 Subjects Dataset [1] with added simulated tasks. The

advantage of using a human dataset is its resting state behavior with motion and

physiological artifacts, making it a realistic background signal useful for validation

of the non-task component in our model. The selected 3T resting state dataset has

image size 60 × 72 and 5 z-slices, with a TR of 720 ms. To match the 200 s experi-

ment for the human subject task (Section 5.4.2) with first 10 s of data discarded, we

selected 265 time frames for reconstruction, and generated k-space data using a stack

of spiral trajectory (Nk = 3393 for each slice) with retrospective kz-t undersampling

by a factor of 3 (Fig. 5.4.1).

We then simulated two tasks with different periodicities and generated their spiral

k-space corresponding to three 3D trapezoidal regions of interest (ROI). Fig. 5.4.2

shows the task waveforms as rows of V ; one task is periodic with a block design,

and the other is nonperiodic. To match the tasks in the real task experiment (Sec-

tion 5.4.2), we simulated an interleaving left-right visual task using Task 1 and its

negative waveform (Task 2) to generate two ROIs, and Task 3 to simulate a motor

ROI. We added k-space task components to the synthetic resting state data to get

our simulated undersampled spiral k-space data for reconstruction.

Figure 5.4.1: 3× kz-t undersampling,
with fully sampled kz center and ran-
domly sampled outer kz space.

Figure 5.4.2: Two simulated tasks as
rows of V , across Nt = 265 time frames.

One limit of our simulation is the lack of functional information in the phase,

as both the background and the task k-space data were generated by the Fourier
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transform of real-valued images. Future work will consider more a realistic simulation;

one idea is to add smooth phase images estimated from reconstructed images on

human subjects.

Reconstruction result

To compare results reconstructed by three models, we ran each model by sweeping

across and selecting regularization parameters that gave the lowest total false positive

plus false negative thresholded activation.

To visualize individual components in the sum, Fig. 5.4.3 shows the timeseries of

three task-activated voxels and one non-task voxel. In all three models, the magni-

tudes of the sum of two components are capable of recovering the shape and corre-

lation values of the ground truth timeseries; however, some individual components

do not capture background and task as they are designed to. For L+S, without

knowledge of the task waveform shape, S tries to capture the task by its periodic be-

havior. The L+UV model, on the other hand, fails to separate task from background;

in all three task voxels, UV captures a negated and shifted version of L. Although

|L+UV | recovers the shape of the ground truth, its two components did not represent

background and task as the model assumes. In comparison, our B+UV consistently

captures the background signal in B and the task in UV , as designed by the model

assumptions.

To analyze task correlation of the task component in each model, we computed

their receiver operating characteristic (ROC) curves (Fig. 5.4.4). The U maps in

B+UV show consistent performance across three tasks; in comparison, S in L+S

performs slightly worse for all tasks with lower area under curve (AUC) values, and

U in L+UV performs worst with low true positive ratios.

Fig. 5.4.5 shows the activation maps for a center slice, based on the p-values of

each model after permutation tests. For the L+S and L+UV models, we show the

p-value maps that best match the ground truth, which in this case are the magnitude

of the sum of components; this is consistent with our previous observation that their

task components might not capture tasks as designed by the models. for our B+UV

model, we show the p-value map of U that is designed to capture task correlations.

Compared with U in our B+UV, we observe that |L+S| shows more false negatives,

while |L+ UV | shows slightly more false positives.

Although our B+UV performs better in AUC values and p-value maps, its ROC

curves in Fig. 5.4.4 have the potential for lower false positive ratios. Future work

will explore different regularization parameter tuning criteria; one idea is to use the
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mean of “partial AUC” with a range of small false positive ratio values as a tuning

criterion.

Figure 5.4.3: Timeseries of three activated voxels (corresponding to three simulated
tasks) and one non-activated (rightmost column) voxels on simulated data. Top to
bottom: ground truth, L+S, L+UV, and B+UV decompositions, with their [corre-
lation] to corresponding activation waveforms (or highest absolute correlation in the
non-task case), across Nt = 265 time frames.
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Figure 5.4.4: ROC curves with (AUC values) for simulated task experiment, on
task component of each model: U in B+UV, real(S) in L+S, and real(U) in L+UV.

Figure 5.4.5: Activation maps of one slice on simulated dataset, contiguity-
thresholded at 0.002 p-values after block permutation (cluster size = 2 voxels), and
colored for three tasks.

5.4.2 Reconstruction: visual and motor tasks

Experiment setup

This human dataset uses a 2-shot spiral trajectory with volume TR = 500 ms

(slice TR = 250 ms), Nt = 380 (with first 10 s of data discarded to justify the use

of one task waveform for two visual tasks), and 5 image slices of size of 96 × 96.

Fig. 5.4.6 shows the rows in V with left visual and motor task waveforms. The visual

task is an interleave of 20 seconds of left and 20 seconds of right visual checkerboards

task repeated five times, while the motor task is nonperiodic; we assume the right

visual task waveform is the negative of the left visual one. For each time frame,

we retrospectively undersampled by randomly choosing k-space data from one of the

two shots, with Nk = 7432 for each slice. We coil-compressed the 32-coil data into
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Nc = 4 virtual coils, and used ESPIRiT [190] to compute sensitivity maps C; we

also accounted for field inhomogeneity effects [59] in our system E, with field maps

estimated based on reconstructed spin-warp images using our regularized estimation

method (Chapter 4). To compare model performance in task detection, we used the

p-value map of the CP reconstruction on fully sampled k-space data as a reference.

Figure 5.4.6: Two tasks as rows of V on visual and motor task data, across Nt = 380
time frames.

Reconstruction result

For this human dataset, we initialized our B+UV by 10 CG iterations of the

(convex) B+UV without magnitude and phase separation (5.5).

Fig. 5.4.7 shows the timeseries of three task-activated voxels and one non-task

voxel. Similar to the simulation results, all three models recovered the overall shape

of the fully sampled timeseries in their magnitudes of sums. The components in

L+S display different behaviors, with S trying to capture the task by its periodic

assumption. The two components in L+UV fail to separate background and task

information as designed by its model, though L contains most background oscillation.

In comparison, our B+UV consistently captures background signal in B, and task

signal in UV .

Fig. 5.4.8 shows the activation maps for a center slice, based on the p-values

of each reconstruction model after block permutation tests. The L+S result fails

to distinguish the three tasks, with false negatives for the visual tasks; L+UV and

B+UV show comparable results, with slightly more false positives in L+UV.

One difference between this human dataset and our simulation in Section 5.4.1 is

in the scale of their reconstructed images. Future work will address this difference

by, for example, scaling the human k-space data to match our simulation. With more

comparable image values, we can explore using the regularization parameters in our

simulation to guide their selection in human experiments.
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Figure 5.4.7: Timeseries of three activated and one non-activated (rightmost col-
umn) voxels on visual and motor task data. Top to bottom: fully sampled CP re-
construction, L+S, L+UV, and B+UV reconstructions, with their [correlation] to left
visual, right visual, and motor activation waveforms (or highest absolute correlation
in the non-task case), across Nt = 380 time frames.
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Figure 5.4.8: Activation maps on visual and motor task data, contiguity-thresholded
at 0.002 p-values after block permutation, and colored for three tasks. The model-
based reconstruction results were all from data undersampled by a factor of 2.

5.5 Conclusion

We present a task-based fMRI model for image sequence reconstruction from

spatiotemporal undersampled multi-coil k-space data, with an aim to detect task-

activated brain regions. Our proposed B+UV model assumes separation of task from

non-task background signal, with spatial and temporal finite difference regulariza-

tion on the background magnitude B and phase images, and task waveforms in the

temporal basis V that drives UV to capture task activations. We use the nonlinear

conjugate gradient method with line search to solve the optimization problem, and

our algorithm is guaranteed to monotonically decrease the cost. Compared with ex-

isting reconstruction models for task-based fMRI, the proposed method yields better

timeseries and activation maps on simulated and human subject task fMRI data.

One practical concern of our method is regularization paramter tuning for (5.4).

One way to guide this selection is based on spatial and temporal local impulse re-

sponses; to this end, [62,74,146] can be extended to our setting. Other regularization

scheme, such as second-order finite difference on B, can also be explored. To increase

model robustness to subject task performance, the temporal basis V can be general-

ized to account for mismatch and deviation from the designed task waveforms. One

might even consider joint estimation of spatial map U and temporal basis V .

The 3D multi-coil dynamic setting is a large-scale problem that is computationally

and memory intensive; to this end, convergence speedup can be explored by exploiting

problem structures and applying efficient preconditioners [105]. Finally, one may con-

sider extending this model to general fMRI reconstruction (e.g., resting state fMRI)

under spatial and temporal smoothness assumptions, with separate magnitude and

phase regularization.
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Chapter 6

A Model-based Reconstruction Framework

The preceding chapters have addressed some ingredients that are part of the opti-

mization problem (2.3) for model-based dynamic MRI reconstruction, such as the reg-

ularizer R(X) and optimization algorithms given specific cost formulations. We have

also considered E with nonuniform sampling and coil sensitivities. To further address

artifacts, such as magnetic field inhomogeneity and motion effects, this chapter dis-

cusses implementation details of the system operator E introduced in Section 2.2.1.

Section 6.1 considers reconstruction accounting for intravoxel field inhomogeneity,

and Section 6.2 discusses the implementation of head motion compensation. Finally,

Section 6.3 presents a general framework for dynamic MRI reconstruction with all

ingredients considered in this dissertation.

6.1 Intravoxel field inhomogeneity correction

FMRI with BOLD contrast typically requires relatively long readouts to track

rapid functional changes, using acquisitions such as spiral and echo-planar imag-

ing (EPI). This leads to its sensitivity to magnetic field inhomogeneity effects, causing

geometric distortions in EPI and blurring in spiral imaging, especially near air/tissue

interface. After a field map ω is estimated from MR scans having multiple echo times,

as discussed in Chapter 4, we can account for its effect in the system operator E during

reconstruction. This section assumes a static field map; dynamic field map estima-

tion has also been explored with joint image reconstruction [84,128,145,185,192,205].

Below we discuss the implementation of reconstruction with field map correction, and

illustrate its improvement using a simulation.
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6.1.1 Implementation

Signal equation

The signal equation with field inhomogeneity (2.4) at sampling time ti is

di =

∫
x(~r)eiω(~r)tie−i2πki·~rd~r . (6.1)

For a single time frame, when discretizing the image x(~r) and field map ω(~r); different

choices of their spatial basis functions lead to different formulations of E in the matrix

equation (2.2). A common basis function for a (3D) image is the rectangular function,

where we assume each voxel has a constant image value:

x(~r) ≈
Nv∑
j=1

xjrect3

(
(~r − ~rj)�∆r

)
,

where ∆r is a voxel resolution vector. Similarly, one might consider the same rect-

angular basis function for the field map [184]. However, this piecewise constant basis

does not consider field inhomogeneity effects within a voxel, which can have nonzero

gradients that lead to intravoxel spin dephase. To account for intravoxel susceptibility,

[108,183] consider a piecewise linear basis for ω(~r):

ω(~r) ≈
Nv∑
j=1

(
ωj + 2πgj · (~r − ~rj)

)
rect3

(
(~r − ~rj)�∆r

)
,

where gj is intravoxel field gradient at the jth voxel that can be computed using the

difference of field map values at neighboring voxels. With this image-space discretiza-

tion, our signal equation (6.1) becomes

di ≈ sinc3

(
(ki − tigj)�∆r

) Nv∑
j=1

xje
iωjtie−i2πki·~rj . (6.2)

Basis expansion approximation

Given the large problem size, it is computationally and memory impractical to

form a system operator to compute (6.2) for all i, j. To this end, we adopt a basis
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expansion approximation [59] for the intravoxel field inhomogeneity terms:

Wij := sinc3

(
(ki − tigj)�∆r

)
eiωjti ≈

L∑
l=1

BilClj . (6.3)

Then the approximate signal equation (6.2) becomes

di ≈
L∑
l=1

Bil

( Nv∑
j=1

(xjClj)e
−i2πki·~rj

)
,

or in matrix form

d ≈
L∑
l=1

BlQClx ,

where Bl = diag(Bil), Cl = diag(Cil), and Q : CNv → CNk is a Fourier transform

operator.

To obtain the approximation bases {Bil}, {Clj}, we consider a extension of the

histogram principal components method in [59], where a 1D histogram is used to

approximate the exponential function. In our case with intravoxel field gradient,

the basis expansion (6.3) is a product of four functions, and a direct generalization

to 4D histogram is computationally impractical. Hence we adopt a sketching scheme

described in [108]. To estimate {Bil}, we first sample N � Nv field map and gradient

values randomly from all (masked) voxels, then perform an SVD on the matrix WN ∈
CNk×N in (6.3) formed at the sampled voxels. We speed up the computation by a

truncated SVD using the eigenvalues and eigenvectors of W ∗
NWN as in [199] to get

the L dominant left singular vectors. To estimate {Clj}, we use a sketching scheme

on W in (6.3) by uniformly sampling K values from all Nk sampling time values {ti},
then perform a least-squares fit using the estimated {Bil}.

In functional MRI, after applying motion correction on an image, we use a static

field map and its approximations for all time frames during reconstruction. This

is an approximation that disregards field drifts during the scan and changes in the

field map due to changes in susceptibility effects as the head moves in the main field.

Such changes are typically disregarded in fMRI and the approximation should be

reasonable provided the motion is relatively small.

6.1.2 Simulation

This simulation uses images and field maps estimated in Section 4.4.2 to illustrate

3D image reconstruction with intravoxel field inhomogeneity correction. We synthe-
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size k-space data for two image slices with a stack of spiral trajectory, using the

signal equation (6.2). We then reconstruct images using a quadratic cost with spatial

smoothing, with four system operator formulations: (1) E without field inhomogene-

ity compensation, (2) E(ω) with piecewise constant basis function for field map, (3)

E(ω,gz) with through-plane field gradient effects (disregarding in-plane gradients),

and (4) E(ω,g) with 3D intravoxel field inhomogeneity compensation.

Fig. 6.1.1 shows the field map ω and its field gradients in three dimensions.

Fig. 6.1.2 shows the reconstructed images and their error maps, using the four system

operators described above. Images reconstructed with compensation of intravoxel

field inhomogeneity effects in all three dimensions give the lowest normalized root

mean square error (NRMSE) to the ground truth.

Figure 6.1.1: B0 (in Hz) and gradient maps (in Hz/meter) in simulation.

Figure 6.1.2: Reconstructed and error images in simulation, plotted on the same
scale of [0, 1].

6.2 Head motion compensation

Head motion is known to produce artifacts in MRI and spurious correlation in

fMRI studies [155,159]; hence it is crucial to identify and correct for motion effects

prior to analysis and diagnosis. One way to correct for motion in fMRI is to re-

construct images at each time frame, then register them to a reference image. In

spatiotemporally undersampled fMRI, it is efficient to incorporate motion correction

in the reconstruction process. Joint image reconstruction and motion estimation has

been explored in both static and dynamic MRI [42,78,121], with a nonconvex cost
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function. To avoid nonconvexity and focus on reconstruction of the image sequence,

we can estimate the motion parameters using a crude initial reconstruction, and build

them into a (fixed) system operator E. Below we discuss the implementation of a

system operator with motion compensation, and illustrate its improvement in recon-

struction using a simulation.

6.2.1 Implementation

The 3D bulk movement of the head is a rigid motion that can be measured using

registration and captured by six parameters (three for rotation and three for trans-

lation). To estimate these parameters for each time frame, we compute an initial

reconstruction of the image sequence, such as a conjugate phase reconstruction [139].

We use image registration tools such as MATLAB’s Image Processing toolbox or the

Statistical Parametric Mapping (SPM) software [6] to estimate 3D rigid motion of

the image from each frame to the first frame.

To account for motion, we include the estimated rotation and translation pa-

rameters in our system operator E during reconstruction. Motion correction can be

implemented in k-space using their equivalent rotation and linear phase shift [13,26,

155,193]. In multi-coil reconstruction, however, since the coils are static, coil sensi-

tivity maps are in motion relative to the image sequence; thus, with k-space-based

correction methods one needs image space registration of the coil maps, which scales

up computational complexity by the number of coils. This motivates us to focus

on image space registration of the image sequence during reconstruction. There are

numerous techniques for image registration with different interpolation schemes [91];

here we adopt the Fourier interpolation method [52] in our reconstruction framework.

Fourier interpolation in k-space represents a 3D rotation matrix as a product of

three 2D rotation matrices, each of which is approximated by the product of three

shear matrices [191]. [42] adopts this scheme to image space transformation, with

Fourier transform and inverse Fourier transform along each dimension before and af-

ter each shearing operation. After rotation by shearing, a translation can be directly

applied to the image, or in k-space with linear phase shift as in [42]. In reconstruc-

tion, we apply this transformation T : CNv×Nt → CNv×Nt for all Nt time frames to

get a rigid transformed image TX, before the Fourier transform and coil sensitivity

operations.
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6.2.2 Simulation

This simulation uses unprocessed resting state images from the NYU dataset [179]

that contains natural (i.e., not cued) subject head motion during scan. We synthe-

size k-space data using a stack of spiral trajectory, keeping the original image size

64× 64× 39 and resolution 3 mm, with 197 time frames. This k-space data has the

motion effects present in the unprocessed image sequence. We then use a conjugate

phase reconstruction using an E with sampling density compensation computed by

an iterative method [156] to obtain an image sequence with motion, and use MAT-

LAB’s imregtform to estimate rigid motion parameters for all frames. We compare

it with conjugate phase reconstruction using a system operator E(T) with motion

compensation.

We compare the two reconstructions against an image sequence corrected by SPM.

Fig. 6.2.1 shows an image slice at different four time frames across the scan and their

difference map to the SPM-correct images. We observe a visible motion effect towards

back of the brain. Fig. 6.2.2 shows the signal change across time for a voxel in the

brain region with motion effects; the motion-corrected timeseries resembles the SPM-

correct timeseries, while the uncorrected timeseries exhibits some discrepancy.

Figure 6.2.1: SPM motion-corrected and conjugate phase reconstructed images
without and with motion correction, for the 1st, 61st, 121st, and 181st time frames.

Figure 6.2.2: Timeseries of a voxel in SPM motion-corrected image, and conjugate
phase reconstructed image without and with motion correction.
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6.3 Summary: a general framework

This section summarizes the overarching story of this dissertation by putting all

the components together in a general model-based reconstruction framework. This

framework considers undersampled multi-coil dynamic MRI with the option of field

inhomogeneity and head motion correction.

Fig. 6.3.1 shows the framework in a flowchart. In data acquisition, we collect

(dynamic) k-space data d for the image sequence, and (static) multi-echo data for

field inhomogeneity estimation. We compute the Fourier operator Q with undersam-

pling Ω using the (known) k-space trajectory, as discussed in Section 2.2.1. Using an

initial reconstruction X0 (e.g., by conjugate phase) on d, we can estimate sensitivity

maps S and motion parameters across time frames for a rigid transformation T, as

discussed in Sections 2.2.1 and 6.2. With a reconstruction y on the multi-echo data,

we can estimate field map ω and use its difference as gradient g, as in Chapter 4 and

Section 6.1. For efficient implementation we approximate the intravoxel field inho-

mogeneity by basis expansion, as discussed in Sections 2.2.1 and 6.1. We consider

these components in a system operator E as in Section 2.2.1, and formulate an opti-

mization problem with regularization R(X) that considers assumptions on images X.

Chapter 5 is one example of a regularized optimization problem in the context of

task-based functional MRI. With a specified cost function, we also explore efficient

algorithms to solve for X, and Chapter 3 is an example of accelerated algorithms

for the low-rank plus sparse decomposition in dynamic MRI reconstruction. After

reconstructing images X̂, we evaluate and analyze the result based on our goals in

reconstruction, such as spatial quality and convergence as in Chapter 3, or timeseries

and correlation maps as in Chapter 5.

Figure 6.3.1: A general model-based reconstruction framework.
Gray box: k-space data, blue box: images, red ellipse: system operator components.
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Chapter 7

Future Work

7.1 Physiological noise correction

A type of artifact correction not addressed explicitly in this dissertation is physi-

ological noise including cardiac and respiratory rhythms, a known confounding factor

in fMRI signals [70]. While conventional fMRI attempts to remove physiological noise

in postprocessing, we desire to address it during reconstruction. The formulation in

Chapter 5 simply absorbs such effects into the background image sequence B and

possibly the phase sequence P , without using any reference waveforms.

One category of correction involves external measurement such as electrocardio-

graphy (EKG), pulse oximetry, and respiratory belts to record physiological signals.

After preprocessing the measurements [71,77,99], a direct extension to the spatial-

temporal model in Chapter 5 is to account for the physiological timeseries as part of

the temporal basis, and discard its spatiotemporal component after reconstruction.

Due to the added technical complexity in acquiring external physiological signals,

data-driven approaches have been proposed to estimate physiological noise directly

from fMRI images [18,40,153,187]. One possible direction to account for it during

reconstruction is to apply similar techniques on an initial reconstruction from under-

sampled (e.g., center of k-space) data, then build it into a temporal basis as mentioned

above. Another direction is to include physiological noise estimation as part of the

optimization problem. [131] estimates both spatial and temporal bases during re-

construction using a temporal Fourier sparsity regularizer. One can further specify

regularization by focusing on the range of plausible physiological frequencies.

7.2 Other models

The design of our task-base fMRI model in Chapter 5 is driven by its goal to

identify task-activated brain regions. In the case of resting state fMRI, we also desire
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a reconstruction model that accounts for signal properties and artifact corrections. A

comprehensive model evaluation includes comparison to contemporary resting state

reconstruction models such as [9,39,199] and functional connectivity analysis. It also

remains to be explored how to effectively combine handcrafted regularizers with ma-

chine learning in fMRI reconstruction.

7.3 Model-driven data acquisition

This dissertation focuses on reconstructing high spatiotemporal resolution images

given undersampled k-space data. In the other direction, our reconstruction model

also helps motivate data acquisition techniques. One example is task-based fMRI,

where the analysis of activation maps is much more emphasized over the spatial

resolution of an image sequence. With a known task waveform, therefore, our goal is

to estimate the spatial parameters corresponding to a given temporal basis. This goal,

specific to task fMRI, can drive the design of faster data acquisition techniques while

maintaining (or improving) activation detection. One might also consider applying

magnetic resonance fingerprinting (MRF) [126] to dynamic MRI with a specific model

structure. Another direction is joint trajectory design and image reconstruction; to

this end, extension from the 2D setting [196] to 3D dynamic MRI is desired. After

all, collaboration between data acquisition and image reconstruction is crucial to fast

and high quality magnetic resonance imaging.
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[188] B. Trémoulhéac, N. Dikaios, D. Atkinson, and S. R. Arridge. Dynamic MR
image reconstruction–separation from undersampled (k, t)-space via low-rank
plus sparse prior. IEEE transactions on medical imaging, 33(8):1689–1701,
2014.

[189] J. Tsao and Y. Jiang. Hierarchical IDEAL: fast, robust, and multiresolution
separation of multiple chemical species from multiple echo times. Magnetic
resonance in medicine, 70(1):155–159, 2013.

95



[190] M. Uecker, P. Lai, M. J. Murphy, P. Virtue, M. Elad, J. M. Pauly, S. S.
Vasanawala, and M. Lustig. ESPIRiT—an eigenvalue approach to autocali-
brating parallel MRI: where SENSE meets GRAPPA. Magnetic resonance in
medicine, 71(3):990–1001, 2014.

[191] M. Unser, P. Thevenaz, and L. Yaroslavsky. Convolution-based interpolation for
fast, high-quality rotation of images. IEEE Transactions on image processing,
4(10):1371–1381, 1995.

[192] M. Usman, L. Kakkar, A. Matakos, A. Kirkham, S. Arridge, and D. Atkinson.
Joint B0 and image estimation integrated with model based reconstruction for
field map update and distortion correction in prostate diffusion MRI. Magnetic
Resonance Imaging, 65:90–99, 2020.

[193] G. Vaillant, C. Prieto, C. Kolbitsch, G. Penney, and T. Schaeffter. Retrospective
rigid motion correction in k-space for segmented radial MRI. IEEE transactions
on medical imaging, 33(1):1–10, 2013.

[194] J. J. Van Vaals, M. E. Brummer, W. Thomas Dixon, H. H. Tuithof, H. Engels,
R. C. Nelson, B. M. Gerety, J. L. Chezmar, and J. A. Den Boer. “keyhole”
method for accelerating imaging of contrast agent uptake. Journal of Magnetic
Resonance Imaging, 3(4):671–675, 1993.

[195] D. O. Walsh, A. F. Gmitro, and M. W. Marcellin. Adaptive reconstruction of
phased array MR imagery. Magnetic Resonance in Medicine, 43(5):682–690,
2000.

[196] G. Wang, T. Luo, J.-F. Nielsen, D. C. Noll, and J. A. Fessler. B-spline param-
eterized joint optimization of reconstruction and k-space trajectories (BJORK)
for accelerated 2D MRI. arXiv preprint arXiv:2101.11369, 2021.

[197] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on
image processing, 13(4):600–612, 2004.
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